统计量及其分布

合集下载

《概率论与数理统计》统计量及其分布

《概率论与数理统计》统计量及其分布
律性的数学学科.
但数理统计以概率论为基础,更着重于根据试验得
到的数据来对研究对象的客观规律作出种种合理的估
计和判断.
4
第5章
统计量及其分布

描述统计学

对随机现象进行观测、试验, 以取得有代表

性的观测值.


推断统计学

对已取得的观测值进行整理、分析, 作出推

断、决策,从而找出所研究的对象的规律性.
O
5
n 10
10
15
20
x
32
01
抽样分布
2. t 分布
2
X
~
N
(0,1)

Y
~
x
(n),且X与Y 独立,则
设随机变量
X
T
Y /n
服从自由度为n的t分布,记为t(n).
性质 密度f(t)是偶函数,且t分布的极限分布是标准正
态分布.
33
01
抽样分布
t分布的密度函数
n 1
n 1


那么如何来利用样本呢?
列表?
画图?
统计量!
样本来自于总体,含有总体性质的信息,但较为分
散. 为了进行统计推断,需要把分散的信息进行整理,
针对不同的研究目的,构造不同的样本函数,这种函
数在统计学中称为统计量.
18
本讲内容
01
总体与个体
02
样本
03
统计量
03
统计量
3.统计量
统计量——不含有未知参数的样本函数


f ( x)
n1
n2
x

统计量及其分布

统计量及其分布

思考题
设 X1, X2 , … , Xn 是取自正态总体 N (, 2 ),
的一个样本,求 E( XS 2 ) ?
定理 2 设 X1, X2 , … , Xn 是取自正态总体 N (, 2 )
的样本,X 和S 分别为样本均值和样本均方差,则有
1) X ~ N(0, 1); / n
2) X ~ t(n 1).
nx 2 ];
③ s
1 n 1
n i 1
( xi
x )2
;

ak
1 n
n i 1
xik ,
k 1, 2
;
⑤ bk
1 n
n
(xi x )k ,
i 1
k
1, 2
.
例1 设总体X 的期望为 E(X ) , 方差为 D(X ) 2 其样本为 X1, X2, , Xn , 求E(X ), D(X ), E(S 2) .
为t分布的上 分位点。
t1 (n) t (n)
若 0.5,直接查表;若 0.5, t (n) t1 (n).
当 n 45 , t (n) z .
(3) F-分布
设随机变量X与Y相互独立,且 X ~ 2 (n1), Y ~ 2 (n2 ),
则随机变量
F
X Y
/ n1 / n2
所服从的分布是自由度为 (n1, n2 )
~
F (2,
2)
作 业 17
P137: 4 P147: 4
1.6664.
解:因为
(n 1)
2
S
2
~ 2(n 1)
15S 2
2
~ 2(15)
P
S
2 2
1.6664

数理统计教程课后重要答案习题

数理统计教程课后重要答案习题

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。

8.1-统计量及其分布

8.1-统计量及其分布
2
(x)
2
o
X 0.10
x
(x)
2
X 0.05
o
0.05
X 0.05
x
2. 2分布
设 X1, X 2, , X n 是取自标准正态总体X~N(0,1)的
一个样本,称统计量 2
X12
X
2 2
X
2 n
服从自由
度为n的 2分布,记作 2~ 2 (n) .
2 的概率密度为
f
(t
)
2
n 2
1 (
( n1 n2 ) 2
( n1 )( n2 )
( n1 n2
n1
)2
n1 1
t 2 (1
n1 n2
n1n2
t) 2
2 2
0
t0 t0
f (t)
n1 , n1 10
f (t)
n2 30
n2 10
o
t
o
F (n1, n2 )
t
对于给定的正数 (0 1), 称满足
P
F (n1, n2 ) F (n1, n2 )}
是N(0,1)的上 分位点.
设 X1, X 2, , X n是取自正态总体X~N (, 2)
的一个样本,则统计量
X
S
~t(n–1)
n
其中 X和S分别是样本均值和样本标准差.
设X与Y是相互独立的两个随机变量,X1, X 2, , X n
取自正态总体X~N (, 2) 的一个样本,Y1,Y2, ,Yn取自 正态总体X~N (, 2)的一个样本,则统计量
f (t)dt
t (n)
的点 t (n)为t分布上的 分位点或上侧临界值,

