工程光学第三版习题答案CH1

合集下载

第三版工程光学答案

第三版工程光学答案

第三版⼯程光学答案第⼀章3、⼀物体经针孔相机在屏上成⼀60mm⼤⼩得像,若将屏拉远50mm,则像得⼤⼩变为70mm,求屏到针孔得初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点得光线则⽅向不变,令屏到针孔得初始距离为x,则可以根据三⾓形相似得出:所以x=300mm即屏到针孔得初始距离为300mm。

4、⼀厚度为200mm得平⾏平板玻璃(设n=1、5),下⾯放⼀直径为1mm得⾦属⽚。

若在玻璃板上盖⼀圆形得纸⽚,要求在玻璃板上⽅任何⽅向上都瞧不到该⾦属⽚,问纸⽚得最⼩直径应为多少?解:位于光纤⼊射端⾯,满⾜由空⽓⼊射到光纤芯中,应⽤折射定律则有:n0sinI1=n2sinI2(1)⽽当光束由光纤芯⼊射到包层得时候满⾜全反射,使得光束可以在光纤内传播,则有:(2)由(1)式与(2)式联⽴得到n0、16、⼀束平⾏细光束⼊射到⼀半径r=30mm、折射率n=1、5得玻璃球上,求其会聚点得位置。

如果在凸⾯镀反射膜,其会聚点应在何处?如果在凹⾯镀反射膜,则反射光束在玻璃中得会聚点⼜在何处?反射光束经前表⾯折射后,会聚点⼜在何处?说明各会聚点得虚实。

解:该题可以应⽤单个折射⾯得⾼斯公式来解决,设凸⾯为第⼀⾯,凹⾯为第⼆⾯。

(1)⾸先考虑光束射⼊玻璃球第⼀⾯时得状态,使⽤⾼斯公式:会聚点位于第⼆⾯后15mm处。

(2) 将第⼀⾯镀膜,就相当于凸⾯镜像位于第⼀⾯得右侧,只就是延长线得交点,因此就是虚像。

还可以⽤β正负判断:(3)光线经过第⼀⾯折射:, 虚像第⼆⾯镀膜,则:得到:(4) 在经过第⼀⾯折射物像相反为虚像。

18、⼀直径为400mm,折射率为1、5得玻璃球中有两个⼩⽓泡,⼀个位于球⼼,另⼀个位于1/2半径处。

沿两⽓泡连线⽅向在球两边观察,问瞧到得⽓泡在何处?如果在⽔中观察,瞧到得⽓泡⼜在何处?解:设⼀个⽓泡在中⼼处,另⼀个在第⼆⾯与中⼼之间。

(1)从第⼀⾯向第⼆⾯瞧(2)从第⼆⾯向第⼀⾯瞧(3)在⽔中19、、有⼀平凸透镜r=100mm,r,d=300mm,n=1、5,当物体在时,求⾼斯像得位置。

(整理)工程光学第三版课后答案

(整理)工程光学第三版课后答案

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

(完整版)工程光学第三版课后答案1

(完整版)工程光学第三版课后答案1

(完整版)⼯程光学第三版课后答案1第⼀章2、已知真空中的光速c =3*108m/s ,求光在⽔(n=1.333)、冕牌玻璃(n=1.51)、⽕⽯玻璃(n=1.65)、加拿⼤树胶(n=1.526)、⾦刚⽯(n=2.417)等介质中的光速。

解:则当光在⽔中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在⽕⽯玻璃中,n =1.65时,v=1.82*108m/s ,当光在加拿⼤树胶中,n=1.526 时,v=1.97*108m/s ,当光在⾦刚⽯中,n=2.417 时,v=1.24*108m/s 。

3、⼀物体经针孔相机在屏上成⼀60mm ⼤⼩的像,若将屏拉远50mm ,则像的⼤⼩变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则⽅向不变,令屏到针孔的初始距离为x ,则可以根据三⾓形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、⼀厚度为200mm 的平⾏平板玻璃(设n=1.5),下⾯放⼀直径为1mm 的⾦属⽚。

