Rc串并联选频网络频率特性的测试.

合集下载

实验十三 RC串、并联选频网络特性的测试

实验十三  RC串、并联选频网络特性的测试

ou -+图 15-1f图15-2f-示波器图 15-3图 15-4实验十三 RC串、并联选频网络特性的测试一.实验目的1.研究RC串、并联电路及RC双T电路的频率特性。

2.学会用交流毫伏表和示波器测定RC网络的幅频特性和相频特性。

3.熟悉文氏电桥电路的结构特点及选频特性。

二.原理说明图15-1所示RC串、并联电路的频率特性:)1j(31)j (ioRCRC UUN ωωω-+==其中幅频特性为:22io )1(31)(RCRC U UA ωωω-+==相频特性为:31arctg)(o RC RC i ωωϕϕωϕ--=-=幅频特性和相频特性曲线如图15-2所示,幅频特性呈带通特性。

当角频率RC 1=ω时,31)(=ωA ,︒=0)(ωϕ, uO 与uI 同相,即电路发生谐振,谐振频率RCf π210=。

也就是说,当信号频率为f0时,RC串、并联电路的输出电压uO 与输入电压ui 同相,其大小是输入电压的三分之一,这一特性称为RC串、并联电路的选频特性,该电路又称为文氏电桥。

测量频率特性用‘逐点描绘法’,图15-3为用交流毫伏表和双踪示波器测量RC网络频率特性的测试图。

测量幅频特性:保持信号源输出电压(即RC网络输入电压)U i 恒定,改变频率f,用交流毫伏表监视U i ,并测量对应的RC网络输出电压U O ,计算出它们的比值A =U O /U I ,然后逐点描绘出幅频特性;测量相频特性:保持信号源输出电压(即RC网络输入电压)U i 恒定,改变频率f,用交流毫伏表监视U i ,用双踪示波器观察uO 与ui 波形,如图15-4所示,若两个波形的延时为Δt,周期为T ,则它们的相位差︒⨯∆=360Ttϕ,然后逐点描绘出相频特性。

用同样方法可以测量RC双T电路的幅频特性,RC双T电路见图15-5,其幅频特性具有带阻特性,如图15-6所示。

三.实验设备1.信号源(含频率计);2.交流毫伏表;3.MEEL -06组件; 4.双踪示波器(自备)。

RC电路的频率特性

RC电路的频率特性

RC电路的频率特性RC电路的频率特性:=1/(2πfC),在RC串联的正弦交流电路中,由于电容元件的容抗XC它与电源的频率有关,所以当输入端外加电压保持幅值不变而频率变化时,其容抗将随频率的变化而变化,从而引起整个电路的阻抗发生变化,电路中的电流及在电阻和电容元件上所引起的电压也会随频率而改变。

我们将RC电路中的电流及各部分电压与频率的关系称为RC电路的频率特性。

截止频率是用来说明电路频率特性指标的一个特殊频率。

当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍时,此频率即为截止频率。

截止频率公式1f0=RCπ2高通滤波器07.0T f ()(a )实验电路(b )幅频特性曲线图1高通滤波器低通滤波器07.0T f ()(a )实验电路(b )幅频特性曲线图2低通滤波器RC串并联选频电路10(a )实验电路(b )幅频特性曲线图3 选频电路实验目的(1)测量RC电路的频率特性,并画出其频率特性曲线。

(2)掌握测量截止频率的方法。

(3)进一步熟悉相关实验仪器的用途及使用方法。

图1 高通滤波器提示:在测量过程中应注意,在频率改变的同时用电压测试仪监测输入电压幅度,使之保持恒定。

表1 高通滤波器实验数据计算值:f 0= 测量值:f 0=图2低通滤波器表2 低通滤波器实验数据计算值:f 0= 测量值:f 0=图3选频电路1表3选频电路实验数据= 测量值:f0=计算值:f3 注意事项实验中,请同学们注意:(1)信号发生器输出端不可短路(2)测量交流高频信号电压有效值,须使用测试仪SCOPE 功能,不允许使用万用表(3)在测试仪的监测下,始终保持信号发生器输出电压有效值不变。

RC网络频率特性和选频特性的研究(综合实验)

RC网络频率特性和选频特性的研究(综合实验)

RC网络频率特性和选频特性的研究(综合实验)一、实验目的1.学会已知电路性能参数的情况下设计电路(元器件)参数;2.用仿真软件Mutualism研究RC串、并联电路及RC双T电路的频率特性;3.学会用交流毫伏表和示波器测定RC网络的幅频特性和相频特性;4.理解和掌握低通、高通、带通和带阻网络的特性5.熟悉文氏电桥电路的结构特点及选频特性。

二、实验设备(记录所用设备的名称型号编号)三、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H jω表示。