概率论与数理统计(茆诗松)课后第五章习题参考答案

概率论与数理统计(茆诗松)课后第五章习题参考答案

第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。

第5章 统计量及其分布

第5章 统计量及其分布

第5章
5.1 总体与样本
例5.1.2 考察全国正在使用某种型号灯泡的寿命 所形成的总体,由于可能观察值的个数很多,可以认 为是无限总体。 总体中的每一个个体是随机试验的一个观察值, 因此它是某一随机变量X的值,这样,一个总体对应 于一个随机变量X。我们对总体的研究就是对一个随 机变量X的一研究,X的分布函数和数字特征就称为 总体的分布函数和数字特征。以后将不区分总体与相 应的随机变量,笼统的称为总体。
552
寿命范围 元件数 寿命范围 元件数 寿命范围 元件数
4 8 6
(192 216] (216 240] (240 264] (264 288] (288 312] (312 336] (336 360] (360 384]
4 4 1
5
3 4
5
5 3
2
2 3
5
4
5
1
2
13
第5章
5.1 总体与样本
第5章
统计量及其分布
前四章的研究属于概率论的范畴。随机变量及其概 率分布全面地描述了随机现象的统计规律性,在概率论 的许多问题中,概率分布通常是假定为已知的,而一切 计算和推理均基于这个已知的分布进行,在实际问题中 情况往往并非如此。 随后讲述的是数理统计,它以概率论为理论基础, 所研究的随机变量分布未知,人们通过进行大量重复独 立的试验或观察得到的数据,对其进行分析,从而对所 研究的随机变量的分布(客观规律性)作出合理的估计和 判断。 数理统计学:方法和应用研究
F ( x1 , x2 , , xn ) F ( xi )
i 1 n
第5章
5.1 总体与样本
超链接一张随机数表
获取简单样本的方法:抽签法和随机数表法。 •抽签法:抽签法是利用抽签原理进行的一种方 法。具体做法是:先把总体中每个个体编上号,并对 应地写在签上,然后将签充分混合,从中随机抽取n 个签,与被抽到的签号相应的个体作为样本的分量。 •随机数表法:随机数表法是借助于随机数表进 行抽样的一种方法。随机数是由0~9这十个数字随机 排列而成的,第一张随机数表由铁皮特(Tippet)在 1927年给出的。利用随机数表进行抽样是现代最简单 最有效的方法。

12.2统计量及其分布

12.2统计量及其分布

2、 2 分布
2分布是由正态分布派生出来的一种分布.
定义: 设 X1, X2,, Xn 相互独立, 都服从正态 分布N(0,1), 则称随机变量:
2
X12
X
2 2
Xn2
所服从的分布为自由度为 n 的 2 分布.
记为 2 ~ 2(n)
可以证明, E(X)=n, D(X)=2n
定理 (样本方差的分布)
设X1,X2,…,Xn是取自正态总体 N (, 2 )
的样本, X和S2分别为样本均值和样本方差,
则有
(n 1)S2
2
1
2
n
(X i
i 1
2
X)
~ 2(n 1)
3、t 分布
定义: 设X~N(0,1) , Y~ 独立,则称变量
, 且X与Y相互
所服从的分布为自由度为 n的 t 分布. 记为T~t(n).
12.2、统计量和抽样分布 1. 统计量
由样本值去推断总体情况,需要对样本值进 行“加工”,这就要构造一些样本的函数,它把 样本中所含的(某一方面)的信息集中起来.
这种不含任何未知参数的样本的函数称为统 计量. 它是完全由样本决定的量.
定义 设X1, X2, …, Xn 是来自总体 X 的容量为 n 的 样本,若样本函数 g(x1, …, xn)中不含任何未知参数, 则称 g(x1, …, xn)是一个统计量.
样本k阶原点矩 样本k阶中心矩
Ak
1 n
n i 1
X
k i
Bk
1 n
n i 1
(Xi
X )k
k=1,2,…
三、常用统计量 1、样本均值的分布
. 设X1 , , X n是总体N (, 2 )的样本,X 分别是样本均值与,样则本 有 方差,则有

(概率论与数理统计 茆诗松) 第5章 统计量及其分布(5.4)

(概率论与数理统计 茆诗松) 第5章 统计量及其分布(5.4)