若在玻璃板上盖⼀圆形纸⽚,要求在玻璃板上⽅任何⽅向上都看不到该⾦属⽚,问纸⽚最⼩直径应为多少?解:令纸⽚最⼩半径为x,则根据全反射原理,光束由玻璃射向空⽓中时满⾜⼊射⾓度⼤于或等于全反射临界⾓时均会发⽣全反射,⽽这⾥正是由于这个原因导致在玻璃板上⽅看不到⾦属⽚。

⽽全反射临界⾓求取⽅法为:(1) 其中n2=1, n1=1.5,同时根据⼏何关系,利⽤平板厚度和纸⽚以及⾦属⽚的半径得到全反射临界⾓的计算⽅法为:(2)联⽴(1)式和(2)式可以求出纸⽚最⼩直径x=179.385mm ,所以纸⽚最⼩直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射⽅式传播时在⼊射端⾯的最⼤⼊射⾓)。

工程光学第三版下篇物理光学第十一章课后习题答案详解

工程光学第三版下篇物理光学第十一章课后习题答案详解

工程光学第三版下篇物理光学第十一章课后习题答案详解第十一章 光的电磁理论基础频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t c πνϕ=-+对应有1462,10,,3102A Hz mπνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E→→与垂直,传播方向相同,∴0By Bz ==814610[210()]z Bx CEy t ππ===⨯⨯-+ 波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65zzE A t t ccπνϕπ=-+=-∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c mλππ-===⨯ (2)8714310 1.543.910510n c c n vλν-⨯====⨯⨯⨯3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-= 相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆=4. 地球表面每平方米接收到来自太阳光的功率为1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v mc ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

解:∵exp[()]E A i k r t ω=-xyzkr k x k y k z⋅=⋅+⋅+⋅00000000002,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=⋅+⋅+⋅=++=+6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试求反射系数和透射系数。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案
• 光的干涉与衍射的关联与区别:光的干涉和衍射是波动性的两种表现形式,理 解它们之间的联系和区别是解决相关问题的关键。需要注意干涉和衍射产生的 条件、现象及其在光学系统中的应用。
• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离.解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1。

5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=1mmI 1=90︒n 1 n 2200mmL I 2 x8、。

光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角).解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 。

16、一束平行细光束入射到一半径r=30mm 、折射率n=1。

5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面.(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处.(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

工程光学第三版课后答案

工程光学第三版课后答案

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I1mmI 1=90︒n 1 n 2200mmL I 2 x745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm.4、一厚度为200mm 的平行平板玻璃(设n =1。

5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=1mmI 1=90︒n 1 n 2200mmL I 2 x8、。

光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置.如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

工程光学第一章习题答案

工程光学第一章习题答案

光学习题解答 CH11、 生活中有很多光学现象,例如,两个手电筒的发出的光在空气中相遇后又独自的直线转播,平面镜成像,水底的鱼看起来比实际浅等都符合光学基本定律。

2、 根据公式v=c/n 可得:光在水中的传播速度为:v=2.25×108m/s 光在冕牌玻璃中的传播速度为:v=1.987×108m/s 光在火石玻璃中的传播速度为:v=1.82×108m/s 光在加拿大树胶中的传播速度为:v=1.96×108m/s 光在金刚石中的传播速度为:v=1.241×108m/s3、 根据题意可得,可以设x 为屏到孔的距离,根据几何关系有如下式子成立:=+50x x 7060,可以解得x=300mm 4、 见图,本题涉及到全反射现象。

金属片边缘点发出光线照射到玻璃另一面是光密介质传入光疏介质,符合全反射条件,=θ∠ACB,有公式:,15.1sin 90sin =θ32sin =θ, D=2L CD +1=358.77mm图1.1习题45、①光从光密介质射到它与光疏介质的界面上,②入射角等于或大于临界角.这两个条件都是必要条件,两个条件都满足就组成了发生全反射的充要条件。

6、只要证明入射角和出射角相等就可以。

7、见下图,可知,光后偏角为:δ=αθ-,有1s i n s i n n=∂θ,由于∂,θ都很小,可知,∂=∂=sin ,sin θθ,得δ=αθ-=)1(-∂n图1.2 题78、见课本图1.6所示,数值孔径一般代表光纤传播光的能力。