当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。

即:()21UH jUω=1.低通电路U2图4.3.1 低通滤波电路图4.3.2 低通滤波电路幅频特性简单的RC滤波电路如图4.3.1所示。

当输入为1U,输出为2U时,构成的是低通滤波电路。

因为:112111U UUj C j RCRj Cωωω=⨯=++所以:()()()2111U H j H j U j RCωωϕωω===∠+ ()H j ω=()H j ω是幅频特性,低通电路的幅频特性如图 4.3.2所示,在1RC ω=时,()0.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的角频率称为截止频率,记为0ω。

2.高通电路图4.3.3是高通滤波RC 电路。

12图4.3.3 高通滤波电路 图4.3.4 高通滤波电路的幅频特性12111U j RCU R U j RCR j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭所以:()()()211U j RC H j H j U jRCωωωϕω===∠+ 其中()H j ω传输特性的幅频特性。

电路的截止频率01RC ω=高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H jRC ωω=<<当0ωω>>时,即高频时,()1H j ω=。

华北电力大学电工实验RC选频网〔9)刘宏伟

华北电力大学电工实验RC选频网〔9)刘宏伟
RC 选频网络特性测试
制作人:刘宏伟
一、实验目的
1. 熟悉文氏电桥电路的结构特点及其应用。 2. 学会用交流毫伏表和示波器测定文氏桥 电路的幅频特性和相频特性。
二、原理说明
文氏电桥电路是一个RC的串、并联电路,如 图1所示。该电路结构简单,被广泛地用于低频 振荡电路中作为选频环节,可以获得很高纯度的 正弦波电压。
六、预习思考题
1. 根据电路参数,分别估算文氏桥电路两 组参数时的固有频率f0 。 2. 推导RC串并联电路的幅频、相频特性的 数学表达式。
七、实验报告
1.根据实验数据,绘制文氏桥电路的幅 频特性和相频特性曲线。找出f0 ,并与 理论计算值比较,分析误差原因。 2. 讨论实验结果。 3. 心得体会及其它。
,即
1 f = f0 = 2πRC
ϕ 时, = 0 ,即uo与ui同相位。
三、实验设备
序号 名 称 低频信号发生器及频率计
1
型号与规格
数量
备 注
1
双踪示波器
2
1 0~600V 1 RC选频网络实验板 HE-15 1
交流毫伏表
3
4
四、实验内容与步骤
1. 测量RC串、并联电路的幅频特性。
1)利用HE-15挂箱上“RC串、并联选频网络”线 R = 1K 路,组成如图线路。取, Ω C = 0.1µF , ; 2)调节信号源输出电压为3V的正弦信号,接入图1 的输入端; 3)改变信号源的频率f(由频率计读得),并保持 U i = 3V 不变,测量输出电压U (可先测量 β = 1 3 时 O 的频率f0,然后再在f0左右设置其它频率点测量。) 4)取 R = 200Ω, C = 2.2 µF ,重复上述测量。
ϕ = ϕo − ϕi = τ

幅频特性和相频特性实验报告

幅频特性和相频特性实验报告

HUNAN UNIVERSITY 课程实验报告题目:幅频特性和相频特性学生:学生学号:专业班级:完成日期:2014年1月6号一.实验容1、测量RC串联电路频率特性曲线元件参数:R=1K,C=0.1uF,输入信号:Vpp=5V、f=100Hz~15K 正弦波。

测量10组不同频率下的Vpp,作幅频特性曲线。

2、测量RC串联电路的相频特性曲线电路参数同上,测量10组不用频率下的相位,作相频特性曲线。

用莎育图像测相位差。

3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性曲线二.实验器材1kΩ电阻一个,0.1uf电容一个,函数信号发生器一台,示波器一台,导线和探头线若干三.实验目的(1)研究RC串并联电路对正弦交流信号的稳态响应;(2)熟练掌握示波器萨如图形的测量方法,掌握相位差的测量方法;(3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。

四.实验电路图100nF100nF五.实验数据及波形图电阻的幅度与峰峰值与频率:电容的幅度与峰峰值与频率:f/khz 3.1 5.0 9.1 13 15 Vpp/v 2.21 1.47 0.90 0.71 0.58 相位差/度-61.80 -72.21 -78.22 -80.02 -80.12串并联电路频率峰峰值与相位差:f/khz 0.1 0.3 0.8 1.5 3Vpp/v 0.348 0.92 1.54 1.70 1.54 相位差/度-81.88 -59.88 -26.24 -0.527 23.87f/khz 5 7 10 12 15 Vpp/v 1.22 1.02 0.780 0.7 0.58 相位差/度44.60 54.46 64.32 64.68 69.66当输入电压比输出电压=0.707(/2)时,其波形图如下:1.电阻:2.电容3.串并联电路:六.曲线图电阻的幅频特性图:相频特性图:电容的幅频特性图:相频特性:串并联电路相频特性:幅频特性:七.实验心得通过该实验,我掌握了RC电路的相频与幅频特性的基本特征。