当随机变量 2 2(n) 时,对给定 (01), 称满足 P(2 12(n)) 的 12(n) 是自由度为 n1的卡方分布的 1 分位数. 分位数 12(n) 可以从附表3 中查到。
P{ X
2 1
(n)} ,
该密度函 数的图像 是一只取 非负值的 偏态分布
特别,若12 =22 ,则
F=sx2/sy2 F(m1,n1)
推论5.4.2 设 x1, x2,…, xn 是来自N(, 2) 的 样本,则有
n(x ) t ~ t (n 1) s
习题5.4:Q5
推论5.4.3
在推论5.4.1的记号下,设 12 =22 = 2 ,
前缀“p”
正态分布:pnorm(x,mean,sd)
t 分布: pt(x,df) 卡方分布:pchisq(x,df) F分布: pf(x,df1,df2)
Q13
Q5
R软件: 转换概率为分位数, 即:找到x值,使得P(X≤x)=p 前缀“q” 正态分布:qnorm(p,mean,sd)
5.4.4 一些重要结论
正态总体的抽样分布定理 设 x1, x2,…, xn 是来自N(, 2) 的样本
定理5.4.1 设 x1, x2,…, xn 是来自N(, 2) 的 样本,其样本均值和样本方差分别为 x = xi/n 和 s2= (xix)2/(n1) 则有 (1) x 与 s2 相互独立; (2) x N(, 2/n) ;
(3) (n1) s2/2 2(n1)。
习题5.4:Q1~Q3
推论5.4.1 设 x1, x2,…, xn 是来自N(1, 12) 的 样本,y1, y2,…, yn 是来自N(2, 22) 的样本, 且此两样本相互独立,则有

统计学第二章-统计量及其分布-重点难点归纳及答案解析

统计学第二章-统计量及其分布-重点难点归纳及答案解析

统计量及其分布习题知识点精析与应用一、填空题(将正确答案的序号填在括号内,共5小题,每小题2分,共10分)1、简单随机抽样样本均值X 的方差取决于 和_________,要使X 的标准差降低到原来的50%,则样本容量需要扩大到原来的 倍。

2、设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________。

(注:20.99(17)33.4χ=, 20.995(17)35.7χ=, 20.99(16)32.0χ=, 20.995(16)34.2χ=)3、若(5)X t ,则2X 服从_______分布。

4、已知0.95(10,5) 4.74F =,则0.05(5,10)F 等于___________。

5、中心极限定理是说:如果总体存在有限的方差,那么,随着 的增加,不论这个总体变量的分布如何,抽样平均数的分布趋近于 。

,二、选择题(将正确答案的序号填在括号内,共5小题,每小题2分,共10分)1、中心极限定理可保证在大量观察下A 样本平均数趋近于总体平均数的趋势B 样本方差趋近于总体方差的趋势C 样本平均数分布趋近于正态分布的趋势D 样本比例趋近于总体比例的趋势2、设随机变量()(1)X t n n >,则21/Y X =服从21/Y X = 。

A 正态分布B 卡方分布C t 分布D F 分布3、根据抽样测定100名4岁男孩身体发育情况的资料,平均身高为95cm ,,标准差为0.4cm 。

至少以 的概率可确信4岁男孩平均身高在93.8cm 到96.2cm 之间。

A 68.27%B 90%C 95.45%D 99.73%4、某品牌袋装糖果重量的标准是(500±5)克。

为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。

下列说法中错误的是( )A 、样本容量为10B 、抽样误差为2C 、样本平均每袋重量是统计量D 、498是估计值5、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都是服从或近似服从A (100/,25)N nB NC (100,25/)N nD (100,N 三、判断题1、所有可能样本平均数的方差等于总体方差。