记为NA 。

根据三角函数关系及其全反射临界条件有:=Im sin 90sin 21n n ,,01Im)90sin(1sin n n I =-解得NA=n 0sin I 1=2221n n -.9、光在冕牌玻璃中的折射率为n=1.51,由全反射临界条件:∂sin 90sin =n,由图可以知道,β=45o -∂,将n=1.51代人,可以解得θ=5o 40'。

工程光学第三版课后问题详解1

工程光学第三版课后问题详解1

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤能以全反射方式传播时在入射端面的最大入射角)。

工程光学第三版课后答案1

工程光学第三版课后答案1
解:
视场光阑决定了物面大小,而物面又决定了照明的大小
6.为看清4km 处相隔150mm 的两个点(设1′=0.0003rad),若用开普勒望远镜观察,则:
(1) 求开普勒望远镜的工作放大倍率;
(2) 若筒长L=100mm,求物镜和目镜的焦距;
(3) 物镜框是孔径光阑,求出设光瞳距离;
(4) 为满足工作放大率要求,求物镜的通光孔径;
解:
(1)
(2)亮纹方程为 。 满足此方程的第一次极大
第二次极大
一级次极大
二级次极大
(3)
18、 一台显微镜的数值孔径为0。85,问(1)它用于波长 时的最小分辨距离是多少?(2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍?(3)显微镜的放大率应该设计成多大?(设人眼的最小分辨率是 )
解:(1)x= -∝,xx′=ff′得到:x′=0
(2)x′=0.5625
(3)x′=0.703
(4)x′=0.937
(5)x′=1.4
(6)x′=2.81
3、.设一系统位于空气中,垂轴放大率 ,由物面到像面的距离(共轭距离)为7200mm,物镜两焦点间距离为1140mm。求该物镜焦距,并绘出基点位置图。
(4) 戴上该近视镜后,求看清的远点距离;
(5) 戴上该近视镜后,求看清的近点距离。
解:这点距离的倒数表示近视程度
2.一放大镜焦距f′=25mm,通光孔径D=18mm,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
6.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

第三版工程光学答案

第三版工程光学答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01c o s 22=-=I 88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

工程光学第三版习题答案CH1

工程光学第三版习题答案CH1
物像位置如图 12(a)所示 从左侧观察时
r1=200mm
r2=-200mm
A'
A
B(B')
方法 1:将实际位置图 12(b-1)等价为 12(b-2) ,即可采用上述方法求解,但求解后 还要将结果转换成实际情况。
r1=200mm
r2=-200mm
r1=200mmr2=-200mmA'A
B(B')
B(B')
I 9 = 30
°
I 10 = I 2 = 30
°
° ′ I 11 = I 1 = 60 °
由以上分析可知:当光线以 60 入射角射入折射率为 3 的玻璃球后,可在如图 A、B、 C 三点连续产生折射反射现象。ABC 构成了玻璃球的内接正三角形,在 ABC 三点的反射光线 构成了正三角形的三条边。同时,在 ABC 三点有折射光线以 60 角进入空气中。 事实上:光照射到透明介质光滑界面上时,大部分折射到另一介质中,也有小部分光反 射回原来的介质中。当光照射到透明介质界面上时,折射是最主要的,反射是次要的。 10.一束平行细光束入射到一半径、折射率 n = 1.5 的玻璃球上。求其会聚点的位置。如果 在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会 聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各个会聚点的虚实。 【提示】 解题时应首先分析清楚成像过程: 即经过几个折射球面成像和中间像所在的物象空
β2 =
l '2 > 0 ,物像虚实相反,为实像。 l2
r2=-30mm
(2)当凸面镀反射膜时,平行细光束入射到玻璃球上, 经左侧球面反射后成像,如图所示。 将 l = −∞ 代入公式