电路实验-RC电路的频率特性测试-实验内容-课件

电路实验-RC电路的频率特性测试-实验内容-课件

(3)改变输入信号频率,测量输入信号幅度 Vi、输出信号幅度 Vo 及相位差 ϕ。 注意:①为减少测量工作量,尽量保持 Vi=1Vrms 恒定。
②记录相位差 ϕ 时,应有正负号。
f
—— —— —— ——
f0
—— —— —— ——
频率(Hz) 1k
2k
5k
7k
10k
20k
50k 100k
Vi(V)
点即为 f0,测出对应的输出信号幅度 V0(即 Vomax)。 (3)改变输入信号频率,测量输入信号幅度 Vi、输出信号幅度 Vo 及相位差 ϕ。
注意:①为减少测量工作量,尽量保持 Vi=1Vrms。 ②记录相位差 ϕ 时,应有正负号。
f
—— —— —— ——
f0
—— —— —— ——
频率(Hz) 200
1k
2k
5k
10k
20k
50k 200k
Vi(V)
Vo(V) |H(jω)| (=Vo / Vi)
ϕ(o)
3、绘制 RC 串并联电路的幅频特性曲线、相频特性曲线。【此项课下完成】 要求:①所有曲线横轴为 f,间隔不必严格成比例;②幅频特性曲线的纵轴为|H(ωj)|。
3
<实验七 RC 电路的频率特性测试>
图 2-7-3 RC 双 T 电路(*预习)
接入交流信号,频率≈f0 的理论值,将毫伏表接在输入端,调节函数信号发生器,
使毫伏表测量值为 1V,即 Vi=1Vrms。然后将毫伏表接至输出端。
(2)找到特征频率 f0,方法: 保持 Vi =1Vrms 不变,找到使输出幅度最小、相位差约为 180o (以前一条件为主) 的频点作为 f0,且要求对应的 V0< 25mVrms。 注意:当 U0 较幅度小时, 示波器上观察的波形不太清晰。

RC串并联和双T电路选频特性测试

RC串并联和双T电路选频特性测试

无线射频识别技术RFID是利用射频信号和空间耦合(电感或电磁耦合)传输 特性自动识别目标物体的技术,RFID系统一般由电子标签和阅读器组成。阅读 器负责发送广播并接收标签的标识信息,标签收到广播命令后将自身标识信息 发送给阅读器。然而由于阅读器与所有标签共用一个无线信道,由于RFID系统 的应用过程中,经常会有多个阅读器和多个标签的应用场合,这就会造成标签 之间或阅读器之间相互干扰,这种干扰统称为碰撞(Collision)。
在澳大利亚采矿业中,那些地下车辆、拖拉机或运输车辆都被称为boggers。 可以想象这些车辆行驶在并非总是亮堂的隧道内,并且因为没有后视镜和侧视镜 而限制了视力范围,十字路口处又不能提供能见度,无法知道有什么车辆会冲撞 出来。漆黑的矿井里到处都可能有boggers横冲直撞。
这些地下的车辆在配备了RFID公司的新型碰撞预警系统之后,可以安全地运 行,即在通过矿井隧道的时候不用担心在这样混乱的周围环境里碰撞到其他的移 动设备。
RFIDInc.公司的前身为Telsor公司,是世界上历史最悠久的有源RFID公司,其主 体 市 场 是 工 厂 自 动 化 和 工 业 识 别 。 FRIDInc. 公 司 经 理 兼 CEOJamesHeurich 补 充 说 : “我们一直致力于让公司拥有各种各样的RFID技术产品,其产品的多元化使之在许多 市场得到应用,从而不仅在不同的经济时代可以生存,而且能适应自1984年以来技术 上的不断更新。公司正为很多领域提供各种各样的解决方案,包括Kellogg谷物食品 和汽车制造商、医药行业以及诸如Blockbuster或HollywoodVideo这样的零售巨头。”
所有这些车辆都是重要的投资资本,如果boggers碰撞后,资金上损失的不仅 是车辆,而且还有闲置资产,更不用说人身安全方面了。TELFER金矿在前两年有 三辆巡视车辆被boggers压碎,每辆车损失了8万美元。

RC电路设计和特性测试

RC电路设计和特性测试

广州大学学生实验报告开课学院及实验室: 年 月 日学院机械与电气工程年级、专业、班姓名学号 实验课程名称 电路成绩 实验项目名称 实验八 RC 电路设计和特性测试指导老师一、实验目的1.掌握一阶RC 电路的几种组成形式及其作用,利用不同的RC 组合电路实 现波形变换、信号耦合、脉冲分压等电路功能。

