广东理科2007年普通高等学校招生全国统一考试(高考数学试卷)
2007年高考数学卷(全国卷Ⅰ.理)含详解
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。
2007年高考理科数学试题及参考答案(广东卷)
第四章认识职业一、职业及其相关概念1、职业的概念职业是指在业人员所从事的有偿工作的种类。
是人们在社会中所从事的有稳定、合法收入的活动,既是人们为社会做贡献、实现人生价值的舞台,也是人们谋生的手段。
有稳定、合法的收入是职业这种特定的劳动区别于其他社会活动的主要特点。
职业、职位、岗位?教师、公务员是职业;语文老师、数学老师、市长是职位;一年级语文老师、一年级数学老师是岗位。
就业:为了谋生工作职业:为了终生工作事业:为了献身工作职业影响个人兴趣;职业影响个人能力;职业影响个人的性格;职职业反映了个人及家庭的社会地位;职业发展是推动社会进步的动力;不同的职业意味着不同的人生。
重视职业规划,争取职业上的成功,是人生成功的基础。
2、职业的要素职业名称、职业主体、职业客体、职业报酬、职业技术。
3、职业的特性(1)社会性:职业体现社会分工,体现各职业对社会生产和进步的积极作用和贡献。
(均为必须、均承担使命责任)(2)经济性:职业活动以获得谋生的经济来源为目的。
(3)技术性:职业总是具有特定专业色彩和技术要求。
(4)稳定性:职业从酝酿到形成从发展到完善再到消亡的变化过程的生命周期具有相对的稳定性。
(5)群体性:既指一定的从业人员数量、也指一定数量的从业人员所从事的不同工序、工艺流程表现出的协作关系以及由此而产生的人际关系。
(6)规范性:(a)职业主体所从事的职业活动必须符合国家法律规定和社会伦理道德准则。
(b)从业者本身应遵守的法律法现(如持证上岗从业者在操作过程中须遵守特定的法律法规等)。
4、职业的意义职业是谋生手段——满足生存和安全的需要职业使人获得社会地位——满足社交和尊重的需要职业为个人发展、实现自我价值提供了空间——满足自我实现的需要二、职业的分类1、职业分类的概念职业分类是指采用一定的标准和方法,依据一定的分类原则,对从业人员所从事的各种专门化的社会职业所进行的全面、系统的划分与归类。
……就劳动力的社会发展而言,各国的职业体系在大结构与主要类别上都是相似的。
2007年高考全国1卷数学理科试卷含答案
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e e 2x -x x x -+=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考理科基础卷(广东)
龙耒为你高考助力!2007年普通高等学校招生全国统一考试(广东卷)理科基础本试卷共12页,75小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
本试卷共75分,全部是单项选择题,每题2分。
在每小题列出的四个选项中,只有一项是最符合题目要求的,多选、错选均不得分。
1.下列物理量为标量一的是A.平均速度B.加速度C.位移D.功2.关于自由落体运动,下列说法正确的是A.物体竖直向下的运动就是自由落体运动B.加速度等于重力加速度的运动就是自由落体运动C.在自由落体运动过程中,不同质量的物体运动规律相同3.图1是某物体做直线运动的速度图象,下列有关物体运动情况判断正确的是A.前两秒加速度为5m/s2B.4s末物体回到出发点C.6s末物体距出发点最远D.8s末物体距出发点最远4.受斜向上的恒定拉力作用,物体的粗糙水平面上做匀速直线运动,则下列说法正确是A.拉力在竖直方向的分量一定大于重力B.拉力在竖直方向的分量一定等于重力C.拉力在水平方向的分量一定大于摩擦力D.拉力在水平方向的分量一定等于摩擦力5.质点在一平面内沿曲线由P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,下面选项可能正确的是6.质点从同一高度水平抛出,不计空气阻力,下列说法正确的是A.质量越大,水平位移越大B.初速度越大,落地时竖直方向速度越大C.初速度越大,空中运动时间越长D.初速度越大,落地速度越大7.人骑自行车下坡,坡长l=500m,坡高h=8m,人和车总质量为100kg,下坡时初速度为4m/s,人不踏车的情况下,到达坡底时车速为10m/s,g取10m/s2,则下坡过程中阻力所做的功为A.-4000J B.-3800J C.-5000J D.-4200J8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20m/s2,g取10m/s2。
2007年全国卷1高考理科数学试题及答案(河北 河南 山西 广西)
2007年普通高等学校招生全国统一考试(全国卷I )数学(理科)试卷(河北 河南 山西 广西)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率)2,1,0()1()(1n k p p C k P k n kn ,⋯=-=-球的表面积公式 24R S π= 其中R 表示球的半径 球的体积公式 334R V π= 其中R 表示球的半径一、选择题1.a 是第四象限角,5tan 12α=-,则sin α= A .51 B .51-C .135 D .135-2.设a 是实数,且211ii a +++是实数,则a = A .21B .1C .23 D .23.已知向量a =(-5,6),b =(6,5),则a 与b A .垂直B .不垂直也不平行C .平行且同向D .平行且反向4.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为A .112422=-y xB .141222=-y x C .161022=-y xD .110622=-y x 5.设R ,∈b a ,集合{}=-⎭⎬⎫⎩⎨⎧=+a b b a b a b a 则,,,0,,1 A .1B .-1C . 2D .-26.下面给出的四个点中,到直线x -y+1=0的距离为22,且位于x y 10,x y 10+-<⎧⎨-+>⎩表示的平面区域内的点是A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)7.如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为A .51B .52 C .53 D .54 8.设a>1,函数x x f log,)(=在区间[a ,2a]上的最大值与最小值之差为21,则a= A .2B .2C .22D .49.)(),(x g x f 是定义在R 上的函数,)()()(x g x f x h +=,则“)(),(x g x f 均为偶函数”是“)(x h 为偶函数”的A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件10.2n1(x )x-的展开式中,常数项为15,则n = A .3B .4C .5D .611.抛物线x y 42=的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x轴上方的部分相交于点A ,,l AK ⊥垂足为K ,且△AKF 的面积是A .4B .33C .43D .812.函数2cos2cos )(22xx x f -=的一个单调增区间是 A .(π2π,33) B .(2,6ππ) C .(π0,3) D .(-ππ,66)第Ⅱ卷(非选择题 共95分)注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2007年全国各地高考数学试卷及答案(37套)word--完整版
2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏
2007年普通高等学校招生全国统一考试数学卷(广东理)含答案
试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数 学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,选划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P A B P A P B =.用最小二乘法求线性回归方程系数公式1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的. 1.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则M N =( ) A .{|1}x x >-B .{|1}x x <C .{|11}x x -<<D .∅2.若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2B .12C .12-D .2-3.若函数21()sin ()2f x x x =-∈R ,则()f x 是( ) A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 4.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达内地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )5.已知数列{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( )A .9B .8C .7D .66.图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1210A A A ,,,(如2A 表示身高(单位:cm )在[)150155,内的学生人数). 图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是( ) A.6i < B.7i < C.8i < D.9i <7.图3A B C D ,,,四个维修点某种配件各50A ,件,n A.17 8”(即对任意的,.若对任意的,有a A .)](**a b C .(**b a b 二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.9.甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为 .(答案用分数表示) 10.若向量,a b 满足1==a b ,a 与b 的夹角为120,则a a +a b = .图 s s ss 图1 图2 210A ,, 是 身高/cm11.在平面直角坐标系xOy 中,有一定点(21)A ,,若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .12.如果一个凸多面体是n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有 条,这些直线中共有()f n 对异面直线,则(4)f = ;()f n = .(答案用数字或n 的解析式表示) 13.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[)02θ∈π,),则圆C 的圆心坐标为 ,圆心到直线l 的距离为 .14.(不等式选讲选做题)设函数()213f x x x =-++,则(2)f -= ;若()5f x ≤,则x 的取值范围是 .15.(几何证明选讲选做题)如图5所示,圆O 的直径6AB =,C 为圆周上一点,3BC =.过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D E ,,则DAC =∠ ,线段AE 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知ABC △顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,.(1)若5c =,求sin A ∠的值;(2)若A ∠是钝角,求c 的取值范围. 17.(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y(1(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 18.(本小题满分14分) 在平面直角坐标系xOy ,已知圆心在第二象限、半径为的圆C 与直线y x =相切于坐标图5 图4原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长,若存在,请求出点Q 的坐标;若不存在,请说明理由. 19.(本小题满分14分)如图6所示,等腰ABC △的底边AB =3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?(3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值. 20.(本小题满分14分)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,求a 的取值范围.21.(本小题满分14分)已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()(12)()n n n n f a a a n f a +=-=',,. (1)求αβ,的值;(2)证明:对任意的正整数n ,都有n a α>; (3)记ln(12)n n n a b n a βα-==-,,,求数列{}n b 的前n 项和n S .绝密★启用前 试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
