(完整word版)高等代数习题集

合集下载

高等代数习题集

高等代数习题集

高等代数习题集##大学数学科学学院高等代数组收集2003, 4,301.设X = ,求X.2.设二次型f<x1, x2, ... , x n>是不定的,证明:存在n维向量X0,使X0'AX0= 0,其中A是该二次型的矩阵.3.设W = {f <x>| f <x> P[x]4, f <2> = 0}.a证明:W是P[x]4的子空间.b求W的维数与一组基.4.在R3中定义变换A:任意 <x1, x2, x3> R3, A<x1, x2, x3> = <2x2 + x3,x-4x2, 3x3>.11,证明:A是Rr3上线性变换,2,求A在基xi1 = <1, 0, 0>, xi2 = <0, 1, 0>, xi3 = <1, 1, 1>下的矩阵.5.设,求正交矩阵T,使T'AT成对角形.6.设V是数域P上n维线性空间,A是V上可逆线性变换, W是A的不变子空间.证明:W也是A-1的不变子空间.7.设V是n维欧氏空间,A是V上变换. 若任意,V,有 <A, A> =<,>. 证明:A是V上线性变换,从而是V上正交变换.8.设X = ,求X.9.设A是奇数级的实对称矩阵,且| A| > 0, 证明:存在实n维向量X00,使X0'AX0 > 0.10.设A = , W = {|R4, A = 0}.证明:1.[1,]W是4的一个子空间.2.[2,]求W的维数与一组基.11.设B, C = ,在R2 x 2中定义变换A:任意X R2 x 2, A<X> = BXC.1,证明:A是R2 x 2上线性变换..2,求A在基E11, E12, E21, E22下的矩阵.12.用正交线性替换,化实二次型f <x1, x2, x3> = 2x1x2 +2x1x3 -2x2x3为标准形.13.设V为数域P上线性空间,A是V上线性变换, 若 <A2>-1<0> = A-1<0>,证明:V = AV.+A-1<0>.14.设V是n维欧氏空间.A是V上正交变换,W是A的不变子空间. 证明:W也是A的不变子空间.15.设X = ,求X.16.设A是奇数级的实对称矩阵,且| A| > 0, 证明:存在实n维向量X00,使X0'AX0 > 0.17.设A = , W = {|R4, A = 0}.证明:1.[1,]W是4的一个子空间.2.[2,]求W的维数与一组基.18.设B, C = ,在R2 x 2中定义变换A:任意X R2 x 2, A<X> =BXC.1.[1,]证明:A是R2 x 2上线性变换..2.[2,]求A在基E11, E12, E21, E22下的矩阵.19.用正交线性替换,化实二次型f <x1, x2, x3> = 2x1x2 +2x1x3 -2x2x3为标准形.20.设V为数域P上线性空间,A是V上线性变换, 若 <A2>-1<0> = A-1<0>,证明:V = AV.+A-1<0>.21.设V是n维欧氏空间.A是V上正交变换,W是A的不变子空间. 证明:W也是A的不变子空间.22.设X = ,求矩阵X.23.设实二次型f<x1, x2, ... , x n> = X'AX的秩是n,其中A是实对称矩阵. 证明:实二次型g<x1, x2, ... , x n> = X'A-1X与f <x1, x2, ... , x n>有相同的正负惯性指数和符号差 .24.设W = {<a1, a2, ... , a n>| a i R,a i = 0} 证明1.[1,]证明:W是R n的子空间.2.[2,]求W的维数与一组基.25.设B = , B = .在R2中定义变换 : 对任意X R2 x 2,X = BX + XC1.[1,]证明:是V上线性变换.2.[2,]求在基E11, E12, E21, E22下的矩阵.26.设A = ,求正交矩阵T,使T'AT成对角形.27.设V为数域P上n维线性空间,V1, V2为其子空间, 且V = V1V2,为V上可逆的线性变换. 证明:V = V1 + V2.28.设V为n维欧氏空间,若A既是V上对称变换且A2 = E. 证明:存在V的一组标准正交基,使得在该基下的矩阵为.29.设X = ,求矩阵X.30.设f<x1, x2, ... , x n> = X'AX是实二次型,其中A是实对称矩阵.如果X'AX= 0当且仅当X = 0. 证明:f <x1, x2, ... , x n>的秩为n,符号差是n或- n.31.设= <1, 2, 3, 0>, = <- 1, -2, 0, 3>, = <0, 0, 1, 1>,= <1, - 2, - 1, 0>, W = {k i| k i R}.1.[1,]证明:W是Rr4的子空间.2.[2,]求W的维数与一组基.32.设A三维向量空间V上可逆线性变换,A在基,,下的矩阵是.1.[1,]证明:A的逆变换A-1也是V上线性变换.2.[2,]求A-1的在,,下的矩阵.33.设,求正交矩阵T,使T'AT成对角形.34.设V为n维欧氏空间,若A既是V上正交变换,又是V上对称变换. 证明:A2是V上的恒等变换.35.设V为数域P上n维线性空间,W为其子空间,A为V上线性变换. 证明:维<AW> +维 <A-1<0> W> =维W.36.设X = ,求矩阵X.37.设W = {A| A R3 x 3, A' = - A}.1.[1,]证明:W是R3 x 3的一个子空间.2.[2,]求W的维数与一组基.38.设实二次型f <x1, x2, ... , x n> = X'AX的秩为n, 符号差是s.证明:R中存在<n - | s|>维子空间W使任意X0W, X0'AX0 = 0.39.在R[x]3中定义变换A:任意f <x> R[x]3, A<f <x>> = xf'<x>.1.[1,]证明:A是R[x]3上线性变换.2.[2,]求A在基 1, x + 1, x2 + x + 1下的矩阵.40.设A = ,求正交矩阵T,使T'AT成对角形.41.设V为数域P上n维线性空间,A为V上线性变换.证明:维<AV> +维 <A-1<0>> =维V.42.设V为n维欧氏空间,若A是V变换,若任意,V, <A,> = <,A>. 证明:A是V上线性变换,从而为V上对称变换.43.设V = P[x]5,f <x> V ,有f <x> = <x2 - 1>q<x> + r<x>, 其中r<x>= 0或次<r<x>> < 2,1.