2.研究RC 电路的频率响应特性,掌握RC 电路幅频特性和相频特性的测试 方法,并绘制频率特性曲线。

3.掌握RC 滤波电路,利用RC 电路构成常见的低通、高通滤波器,实现对 信号的滤波、选频、移相等。

二、实验原理 一、一阶RC 电路的时域特性含有一个储能元件L 或C 的电路,其电路方程可用一阶微分方程描述,这种电路称为一阶电路。

图8-1所示的RC 充放电电路就是一个典型的一阶电路。

图8-1 RC 充放电电路 描述该电路的一阶微分方程为:解得一阶RC 电路的全响应为:其中RC =τ称为一阶RC 电路的时间常数,R 的单位为欧姆,C 的单位为法拉,τ的单位为秒。

)0(U u C =+称为电容电压的初始值,SU 为一阶RC 电路的直流激励。

1、一阶RC 电路的零状态响应(阶跃响应) 如果电路中储能元件没有储存能量,处于零状态,即0)0(U u C =+=0,当接通外电源时,电路中所产生的响应称为零状态响应。

对于图11-1所示的一阶RC 电路,在t=0时,将开关K 由位置2合到位置1,直流电源SU 向C 充电,电路的零状态响应为,t ≥0t ≥0零状态响应过程中,电容电压由零逐渐上升到U S ,电路时间常数τ=RC 决定上升的快慢,当t=τ时,u c (t )=0.632U S ,如图8-2所示。

图8-2 一阶RC 电路的零状态响应曲线 2、一阶RC 电路的零输入响应电路在无电源激励,输入信号为零的条件下,由储能元件的初始状态所产生的电路响应称为零输入响应。

在图11-1中,当t=0时,将开关K 从位置1合到位置2,使电路脱离电源,于是电容元件经过电阻R 放电,电路的零输入响应为: τtc e U u -=0 t ≥0 τte RU i --=0 t ≥0零输入响应的输出波形为单调下降的。

RC并串联网络频率特性

RC并串联网络频率特性

可描绘 RC 并串联网络的幅频特性\
F\
*
U UO





{F *
U UO
表l列
出部分较特殊点数值 从而定性绘出 RC 并串联网络的幅频特性与相频特性曲线 如图 2~ 图 3
由上述图表及式( 3) ~ ( 4) 表明
\
F\
的最小值出现在
U=
UO=
l处 RC
{F 的 正 负 极 值 分 别 为 l l . 54 和
l RC 并串联频率特性表达式 图 l 所示为 RC 并串联网络, 其频率特性表示式为
F=
uf u
=
R2+
R
2+
l jwC2
l jwC2
+
l
+
Rl jwR l Cl
=
l-(
jwR l C2 l -w2R l R 2Cl C2 ) + jw( R l Cl +
R 2C2 +
R l C2 )
( l)
当 Rl = R2 = R , Cl = C2 = C 时 , 令 w0 = RlC, 则
2 3
O. 668
{F O
O. O57 O. 57 5. 44 9. 38 ll. 54 lO. 3 8. 5 4. l5
2
O. 98 O
l. 8l
U UO
l. 2 l. 5 l. 8
2
2. 5 2. 8
3
4
5
8
lO
lOO lOOO
\ F\ O. 673 O. 696 O. 725 O. 745 O. 792 O. 8l 6 O. 83 O. 885 O. 9l 9 O. 964 O. 976 O. 9998

电路基础实验-RC电路的频率特性实验报告

电路基础实验-RC电路的频率特性实验报告

指导教师: 王吉英 2009 年 11 月 13 日 计算机科学与技术 学院 姓名: 钟超 学号: PB06013012 姓名: 李杰 学号: PB05210127实验目的1. 熟悉正弦稳态分析中的相量的基本概念。

2. 正确使用双踪示波器测量正弦信号的峰—峰值Up-p ,频率f(T)和相位差φ,观察李沙育图形; 学会使用晶体管毫伏表测量正弦信号有效值。

3. 用RC 、RL 设计输出滞后(超前)输入的简单电路,并作实际测量。

实验设备1. DF1641D 型或EE1641D 型函数发生器1台2. 双踪示波器 1台3. 晶体管毫幅表DF2173B 1台4. 可变电容箱1个5. 可变电阻箱1个6.可变电感箱1个实验原理1. 正弦交流电作用于任一线性定常电路,产生的响应仍是同频率的正弦量,因此,正弦量可以用相量来表示。

设一正弦电流:[]Ii j t j e tj j ei Ie I e I R Ie R t ICOS t i ϕωωϕϕω=↔⎥⎦⎤⎢⎣⎡=+=∙∙+22)(2)(2. 用相量表示了正弦量,正弦交流稳态响应的计算可方便地运用相量进行复数运算,在直流电路中的基本定律、定理和计算方法完全适用于相量计算。