2007年普通高等学校招生全国统一考试(广东卷)
绝密★启用前试卷类型:A 2007年普通高等学校招生全国统一考试(广东卷)生物(三模)本试卷分选择题和非选择题两部分,共10页,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。
用2B铅笔将答题卡试卷类型(A)涂黑。
在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号”列表内填写座位号,并用2B铅笔将相应的信息点涂黑。
不按要求填涂的,答卷无效。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
第一部分选择题(共70分)一.选择题:本题共20小题,每小题2分,共40分。
每小题给出的四个选项中,只有一.个.选项最符合题目要求。
1.广东省中山市质监局查获中山市东升镇某豆腐加工店使用非食用原料碱性橙Ⅱ,浸染豆腐皮,碱性橙Ⅱ是一种偶氮类碱性染料,俗名“王金黄”,为致癌物,过量摄取、吸入以及皮肤接触该物质均会造成急性和慢性的中毒伤害。
若用药物抑制癌细胞,关键是抑制()的形成A 染色体 B.四分体C.运载体D.溶酶体2. 下面是四位同学的实验操作方法或结果,其中错误的一项是A.甲基绿使DNA变红,吡罗红是RNA变绿B.纸层析法分离叶绿体中的色素,其颜色从上到下依次是:橙黄色、黄色、蓝绿色和黄绿色C.蛋白质与双缩脲试剂作用产生紫色反应D.显微镜下观察根尖的有丝分裂,在细胞呈正方形的区域易找到分裂期的细胞3.日前因食用有毒福寿螺,首现群体性感染广州管圆线虫病集体入院治疗事件,引起市民对生吃海鲜制品的极大关注。
2007年高考数学试题汇编
2007年高考数学试题汇编——排列、组合、二项式1.(全国Ⅰ卷理科第10题)的展开式中,常数项为15,则n= ( D )A.3 B.4 C.5 D.6【解答】的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,,当n=6时,,选D。
2.(全国Ⅰ卷文科第5题)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( C )A.36种 B.48种 C.96种 D.192种【解答】甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有种,选C。
3.(全国Ⅱ卷理科第10题)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B)A.40种 B.60种 C.100种 D.120种【解答】从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有种,选B。
4.(全国Ⅱ卷文科第10题)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( D)A.10种 B.20种 C.25种 D.32种【解答】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D。
5.(北京理科第5题)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B )A.1440种B.960种C.720种D.480种【解答】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B。
6.(北京文科第5题)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( A )A.个B.个C.个D.个【解答】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有个,选A。
2007年全国高考数学卷
2007年普通高等学校招生全国统一考试参考公式:(1)122n n n ++++=222(1)(21)126n n n n +++++=22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}21A x x ==,{}2230B x x x =--=,则A B = ( ) A.{}3B.{}1C.∅D.{}1-2.椭圆2241x y +=的离心率为( )B.34C.2D.233.等差数列{}n a 的前n 项和为n S ,若21a =,33a =,则4S =( ) A.12 B.10 C.8 D.64.下列函数中,反函数是其自身的函数为( ) A.2()f x x =,[0)x ∈+∞,B.3()()f x x x =∈-∞+∞,,C.()e ()xf x x =∈-∞+∞,,D.1()f x x=,(0)x ∈+∞, 5.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为2,则a 的值为( ) A.2-或2B.12或32C.2或0 D.2-或0 6.设t ,m ,n 均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件7.图中的图象所表示的函数的解析式为( ) A.312y x =- (02)x ≤≤B.33122y x =-- (02)x ≤≤第7题图C.312y x =-- (02)x ≤≤ D.11y x =--(02)x ≤≤8.设1a >,且2log (1)a m a =+,log (1)a n a =-,log (2)a p a =,则m n p ,,的大小关系为( )A.n m p >>B.m p n >>C.m n p >>D.p m n >>9.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A.321-C.1110.把边长为的正方形ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A B C D ,,,四点所在的球面上,B 与D 两点之间的球面距离为( )C.π B.π2 D.π311.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.52007年普通高等学校招生全国统一考试(安微卷)数学(文科)第II 卷(非选择题共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡...上书写作答,在试题卷上书写作答无效........... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 12.已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于.13.在四面体O ABC -中,OA a = ,OB b = ,OC c =,D 为BC 的中点,E 为AD 的中点,则OE =(用a b c ,,表示)14.在正方体上任意选择两条棱,则这两条棱相互平行的概率为.15.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是 (写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 解不等式(311)(sin 2)0x x --->.17.(本小题满分14分) 如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =. (Ⅰ)求证:11AC 与AC 共面,11BD 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示) 18.(本小题满分14分)设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程;(II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 19.(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔. (I )求笼内恰好剩...下.1只果蝇的概率; (II )求笼内至少剩下....5只果蝇的概率. 20.(本小题满分14分)ABCD1A1B1C 1D设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R , 其中1t ≤,将()f x 的最小值记为()g t . (I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+, .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分. 1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<.即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,. (Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11A C 平行,DB 与11D B平行,于是11A C 与AC 共面,11B D 与BD 共面.(Ⅱ)证明:1(002)(220)0DD AC =-= ,,,,··,(220)(220)0DB AC =-=,,,,··, 1DD AC ⊥ ∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+= ·n ,111120BB x y z =--+=n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+= m ·,12220CC y z =-+= m ·.于是20x =,取21z =,则22y =,(021)=,,m .1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.ABCD1A1B1C 1DMOEF1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B ===1OM B B ⊥∵,有11B O OB OM B B ==·BM =AM =CM =2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点204x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-.即20424x x y x =-.因为点(0)P -4,在切线上.所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >. 因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+.点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,,得2440x kx --=, 由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 2222218(1)18(2)322ABCDk S AC BD k k k+===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分. 解:以k A 表示恰剩下k 只果蝇的事件(016)k = ,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m = ,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----== . 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:由此可见,()g t 在区间112⎛⎫-- ⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]nn n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.。
2007年高考(广东卷)数学试题分析-3
2007年高考(广东卷)数学试题分析江门教研室 李义仁我们拟从《课标》看试题的科学内涵,从实验教材看解题的教学要求。
我们选用的试卷类型是:文B 理A 。
1.(文1)已知集合{}01|>+=x x M ,⎭⎬⎫⎩⎨⎧>-=011|x x N ,则=N M A .{}11|<≤-x x B .{}11|<<-x x C .{}1|>x x D .{}1|-≥x x(理1)已知函数x x f -=11)(的定义为M ,)1ln()(x x g +=的定义域为N ,则=N MA .{}1|->x xB .{}11|<<-x xC .{}1|<x xD .φ它们都是求集合交的运算,理科题的内涵和解题要求略高于文科题。
文科题的难点在于确定集合N ,因为解分式不等式是初高中数学的盲点;理科题不需要解分式不等式,但要“会求一些简单函数的定义域”,尽管教材淡化了这方面的内容。
2.(文2、理2)若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数),则=bA .2-B .21- C .21 D .2 本题考查复数概念、复数代数形式的四则运算。
3.(文3)若函数)()(3R x x x f ∈=,则函数)(x f y -=在其定义域上是A .单调递减的偶函数B .单调递增的偶函数C .单调递减的奇函数D .单调递增的奇函数(理3)若函数)(21sin )(2R x x x f ∈-=,则)(x f 是 A .最小正周期为π的偶函数 B .最小正周期为π的奇函数C .最小正周期为π2的偶函数D .最小正周期为2π的奇函数 它们都考查函数的基本性质,每个试题都涉及函数的简单运算,函数的两个基本性质。