(概率论与数理统计茆诗松)第5章统计量及其分布

(概率论与数理统计茆诗松)第5章统计量及其分布

统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。

构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域

5.3统计量及其分布

5.3统计量及其分布

例题1
现从离散均匀分布的总体中抽取容量为3的样本。 求有序统计量 x ( 1 ) , x ( 2 ) , x ( 3 ) 的分布列。 有序统计量既不相互 独立,又不同分布 X p 2 1/27 0 1/3 1 1/3 2 1/3
x(1)
p
0 19/27
1 7/27
2.单个次序统计量的分布
• • • • 定理: 设总体X的密度函数为p(x),分布函数为F(x) x1 , x 2 , L x n 为样本,则第k个次序统计量 x (k ) 的密度函数为
1.样本偏度
b3 γ1 = 2 3 b2
• 样本偏度反映了总体分布密度函数的对称性, • 当r1=0时,样本对称 • 当r1<0时,样本左尾长;当r1>0时,样本右尾长
2.样本峰度
b4 γ2 = 2 −3 b2
•样本峰度反映了总体分布密度曲线在其峰值 附近的陡峭程度。 •当r2<0时,曲线为平顶型; •当r2>0时,曲线为尖顶型 作业:268页16
2 i 2 i 2 i 2 i 2 2 i
2
2.性质
• 定理 设总体X具有二阶矩, x1 , x 2 , L x n 为总体 • 得到的样本,其中 E ( x) = µ Var ( x) = σ 2 < +∞
则E ( x) = µ
分析
2
Var ( x) =
σ
2
n
2
E (s ) = σ
2
2
1 E ( s ) = E[ ( xi − x) 2 ] ∑ n -1
四、次序统计量及其分布
• 1、定义 x • 设 x1 , x 2 ,L xn 是取自总体X的样本,(i ) 称为该样 本的第i个次序统计量。 • 最小次序统计量 最大次序统计量 从小到大排列后的有序样本

数理统计-第一章 统计量及其分布

数理统计-第一章 统计量及其分布

太原理工大学 景英川
第一章 统计量及其分布
太原理工大学 景英川
第一章 统计量及其分布
但在实际中,在样本量特别大时 (如 n≥100 ),又常用分组样本来代替完 全样本,这时需要对样本进行分组整理, 它能简明扼要地表示样本,使人们能更 好地认识总体,这是分组样本的优点。
太原理工大学 景英川
第一章 统计量及其分布
则 Fn (x)是一非减右连续函数,且满足 Fn (-∞) =0, Fn (+ ∞)=1 由此可见, Fn (x)是一个分布函数,称 Fn (x)为经验分 布函数。 太原理工大学 景英川
第一章 统计量及其分布
1.6 某食品厂生产听装饮料,现从生产线上随机 抽取 5 听饮料,称得其净重为(单 位:克) 351 347 355 344 351 这是一个容量为 5 的样本,经排序可得有序样本:
而若第一次抽到的是合格品,则第二次抽到不合格品 的概率为
太原理工大学 景英川
第一章 统计量及其分布
显然,如此得到的样本不是简单随 机样本。但是,当 N 很大时,我们可 以看到上述二种情 形的概率都近似等 于 p。所以当 N 很大,而 n不大(一个 经验法则是 )时可以把 该样本近似地 看成简单随机样本。
从总体中抽取样本可以有不同的抽法,为了能 由样本对总体作出较可靠的推断,就希望 样本能很 好的代表总体。这就需要对抽样方法提出一些要 求,最常用的"简单随机抽样”有 如下二个要求: (1)样本具有随机性,即要求总体中每一个个体 都有同等机会被选入样本,这便意味着每一样品xi 与总体X有相同的分布。 (2)样本要有独立性,即要求样本中每一样品的 取值不影响其它样品的取值,这意 味着x1, x2, …,xn 相互独立。
第一章 统计量及其分布

第五章数理统计中的统计量及其分布

第五章数理统计中的统计量及其分布

1 n 1

(X
2 i
i
X )2
2
i1
n 1 ( X n 1 i1
nX
)
有的书中定义为:
2 Sn
1 n 2 ( X X ) i n i 1 n 1 2 S n 1 X 2 X n
2
3.样本标准差:
n1 S n1 S
2 n 1
p( x )的性质: (1) x 时, p( x ) 0
( 2)n增加时,分布分散, 不确定性增加。
2 (3)n 2时,c( 2)与指数 1 分布E ( )相同 2 (1)若X ~ N (0,1), 则X 2 ~ c 2 (1)
c 2分布的性质
(2) 可加性 设X 1 ~ c 2 (n1 ), X 2 ~ c 2 (n2 ), 且 X1, X2 相互独立,
P { X 1 x1 , X 2 x 2 , ,X n x n } P { X i x i }
i 1
( 2 )若总体 X是连续型随机变量,概 率密度为 p( x) , 则 X 1 , X 2 , , X n的联合概率密度为
n
p( x1 , x 2 , ,x n ) p( x i )
n B2 n 1
6.样本中位数:
X n 1 , Δ 2 Me 1 X n X n , ( ) ( 1) 2 2 2
Δ
n为奇数 n为偶数
7.极差:
R X ( n ) X (1) max X i min X i
( X 1 , X 2 , , X n )
① 代表性:样本的每个分量X i 与总体X 有相同的 分布函数; ② 独立性: X 1 , X 2 , , X n 为相互独立的随机变量,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 最小,其中c为任意给定常数。 ( x x ) i
样本均值的抽样分布 (例题分析)
【例】设一个总体含有4 个个体,分别为X1=1、X2=2、 X3=3 、X4=4 。总体的均值、方差及分布如下。
总体均值和方差