3. 输出电压滞后输入电压的RC 电路,如图1所示。

图1(RC 滞后电路) 图2(RC 超前电路)输出电压1110+=+=∙∙CR j U U Cj R C j U i i ωωωUNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINASchool of Computer Science & Technology, Hefei, Anhui, People's Republic of China, Zip Code: 230027RC 电路的频率特性实验报告网络函数为:()())()(11)(120ωϕωωωω∠=-∠+==-∙∙j H RC tg RC U U j H i式中,2)(11)(RC U U j H io ωω+=∆∙∙,称为幅频特性,显然是低通。

实验题目 集成运算放大器的非线性应用(3学时)

实验题目 集成运算放大器的非线性应用(3学时)

实验题目集成运算放大器的非线性应用(3学时)一、实验目的:
1.加深理解集成运算放大器在波形产生方面的应用。

2.掌握RC串并联选频网络特性的测试方法和振荡频率的测量方法。

二、预备知识:
1.复习集成运算放大器的非线性应用。

2.学习使用集成运算放大器设计一个正弦波发生器。

3.完成预习报告。

三、实验项目:
1.RC串并联网络测试。

(1)测试其频率特性,并绘制曲线,求出f0;
(2)测试其输出函数;
(3)改变电容C的容量,并测试f0。

2.正弦波发生器的研究。

(1)设计并组装正弦波发生器电路。

(2)测试负反馈对振荡器的影响。

(3)测量振荡平衡条件——即负反馈放大器的电压放大倍数A uf。

(4)振荡频率测量。

(5)完成实验报告,要求:
①画出所设计的实验电路。

②列表、整理实验数据。

③分析误差原因。

④回答思考题。

四、思考题:
若电路元件完好、且安装无错,但仍不能产生振荡,使分析可能产生的原因。

RC选频网络特性测试.ppt

RC选频网络特性测试.ppt
f/Hz 25 50 … 150 200 300 … 700 1000
u2
u2/u1
实验八 RC选频网络特性测试
一、实验目的 (1)熟悉桥电路的传输函数、幅频特性
与相频特性; (3)学习网络频率特性的测试方法。
• 二、实验原理
• 文桥电路结构如图8-1所示。由于电桥采用了两个电抗元件C1和C2,因此, 当输入电压u1的频率改变时,输出电压u2的幅度和相对于u1的相位也随之 改变, u2与u1的比值的模与相位随频率变化的规律称文桥电路的幅频特性 与相频特性。本实验只研究幅频特性的实验测试方法。首先求出文桥电路的
f ()
1
3 j( / 0 0 / )

当= 0时
f0
1 2RC
RC 选频特性曲线
• 三、实验内容 • (1)选C1=C2=C=2μF,Rl=R2=R=500Ω • (2)按图8-1接线,计算f0,并绘出图8-2所示RC选频网络的特性曲线。 • (3)输入端加入1V变频电源电压。
(4)改变频率值并把所测数据填入表4-26中
传输函数 u2 / u1 f ()
• 式中为输入信号角频率。设R1=R2=R,C1=C2=C,则得
Z1 R 1/ jC
Z2 R /(1 jCR)
• 根据分压比写出u1 与u2之比,得

f () Z2
R /(1 jCR)
Z1 Z2 R 1/ jCR R /(1 jCR)
1 令 0 RC

电路实验-RC电路的频率特性测试-课件

电路实验-RC电路的频率特性测试-课件

实验七RC 电路的频率特性测试2一、实验目的1、学会测量RC 串并联电路和双T 型电路的幅频特性。

2、了解RC 电路的带通、带阻特性。

3、学会测量RC 电路的相频特性。

并了解其相频特性的特点。

频率响应(特性):电路响应与频率的关系。

包括:幅频特性、相频特性。

3u iu oCR RC ++1、RC 串并联电路U U ••oi 转移函数:01R Cω=其中,特征角频率00020111113R CR R C CH ωωωωωωωωωωωωϕω=++=∠−−−∠2//j //j j arctg ()3+()=(j )(j )u H A ωω=(j )(j )=一、实验原理42001j U H ωωU ωωω••==+−o2i ()3()u iu oCR RC++①幅频特性:︱H (j ω)︱随频率变化的特性。

②相频特性:相位差ϕ(j ω)随频率变化的特性。

ϕ0f 0−90o+90of③特征频率f 0的特点:输出幅度最大;相位差为0。

001arctg 3ωωωω()()ϕω=−−000201132(j )arctg ()3+()=(j )(j )H H ωωωωωωωωωωϕω=∠−−−∠曲线曲线013()H ω=ff o︱H (j ω)︱13带通滤波电路5带阻滤波电路2、RC 双T 电路u iu oRRC C ++C’=2CR’=R /2−90o+90o0fϕf 0③特征频率f 0的特点:输出幅度最小;相位差可能+90o ,为也可能是-90o 。