4.(文4)若向量 a 、 b 满足1| || |==b a , a 与 b 的夹角为060,则=⋅+⋅b a a aA .2B .231+C .23D .21 (理10)若向量 a 、 b 满足1| || |==b a , a 与 b 的夹角为0120,则=⋅+⋅b a a a .它们都是考查向量的数量积运算。
2007年高考数学试题及答案(共37份)
2007年普通高等学校招生全国统一考试文科数学试题湖南卷一、选择题:本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的1 不等式2x x >的解集是( )A (0)-∞,B (01),C (1)+∞,D (0)(1)-∞+∞ ,,2 若O E F ,,是不共线的任意三点,则以下各式中成立的是( )A EF OF OE =+B EF OF OE =-C EF OF OE =-+D EF OF OE =--3 设2:40p b ac ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p是q 的( ) A 充分不必要条件 B 必要不充分条件C 充分必要条件D 既不充分又不必要条件4 在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( ) A 4122-B 2122-C 10122-D 11122-5 在(1)n x +(n ∈N *)的二次展开式中,若只有3x 的系数最大,则n =( )A 8B 9C 10D 116 如图1,在正四棱柱1111ABC D A B C D -中,E F ,分别是1A B ,1BC 的中点,则以下结论中不成立...的是( ) A E F 与1B B 垂直B E F 与B D 垂直C E F 与CD 异面D E F 与11A C 异面7 根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2) 从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A 48米 B 49米 C 50米 D 51米CA 18 函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,的图象和函数2()log g x x =的图象的交点个数是( ) A 1B 2C 3D 49 设12F F ,分别是椭圆22221x y ab+=(0a b >>)的左、右焦点,P 是其右准线上纵坐标为(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )A2B12C2D210 设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j =,{123}i j k ∈ 、,,,,),都有m in m inj j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( ) A 10B 11C 12D 13二、填空题:本大题共5小题,每小题5分,共25分 把答案填在横线上11 圆心为(11),且与直线4x y -=12 在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =,π3C =,则A =13 若0a >,2349a =,则14loga =14 设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅ ,频率0 水位(米)图2(1)b 的取值范围是 ;(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b15 棱长为1的正方体1111ABC D A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E F ,分别是该正方体的棱1A A ,1DD 的中点,则直线E F 被球O 截得的线段长为三、解答题:本大题共6小题,共75分 解答应写出文字说明、证明过程或演算步骤16 (本小题满分12分)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间17 (本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率18 (本小题满分12分)如图3,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,C A C B =,45BAP ∠=,直线C A 和平面α所成的角为30(I )证明BC PQ ⊥;(II )求二面角B A C P --的大小19 (本小题满分13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),(I )证明C A ,C B为常数;(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程20 (本小题满分13分)设n S 是数列{}n a (n ∈N *)的前n 项和,1a a =,且22213n n n S n a S -=+,0n a ≠,234n = ,,,(I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N *)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项21 (本小题满分13分)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式2007年普通高等学校招生全国统一考试文科数学试题(必修+选修Ⅰ)湖南卷 参考答案一、选择题:本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的1 D2 B3 A4 B5 C6 D7 C8 C9 D 10 B 二、填空题:本大题共5小题,每小题5分,共25分 把答案填在横线上11 22(1)(1)2x y -+-=12π613 314 (1)[2)+∞,(2)9215 3π三、解答题:本大题共6小题,共75分 解答应写出文字说明、证明过程或演算步骤16 解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=(I )函数()f x 的最小正周期是2ππ2T ==;(II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z )时,函数()2f x x=是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z )17 解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =(I )解法一:任选1名下岗人员,该人没有参加过培训的概率是 1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=解法二:任选1名下岗人员,该人只参加过一项培训的概率是 2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯=所以该人参加过培训的概率是230.450.450.9P P +=+=(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=3人都参加过培训的概率是330.90.729P ==所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=3人都没有参加过培训的概率是30.10.001=所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=18 解:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结O B因为αβ⊥,PQ αβ= ,所以C O α⊥, 又因为C A C B =,所以O A O B =而45BAO ∠= ,所以45ABO ∠=,90AOB ∠=,从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面O BC 因为B C ⊂平面O BC ,故PQ BC ⊥(II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ= ,B O α⊂,所以BO β⊥过点O 作O H A C ⊥于点H ,连结B H ,由三垂线定理知,B H A C ⊥故B H O ∠是二面角B A C P --的平面角由(I )知,C O α⊥,所以C A O ∠是C A 和平面α所成的角,则30CAO ∠=,不妨设2A C =,则AO =sin 302O H AO ==在R t O AB △中,45ABO BAO ∠=∠=,所以BO AO ==,于是在R t B O H △中,tan 22BO BH O O H∠===故二面角B A C P --的大小为arctan 2解法二:由(I )知,O C O A ⊥,O C O B ⊥,O A O B ⊥,故可以O 为原点,分别以直线O B O A O C ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图)因为C O a ⊥,所以C A O ∠是C A 和平面α所成的角,则30CAO ∠=不妨设2A C =,则AO =1C O =在R t O AB △中,45ABO BAO ∠=∠=,所以BO AO ==则相关各点的坐标分别是(000)O ,,,0)B ,,(00)A ,(001)C ,,所以A B =-,(0A C =-,设1n {}x y z =,,是平面ABC 的一个法向量,由1100n A B n A C ⎧=⎪⎨=⎪⎩,得00z -=+=⎪⎩,取1x =,得1(11n =易知2(100)n =,,是平面β的一个法向量设二面角B A C P --的平面角为θ,由图可知,12n n θ=<>,所以1212cos ||||n nn n θ===故二面角B A C P --的大小为arccos19 解:由条件知(20)F ,,设11()A x y ,,22()B x y ,(I )当A B 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2-,,此时(1(11C A C B =-=-,当A B 不与x 轴垂直时,设直线A B 的方程是(2)(1)y k x k =-≠±代入222x y -=,有2222(1)4(42)0k x k x k -+-+=则12x x ,是上述方程的两个实根,所以212241kx x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++--22(42)411k k =--++=-综上所述,C A C B为常数1-(II )解法一:设()M x y ,,则(1)C M x y =-,,11(1)CA x y =- ,, 22(1)CB x y =- ,,(10)C O =-,,由CM CA CB CO =++ 得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y +=+⎧⎨+=⎩,于是A B 的中点坐标为222x y +⎛⎫⎪⎝⎭, 当A B 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-将1212()2y y y x x x -=--代入上式,化简得224x y -=当A B 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程所以点M 的轨迹方程是224x y -=解法二:同解法一得12122x x x y y y +=+⎧⎨+=⎩,……………………………………①当A B 不与x 轴垂直时,由(I ) 有2122x x +=…………………②21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭ ………………………③由①②③得222x +=…………………………………………………④2y =……………………………………………………………………⑤当0k ≠时,0y ≠,由④⑤得,2x k y+=,将其代入⑤有222224(2)1x yy x y+⨯==+- 整理得224x y -=当0k =时,点M 的坐标为(20)-,,满足上述方程当A B 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程故点M 的轨迹方程是224x y -=20 解:(I )当2n ≥时,由已知得22213n n n S S n a --=因为10n n n a S S -=-≠,所以213n n S S n -+= …………………………①于是213(1)n n S S n ++=+ …………………………………………………②由②-①得:163n n a a n ++=+ ……………………………………………③于是2169n n a a n +++=+ ……………………………………………………④由④-③得:26n n a a +-= …………………………………………………⑤即数列2{}n n a a +-(2n ≥)是常数数列(II )由①有2112S S +=,所以2122a a =-由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N *由题设知,1187n n b -=⨯ 当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N *,从而n b 是数列{}n a 中的第167n -⨯项(注:考生取满足36n a k =-,n k ∈N *的任一奇数,说明n b 是数列{}n a 中的第126723n a -⨯+-项即可)21 解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤ 于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立 故24a b -的最大值是16(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则1x =不是()g x 的极值点而()g x 321121(1)3232x ax bx a b x a =++-++++,且22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++若11a ≠--,则1x =和1x a =--都是()g x 的极值点所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--解法二:同解法一得21()()[(1)]32g x f x a b x a =-++--2133(1)[(1)(2)]322a x x x a =-++-+因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<)当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x < 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x < 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--。