[1,]证明:f <x> V,令A<f <x>> = r<x>,则A是V的一个线性变换;2.[2,]求A在基 1, x, x2, x3, x4下的矩阵.44.用正交线性替换,把实二次型f <x1, x2, x3> = 2x1x2 +2x1x3 +2x2x3化为标准形, 并求所用的正交线性替换,45.设A, B是n x n正定矩阵,证明:A2 + B2是正定矩阵,46.设W = {A| A = <a ij>n P n x n,a ii = 0},1.[1,]证明:W是P n x n的子空间,2.[2,]求W的维数与一组基,47.判别下述结论是否正确,并说明理由,1.[1,]若n x n矩阵A, B有相同特征多项式,则A与B相似;2.[2,]若W是n维欧氏空间V的子空间W的正交补,则V= W W, 48.设A为n维欧氏空间V的线性变换, 证明:A是对称变换的充要条件是A有n个两两正交的特征向量,49.设A, B是数域P上n维线性空间V的两线性变换,若AB= BA,并且A有n个互异的特征值, 证明:A, B有n个线性无关的公共的特征向量.50.求矩阵A = 的特征值和特征向量.51.求二次型f <x1, x2, x3> = x12 +5x1x2 -3x2x3的标准型,并写出所用的非退化的线性替换.52.设V是由零多项式和数域上次数小于3的一元多项式的全体组成的P上线性空间.对于任意的f <x> V,定义<f <x>> = f'<x> - f''<x>.证明1.[1,]证明:是V的线性变换.2.[2,]求在基 1, x + 1, x2 - x下的矩阵.53.设V是一个欧氏空间, ,V.证明: || = || < + , -> = 054.设W = {f <x>| f <x> P[x]4, f <2> = 0}.1.[1,]证明:W是P[x]4的子空间.2.[2,]求W的维数与一组基.55.设A为线性空间V上线性变换.证明:A是可逆的线性变换的充要条件是A的特征值一定不等于零.56.设A为n x n实矩阵, A = A', A3 = E n证明:A = E n .57.设X = ,求矩阵X.58.在Rr3中定义线性变换A:<a1, a2, a3> R3, A<a1, a2, a3> = <2a2 +a, a1 -4a2, 3a1>.求在基 {<1, 0, 0>,<1, 1, 0>,<1, 1, 1>}下的矩阵.359.用正交线性替换化二次型f <x1, x2, x3> = 2x1x2 +2x1x3 -2x2x3为标准形60.设V为数域P上n维线性空间,A是V的一个可逆线性变换, W是A子空间.证明:W也是A-1-子空间.61.设A是正定矩阵,证明:A-1, A2都是正定矩阵.62.设V为数域P上n维线性空间,A是V的线性变换,且kerA= kerA2.证明:V = kerA AV.63.设V为n维欧氏空间,A是V上对称变换,且A2 = E. 证明:存在V的一标准正交基,使A在该基下的矩阵是.64.设B P2 x 2,1.[1,]证明:A<X> = BX - XB,X P2 x 2是P2 x 2上一个线性变换;2.[2,]当B = 时,求A在基E11, E12, E21, E22下的矩阵.65.用正交线性替换,把实二次型f <x1, x2, x3> = 2x1x2 +2x1x3 +2x2x3化为标准形, 并求所用的正交线性替换.66.设W1= | x, y, z P, W2 = | A,b, c P都是P2 x 2的子空间.1.[1,]求W1W2的维数和一组基;2.[2,]求W1 + W2的维数.67.判别下述结论是否正确,并说明理由.1.[1,]设A, B P n x n,若A, B有相同特征多项式,则A与B相似;2.[2,]设A是P上n维线性空间V的线性变换,若A有n个不同特征值,则A在某基下的矩阵是对角形.68.判别实二次型f <x1, x2, x3> = 3x12 +4x22 +5x32 +2x1x2 -4x2x3是不是正定的?并说明理由.69.设A, B是数域P上n维线性空间V的两线性变换. 若A有n个互异的特征值,且A的特征向量都是B的特征向量, 证明:AB = BA.70.设A, B是n阶实对称矩阵,且B是正交矩阵.证明:存在n x n实可逆矩阵T,使T'AT与T'BT同时为对角形.71.设X = ,求矩阵X.72.设B, C = ,在R2 x 2中定义变换A:任意X R2 x 2, A<X> = BXC.1.[1,]证明:A是R2 x 2上线性变换.2.[2,]求A在基E11, E12, E23, E22下的矩阵.73.用正交线性替换,化实二次型f <x1, x2, x3> = 2x1x2 +2x1x3 -2x2x3为标准形.74.设W = {<a1, a2, ... , a n>| A i Rn, a1 + a2 + ... + a n = 0}.1.[1,]证明:W是Rn的子空间.2.[2,]求W的维数与一组基.75.设V为数域P上n维线性空间,V1, V2为V的两子空间, 且V =V1V2, A是V上可逆线性变换.证明:V = AV1AV2.76.设V是一个欧氏空间, ,V, 证明: || = || + , -> = 0.77.设A是欧氏空间V的一个正交变换, 证明:A的不变子空间的正交补也是A的不变子空间.78.设V = P2 x 2, B V,<1>证明:变换A:X BX - XB是V上一个线性变换;<2>当B = 时,求A在基E ij下的矩阵.79.求f <x1, x2, x3> = 2x1x2 +2x1x3 -6x2x3的标准形, 并给出所用的非退化线性替换P.80.求k为何值时f<x1, x2, x3> = x12 + <k + 2>x22 + kx32 +2x1x2-2x1x3 -4x2x3是正定的.81.判别下述结论是否正确,并说明理由.1.[1,]设A, B P n x n,若A, B有相同特征多项式,则A与B相似;2.[2,]设A是P上n维线性空间V的线性变换,若A有n个不同特征值,则A在某基下的矩阵是对角形.82.设W1= | x, y, z P, W2 = | A,b, c P都是P2 x 2的子空间. <1>求W1W2的维数和一组基;<2>求W1+W2的维数.83.设A = ,1.[1,]求A的特征值与特征向量;2.[2,]A是否相似于对角形,为什么?84.设A, B是数域P上n维线性空间V的两线性变换. 