①幅频特性:②相频特性:2001j 1116H ωωωω()()ω=+−001arctg 4ωωωω()()ϕω=−01R C ω=其中,特征角频率0ff 0︱H (j ω)︱16三、实验电路测量u iu o两路通道用于测量相位CH1监视U i 的幅度,保持为1Vrms测量所有交流电压幅度j U H U ω••=o i()(1)幅频特性的测量通过测量不同频率时u i 、u o 的电压幅度,来测得︱H (j ω)︱。

(完整word)multisim RC网络频率特性研究

(完整word)multisim RC网络频率特性研究

实验3 RC 网络频率特性研究实验:3 实验名称:RC 网络频率特性研究 一、实验目的:1. 掌握网络的响应相量与激励相量随频率ω变化的规律。

2. 加深理解常用RC 幅频特性和相频特性的特点。

3. 掌握低通(LP )电路,高通(HP)电路的,带通(BP)电路,带阻(BS )电路的特点.二、实验仪器设备:Multisim10。

0仿真电路软件 三、实验原理:(一) RC 低通网络网络函数为: 011()11iU j C H j R j C j RC U ωωωω===++ 其摸为: 21()1()H j RC ωω=+幅角为: RC ϕωω()=-arctan() 随着频率的增加,()H j ω将减小,说明低频信号可以通过。

当1RC ω=,即0.707Ui=U 。

时,角频率称为截止角频率c ω。

频率特性和相频特性如图:图1:RC 低通网及其频率特性(二) RC 高通网络网络传递函数为0()1iU RH j R j CU ωω==+幅角为ϕωω︒()=90-arctan(RC)随着频率的降低而减小,说明高频信号可以通过,低频信号被衰减或抑制.网络截止频率仍为1RCω=。

频率特性和相频特性如图:(三) RC 带通网络网络传递函数为:011|()113()1i RU j RC H j R U R j C j RC j RC RCωωωωωω+===+++-+其摸为:2()19()H j RC RCωωω=+-幅角为:13RC ωωϕω-RC()=arctan()可知当信号频率为01RCω=,模()1H j ω=为最大,即输出和输入相移为零。

信号频率偏离越远,信号被衰减和阻塞越厉害。

说明该RC 网络允许以01(0)RCωω==≠为中心的一定频率范围(频带)内的信号通过,而衰减或抑制其它频率的信号,即对某一窄带频率的信号具有选频通过的作用,因此,将它称为带通网络,或选频网络,而将ω0称为中心频率。

当max 1()()2H j j ωω=时,所对应的两个频率称为截止频率,用H ω和L ω表示.频率特性和相频特性如图:(四)RC 双RT 网络它的函数为021()411()iU H j RC U jRC ωωω==+-,当信号频率1RC ω=时,其摸为21()0411()H j RC RC ωωω==⎡⎤+⎢⎥-⎣⎦幅角为24()arctan()1RCRC ωϕωω=-. 以1RC ω=为中心的某一带频率的信号收到阻碍,不能通过,即网络达到平衡.具有这种特性的网络称为带阻网络。

8.RC选频电路实验

8.RC选频电路实验

2.实验预习及实验注意事项: 2.实验预习及实验注意事项: 实验预习及实验注意事项
2.1.实验前要了解实验两种选频电路的频率特性; 2.1.实验前要了解实验两种选频电路的频率特性;并计算电 实验前要了解实验两种选频电路的频率特性 中心频率; 路的中心频率 路的中心频率; 2.2.实验中改变信号频率时 务必保持信号源的输出电压 2.2.实验中改变信号频率时,务必保持信号源的输出电压大 实验中改变信号频率 保持信号源的输出电压大 不变,( ,(改变信号源频率会引起响应电流变化并导致 小不变,(改变信号源频率会引起响应电流变化并导致 信号源电压变化)。 信号源电压变化)。
2011-4-16 长江大学电工电子实验中心龙从玉 6
Ui/Uo Ui/
UO
Ui
~
2C
R/2
fc
频率
3
2011-4-16
长江大学电工电子实验中心龙从玉
0
4.实验内容与实验步骤: 4.实验内容与实验步骤 实验内容与实验步骤:
4.1. RC串并联选频网络频率特性的测量: RC串并联选频网络频率特性的测量: 串并联选频网络频率特性的测量 1)取R=2K,C=0.1u,按图-1所示接成RC串并联选频电路; R=2K,C=0.1u 按图- 所示接成RC串并联选频电路; 串并联选频电路 2)保持信号源电压Ui=3V不变。用示波器ch1测量ui, ch2测 保持信号源电压Ui=3V不变 用示波器ch1测量 , ch2测 不变。 测量ui uo。改变信号频率f使输出电压U 记录中心频率fo 量uo。改变信号频率f使输出电压UoMax,记录中心频率fo 及相应的Uo 及相应的Uo。 3)在f0的两侧调整信号频率,使输出电压分别为0.7UoMax 及 的两侧调整信号频率,使输出电压分别为0.7U 分别记录频率f 并计算φ (0.5 0.2) UoMax,分别记录频率f相差时间△t并计算φ。