2007年普通高等学校招生全国统一考试(广东文卷)
2007年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,选划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4. 作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A B ,互斥,那么()()()P A B P A P B +=+.用最小二乘法求线性回归方程系数公式12211ˆˆˆni ii ni x y nx ybay bx x nx==-==--∑∑,. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{10{0}1M x x N x x =+>=>-,,则M N =( )A .{11}x x -<≤B .{1}x x >C .{11}x x -<<D .{1}x x -≥2.若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2-B .12-C .12D .23.若函数2()()f x x x =∈R ,则函数()y f x =-在其定义域上是( )A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数4.若向量a b ,满足1a b ==,a 与b 的夹角为60°,则aa ab +=··( )A.12B.32C.312+D.25.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1上时到达内地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )6.若l mn ,,是互不相同的空间直线,αβ,是不重合的平面,则下列命题中为真命题的是( )A.若l n αβαβ⊂⊂,,∥,则l n ∥ B.若l αβα⊥⊂,,则l β⊥ C.若l n m n ⊥⊥,,则l m ∥D.若l l αβ⊥,∥,则αβ⊥7.图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1210A A A ,,,(如2A 表示身高(单位:cm )在[)150155,内的学生人数). 图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是( ) A.9i < B.8i < C.7i < D.6i <开始 输入1210A A A ,,, 04s i ==i s s A =+s 输出 结束 1i i =+ 否是图1图250100 150200 250300 350400 450500 550 600145 150 155 160 165 170 175 180 185 190 195人数/人 身高/cm1 2 3 60 80 100 120 140 160 t (h) s (km) 1 2 3 60 80 100 120 140 160 t (h) s (km) 1 2 3 60 80 100 120 140 160 t (h) s (km) 12 3 60 80100120 140 160 t (h)s (km)A .B .C .D .0 0 0 08.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.310B.15C.110D.1129.已知简谐运动ππ()2sin 32f x x ϕϕ⎛⎫⎛⎫=+<⎪⎪⎝⎭⎝⎭的图象经过点(01),,则该简谐运动的最小正周期T 和初相ϕ分别为( )A.6T =,π6ϕ=B.6T =,π3ϕ=C.6πT =,π6ϕ=D.6πT =,π3ϕ=10.图3是某汽车维修公司的维修点环形分布图.公司在年初分配给A B C D ,,,四个维修点某种配件各50件.在使用前发现需将A B C D ,,,四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( ) A.18 B.17 C.16 D.15 二、填空题:本大题共5小题,每小题5分,满分20分.其中1415题是选做题,考生只能选做一题,两题全答的,只计算前一题得分。
2007年高考真题(广东卷)含答案(word版)
(1)欲制备10.7 g NH4Cl,理论上需NaCl g。
(2)实验室进行了蒸发浓缩用到的主要仪器有 、烧杯、玻璃
棒、酒精灯等。
(3)“冷却结晶”过程中,析出NH4Cl晶体的合适温度为 。
(4)不用其它试剂,检查NH4Cl产品是否纯净的方法及操作是
。
(5)若NH4Cl产品中含有硫酸钠杂质,进一步提纯产品的方法是
容器中,反应2SO2(g)+O2(g)==2SO3(g)在一定条件下达到平衡,
测得c(SO2)=0.040 mol·L-3。
计算该条件等平衡SO2的平SO2的平均转化率(写出计算过程)。
(2)已知上述反应是导热反应,当该反应处于平衡状态时,在体积
2.下列可用于测定溶液pH且精确度最高的是( )
A.酸碱指示剂
B.pH计
C.精密pH试纸
D.广泛pH试纸
3.下列叙述正确的是( )
A.48 g O3气体含有6.02×1023个O3分子
B.常温常压下,4.6 g NO2气体含有1.81×1023个NO2分子 C.0.5 mol·L-1CuCl2溶液中含有3.01×1023个Cu2+ D.标准状况下,33.6 L H2O含有9.03×1023个H2O分子
14.将V1 mL 1.00 mol·L-1HCl溶液V2 mL未知浓度的NaOH溶液混合均匀
后测量并记录溶液温度,实验结果如右图所示(实验中始终保
持V1+V2=50 mL)。下列叙述正确的是( )
A.做该实验时环境温度为22 ℃
B.该实验表明化学能可以转化为热能
C.NaOH溶液的浓度约是1.00 mol·L-1
A.①②
B.①③
C.②③
D.①②③
07年全国高考数学大题集(二)
2007年普通高等学校招生全国统一考试数 学(江苏卷)19.(本题满分14分)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,.(1)若2OA OB =,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分)20.(本题满分16分)已知{}n a 是等差数列,{}n b 是公比为q 的等比数列,11a b =,221a b a =≠,记n S 为数列{}n b 的前n 项和.(1)若k m b a =(m k ,是大于2的正整数),求证:11(1)k S m a -=-;(4分)(2)若3i b a =(i 是某个正整数),求证:q 是整数,且数列{}n b 中的每一项都是数列{}n a 中的项;(8分)(3)是否存在这样的正数q ,使等比数列{}n b 中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.(4分) 21.(本题满分16分)已知a b c d ,,,是不全为零的实数,函数2()f x bx cx d =++,32()g x ax bx cx d =+++.方程()0f x =有实数根,且()0f x =的实数根都是(())0g f x =的根;反之,(())0g f x =的实数根都是()0f x =的根.(1)求d 的值;(3分)(2)若0a =,求c 的取值范围;(6分)(3)若1a =,(1)0f =,求c 的取值范围.(7分)19.解:(1)设直线AB 的方程为y kx c =+, 将该方程代入2y x =得20x kx c --=. 令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫- ⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线.(3)(2)的逆命题成立,证明如下: 设0()Q x c -,.若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-, 得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 20.解:(1)设等差数列的公差为d ,则由题设得11a d a q +=,1(1)d a q =-,且1q ≠. 由k m b a =得111(1)k b qa m d -=+-,所以11(1)(1)kb q m d --=-,11111(1)(1)(1)(1)(1)111k k b q m a q m d S m a q q q ------====----.故等式成立.(2)(ⅰ)证明q 为整数:由3i b a =得211(1)b q a i d =+-,即2111(1)(1)a q a i a q =+--, 移项得11(1)(1)(1)(1)a q q a i q +-=--.因110a b =≠,1q ≠,得2q i =-,故q 为整数. (ⅱ)证明数列{}n b 中的每一项都是数列{}n a 中的项: 设n b 是数列{}n b 中的任一项,只要讨论3n >的情形. 令111(1)n b qa k d -=+-,即1111(1)(1)n a q a k a q --=--,得1221121n n q k q q q q ---=+=++++- . 因2q i =-,当1i =时,1q =-,22n q q q -+++ 为1-或0,则k 为1或2; 而2i ≠,否则0q =,矛盾.当3i ≥时,q 为正整数,所以k 为正整数,从而n k b a =. 故数列{}n b 中的每一项都是数列{}n a 中的项.(3)取q =,21b b q =,341b b q =. 331411121(1)11)22b b b q b b b ⎡⎤⎛⎫⎢⎥+=+=+== ⎪ ⎪⎢⎥⎝⎭⎣⎦.所以1b ,2b ,4b 成等差数列. 21.解:(1)设r 为方程的一个根,即()0f r =,则由题设得(())0g f r =.于是,(0)(())0g g f r ==,即(0)0g d ==.所以,0d =.(2)由题意及(1)知2()f x bx cx =+,32()g x ax bx cx =++. 由0a =得b c ,是不全为零的实数,且2()()g x bx cx x bx c =+=+, 则[]22(())()()()()g f x x bx c bx bx c c x bx c b x bcx c =+++=+++.方程()0f x =就是()0x bx c +=.①方程(())0g f x =就是22()()0x bx c b x bcx c +++=.②(ⅰ)当0c =时,0b ≠,方程①、②的根都为0x =,符合题意.(ⅱ)当0c ≠,0b =时,方程①、②的根都为0x =,符合题意. (ⅲ)当0c ≠,0b ≠时,方程①的根为10x =,2cx b=-,它们也都是方程②的根,但它们不是方程220b x bcx c ++=的实数根.由题意,方程220b x bcx c ++=无实数根,此方程根的判别式22()40bc b c ∆=-<,得04c <<.综上所述,所求c 的取值范围为[)04,. (3)由1a =,(1)0f =得b c =-,2()(1)f x bx cx cx x =+=-+,2(())()()()g f x f x f x cf x c ⎡⎤=-+⎣⎦.③由()0f x =可以推得(())0g f x =,知方程()0f x =的根一定是方程(())0g f x =的根.当0c =时,符合题意.当0c ≠时,0b ≠,方程()0f x =的根不是方程2()()0f x cf x c -+= ④ 的根,因此,根据题意,方程④应无实数根.那么当2()40c c --<,即04c <<时,2()()0f x cf x c -+>,符合题意.当2()40c c --≥,即0c <或4c ≥时,由方程④得2()2c f x cx cx =-+=,即202c cx cx ±-+=,⑤则方程⑤应无实数根,所以有2()40c --<且2()40c --<. 当0c <时,只需220c --,解得1603c <<,矛盾,舍去. 