工程光学第3版第一篇习题答案

工程光学第3版第一篇习题答案
l2 90 60 30 nl2 15, 2 l2 0 nl2
1 2 0
物像虚实相同,为实像.
[习题16解答]
(2)若凸面镀上反射膜, 光束经左侧球面反射成像.
1 1 2 l l r
求得:
l 15 l 0 l
物像虚实相反,成虚像。
[习题17]一折射球面r=150mm,n=1,n’=1.5, 问当物距分别为-、-1000mm、-100mm、0、 100mm、150mm和200mm时,垂轴放大率各 为多少?
解:根据近轴光学基本公式及垂轴放大率公式
n n n n l l r nl nl
先求l’ ,再求β .
为实像. 它又 物像虚实相同,故 A2 是左侧球面的物A3 ,为实物。根据光 路可逆性,可将A3看成左侧球面折射 形成的像。
[习题16解答]
(3)光束先经左侧球面折射形成 , 像 A1 ,再经右侧球面反射形成像 A2 。 最后经左侧球面折射形成像 A3
60 10 50 l3 n n n n 根据 l l r nl3 求得 l3 =75,3 = 0 nl3 物像虚实相反,成虚像。 即
前表面 后表面
1 n 1 n 2 R R n2
[习题15]一直径为20mm的玻璃球,其折射率 为 3 ,今有一光线以60入射角入射到该玻璃 球上,试分析光线经过玻璃球的传播情况。
解:在入射点A处,同时发生折 射和反射现象。 sin I1 n sin I 2
sin 60 ) 30 3 在A点处光线以60°的反射角返 回原介质,同时以30 °的折射角 进入玻璃球。折射光线到达B点, 并发生折射反射现象。由图得: I3 =I 2 =30, I5 =I3 =30 I 2 arcsin(

工程光学第三版课后答案

工程光学第三版课后答案

第一章2、真空中的光速c =3*108m/s ,求光在水〔〕、冕牌玻璃〔〕、火石玻璃〔〕、加拿大树胶〔〕、金刚石〔〕等介质中的 光速。

解:那么当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,假设将屏拉远50mm ,那么像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线那么方向 不变,令屏到针孔的初始距离为x ,那么可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃〔设〕,下面放一直径为1mm 的金属片。

假设在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,那么根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立〔1〕式和〔2〕式可以求出纸片最小直径, 所以纸片最小直径为。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径〔即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角〕。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律那么有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,那么有:(2)由〔1〕式和〔2〕式联立得到n0.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5 的玻璃球上,求其会聚点的位置。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案

选择题答案
B. 光波的波长越长,频率 越高。
A. 光波的频率越高,波长 越短。
选择题答案
01
03 02
选择题答案
C. 光波的振幅越大,亮度越高。
D. 光波的相位越稳定,干涉现象越明显。
判断题答案
总结词
光的干涉现象
光的干涉现象
干涉是光波动性的重要表现之一。当两束或多束相干光波同时作用在某一点时,它们的光程差会引起 光强的变化,形成干涉现象。干涉现象在光学实验中经常被用来验证光的波动性。
简答题2
02
03
简答题3
光在介质中的传播速度与介质的 折射率有关,折射率越大,光速 越小。
光在同一种均匀介质中沿直线传 播,当遇到不同介质时,会发生 折射或反射。
计算题答案
1 2
计算题1
根据光的折射定律,当光从空气射入水中时,入 射角为30°,折射角为18.4°,求介质的折射率。
计算题2
一束光在玻璃中的波长为λ,在空气中的波长为 λ0,求玻璃的折射率。
根据干涉相长条件和干涉相消条件,可以计算出 干涉条纹的位置和宽度。
论述题答案
论述题1
论述题3
论述光的干涉现象在光学仪器中的应 用。
论述光的偏振现象在光学仪器中的应 用。
论述题2
论述光的衍射现象在光学仪器中的应 用。
04 习题1.4答案