若A有n个互异的特征值,且A的特征向量都是B的特征向量, 证明:AB = BA.85.设A, B是n阶实矩阵,且B是正定矩阵.证明:存在实可逆矩阵P, 使P T AP与P T BP同时为对角形.86.设V = P2 x 2, B V,1.[1,]证明:变换A:X BX,是V上一个线性变换;2.[2,]当B = 时,求A在基E ij下的矩阵.87.求f <x1, x2, x3> = x1x2 + x1x3 + x2x3的标准形, 并给出所用的非退化线性替换.88.f <x1, x2, x3> = 3x12 +4x22 +5x32 +2x1x2 -4x2x3是否正定.为什么?89.判别下述结论是否正确,并说明理由.1.[1,]设A, B P n x n,若A与B相似,则A, B有相同特征多项式;2.[2,]设A是n维线性空间V的线性变换,若A在某基下的矩阵是对角形, 则A有n个互异特征值.90.设= <1, 0, 1, 1>, = <1, -1, 1, 2>, beta1 = <1, -1, 0, 1>,= <0, 1, 0, 1>, W1 = L<,>,W2 = L<,>.1.[1,]求W1 + W2的维数和一组基;2.[2,]求W1W2的维数.91.设A = ,1.[1,]求A的特征值与特征向量;2.[2,]A是否相似于一个对角矩阵,为什么?92.设A是实对称矩阵,并且A3 = E n.证明:A = E n.93.设A, B是数域上n维线性空间V的两线性变换.若AB = BA,并且A有n个互异的特征值. 证明:A, B有n个线性无关的公共特征向量.94.设V= P[x]5,f<x> V, A<f<x>> = r<x>, 其中f<x> = <x3- 1>q<x>+ r<x>, r<x> = 0或次<r<x>> < 3.1.[1,]证明:变换A是V的一个线性变换.2.[2,]求A在基 1, x, x2, x3, x4下的矩阵.95.设A =求正交矩阵T使T'AT为对角形.96.设A, B是n x n正定矩阵,证明:A2 + B2是正定矩阵.97.判别下述结论是否正确,并说明理由.1.[1,]设A是n维线性空间V的线性变换,则V = AV kerA;2.[2,]设V为欧氏空间,A是V的一个对称线性变换, ,是A之属不同特征值下的特征向量,则,98.设,是上n维线性空间V的线性变换, W既是-不变子空间,也是-不变子空间.证明:1.[1,]W是+ ,-不变子空间;2.[2,]若是可逆的,则W是-不变子空间,99.设W = {A n x n| TrA = 0}, <其中TrA表示A的主对角线元素的和>.1.[1,]证明:W是一个子空间;2.[2,]求W的维数和一组基.100.设A = 可逆,其中A1P m x n, W i = {A i X = 0} 之解空间,证明:P n = W1W2.101.设A在基,,下的矩阵是A =求在基= 2 +3 + , = 3 +4 + , =+2 +2下的矩阵.102.设A =求A的特征值,特征向量.A是否相似于对角矩阵?103.设A正定矩阵,证明:A*也正定.104.判别下述结论是否正确,并说明理由.1.[1,]n级实矩阵A是负定的充要条件是A的顺序主子式全小于0;2.[2,]n维欧氏空间V之正交变换把V的正交基变成正交基. 105.设是A之属的特征向量, g<x> = a k x k P[x],证明:是g<A>之属g<>的特征向量.106.设A是n维线性空间V的线性变换,证明下述等价.1.[1,]A可逆;2.[2,] kerA = {0};3.[3,]A将V的基变成基.107.设X T AX是实二次矩阵,X T BX是正定二次矩阵,其中A, B是对称矩阵, 则存在非退化线性替换X = PY把它们同时变换成标准形.108.设V = P[x]5,f <x> V, A<f <x>> = r<x>, 其中f <x> = <x2 -1>q<x> + r<x>,r<x> = 0或次<r<x> < 2>.1.[1,]证明:变换A是V的一个线性变换.2.[2,]求A在基 1, x, x2, x3, x4下的矩阵.109.用正交线性替换,把实二次型f <x1, x2, x3> = 2x1x2 +2x1x3 +2x2x3化为标准形, 并求所用的正交线性替换.110.设A, B是正定矩阵,证明:A + B,A-1都是正定矩阵.111.判别下述结论是否正确,并说明理由.1.[1,]若数域P上n阶矩阵A, B有相同特征多项式,则A与B相似;2.[2,]若W是n维欧氏空间V的子空间W的正交补,则V= W W.112.设V1, V2, V3V是有限维子空间,证明:dimV1 + dimV2 + dimV3 = dim<V+ V2 + V3> + dim<V3<V1 + V2>> + dim<V1 + V2>.1113.设A为n维欧氏空间V的线性变换, 证明:A是对称变换的充要条件是A有n个两两正交的特征向量.114.设A是n维欧氏空间的一个线性变换, <,>是V的内积.证明:<A<>, A<>>是V的内积A可逆.115.设A = ,求A的逆矩阵.116.求二次型f <x1, x2, x3> = x12 +5x1x2 -3x2x3的一个标准形, 并写出所用的非退化的线性替换.117.设A= ,求A的所有特征值,特征向量.A是否相似于一个对角矩阵,为什么?118.设A是P上n x n矩阵, W = {f <x> P[x]| f <A> = 0}. 证明:W关于通常的加与数乘是一个P上的线性空间.119.设= <1, 2, 1, 0>, = <- 1, 1, 1, 1>, = <2, -1, 0, 1>, = <1, - 1, 3, 7>,求L<,> + L<,>与L<,>L<,> 的维数.120.设V是一个欧氏空间, ,V, 证明: || = || < +, - > = 0.121.设A是n x n实矩阵,证明:A'A是半正定矩阵.122.设A是欧氏空间的一个实对称变换.证明:若A4 = 0,则A = 0.123.设A = ,求A的逆矩阵.124.求二次型f <x1, x2, x3> = 3x12 -5x1x2 +2x1x3 - x32的一个标准形, 并写出所用的非退化的线性替换.125.设A= ,求A的最小的特征值,并求属于该特征值的全体特征向量.126.设A是P上n x n矩阵, W = {f <A>| f <x> P[x]}. 