当4c ≥时,只需220c -+<,解得1603c <<.因此,1643c <≤.综上所述,所求c 的取值范围为1603⎡⎫⎪⎢⎣⎭,.2007年普通高等学校招生全国统一考试(江西卷)20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠= ,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积.21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点.11y22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+.(1)求1a ,3a ; (3)求数列{}n a 的通项n a . 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1AC .又因为AB =BC =222AC AB BC AC ==+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为2BH =,所以1sin 2BH BCH BC ==∠,故30BCH = ∠, 即:所求二面角的大小为30 .(3)因为2BH =,所以22221111(12)33222B AAC C AA C C V S BH -==+= . 1112211111212A B C A BC A B C V S BB -=== △.所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,11A 2则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量.因为0OC n =,OC ⊄平面111A B C ,所以OC ∥平面111A B C . (2)(012)AB =-- ,,,(101)BC =,,, 设()m x y z =,,是平面ABC 的一个法向量,则则0AB m = ,0BC m = 得:20y z x z --=⎧⎨+=⎩ 取1x z =-=,(121)m =- ,,.显然,(110)l =,,为平面11AA C C 的一个法向量.则cos 2m l m l m l===,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30 .(3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-01λ<<,所以λ= ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.1x由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以λ=; ②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩ . 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ==+---.所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,解得:1223λ<<.由①②知1223λ<≤. 22.解:(1)据条件得1111112(1)2n nn n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭ ① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+, 解得12837a <<.因为1a 为正整数,故11a =.当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =. 下面用数学归纳法证明.1 当1n =,2时,由(1)知2n a n =均成立; 2 假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+-22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,.又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤. 故21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1 ,2 知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =. 下面用数学归纳法证明.1 当1n =,2时,由(1)知2n a n =均成立; 2 假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭即21111(1)122k k k k k a k a k +++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥,所以4321221(1)11k k k ka k k k k k +++=+--+-+≥. 又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④ 据③④21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1 ,2 知,对任意n ∈*N ,2n a n =.2007年普通高等学校招生全国统一考试(辽宁卷)20.(本小题满分14分)已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB 的内接圆(点C 为圆心) (I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7cos )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE PF ,,切点为E F ,,求CE CF,的最大值和最小值. 21.(本小题满分12分)已知数列{}n a ,{}n b 与函数()f x ,()g x ,x ∈R 满足条件:n n a b =,1()()()n n f b g b n +=∈N*.(I )若()102f x tx t t +≠≠≥,,,()2g x x =,()()f b g b ≠,lim n n a →∞存在,求x 的取值范围;(II )若函数()y f x =为R 上的增函数,1()()g x f x -=,1b =,(1)1f <,证明对任意n ∈N*,lim n n a →∞(用t 表示). 22.(本小题满分12分)已知函数2222()2()21tf x x t x x x t =-++++,1()()2g x f x =. (I)证明:当t <()g x 在R 上是增函数;(II )对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b ,上是减函数;(III )证明:3()2f x ≥. 2007年普通高等学校招生全国统一考试(20)(本小题满分12分)设函数()e e x xf x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<;(Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….(20)解:(Ⅰ)()f x 的导数()e e x x f x -'=+.由于e e 2x -x +=≥,故()2f x '≥.(当且仅当0x =时,等号成立).(Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20x x g x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x +=,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾.综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=.设11()B x y ,,22()D x y ,,则 2122632k x x k +=-+,21223632k x x k -=+21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,221132k AC k⎫+⎪⎝⎭==⨯+.四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=-.所以,数列{n a -是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==11b a <≤,结论成立. (ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<-1n k =+时,13423k k k b b b ++=-+k =0k =>,又1323k b <=-+,所以1(32)2)23k k k b b b +-=+2(3(k b <--4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)20.(本小题满分12分)在直角坐标系xOy 中,以O为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得 (20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=.(2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩, 由此得21y <.所以PA PB 的取值范围为[20)-,.21.解:(1)由132342n n a a n --==,,,,…,整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->, 因此 1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=,所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a -<1n n b b n +<,为正整数. 22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即 23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程 32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即()a b f a -<<.2007年普通高等学校招生全国统一考试(山东卷)(20)如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105 方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120 方向的2B 处,此时两船相距海里,问乙船每小时航行多少海里?(21)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. (22)(本小题满分14分) 设函数2()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性;(Ⅱ)求函数()f x 的极值点; 1A2A(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>-⎪⎝⎭都成立.(20)(本小题满分12分)解法一:如图,连结11A B,由已知22A B =122060A A ==1221A A A B ∴=,又12218012060A A B =-= ∠,122A A B ∴△是等边三角形,1212A B A A ∴==,由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22202202=+-⨯⨯200=.12B B ∴=因此,乙船的速度的大小为6020=(海里/小时). 解法二:如图,连结21A B ,由已知1220A B =,122060A A ==,112105B A A = ∠,cos105cos(4560)=+ cos 45cos60sin 45sin 60=-4=, sin105sin(4560)=+ sin 45cos60cos 45sin 60=+4=. 在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-22202204=+-⨯⨯100(4=+.1110(1A B ∴=.由正弦定理1112111222sin sin 42A B A A B B A A A B +=== ∠∠, 12145A A B ∴= ∠,即121604515B A B =-= ∠,cos15sin105==在112B A B △中,由已知12A B =1A2A1A2A乙22212112221222cos15B B A B A B A B A B =++22210(1210(1=++-⨯+⨯200=.12B B ∴=乙船的速度的大小为6020⨯=海里/小时.答:乙船每小时航行 (21)(本小题满分12分)解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-=.∴椭圆的标准方程为22143x y +=. (Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=,22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+,因为以AB 为直径的圆过椭圆的右焦点(20)D ,,1AD BD k k ∴=-,即1212122y yx x =--- , 1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k --∴+++=+++,2291640m mk k ∴++=.