简答题答案
01
02
03
04
简答题1
光在真空中的传播速度 最快,约为299,792, 458米/秒。
简答题2
光波在各向异性介质中传 播时,其波前与波阵面不 重合。
简答题3
光的干涉现象是两束或多 束相干光波在空间某一点 叠加时,产生明暗相间的 干涉条纹的现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1mm
6.如图 1-5 所示,光纤芯折射率为 n1 、包层的折射率为 n 2 ,光纤所在的介质折射率为 n0 , 求光纤的数值孔径(即 n0 sin I1 ,其中 I 1 为光在光纤内能一全反射方式传播时在入射端面 的最大入射角) 。 【解】 n0 sin I 1 = n1 sin I 2
n0
I 2 = 90 ° − I m
5
的像方截距为多少?与高斯像面的距离为多少? 【提示】 解题时应注意近轴光线和远轴光线在计算中各自使用的公式, 另外应明确光线行进 过程中所有的折射面都有贡献。 【解】 (1)根据近轴光的光线光路计算公式可求得高斯像位置
1 1 n′ − n ′ 将 l1 = −∞ , n1 = 1.5 , n1 = 1 , r1 = 100 代入公式 − = 得: l′ l r
为虚象
11.一折射面 r = 150mm , n = 1, n ′ = 1.5 ,当物距分别为 − ∞ , − 1000mm , − 100mm , 0 ,
100mm , 150mm 和 200mm 时,垂轴放大率各为多少?
【提示】 【解】将已知条件折射面半径 r = 150mm ,折射 率 n = 1 和 n ′ = 1.5 ,及对应的物距代入公式
I1 A I9 I 2 I'1 (I11)

∵ n1 sin I 1 = n 2 sin I 2
sin I 2 =
I 2 = 30
°
sin 60 3
°
= 0.5
I8 C
I7 I6 I5
I3
B I4
∴在 A 点处光线以 30 的折射角进入玻璃球, 同时又以 60 的反射角返回原介质。 根据 球的对称性,知折射光线将到达图中 B 点处,并发生折射反射现象。
A n n' B -l r A' B'
1 1 1 1 ⎧ n ′( − ) = n( − ) ⎪ ⎪ r l' r l ,可得: ⎨ nl ′ nr = ⎪β = ⎪ n ′l n ′l − n(l − r ) ⎩
(1) l = −∞ ,
β =0 β = −0.429 β = 1 .5
(2) l = −1000mm , (3) l = −100mm ,
物像位置如图 12(a)所示 从左侧观察时
r1=200mm
r2=-200mm
A'
A
B(B')
方法 1:将实际位置图 12(b-1)等价为 12(b-2) ,即可采用上述方法求解,但求解后 还要将结果转换成实际情况。
r1=200mm
r2=-200mm
r1=200mm
r2=-200mm
A'
A
B(B')
B(B')
l3 r1=30mm A'2(A3) O A'3 -l'2 l' 1 l2 r2=-30mm
A2 ,经右侧反射球面再次成像于 A' 2 ,再经过
前表面折射,最后成像于 A' 3 。 由 (1) 知 l 2 = 30mm , 代入公式
A'1(A2)
1 1 2 得: + = l′ l r
l' 3
1 1 2 + =− ′ 30 30 l
B''
70
60
4.一厚度为 200mm 的平行平板玻璃(设 n=1.5) ,下面放一直径为 1mm 的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最 小直径应为多少? 【提示】 若要从玻璃板上方看不到金属片, 就应使金属片上所有点发出的光线在玻璃板的上 表面纸片遮盖区域以外发生全反射。 【解】如图所示,设纸片的最小直径为 L,考虑边缘光线满足全反射条件时
°
°
∵ I 3 = I 2 = 30° ∴ I 5 = 30° n sin I 3 = sin I 4
sin I 4 = I 4 = 60 °
3 2
同理:由 B 点发出的反射光线可以到达 C 点处,并发生反射折射现象
I 7 = 30 °
I 8 = 60
°
C 点的反射光线可再次到达 A 点,并发生折、反现象。
′ l1 = 300mm ′ l 2 = l1 − d = 300 − 300 = 0mm ′ ∴ l 2 = 0mm
即: 物体位于-∞时, 其高斯像点在第二面的中 心处。 (2) 由光路的可逆性可知 : 第二面上的十字丝像在 物方-∞处。 (3)当 h1 = 10mm 时,如图所示
r1=100mm I I' U' B' n=1.5 B'' -I2 U2' A'(A'') -x I'2 -L2 d=300mm r2=∞ L'2
r1=30mm
r2=-30mm
O l' 2
A'2 l2 l' 1
A'1(A2)
β1 =
l '1 < 0 ,物像虚实相同,为实像 l1
但由于右侧球面的存在,实际光线不可能到达此处,故对于右侧球面 A2 为虚物。
′ l 2 = l1 − 2r = 90 − 60 = 30mm ,代入公式得:
1 1 − n n 0.5 1.5 1 = + = + = ′ r2 l2 30 30 15 l2 ′ l 2 = 15mm
r1=200mm
r2=-200mm
代入公式: 解得
n′ n n′ − n − = l′ l r
A A'
B' (B)
l A = 80mm , l B = 200mm
由此可见:两种方法得到相同的结果。 13.有平凸透镜r1=100mm,r2=∞,d=300mm,n=1.5,当物体在-∞时,求高斯像的位置l’。 在第二面上刻一十字丝,问其通过球面的共轭像处?当入射高度h=10mm时,实际光线
β2 =
l '2 > 0 ,物像虚实相反,为实像。 l2
r2=-30mm
(2)当凸面镀反射膜时,平行细光束入射到玻璃球上, 经左侧球面反射后成像,如图所示。 将 l = −∞ 代入公式
r1=30mm
1 1 2 得: + = l′ l r
虚象
l'
A'
O
l′ =
r = 15mm 2
(3)当凹面镀反射膜时,成像过程如图所示:平行细光束入射到玻璃球上,经左侧球面折 射后形成中间像 A1' ,它又是右侧反射球面的物
2
3
′ l 2 = −10mm ,
实像
(4)图同(3)再继续经前表面折射时,光线由右向左传播成像,不符合公式使用条件。但
′ 根据光路的可逆性原理, 将物看成像, 将像看成物, 即符合公式使用条件。 将 l 3 = 50mm
代入公式得:
1 .5 1 n − 1 − = ′ l3 r l3 l 3 = 75mm ,
I2
n2 Im n1
n1 sin I m = n2 sin 90° sin I m = n2 n1 n2 n1
2 2
I1
cos I m = 1 −
∴ n0 sin I 1 = n1 1 −
n2 n1
2 2
= n1 − n 2
2
2
1
9. 一直径为 20mm 的玻璃球, 其折射率为 3 , 今有一光线以 60 入射角入射到该玻璃球上, 试分析光线经玻璃球传播情况。 【解】在入点 A 处。同时发生折射和反射现象
2
°
间。 根据物象空间正确选择折射率代入成像公式, 物象的虚实判断可根据β的符号性质, 也可根据是否有实际光线到达来判断。 【解】 (1)此时的成像过程如图所示:平行细光束入射到玻璃球上,经左侧球面折射后形成 中间像 A1' ,它又是右侧球面的物 A2 ,经右侧球面再次成像于 A' 2 。