总体的频数分布
X
i 1
N
i
N
N
2.5
2
2 ( X ) i i 1
0.02 0 2 1 0.1
21 Φ0.2
0.8414
(4) 样本 k 阶(原点)矩
1 n k Ak X i , k 1, 2, ; n i 1
1 n k 其观察值 k x i , k 1, 2, . n i 1
n n 1 2 1 2 2 E( S ) E X i nX (Xi X ) E n 1 i 1 n 1 i 1
2
1 n 2 2 E ( X i ) nE ( X ) n 1 i 1 2 1 n 2 2 2 ( ) n 2 n 1 i 1 n
n

k 1
n
2

2
n
,
定理 设总体X的期望E(X) = ,方差D(X) = 2,X1, X2,…,Xn为总体X的样本, X,S2分别为样本均值 和样本方差,则
E( X ) E( X )
D( X ) 2 D( X ) n n
E( S 2 ) D( X ) 2
思考:在分组样本场合,样本均值如何计算? 二者结果相同吗?
x1 f1 x n f n 其中 x n
n fi
i 1
n
样本均值的基本性质:
定理5.3.1 若把样本中的数据与样本均值之差 称为偏差,则样本所有偏差之和为0,即
(x
i 1
n
i
x ) 0.
定理5.3.2 数据观测值与均值的偏差平方和 最小,即在形如 (xic)2 的函数中,

设总体X 的概率密度函数为
x f ( x) 0 x 1 x 1
( X1 , X 2 ,, X 50 ) 为总体的样本,求 (1)X 的数学期望与方差 (2) E ( S 2 ) (3) P( X 0.02)
解(1) E ( X ) E ( X ) x x dx 0
i 1 i
x
n
1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
样本均值的抽样分布与总体分布的比 较
总体分布
.3 .2 .1 0
.3 .2 .1 P(x)
抽样分布
1
2
3
4
0
= 2.5
σ2 =1.25
1.0 1.5 2.0 2.5 3.0 3.5 4.0
样本均值的抽样分布
2. 峰度(kurtosis)
峰度反映总体分布尾端散布的趋势和陡峭程度。 峰度的计算公式为:
1 n 4 ( X X ) i n K i 1 3
1 2 (Xi X ) n i 1
n
2
利用峰度研究数据分布的形状是以正态分布为标准
近似于标准正态分布,则峰度接近于零;
实例1 设 X 1 , X 2 , X 3是来自总体N ( , 2 )的一个
样本, 其中 为已知, 2 为未知, 判断下列各式哪 些是统计量, 哪些不是?
T1 X 1 ,
T2 X 1 X 2e ,
X3
1 T3 ( X 1 X 2 X 3 ), 3 T4 max( X 1 , X 2 , X 3 ),
即 x(1) 和 x(2) 是不独立的。
2 7/27
二、单个次序统计量的分布
定理5.3.5 设总体X的密度函数为p(x),分布 函数为F(x), x1, x2,…, xn为样本,则第k 个次序统计量x(k)的密度函数为
n! p k ( x) ( F ( x)) k 1 (1 F ( x)) nk p( x) (k 1)!(n k )!
x(2) x(1) 0 1 2 0 7/27 0 0 1 9/27 4/27 0 2 3/27 3/27 1/27
19 7 易于看出 P( x(1) 0) P( x(2) 0) X(1) X(2) 0 1 2 0 27 1 27 P 19/27 7/27 1/27 P 7/27 7 13/27 P( x(1) 0, x(数值,则峰度为正,
称为细尾。分布密度曲线较陡
数据中如果均值两侧的极端数值较少,则峰度为负,
称为粗尾。分布密度曲线较平缓
Ⅱ(β >0)
Ⅰ(β =0)
Ⅲ (β <0)
3. 次序统计量及其分布
定义 5-3-7: 设 X1 , X 2 ,, X n 为取自总体X的样本, 将其按大小顺序排序 X (1) X (2) X ( n )
1 1 D( X ) D( X ) E( X 2 ) 50 50 1 1 2 1 2 x x dx 50 0 100
1 1
(2)
E (S ) D( X ) E ( X ) 1 / 2.
2 2
(3) X ~ N (0,0.01)
近似
由中心极限定理
P( X 0.02) 1 P( X 0.02)