解得:12m k =-,227km =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,.所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,. (22)(本小题满分14分)解:(Ⅰ)由题意知,()f x 的定义域为(1)-+∞,,322()211b x x b f x x x x ++'=+=++ 设2()22g x x x b =-+,其图象的对称轴为1(1)2x =-∈-+∞,, max 11()22g x g b ⎛⎫∴=-=-+ ⎪⎝⎭.当12b >时,max 1()02g x b =-+>,即2()230g x x x b =+->在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>,∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增.(Ⅱ)①由(Ⅰ)得,当12b >时,函数()f x 无极值点. ②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭ ,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点. ③当12b <时,()0f x '=有两个不同解,1x =2x =,0b < 时,1112x --=<-,2102x -=>,即1(1)x ∈-+∞,,[)21x ∈-+∞,. 0b ∴<时,()f x ',()f x 随x 的变化情况如下表:由此表可知:0b <时,()f x 有惟一极小值点112x --=,当102b <<时,11x =>-,12(1)x x ∴∈-+∞,,此时,()f x ',()f x 随x 的变化情况如下表:由此表可知:102b <<时,()f x 有一个极大值1x =和一个极小值点2x =;综上所述:0b <时,()f x 有惟一最小值点x =;102b <<时,()f x 有一个极大值点12x -=和一个极小值点1x x -+=;12b ≥时,()f x 无极值点.(Ⅲ)当1b =-时,函数2()ln(1)f x x x =-+,令函数222()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++.∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增,又(0)0h =. (0)x ∴∈+∞,时,恒有()(0)0h x h >=,即23ln(1)x x x >-+恒成立.故当(0)x ∈+∞,时,有23ln(1)x x x +>-. 对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭.所以结论成立. 2007普通高等学校招生全国统一考试(陕西)20.设函数2()xe f x x ax a=++,其中a 为实数.(I )若()f x 的定义域为R ,求a 的取值范围; (II )当()f x 的定义域为R 时,求()f x 的单调减区间. 21.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l,求AOB △面积的最大值. 22.(本小题满分12分)已知各项全不为零的数列{}n a 的前k 项和为k S ,且11()2k k k S a a k +=∈N*,其中11a =. (I )求数列{}n a 的通项公式;(II )对任意给定的正整数(2)n n ≥,数列{}n b 满足1k k b b +=1k k na +-(121k n =- ,,,),11b =,求12n b b b +++ .20.解:(Ⅰ)()f x 的定义域为R ,20x ax a ∴++≠恒成立,240a a ∴∆=-<,04a ∴<<,即当04a <<时()f x 的定义域为R .(Ⅱ)22(2)e ()()xx x a f x x ax a +-'=++,令()0f x '≤,得(2)0x x a +-≤.由()0f x '=,得0x =或2x a =-,又04a << ,02a ∴<<时,由()0f x '<得02x a <<-;当2a =时,()0f x '≥;当24a <<时,由()0f x '<得20a x -<<, 即当02a <<时,()f x 的单调减区间为(02)a -,; 当24a <<时,()f x 的单调减区间为(20)a -,. 21.(本小题满分14分)解:(Ⅰ)设椭圆的半焦距为c ,依题意c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,AB = (2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.=223(1)4m k =+. 把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤. 当且仅当2219k k =,即3k =±时等号成立.当0k =时,AB = 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 1222S AB =⨯⨯=.22.解:(Ⅰ)当1k =,由111212a S a a ==及11a =,得22a =. 当2k ≥时,由1111122k k k k k k k a S S a a a a -+-=-=-,得11()2k k k k a a a a +--=.因为0k a ≠,所以112k k a a +--=.从而211(1)221m a m m -=+-=- .22(1)22m a m m =+-= ,*m ∈N .故*()k a k k =∈N .(Ⅱ)因为k a k =,所以111k k k b n k n kb a k ++--=-=-+. 所以1121121(1)(2)(1)(1)1(1)21k k k k k k b b b n k n k n b b b b b k k -----+-+-==-- 11(1)(12)k kn C k n n-=-= ,,,.故123n b b b b ++++ 12311(1)n nn n n n C C C C n -⎡⎤=-+-+-⎣⎦ {}012111(1)n nnn n n C C C C n n⎡⎤=--+-+-=⎣⎦ . 2007年全国普通高等学校招生统一考试(上海卷)19.已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n = ,,,),我们称其为“对称数列”.例如,由组合数组成的数列01m m m m C C C ,,,就是“对称数列”.(1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +- ,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m - ,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.(1)若012F F F △是边长为1的等边三角形,求 “果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围;(3)连接“果圆”上任意两点的线段称为“果圆” 的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.19.解:(1)当0=a 时,2)(x x f =, 对任意(0)(0)x ∈-∞+∞ ,,,)()()(22x f x x x f ==-=-,)(x f ∴为偶函数. 当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,, ∴ 函数)(x f 既不是奇函数,也不是偶函数.(2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立. 121204x x x x -<> ,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,. 解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数, xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 , 50134)13(42212-⨯+--=-k S k , ∴当13=k 时,12-k S 取得最大值. 12-k S 的最大值为626.(3)所有可能的“对称数列”是:① 22122122222221m m m --- ,,,,,,,,,,; ② 2211221222222221m m m m ---- ,,,,,,,,,,,; ③ 122221222212222m m m m ---- ,,,,,,,,,,; ④ 1222212222112222m m m m ---- ,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S .当15002007m <≤时,200922122008222221----+++++++=m m m m S2009212212---+-=m m m 1222200921--+=--m m m . 对于②,当2008m ≥时,1220082008-=S .当15002007m <≤时,2008S 122200821--=-+m m . 对于③,当2008m ≥时,2008200822--=m mS .当15002007m <≤时,2008S 3222009-+=-m m . 对于④,当2008m ≥时,2008200822--=m mS .当15002007m <≤时,2008S 2222008-+=-mm.21. 解:(1) ((012(0)00F c F F ,,,,,021211F F b F F ∴=====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤. (2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b . 45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P t ⎛⎫⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴ P Q ,的中点M ()x y ,满足2a c x y t ⎧-⎪=⎨⎪=⎩,得 122222=+⎪⎭⎫⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b +=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x kab y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年广东省高考数学试卷(理科)及解析
2007年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知函数f(x)=定义域为M,g(x)=ln(1+x)定义域N,则M∩N等于()A.{x|x>﹣1}B.{x|x<1}C.{x|﹣1<x<1}D.∅2.(5分)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B.C.D.﹣23.(5分)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数4.(5分)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A.B.C.D.5.(5分)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k<8,则k等于()A.9 B.8 C.7 D.66.(5分)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<97.(5分)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.188.(5分)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(5分)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为.(答案用分数表示)10.(5分)若向量a,b满足||=||=1,的夹角为60°,则=.11.(5分)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是.12.(5分)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有条,这些直线中共有f(n)对异面直线,则f(4)=;f(n)=.(答案用数字或n的解析式表示)13.(5分)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为,圆心到直线l的距离为.14.(5分)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=;若f(x)≤5,则x 的取值范围是.15.已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC 为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为.