证明:W 关于通常的加与数乘是一个线性空间.127.设V是P上2 x 2矩阵全体组成的一个线性空间,对B V,令A<B> =,其中B'是B的转置.1.[1,]证明:A是V的一个线性变换.2.[2,]求A在基,,,下的矩阵.128.设V是欧氏空间, ,V.证明: <,> = | + |2 - | - |2.129.设A是3 x 3矩阵.若1, 1, - 2是A的特征值,求A2 +2A - 3E3的行列式.130.设A是n x n实对称矩阵.证明:若A3是半正定矩阵,则A是半正定矩阵.131.求矩阵X,使X = . 132.求二次型f <x1, x2, x3> = x12 -6x1x2 +4x1x3 -7x22 + x32的一个标准形, 并写出所有的非退化的线性替换.133.设A= ,求A的最大的特征值,并求属于该特征值的全体特征向量.134.设A是一个p上n x n矩阵,W是所有形为AB<其中B是n x m矩阵>全体所成的集. 证明:W关于通常的加与数乘是一个P上的线性空间. 135.设V是由零多项式和P上次数小于3的一元多项式的全体组成的P 上的线性空间. 对于f <x> V,令A<f <x>> = f'<x> - f''<x>.1.[1,]证明:变换A是一个线性变换.2.[2,]求A在基 {1, x + 1, x2 - x}下的矩阵.136.设V是欧氏空间, ,V.证明:若 | + |2= ||2+ ||2,则与正交.137.设A, B都是n x n正定矩阵.证明:A + B也是正定矩阵. 138.设A是n x n实对称矩阵.证明:若A5 = E n,则A = E n.139.设A = ,求A的逆矩阵.140.求二次型f <x1, x2, x3> = 2x12 + x22 -4x1x2 -4x2x3的一个标准形, 并写出所用的非退化的线性替换.141.设A = ,求A的最小的特征值,并求属于该特征值的全体特征向量.142.设V是欧氏空间,W是V上所有对称变换组成的集合. 证明:W关于通常的加与数乘是一个R上的线性空间.143.设V是P上2 x 2矩阵全体组成的一个线性空间,对B V,令A<B> =B.1.[1,]证明:A是V的一个线性变换.2.[2,]求A在基,,,下的矩阵.144.设V是一个欧氏空间, ,V.证明:若与正交,则 | +|2 - | - |2 = 0.145.设A是n x n矩阵.证明:若0是A的一个特征值,则A不是可逆的.146.设A是n x n实对称矩阵.是A的最大特征值. 证明: < +1>E n - A是正定矩阵.147.求矩阵X,使X = .148.求二次型f <x1, x2, x3> = 2x12 +5x22 +5x32 +4x1x2 -4x1x3 -8x2x3的一个标准形, 并写出所用的非退化的线性替换.149.设A= ,求A的全体实的特征值,并求属于这些特征值的全体特征向量.150.设W = {f <x> P[x]| f <1> = 0}. 证明:W关于通常的加与数乘是一个上P的线性空间.151.设= <1, 2, -1, -2>, = <3, 1, 1, 1>, = <- 1, 0, 1, -1>, = <2, 5, -6, 5>, = <- 1, 2, - 7, - 3>,求L<,,>+ L<,>与L<,,> L<,> 的维数.152.设V是一个欧氏空间, ,V.证明: | + |2+ | - |2=2||2 +2||2.153.设A是3 x 3矩阵.若1, - 1, - 2是A的特征值,求A2 -3A - 10E3的行列式.154.设A是一个n x n实对称矩阵.如果对任意n维列向量〔视为n x 1矩阵〕, 有 <A,> > 0.证明:A是正定矩阵.155.计算向量组, = , = , = , = 的秩.156.计算行列式:.157.求下列线性方程组的一个基础解系和解集.158.证明:如果x1,则= - .159.设f<x>, g<x> P[x],证明:f<x>与g<x>互素的充要条件是f2<x> + 3f <x>g<x> + g3<x>与 4f3<x>g<x>互素.160.设f <x> R[x].证明:如果f <x>在R中有根,则f <x3>在R中有根.161.已知,, ... ,与,, ... ,有相同的秩, 证明:,, ... ,与,, ... ,等价.162.计算向量组, = , = , =, = 的秩.163.计算行列式:.164.求下列线性方程组的导出组的一个基础解系和解集item 证明:= a n x n + a n-1x n-1 + ... a1x + a0.165.设f<x>, g<x> P[x],证明:f<x>与g<x>互素的充要条件是f<x> + g3<x>与 <f <x>g<x>>2互素.166.设f <x> R[x].证明:如果f <x>有正根,则f <<x - 1><x - 2>>在R中有根.167.设,, ... ,一组n维向量,如果单位向量,, ... ,可被它们线性表出, 证明:,, ... ,线性无关.168.计算矩阵的A秩, A = .169.计算行列式:.170.求下列线性方程组的导出组的一个基础解系和解集.= <n + a n>a1a2 ... a n-1.172.设f<x>, g<x> P[x],证明:f<x>与g<x>互素的充要条件是f3<x> - 2f <x>g<x> + g2<x>与f2<x>g<x>互素.173.设f <x>, g<x> P[x].证明:如果g<x>次数大于0,f <x>有重因式, 证明:f <g<x>>有重因式.174.已知向量组,, ... ,的秩是r, ,, ... ,是它的一个部分组. 证明:如果,, ... ,线性无关, 则,, ... ,是,, ... ,的一个极大线性无关组.175.计算矩阵的A秩, A = .176.计算行列式:.177.求下列线性方程组的一个基础解系.= <- 1>n<n + 1>a1a2 ... a n.179.设f<x>, g<x> P[x],证明:f<x>与g<x>互素的充要条件是f3<x> + g2<x>与f <x>g3<x>互素.180.设f <x> C[x].证明:如果1是f <x>的一个根,则= +i是f <x3>的一个根.181.已知向量组,, ... ,的秩是r, ,, ... ,是它的一个部分组. 证明:如果,, ... ,线性无关, 则,, ... ,是,, ... ,的一个极大线性无关组.。