n′ n n′ − n − = ,将 l = −∞ 代入公式: l′ l r ′ n × r1 1.5 × 30 l1 = = = 90mm n −1 0.5
Chp1
3.一物体经针孔相机在屏上成一 60mm 大小的像,若将屏拉远 50mm,则像的大小变为 70mm,求屏到针孔的初始距离。 【解】∵ ΔOA′B ′ ∽ ΔOA′′B ′′
A O B A' A'' B' 50
OB ′ A′B ′ 60 = = OB ′′ A′′B ′′ 70 OB ′′ = 50 + OB ′ OB ′ = 300mm
A
A'
此时 l B = −200mm , 代入求解得:
l A = −100mm
′ l A ′ = −80mm , l B = −200mm ′ 放回原题中得: l A = 80mm ,
如右图所示。 方法 2:认为 A,B 均为像点,求其物 此时,
′ l B = 200mm
′ l A = 100mm ′ l B = 200mm r = 200mm
sin I = sin I ′ =
h1 10 = = 0 .1 r1 100
L'1
1 n × sin I = × 0.1 = 0.06667 n′ 1 .5
I ′ = arcsin 0.06667 = 3.822 ° U ' = U + I − I ′ = 0 + 5.739 − 3.822 = 1.9172 ° ′ = r × (1 + L1
sin I / 0.06667 ) = 100 × (1 + ) = 299.374mm sin U ' 0.0334547
′ L2 = L1 − d = −0.626mm − I 2 = U ' = 1.9172° ′ n sin I 2 = × sin I 2 = −1.5 × sin 1.9172° = −0.05018 1 ′ I 2 = −2.87647 °
相关文档
最新文档