三、解答题(共6小题,满分80分)16.(12分)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.17.(12分).x3456y2 . 5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)18.(14分)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O .椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.19.(14分)如图所示,等腰△ABC 的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.20.(14分)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.21.(14分)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有a n>α;(3)记(n=1,2,…),求数列{b n}的前n项和S n.2007年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2007•广东)已知函数f(x)=定义域为M,g(x)=ln(1+x)定义域N,则M∩N等于()A.{x|x>﹣1}B.{x|x<1}C.{x|﹣1<x<1}D.∅【分析】根据题目中使函数有意义的x的值求得函数的定义域M和N,再求它们的交集即可.【解答】解:∵函数的定义域是指使函数式有意义的自变量x的取值范围,∴由1﹣x>0求得函数的定义域M={x|x<1},和由1+x>0 得,N=[x|x>﹣1},∴它们的交集M∩N={x|﹣1<x<1}.故选C.2.(5分)(2007•广东)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B.C.D.﹣2【分析】本题主要考查复数的乘法运算以及纯虚数的概念等基础知识,属容易档次.【解答】解:(1+bi)(2+i)=(2﹣b)+(1+2b)i,则,∴b=2选A.3.(5分)(2007•广东)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数【分析】本题主要考查三角函数的最小正周期和奇偶性,也涉及到对简单三角变换能力的考查.见到三角函数平方形式,要用二倍角公式降幂,变为可以研究三角函数性质的形式y=Asin(ωx+φ)的形式.【解答】解:∵f(x)=,∴y=f(x)最小周期为π的偶函数,故选D4.(5分)(2007•广东)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A.B.C.D.【分析】本题的常规方法建立实际问题中的分段函数模型,然后研究分段函数的图象.其实,客观题往往有打破常规的捷径,如此题抓住三个点,即(1,60),(1.5,60),(2.5,140),则很容易地得到答案B,体现了描点法的精细思考.【解答】解:由题意得;,抓住三个点,即(1,60),(1.5,60),(2.5,140),对照选项选B.故选:B.5.(5分)(2007•广东)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k <8,则k等于()A.9 B.8 C.7 D.6【分析】先利用公式a n=求出a n,再由第k项满足5<a k<8,求出k.【解答】解:a n==∵n=1时适合a n=2n﹣10,∴a n=2n﹣10.∵5<a k<8,∴5<2k﹣10<8,,∴k=8,∴<k<9,又∵k∈N+故选B.6.(5分)(2007•广东)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<9【分析】由题目要求可知:该程序的作用是统计身高在160~180cm(含160cm,不含180cm))的学生人数,由图1可知应该从第四组数据累加到第七组数据,故i值应小于8.【解答】解:现要统计的是身高在160﹣180cm之间的学生的人数,即是要计算A4、A5、A6、A7的和,当i<8时就会返回进行叠加运算,当i≥8将数据直接输出,不再进行任何的返回叠加运算,故i<8.故答案为:i<8.7.(5分)(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.18【分析】本题主要考查解决实际问题的能力,研究生活中的最优化模型,体现了对创新思维能力的考查.根据已知,现在要将A,B两个维修点的零件调往C、D 两个维修点,由于A、D两个维修点相邻,且D维修点的零件缺口最大,故要首先考虑从A点调零件到D点.【解答】解:D处的零件要从A、C或B处移来调整,且次数最少.方案一:从A处调10个零件到D处,从B处调5个零件到C处,从C外调1个零件到D处,共调动16件次;方案二:从B处调1个零件到A处,从A处调11个零件到D处,从B外调4个零件到C处,共调动16件次.故选B.8.(5分)(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b【分析】本题主要考查应用新定义解决数学问题的能力,体现了对创新思维能力的考查力度.根据已知中a*(b*a)=b,对四个答案的结论逐一进行论证,不难得到正确的结论.【解答】解:根据条件“对任意的a,b∈S,有a*(b*a)=b”,则:选项B中,[a*(b*a)]*(a*b)]=b*(a*b)=a,一定成立.选项C中,b*(b*b)=b,一定成立.选项D中,(a*b)*[b*(a*b)]=b,一定成立.故选A.二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(5分)(2007•广东)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为.(答案用分数表示)【分析】本题是一个古典概型,从甲、乙两袋中各随机取出一个球取出的两球是红球表示从甲袋中取得一个红球且从乙袋中取得一个红球,试验发生的总事件数是C61C61,满足条件的事件数是C41C51+C21C11,由古典概型公式得到结果.【解答】解:由题意知本题是一个古典概型,记“从甲、乙两袋中各随机取出一个球取出的两球是红球”,为事件A试验发生的总事件数是C61C61=36,满足条件的事件数是C41C11=4,由古典概型公式得到P(A)==,故答案为:.10.(5分)(2007•广东)若向量a,b满足||=||=1,的夹角为60°,则=.【分析】利用向量的数量积公式求出两个向量的数量积,利用向量的模的平方等于向量的平方,将求出的值代入代数式即得.【解答】解:∵,∴=1+=.故答案为11.(5分)(2007•广东)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是x=﹣.【分析】先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到准线方程.【解答】解:依题意我们容易求得直线的方程为4x+2y﹣5=0,把焦点坐标(,0)代入可求得焦参数p=,从而得到准线方程x=﹣.故答案为:x=﹣.12.(5分)(2007•广东)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有条,这些直线中共有f(n)对异面直线,则f(4)=12;f(n)=.(答案用数字或n的解析式表示)【分析】本题主要考查合情推理,以及经历试值、猜想、验证的推理能力.凸多面体是n棱锥,共有n+1个顶点,过顶点与底边上每个顶点都可确定一条侧棱所在的直线,过底面上任一点与底面上其它点均可确定一条直线(边或对角线),综合起来不难得到第一空的答案,因为底面上所有的直线均共面,故每条侧棱与不过该顶点的其它直线都是异面直线.【解答】解:凸多面体是n棱锥,共有n+1个顶点,所以可以分为两类:侧棱共有n条,底面上的直线(包括底面的边和对角线)条两类合起来共有条.在这些直线中,每条侧棱与底面上不过此侧棱的端点直线异面,底面上共有直线(包括底面的边和对角线)条,其中不过某个顶点的有=条所以,f(n)=,f(4)=12.故答案为:,12,.13.(5分)(2007•广东)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为(0,2),圆心到直线l的距离为.【分析】先利用两式相加消去t将直线的参数方程化成普通方程,然后利用sin2θ+cos2θ=1将圆的参数方程化成圆的普通方程,求出圆心和半径,最后利用点到直线的距离公式求出圆心到直线的距离即可.【解答】解:直线l的参数方程为(参数t∈R),∴直线的普通方程为x+y﹣6=0圆C的参数方程为(参数θ∈[0,2π]),∴圆C的普通方程为x2+(y﹣2)2=4∴圆C的圆心为(0,2),d=故答案为:(0,2),14.(5分)(2007•广东)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=6;若f (x)≤5,则x的取值范围是[﹣1,1] .【分析】直接代入﹣2求出函数值f(﹣2),f(x)≤5,去掉绝对值符号,对x 分类讨论,即x≥,和x分别解不等式组即可.【解答】解:f(﹣2)=|2•(﹣2)﹣1|+(﹣2)+3=6,将f(x)=|2x﹣1|+x+3≤5变形为或,解得或,即﹣1≤x≤1.所以,x的取值范围是[﹣1,1].故答案为:6;[﹣1,1].15.(2007•广东)已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为9 .【分析】连接EC,EO.根据梯形的面积等于梯形的中位线长乘以高,显然中位线即是半圆的半径,即为3.故只需求得该梯形的高.根据梯形的中位线,只需求得DE的长,首先根据30度的直角三角形BCE求得CE的长,再根据弦切角定理求得∠CED=30°,进一步根据锐角三角函数求得DE的长,再根据梯形的面积公式进行计算.【解答】解:如图连接EC,∵BC为半圆O的直径,∴BE⊥EC(1分)∵∠EBC=30°,∴EC=BC=×6=3连接OE,∴OE=OB=3,∠BEO=30°∵AD与⊙O相切于点E,∴OE⊥AD∴∠OEC=60°,∴∠DEC=30°∴DC=EC=∴DE=(3分)∵OE∥DC∥AB,OC=OB,∴OE是梯形的中位线∴AE=DE=(5分)∴AD=2DE=3∵AD⊥AB,∴DA为梯形ABCD的高∴S=OE•AD=3×3 .(7分)梯形ABCD故答案为:9.三、解答题(共6小题,满分80分)16.(12分)(2007•广东)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.【分析】(1)通过向量的数量积求出角A的余弦,利用平方关系求出A角的正弦.(2)据向量数量积的公式知向量的夹角为钝角等价于数量积小于0,列出不等式解.【解答】解:(1)根据题意,,,若c=5,则,∴,∴sin∠A=;(2)若∠A为钝角,则解得,∴c的取值范围是;17.(12分)(2007•广东).x3456y2344. 5. 5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【分析】(1)依据描点一一描点画图即可;(2)先算出x和y的平均值,有关结果代入公式即可求a和b的值,从而求出线性回归方程;(3)将x=100时代入线性方程得到y的值,就能预测生产100吨甲产品的生产能耗情况.【解答】解:(1)根据题意,作图可得,(2)由系数公式可知,,,,所以线性回归方程为y=0.7x+0.35;(3)x=100时,y=0.7x+0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.18.(14分)(2007•广东)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)设出圆的标准方程,由相切和过原点的条件,建立方程求解.(2)要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于|OF|的长度4,我们可以转化为探求以右焦点F为圆心,半径为2的圆(x─4)2+y2=8与(1)所求的圆的交点数.【解答】解:(1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x﹣m)2+(y﹣n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2即|m﹣n|=4①又圆与直线切于原点,将点(0,0)代入得m2+n2=8②联立方程①和②组成方程组解得故圆的方程为(x+2)2+(y﹣2)2=8;(2)|a|=5,∴a2=25,则椭圆的方程为=1其焦距c==4,右焦点为(4,0),那么|OF|=4.通过联立两圆的方程,解得x=,y=.即存在异于原点的点Q(,),使得该点到右焦点F的距离等于|OF|的长.19.(14分)(2007•广东)如图所示,等腰△ABC的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.【分析】(1)先求底面面积,再求出高,即可求V(x)的表达式;(2)利用导数,来求V(x)的最大值,(3)过F作MF∥AC交AD于M,得到异面直线所成的角,然后求异面直线AC 与PF所成角的余弦值.【解答】解:(1)由折起的过程可知,PE⊥平面ABC,V(x)=()(2),所以x∈(0,6)时,v'(x)>0,V(x)单调递增;时v'(x)<0,V(x)单调递减;因此x=6时,V(x)取得最大值;(3)过F作MF∥AC交AD与M,则,PM=,,在△PFM中,,∴异面直线AC与PF所成角的余弦值为.20.(14分)(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.【分析】y=f(x)在区间[﹣1,1]上有零点转化为(2x2﹣1)a=3﹣2x在[﹣1,1]上有解,把a用x表示出来,转化为求函数在[﹣1,1]上的值域,再用分离常数法求函数在[﹣1,1]的值域即可.【解答】解:a=0时,不符合题意,所以a≠0,又∴f(x)=2ax2+2x﹣3﹣a=0在[﹣1,1]上有解,⇔(2x2﹣1)a=3﹣2x在[﹣1,1]上有解在[﹣1,1]上有解,问题转化为求函数[﹣1,1]上的值域;设t=3﹣2x,x∈[﹣1,1],则2x=3﹣t,t∈[1,5],,设,时,g'(t)<0,此函数g(t)单调递减,时,g'(t)>0,此函数g(t)单调递增,∴y的取值范围是,∴f(x)=2ax2+2x﹣3﹣a=0在[﹣1,1]上有解⇔∈⇔a≥1或.故a≥1或a≤﹣.21.(14分)(2007•广东)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有a n>α;(3)记(n=1,2,…),求数列{b n}的前n项和S n.【分析】(1)由f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β)可求得;(2)由f'(x)=2x+1,=,由基本不等式可知,依此有(3),,数列{b n}是等比数列,由其前n项和公式求解.【解答】解:(1)∵f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),∴;(2)f'(x)=2x+1,=,∵a1=1,∴有基本不等式可知(当且仅当时取等号),∴,同样,(n=1,2),(3)而α+β=﹣1,即α+1=﹣β,,同理,又。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校全国招生统一考试(广东卷)数学(理科) 参考答案及试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合要求的。