高等代数习题解答(第一章)(完整资料).doc

高等代数习题解答(第一章)(完整资料).doc

【最新整理,下载后即可编辑】高等代数习题解答第一章 多项式补充题1.当,,a b c取何值时,多项式()5f x x =-与2()(2)(1)g x a x b x =-++ 2(2)c x x +-+相等?提示:比较系数得6136,,555a b c =-=-=. 补充题2.设(),(),()[]f x g x h x x ∈,2232()()()f x xg x x h x =+,证明:()()()0f x g x h x ===.证明 假设()()()0f x g x h x ===不成立.若()0f x ≠,则2(())f x ∂为偶数,又22(),()g x h x 等于0或次数为偶数,由于22(),()[]g x h x x ∈,首项系数(如果有的话)为正数,从而232()()xg x x h x +等于0或次数为奇数,矛盾.若()0g x ≠或()0h x ≠则232(()())xg x x h x ∂+为奇数,而2()0f x =或2(())f x ∂为偶数,矛盾.综上所证,()()()0f x g x h x ===.1.用g (x ) 除 f (x ),求商q (x )与余式r (x ): 1)f (x ) = x 3- 3x 2 -x -1,g (x ) =3x 2 -2x +1; 2)f (x ) = x 4 -2x +5,g (x ) = x 2 -x +2. 1)解法一 待定系数法.由于f (x )是首项系数为1的3次多项式,而g (x )是首项系数为3的2次多项式,所以商q (x )必是首项系数为13的1次多项式,而余式的次数小于 2.于是可设q (x ) =13x +a , r (x ) =bx +c 根据 f (x ) = q (x ) g (x ) + r (x ),即x 3-3x 2 -x -1 = (13x +a )( 3x 2 -2x +1)+bx +c 右边展开,合并同类项,再比较两边同次幂的系数,得 2333a -=-,1123a b -=-++,1a c -=+解得79a =-,269b =-,29c =-,故得17(),39q x x =- 262().99r x x =--解法二 带余除法.3 -2 1 1 -3 -1 -1 1379-1 23- 1373-43- -173-14979- 269- 29-得17(),39q x x =- 262().99r x x =--2)2()1,()57.q x x x r x x =+-=-+ 262().99r x x =--2.,,m p q 适合什么条件时,有1)231;x mx x px q +-++ 2)2421.x mx x px q ++++ 1)解21x mx +-除3x px q++得余式为:2()(1)()r x p m x q m =+++-,令()0r x =,即210;0.p m q m ⎧++=⎨-=⎩故231x mx x px q +-++的充要条件是2;10.m q p m =⎧⎨++=⎩2)解21x mx ++除42x px q++得余式为:22()(2)(1)r x m p m x q p m =-+-+--+,令()0r x =,即22(2)0;10.m p m q p m ⎧-+-=⎪⎨--+=⎪⎩解得2421x mx x px q ++++的充要条件是0;1m p q =⎧⎨=+⎩ 或 21;2.q p m =⎧⎨=-⎩ 3.求()g x 除()f x 的商()q x 与余式()r x : 1)53()258,()3;f x x x x g x x =--=+2)32(),()12.f x x x x g x x i =--=-+1)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0: -3 2 0 -5 0 -8 0 + -6 18 -39 117 -3272 -6 13 -39 109 -327 所以432()261339109,()327.q x x x x x r x =-+-+=-2)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0:()f x1-2i 1 -1 -1 0 + 1-2i -4-2i -9+8i 1 -2i -5-2i -9+8i 所以2()2(52),()98.q x x ix i r x i =--+=-+4.把()f x 表成0x x -的方幂和,即表成 201020()()c c x x c x x +-+-+的形式:1)50(),1;f x x x == 2)420()23,2;f x x x x =-+=-3)4320()2(1)37,.f x x ix i x x i x i =--+-++=-注 设()f x 表成201020()()c c x x c x x +-+-+的形式,则0c 就是()f x 被x x -除所得的余数,1c 就是()f x 被x x -除所得的商式212030()()c c x x c x x +-+-+再被0x x -除所得的余数,逐次进行综合除法即可得到01,,,.n c c c1)解用综合除法进行计算1 1 0 0 0 0 0+ 1 1 1 1 11 1 1 1 1 1 1+ 1 2 3 41 2 3 4 51 + 1 3 61 3 6 101 + 1 41 4 101 + 11 5所以5234515(1)10(1)10(1)5(1)(1).x x x x x x=+-+-+-+-+-2)3)略5.求()f x与()g x的最大公因式:1)43232()341,()1;f x x x x xg x x x x=+---=+--2)4332()41,()31;f x x xg x x x=-+=-+3)42432()101,()6 1.f x x xg x x x=-+=-+++1)解用辗转相除法()g x()f x2()q x12-141 1 -1 -1 1 1 -3 -4 -11 1 3212 1 1 -1 -112-32- -1 1()r x-2 -3 -13()q x834312- 34- 14- -2 -22()r x34-34--1 -1-1 -13()r x所以((),()) 1.f x g x x =+2)((),()) 1.f x g x = 3)2((),()) 1.f x g x x =--6.求(),()u x v x 使()()()()((),()):u x f x v x g x f x g x += 1)432432()242,()22f x x x x x g x x x x x =+---=+---; 2)43232()421659,()254f x x x x x g x x x x =--++=--+; 3)4322()441,()1f x x x x x g x x x =--++=--. 