T5 X 1 X 2 2 ,
不是
1 2 2 2 T6 2 ( X 1 X 2 X 3 ).
5.3.2 样本均值及其抽样分布
定义5.3.2 设 x1, x2, …, xn为取自某总体 的样本,其算术平均值称为样本均值,一 般用 x 表示,即
x= (x1+…+xn)/n
(5)样本 k 阶中心矩 1 n Bk ( X i X )k , k 2, 3, ; n i 1
1 n 其观察值 bk ( x i x ) k , k 2, 3, . n i 1
三、表示数据分布形状的统计量 偏度和峰度是描述数据分布形状的指标。 1. 偏度(skewness) 偏度是刻画数据对称性的指标。偏度的计算公式
则称 X(k) 为第 k 个次序统计量( No.k Order Statistic) 特别地,称
X (1) min X i
1i n
为最小顺序统计量(Minimum order Statistic) 称
X ( n ) max X i
1i n
为最大顺序统计量(Maximum order Statistic) 。
例 设总体X的分布为仅取 0, 1, 2 的离散均匀分布,
其分布列为
x p 0
1 3
1
1 3
2
1 3
现从中抽取容量为 3 的样本,其一切可能取值有 3 3 27 种,现将它们以及由它们所构成的次序统 计量
X(1) P
X (1) , X (2) , X (3) 的一切可能值列在表中(P272),
.3 .2 .1 0
N
1.25
1
2
3
4
样本均值的抽样分布
现从总体中抽取n=2的简单随机样本,在重复 抽样条件下,共有42=16个样本。所有样本的结果 如下表.
所有可能的n = 2 的样本(共16个)
第一个 观察值
1 2
第二个观察值 1 1,1 2,1 2 1,2 2,2 3 1,3 2,3 4 1,4 2,4
其观察值
n n 1 1 2 2 2 2 s ( xi x ) x i nx . n 1 i 1 n 1 i 1
(3)样本标准差
n 1 2 S S2 X X ; i n 1 i 1
其观察值
s
1 n 2 ( x x ) . i n 1 i 1
E( X ) E( X )
D( X ) 2 D( X ) n n
E( S 2 ) D( X ) 2
1 n 1 n 1 n E X k E ( X k ) , n k 1 n k 1 n k 1
1 n 独立 1 D X k 2 n n k 1 1 D ( X ) k 2 n k 1
思考:分组样本如何计算样本方差?
n n 2 1 1 2 2 2 s f i ( xi x ) [ f i xi n x ] n 1 i 1 n 1 i 1
其中 x i , f i 分别为第
i
区间的组中值和频数,
x 为样本均值。
定理 设总体X的期望E(X) = ,方差D(X) = 2, X1,X2,…,Xn为总体X的样本, X ,S2分别为 样本均值和样本方差,则
x 2.5 2 x 0.625
样本均值的抽样分布:
定理5.3.3 设x1, x2, …, xn 是来自某个总体的样本, x 为样本均值。
(1) 若总体分布为N(, 2),则 x 的精确分布 为N(, 2 /n),
(2) 若总体分布未知或不是正态分布, 但 E(x)=, Var(x)=2,则n 较大时 x的渐近分布 为N(, 2/n) ,常记为 xAN(, 2/n) 这里渐近分布是指n 较大时的近似分布.
k-1 x
1 x+x
n-k
图 x (k) 的取值示意图
n! (k 1)!1!(n k )!
第 k 个次序统计量 X (k ) 落入小区间 x, x x
内这一事件等价于容量为 n 的样本有 k 1 个分量落入 , x 区间内,
2. 几个常用统计量的定义
相关文档
最新文档