1. 已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=⋂N MA.{}1φx xB.{}1πx xC.{}11ππx x -D.φ【命题意图】考查函数的定义域和集合的基本运算 【参考答案】C 【原题解析】由解不等式1-x>0求得M=(-∞,1),由解不等式1+x>0求得N=(-1,+∞),因而M ⋂N=(-1,1),故选C 。
【备考锦囊】在备考中应把握好对基本概念的理解,尤其要把握好集合的交并补等基本运算。
2. 若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数)则b =A.2B.21C.21-D.-2【命题意图】考查复数的运算和相关基本概念的理解 【参考答案】A【原题解析】(1+bi)(2+i)=2-b+(1+2b)i ,而复数(1+bi)(2+i)是纯虚数,那么由2-b=0且1+2b ≠0得b=2,故选A 。
3. 若函数是则)(R),(21sin )(2x f x x x f ∈-=A.最小正周期为2π的奇函数 B.最小正周期为π的奇函数C.最小正周期为π2的偶函数D.最小正周期为π的偶函数 【命题意图】考查三角变换和三角函数的性质 【参考答案】D【原题解析】通过二倍角公式可将f(x)等价转化为f(x)=21cos2x ,有余弦函数的性质知f(x)为最小正周期为π的偶函数,选D 。
【备考锦囊】运用二倍角公式来降幂是常用的技巧,备考中学生应该熟练的掌握这种方法 4. 客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是【命题意图】考查分段函数 【参考答案】B【原题解析】由题意可知客车在整个过程中的路程函数S(t)的表达式为0≤t ≤1 S(t)= 1≤t ≤3/23/2≤t ≤5/2对比各选项的曲线知应选D 。
【备考锦囊】学会在实际情景中对函数关系的理解5. 已知数|a n |的前n 项和S n =n 2-9n ,第k 项满足5<a n <8,则k=A.9B.8C.7D.6 【参考答案】B【原题解析】a 1=S 1= -8,而当n ≥2时,由a n =S n -S n-1求得a n =2n -10,此式对于n=1也成立。
要满足5<a k <8,只须5<2k -10<8,从而有215<k<9,而k 为自然数。
因而只能取k=8。
【备考锦囊】数列是高考热点,求通项是数列的基础,很多大型的题目也是基于这种思想方法,备考中应注意。
6. 图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1、A 2、…、A 10(如A 2表示身高(单位:cm )(150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含图1 图2160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A.i<6B. i<7C. i<8D. i<9 【命题意图】考查算法的基本运用 【参考答案】C【原题解析】现要统计的是身高在160-180cm 之间的学生的人数,即是要计算A 4、A 5、A 6、A 7的和,故流程图中空白框应是i<8,当i<8时就会返回进行叠加运算,当i ≥8将数据直接输出,不再进行任何的返回叠加运算,此时已把数据A 4、A 5、A 6、A 7叠加起来送到S 中输出,故选C 。
【备考锦囊】算法是新课标的一扇“窗口”,备考中应对其应用加以理解7. 图3是某汽车维修公司的维修点环形分布图,公司在年初分配给A 、B 、C 、D 四个维修点的这批配件⎪⎩⎪⎨⎧-60806060t t分别调整为40、45、61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为图3A.15B.16C.17D.18 【参考答案】B【原题解析】若按原定的分配,A 点余10件,B 点余5件,C 点却4件,D 点却11件。
要使调动件次最少,须考虑从最近的点调到最多的缺件到所缺处,而D 却的最多,与之相邻的点C 也是剩余最多的,应优先考虑由C 点的余货全数补给D 点,再考虑由B 点的填补临近点C 的不足再去填补经C 补给后D 点的不足,这就能使得调动件次最少。
8. 设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a,b ∈S ,对于有序元素对(a,b ),在S 中有唯一确定的元素a*b 与之对应),若对任意的a,b ∈S,有a*(b*a)=b,则对任意的a,b ∈S,下列等式中不恒成立的是A.(a*b )*a=aB.[a*(b*a)]*(a*b)=aC.b*(b*b)=bD.(a*b)* [b*(a*b)]=b 【命题意图】在新情景下考查对元素意义的理解 【参考答案】A【原题解析】用b 代替题目给定的运算式中的a 同时用a 代替题目给定的运算式中的b 我们不难知道B 是正确的,用b 代替题目给定的运算式中的a 我们又可以导出选项C 的结论,而用代替题目给定的运算式中的a 我们也能得到D 是正确的。
二、填空题:本大题共7小题,每小题5分,满分30分,其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分。
9. 甲、乙两个袋中均装有红、白两种颜色的小球,这些小球除颜色外完全相同.其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球. 现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 。
(答案用分数表示) 【命题意图】考查概率的计算 【参考答案】91 【原题解析】P=64⨯61=91 【备考锦囊】复习中应加强概率基本概念的理解,重点掌握古典概率型概率的基本类型 10. 若同量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= 。
【命题意图】考查向量的运算 【参考答案】21 【原题解析】a ﹒a+ a ﹒b=12+1×1×(-21)=21。
【备考锦囊】这些是向量的基础,在备考中要做到概念清晰,灵活运用。
11. 在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线)0(22φp px y =的焦点,则该抛物线的准线方程是 。
【命题意图】考查抛物线与直线的关系 【参考答案】x= -54【原题解析】依题意我们容易求得直线的方程为4x+2y -5=0,把焦点坐标(2p,0)代入可求得焦参数p=52,从而得到准线方程x= -54。
12. 如果一个凸多面体n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有条.这些直线中共有)(n f 对异面直线,则)4(f = ; )(n f = 。
(答案用数字或n 的解析式表示) 【命题意图】考查考生对归纳猜想和递推的理解和运用 图4【参考答案】2)1(+n n ,12,2)1)(2(--n n n 【原题解析】当多面体的棱数由n 增加到n+1时,所确定的直线的条数将增加n+1,由递推关系f(n+1)-f(n)=n+1我们能够求出答案。
从图中我们明显看出四棱锥中异面直线的对数为12对。
能与棱锥每棱构成异面关系的直线的条数为2)1)(2(--n n ,进而得到f(n)的表达式。
13. (坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t ty t x ∈⎩⎨⎧-=+=参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则题C 的圆心坐标为 ,圆心到直线l 的距离为 。
【命题意图】考查参数方程与一般方程的互化,点到直线的距离 【参考答案】(0,2),22【原题解析】将参数方程一般化我们得到直线的方程x+y -6=0,圆的方程x 2+(y-2)2=4,从而有圆心坐标为(0,2),圆心到直线的距离d=24=22。
14. (不等式选讲选做题)设函数)2(,312)(-++-=f x x x f 则= ;若2)(≤x f ,则x 的取值范围是 。
【命题意图】考查含绝对值不等式的解法 【参考答案】[-1,1] 【原题解析】将函数去绝对值化为分段函数,再在各段上解不等式f(x)≤5取其并集。
15. (几何证明选讲选做题)如图5所法,圆O 的直径6=AB ,C 为圆周上一点,3=BC ,过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D 、E ,则∠DAC = ,线段AE 的长为 。
图5 【参考答案】30︒,3【原题解析】由Rt ∆ACB 的各边的长度关系知∠CAB= 30︒, 而弦切角∠BC λ=∠CAB= 30︒。
那么在Rt ∆ADC 中∠ACD=60︒,故∠DAC=30︒。
注意到OC ⊥λ,从而有EAOC 为菱形,故AE=3。
16. 已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围. 【命题意图】考查向量的坐标运算【参考答案】(1) (3,4)AB =--u u u r, (3,4)AC c =--u u u r当c=5时,(2,4)AC =-u u u rcos cos ,A AC AB ∠=<>==u u u r u u u r进而sin 5A ∠==(2)若A 为钝角,则AB ﹒AC= -3(c -3)+( -4)2<0 解得c>325 显然此时有AB 和AC 不共线,故当A 为钝角时,c 的取值范围为[325,+∞) 17. 下表提供了某厂节油降耗技术发行后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =a x b ))+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【命题意图】考查线性回归的应用 【参考答案】(1)如下图(2)y x i ni i ∑=1=3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5x =46543+++=4.5y =45.4435.2+++=3. 5∑=ni x i 12=32+42+52+62=86266.54 4.5 3.566.563ˆ0.7864 4.58681b-⨯⨯-===-⨯- ˆˆ 3.50.7 4.50.35aY bX =-=-⨯= 故线性回归方程为y=0.7x+0.35(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7⨯100+0.35=70.35 故耗能减少了90-70.35=19.65(吨)18. 在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y=x 相切于坐标原点O .椭圆9222y ax +=1与圆C 的一个交点到椭圆两点的距离之和为10.(1)求圆C 的方程.(2)试探安C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点P 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.【命题意图】考查考查圆的位置关系和圆锥曲线的基本概念的理解【参考答案】(1)设圆心坐标为(m ,n)(m<0,n>0),则该圆的方程为(x -m )2+(y -n )2=8已知该圆与直线y=x 相切,那么圆心到该直线的距离等于圆的半径,则2n m -=22即n m -=4 ①又圆与直线切于原点,将点(0,0)代入得 m 2+n 2=8 ②联立方程①和②组成方程组解得⎩⎨⎧=-=22n m 故圆的方程为(x +2)2+(y -2)2=8 (2)a=5,∴a 2=25,则椭圆的方程为+=1其焦距c=925-=4,右焦点为(4,0),那么OF =4。