1)解 用辗转相除法()g x ()f x2()q x1 1 1 1 -1 -2 -2 1 2 -1 -4 -21 1 0 -2 0 1 1 -1 -2 -2 1 1 -2 -21()r x1 0 -2 03()q x1 01 0 -2 0 1 0 -22()r x1 0 -23()r x由以上计算得11()()()(),f x q x g x r x =+ 212()()()(),g x q x r x r x =+ 132()()(),r x q x r x =因此22((),())()2f x g x r x x ==-,且2((),())()f x g x r x =21()()()g x q x r x =-21()()[()()()]g x q x f x q x g x =-- 212()()[1()()]()q x f x q x q x g x =-++所以212()()1,()1()()2u x q x x v x q x q x x =-=--=+=+.2)((),())1f x g x x =-,21122(),()13333u x x v x x x =-+=--. 3)((),())1f x g x =,32()1,()32u x x v x x x x =--=+--.7.设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 略.8.证明:如果()(),()()d x f x d x g x 且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由于()(),()()d x f x d x g x ,所以()d x 为()f x 与()g x 的一个公因式.任取()f x 与()g x 的一个公因式()h x ,由已知()d x 为()f x 与()g x 的一个组合,所以()()h x d x .因此,()d x 是()f x 与()g x 的一个最大公因式.9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首项系数为 1). 证明 因为存在多项式()u x 和()v x 使 ((),())()()()()f x g x u x f x v x g x =+,所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,这表明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合,又因为 ((),())(),((),())()f x g x f x f x g x g x , 从而((),())()()(),((),())()()()f x g x h x f x h x f x g x h x g x h x ,故由第8题结论,((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式.注意到((),())()f x g x h x 的首项系数为1,于是(()(),()())((),())()f x h x g x h x f x g x h x =.10.如果(),()f x g x 不全为零,证明:()()(,)1((),())((),())f xg x f x g x f x g x =.证明 存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,因为(),()f x g x 不全为零,所以((),())0f x g x ≠,故由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以()()(,)1((),())((),())f xg x f x g x f x g x =.11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =.证明 因为(),()f x g x 不全为零,故 ((),())0f x g x ≠,从而由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以((),())1u x v x =.12.证明:如果((),())1f x g x = ,((),())1f x h x =,那么((),()())1f x g x h x =. 证法一 用反证法.假设()((),()())1d x f x g x h x =≠,则(())0d x ∂>,从而()d x 有不可约因式()p x ,于是()(),()()()p x f x p x g x h x ,但因为((),())1f x g x =,所以()p x 不整除()g x ,所以()()p x h x ,这与((),())1f x h x =矛盾.因此((),()())1f x g x h x =.证法二 由题设知,存在多项式1122(),(),(),()u x v x u x v x ,使得11()()()()1u x f x v x g x +=,22()()()()1u x f x v x h x +=,两式相乘得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =.13.设11(),,(),(),,()m n f x f x g x g x 都是多项式,而且((),())1(1,2,,;1,2,,).i j f x g x i m j n ===求证:1212(()()(),()()()) 1.m n f x f x f x g x g x g x =证法一 反复应用第12题的结果 证法二 反证法14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=. 证明 由于((),())1f x g x =,所以存在多项式()u x 和()v x 使 ()()()()1u x f x v x g x +=,由此可得()()()()()()()()1,u x f x v x f x v x f x v x g x -++= ()()()()()()()()1,u x f x u x g x u x g x v x g x +-+=即[][]()()()()()()1,u x v x f x v x f x g x -++=[][]()()()()()()1,v x u x g x u x f x g x -++= 于是((),()())1f x f x g x +=,((),()())1g x f x g x +=,应用第12题的结论可得(()(),()())1f x g x f x g x +=.注 也可以用反证法.15.求下列多项式的公共根:32432()221;()22 1.f x x x x g x x x x x =+++=++++提示 用辗转相除法求出2((),()) 1.f x g x x x =++于是得两多项式的公共根为1.2-± 16.判别下列多项式有无重因式: 1)5432()57248f x x x x x x =-+-+-; 2)42()443f x x x x =+--1)解 由于432'()5202144f x x x x x =-+-+,用辗转相除法可求得2((),'())(2)f x f x x =-,故()f x 有重因式,且2x -是它的一个 3 重因式.2)解 由于3'()484f x x x =+-,用辗转相除法可求得((),'())1f x f x =,故()f x 无重因式.17.