RC网络频率特性研究(1)

RC网络频率特性研究(1)

实验3 RC 网络频率特性研究一、实验原理1. 网络频率特性的定义网络的响应相量与激励相量之比是频率ω的函数,称为正弦稳态下的网络函数。

表示为 其模随频率ω变化的规律称为幅频特性,辐角随ω变化的规律称为相频特性。

为使频率特性曲线具有通用性,常以ω作为横坐标。

通常,根据随频率ω变化的趋势,将RC 网络分为“低通(LP )电路”、“高通(HP )电路”、“带通(BP )电路”、“带阻(BS )电路”等。

2.典型RC 网络的频率特性 (1) RC 低通网络图S3-1(a)所示为RC 低通网络。

它的网络函数为 其模为: 2)(11)(RC j H ωω+=辐角为: )arctan()(RC ωωϕ-= 显然,随着频率的增加, )(ωj H 将减小,这说明低频信号可以通过,高频信号被衰减或抑制。

当ω=1/RC ,即707.0/=i o U U ,通常把o U 降低到0.707 i U 时的角频率ω称为截止角频率C ω。

即(a) RC 低通网络 (b) 幅频特性 (c) 相频特性图S3-1 RC 低通网络及其频率特性(2) RC 高通网络图S3-2 (a)所示为RC 高通网络。

它的网络传递函数为 其模为: 2)1(11)(RCj H ωω+=辐角为:)arctan(90)(0RC ωωϕ-=可见,随着频率的降低而减小,说明高频信号可以通过,低频信号被衰减或抑制。

网络的截止频率仍为RC C /1=ω,因为ω=C ω时,|H(j ω)| =0.707。

它的幅频特性和相频特性分别如图S3-2(b)、(c)所示。

(a) RC 高通网络 (b) 幅频特性 (c) 相频特性图S3-2 RC 高通网络及其频率特性(3) RC 串并联网络(RC 带通网络)图S3-3(a)所示为RC 串并联网络。

其网络传递函数为 其模为: 2)1(91)(RCRC j H ωωω-+=辐角为: )31arctan()(RC RC ωωωϕ-=可以看出,当信号频率为RC C /1=ω时,模|H(j ω)| =1/3为最大,即输出与输入间相移为零。

RC、RL及RLC串联电路幅频和相频特性地研究

RC、RL及RLC串联电路幅频和相频特性地研究

RC 、RL 及RLC 串联电路幅频和相频特性的研究【摘要】本文主要研究RC ,RL 和RLC 串联电路在不同频率的信号下的响应,在双踪示波器上同时观察电阻和电感(或电容)上输出电压幅度和相位差的变化,定量研究了RLC 串联电路的幅频特性和相频特性。

同时发现在实际的实验操作中,电阻,电容以及电感的参数的选择对本实验有很大的影响,掌握了幅频特性和相频特性的测量方法,使理论知识和实验内容有机的结合起来。

【关键词】串联电路;RLC 电路;相频特性;幅频特性 1引言RC 、RL 和RLC 串联电路是大学物理实验的设计性实验之一,在交流电路中,幅频特性和相频特性是RC 、RL 和RLC 串联电路的重要性质,并在电子电路中被广泛应用。

本文对实验方法进行改进,采用幅频和相频特性的测量方法,观察各种参数变化,进一步了解各种参数对幅频特性和相频特性的影响。

2实验设计原理在RC ,RL ,RLC 串联电路中, 若加在电路两端的正弦交流信号保持不变,则当电路中的电流和电压变化达到稳定状态时,电流(或者某元件两端的电压)与频率之间的关系特性称为幅频特性;电压、电流之间的位相差与频率之间的关系特性称位相频特性。

2.1 RC 串联电路电路如图1所示。

令ω表示电源的圆频率,U ,I ,R U ,C U 分别表示电源电压,电路中的电流,电阻R 上的电压和电容C 上的有效值。

ϕ表示电路电流I 和电源电压U 间的相位差,则: RC 总阻抗为:CjR Z ω1~-= (1) 其中Z ~的模为:221|~|⎪⎭⎫ ⎝⎛+==C R Z Z ω(2)CR R Cωωϕ1arctan 1arctan -=⎪⎪⎪⎪⎭⎫ ⎝⎛-= (3)ϕ为U 和I 之间的相位差,即 I U ϕϕϕ-= (4)根据交流欧姆定律,电阻上的电压为:IR U R = (5) 电容上的电压为:CIU C ω= (6) 总电压为:221⎪⎭⎫ ⎝⎛+=C R IU ω (7)图2为上述电压、电流(有效值)的矢量图,注:此处角度取逆时针方向为正值。

RC、RL及RLC串联电路幅频和相频特性地研究

RC、RL及RLC串联电路幅频和相频特性地研究

RC 、RL 及RLC 串联电路幅频和相频特性的研究【摘要】本文主要研究RC ,RL 和RLC 串联电路在不同频率的信号下的响应,在双踪示波器上同时观察电阻和电感(或电容)上输出电压幅度和相位差的变化,定量研究了RLC 串联电路的幅频特性和相频特性。

同时发现在实际的实验操作中,电阻,电容以及电感的参数的选择对本实验有很大的影响,掌握了幅频特性和相频特性的测量方法,使理论知识和实验内容有机的结合起来。

【关键词】串联电路;RLC 电路;相频特性;幅频特性 1引言RC 、RL 和RLC 串联电路是大学物理实验的设计性实验之一,在交流电路中,幅频特性和相频特性是RC 、RL 和RLC 串联电路的重要性质,并在电子电路中被广泛应用。

本文对实验方法进行改进,采用幅频和相频特性的测量方法,观察各种参数变化,进一步了解各种参数对幅频特性和相频特性的影响。

2实验设计原理在RC ,RL ,RLC 串联电路中, 若加在电路两端的正弦交流信号保持不变,则当电路中的电流和电压变化达到稳定状态时,电流(或者某元件两端的电压)与频率之间的关系特性称为幅频特性;电压、电流之间的位相差与频率之间的关系特性称位相频特性。

2.1 RC 串联电路电路如图1所示。

令ω表示电源的圆频率,U ,I ,R U ,C U 分别表示电源电压,电路中的电流,电阻R 上的电压和电容C 上的有效值。

ϕ表示电路电流I 和电源电压U 间的相位差,则: RC 总阻抗为:CjR Z ω1~-= (1) 其中Z ~的模为:221|~|⎪⎭⎫ ⎝⎛+==C R Z Z ω(2)CR R Cωωϕ1arctan 1arctan -=⎪⎪⎪⎪⎭⎫ ⎝⎛-= (3)ϕ为U 和I 之间的相位差,即 I U ϕϕϕ-= (4)根据交流欧姆定律,电阻上的电压为:IR U R = (5) 电容上的电压为:CIU C ω= (6) 总电压为:221⎪⎭⎫ ⎝⎛+=C R IU ω (7)图2为上述电压、电流(有效值)的矢量图,注:此处角度取逆时针方向为正值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.进一步掌握频率特性的测试方法。
实验原理
文氏电桥电路的一个特点是其输出电压
幅度不仅会随输入信号的频率而变,而且还会出现一个与输入电压同相位的最大值,如图3-5-2所示。
由电路分析得知,该网络的传递函数为
当角频率时,,此时与同相。由图3-5-2可见RC串联电路具
有带通特性。
幅频特性
相频特性
图3-5-2
由电路分析理论得知,当,即时,φ=0,即与同相位。用信号发生器的正弦输出信号作为图3-5-1的激励信号,并保持值不变的情况下,改
变输入信号的频率f,用交流毫伏表或示波器测出输出端相应于各个频率点下的输出电压
值,将这些数据画在以频率f为横轴,为纵轴的坐标纸上,用一条光滑的曲线连接这些
点,该曲线就是上述电路的幅频特性曲线。
摘要:Rc串并联选频网络也就是通常所指的文氏电桥电路,文氏电桥电路是一个RC的串、
并联电路,如图3-5-1所示。该电路结构简单,被广泛地用于低频振荡电路中作为选频环节,可以获得很高纯度的正弦波电压。
关键字:文氏电桥电路、
..ቤተ መጻሕፍቲ ባይዱ选频
...
...频率
.......振幅、
正文
实验目的
1.掌握Rc串并联选频网络的频率特性。
实验内容与实验电路
实验器材:函数发生器、万用表、两个500Ω电阻、两个0.1μF电容、两通道示波器、波特图示仪
按下图连接好模拟电路
表格(函数发生器输出正弦交流电压,有效值为Us=3V
根据数据作出图像
0.35结论
拓展
上,参考文献
Rc串并联选频网络频率特性的测试
邢耀耀
2010年12月24日
2.将上述电路的输入和输出分别接到双踪示波器的Y A和Y B两个输入端,改变输入正弦信号的频率,观测相应的输入和输出波形间的时延τ及信号的周期T,则两波形间的相位差为
(输出相位与输入相位之差。
将各个不同频率下的相位差φ画在以为f横轴,φ为纵轴的坐标纸上,用光滑的曲线将这些点连接起来,即是被测电路的相频特性曲线,如图所示。
相关文档
最新文档