求t 值使32()31f x x x tx =-+-有重根. 解2'()36f x x x t =-+.先用'()f x 除()f x 得余式 1263()33t t r x x --=+.当3t =时,1()0r x =.此时'()()f x f x ,所以21((),'())'()(1)3f x f x f x x ==-,所以1是()f x 的3重根.当3t ≠时,1()0r x ≠.再用1()r x 除'()f x 得余式215()4r x t =+.故当154t =-时,2()0r x =.此时,121((),'())()92f x f x r x x =-=+,所以12-是()f x 的2重根.当3t ≠且154t ≠-时,2()0r x ≠,则((),'())1f x f x =,此时()f x 无重根.综上,当3t =时,()f x 有3重根1;当154t =-时,()f x 有2重根12-.18.求多项式3x px q ++有重根的条件. 解 略.19.如果242(1)1x Ax Bx -++ ,求,A B .解法一 设42()1f x Ax Bx =++,则3'()42f x Ax Bx =+.因为242(1)1x Ax Bx -++,所以1是()f x 的重根,从而1也是'()f x 的根.于是(1)0f =且'(1)0f =,即10;420.A B A B ++=⎧⎨+=⎩解得1,2A B ==-.解法二 用2(1)x -除421Ax Bx ++得余式为(42)(31)A B x A B ++--+,因为242(1)1x Ax Bx -++,所以(42)(31)0A B x A B ++--+=,故420;310.A B A B +=⎧⎨--+=⎩ 解得1,2A B ==-.20.证明:212!!nx x x n ++++没有重根.证法一 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 因为()'()!nx f x f x n -=,所以((),'())((),)1!nx f x f x f x n ==.于是212!!nx x x n ++++没有重根. 证法二 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 假设()f x 有重根α,则()0f α=且'()0f α=,从而0!nn α=,得0α=,但0α=不是()f x 的根,矛盾.所以212!!nx x x n ++++没有重根. 21.略. 22.证明:x 是()f x 的k 重根的充分必要条件是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.证明 (必要性)设0x 是()f x 的k 重根,从而0x 是'()f x 的1k -重根,是''()f x 的2k -重根,…,是(1)()k f x -的单根,不是()()k f x 的根,于是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.(充分性)设(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠,则0x 是(1)()k f x -的单根,是(2)()k f x -的2重根,…,是()f x 的k 重根.23.举例说明断语“如果α是'()f x 的m 重根,那么α是()f x 的m +1重根”是不对的.解 取1()()1m f x x α+=-+,则()'()1()m f x m x α=+-.α是'()f x 的m 重根,但α不是()f x 的m +1重根.注:也可以取具体的,如0,1m α==.24.证明:如果(1)()n x f x -,那么(1)()n n x f x -. 证明 略.25.证明:如果23312(1)()()x x f x xf x +++,那么12(1)(),(1)()x f x x f x --.证明2121()()x x x x ωω++=--,其中12ωω==.由于23312(1)()()x x f x xf x +++,故存在多项式()h x 使得33212()()(1)()f x xf x x x h x +=++,因此112122(1)(1)0;(1)(1)0.f f f f ωω+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而12(1)(),(1)()x f x x f x --.26.求多项式1n x -在复数范围内和实数范围内的因式分解. 解 多项式1n x -的n 个复根为 22cossin ,0,1,2,,1kk k i k n n nππω=+=-,所以1n x -在复数范围内的分解式为1211(1)()()()n n x x x x x ωωω--=----.在实数范围内,当n 为奇数时:222112211221(1)[()1][()1][()1]n n n n n x x x x x x x x ωωωωωω---+-=--++-++-++,当n 为偶数时:222112222221(1)(1)[()1][()1][()1]n n n n n x x x x x x x x x ωωωωωω---+-=-+-++-++-++.27.求下列多项式的有理根: 1)3261514x x x -+-; 2)424751x x x ---;3)5432614113x x x x x +----.1)解 多项式可能的有理根是1,2,7,14±±±±. (1)40f =-≠,(1)360f -=-≠.由于44444,,,,1(2)171(7)1141(14)-------------都不是整数,所以多项式可能的有理根只有2.用综合除法判别:2 1 -6 15 -14 + 2 -8 14 2 1 -4 7 0 + 2 -4 1 -2 3≠0 所以2是多项式的有理根(单根).注:一般要求指出有理根的重数.计算量较小的话,也可以直接计算,如本题可直接算得(2)0f =,说明2是()f x 的有理根,再由'(2)0f ≠知.2是单根.用综合除法一般比较简单.2)答12-(2重根).3)答 1-(4重根),3(单根). 28.下列多项式在有理数域上是否可约? 1)21x -;2)4328122x x x -++; 3)631x x ++;4)1p x px ++,p 为奇素数; 5)441x kx ++,k 为整数. 1)解21x -可能的有理根是1±,直接检验知,都不是它的根,故21x -不可约.2)解 用艾森斯坦判别法,取2p =. 3)解 令1x y =+,则原多项式变为6365432(1)(1)1615211893y y y y y y y y ++++=++++++,取3p =,则由艾森斯坦判别法知多项式65432615211893y y y y y y ++++++不可约,从而多项式631x x ++也不可约.4)提示:令1x y =-,取素数p . 5)提示:令1x y =+,取2p =.。

(完整版)高等代数习题集

(完整版)高等代数习题集

《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。

A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。

高等数学 高等代数习题集

高等数学 高等代数习题集

第一章 多项式§1.1一元多项式的定义和运算1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是(6) 222)()()(x xh x xg x f +=,那么.0)()()(===x h x g x f2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h3.证明:!))...(1()1(!)1)...(1()1(!2)1(1n n x x n n x x x x x x nn---=+---+--+-§1.2 多项式的整除性1.求)(x f 被)(x g 除所得的商式和余式:( i ) ;13)(,14)(234--=--=x x x g x x x f (ii);23)(,13)(3235+-=-+-=x x x g x x x x f2.证明:k x f x )(|必要且只要).(|x f x3.令()()()x g x g x f x f 2121,,),(都是数域F上的多项式,其中()01≠x f 且()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++5.设F 是一个数域,.F a ∈证明:a x -整除.n na x -6.考虑有理数域上多项式()()()()()(),121211nkn k nk x x x x x x f ++++++=-++这里k 和n 都是非负整数.证明:()()().11|1n k 1+++++-x x f x x k7.证明:1-dx整除1-n x 必要且只要d 整除.n§1.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式: ( i ) ()();32103,34323234-++=---+=x x x x g x x x x x f(ii)()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=2. 设()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()x f 和()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个最大公因式.3.令()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F中的数,并且0≠-bc ad证明:()()()()()()).,(),(x g x f x dg x cf x bg x af =++4. 证明: (i )h g f ),(是fh 和gh 的最大公因式;(ii )),,,,(),)(,(212121212211g g f g g f f f g f g f =此处h g f ,,等都是][x F 的多项式。

【教育文档】高等代数习题集

【教育文档】高等代数习题集

其中 a0 , a1, , an 属于数域 F,称为数域 F上的一元多项式.
2.多项式的运算 (1)加法 设
n
n
∑ ∑ f (x) = an xn + an−1xn−1 + + a0 = ai xi , g(x) = bn xn + bn−1xn−1 + + b0 = bi xi ,
i=0
i=0
(如果二者的次数不相等,则可以在次数小的前面加一些系数为零的项), 定义 f (x) 与
高等代数习题集
第一章 多项式
一、内容提要
§1.1 数域
数域定义
设 F是由一些复数组成的集合,其中包括 0 和 1. 如果 F中任意两数(这两个数可以相 同)的和、差、积、商(除数不为零)仍然是 F中的数,那么 F就称为一个数域.
§1.2 一元多项式
1. 一元多项式定义
设 n 是一非负整数. 形式表达式 an xn + an−1xn−1 + + a0 ,
d (x) ,且 d (x) 可以表示成 f (x), g(x) 的一个组合,即有 F[x] 中多项式 u(x), v(x) 使
d(x) = u(x) f (x) + v(x)g(x) .
4. 互素定义
设 f (x), g(x) ∈ F[x],若 ( f (x), g(x)) = 1,则称 f (x) 与 g(x) 互素.
(5)若 ( f (x), g1(x)) = 1, ( f (x), g2 (x)) = 1,则 ( f (x), g1(x)g2 (x)) = 1.
-3-
高等代数习题集
§1.5 因式分解定理
z f (x) | f (x) ;

(word完整版)高等数学习题集及答案

(word完整版)高等数学习题集及答案

第一章 函数一、选择题1. 下列函数中,【 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A. 33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-== C. 11)(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f ==3. 下列函数中,在定义域内是单调增加、有界的函数是【 】A. +arctan y x x =B. cos y x =C. arcsin y x =D. sin y x x =⋅4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 5. 函数arctan y x =的定义域是【 】A. (0,)πB. (,)22ππ-C. [,]22ππ-D. (,+)-∞∞6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]-9. 下列各组函数中,【 】是相同的函数A. 2()ln f x x =和 ()2ln g x x =B. ()f x x =和()g x =C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,)22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B. arccos y x x =C. arccot y x x =D. 2arctan y x x = 13. 函数53sin ln x y =的复合过程为【 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53== C.x u u y sin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3. 函数1()arcsin3x f x +=的定义域为 ___________。

高等代数学习题集

高等代数学习题集

高等代数学习题集一、线性方程组1. 解下列线性方程组:(1)$3x+2y=7$$2x-3y=4$(2)$2x-y+z=4$$x+3y-2z=5$$2x-y+z=1$(3)$3x+y=5$$4x-y=8$2. 通过矩阵表示以下线性方程组,并求出其解:(1)$4x+2y=6$$-2x+y=3$(2)$x-2y+3z=1$$2x+y+3z=9$$3x+2y+4z=12$(3)$x+y+z=0$$x+2y+3z=1$$x-3y+2z=2$二、矩阵运算与性质1. 计算以下矩阵的乘积:$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$\begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix}$2. 求下列矩阵的逆矩阵:(1)$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & 0 & 3 \end{bmatrix}$3. 判断下列矩阵是否可逆,并求其逆矩阵:(1)$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$(2)$\begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ 2 & -4 & 3 \end{bmatrix}$4. 求矩阵的转置:(1)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$三、特征值与特征向量1. 求矩阵的特征值与特征向量:$\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$2. 计算以下矩阵的迹:(1)$\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix}$四、向量空间1. 判断向量组是否线性相关:(1)$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$2. 求以下向量组的一个极大线性无关组:(1)$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1\end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$五、线性变换1. 判断以下线性变换是否为一一映射:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x+y \\ 3y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y \\ y+z \\ x+z \end{bmatrix}$2. 求下列线性变换的矩阵表示:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x-y \\ 3x+2y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y+z \\ 2x+3y-z \\ 3x-2y+2z\end{bmatrix}$六、二次型1. 对以下二次型进行分类:(1)$f(x,y)=2x^2+3y^2-4xy$(2)$f(x,y,z)=x^2+y^2+z^2-2xy+4xz$2. 将以下二次型化为标准形:(1)$f(x,y,z)=3x^2+4y^2+2z^2+4xy+4xz-8yz$(2)$f(x,y,z)=x^2+2y^2+3z^2-2xy+6xz$以上为《高等代数学习题集》的内容,希望对你的学习有所帮助。

高等代数(上)_习题集(含答案)

高等代数(上)_习题集(含答案)

《高等代数(上)》课程习题集一、填空题11. 若31x -整除()f x ,则(1)f =( )。

2. 如果方阵A 的行列式0=A ,则A 的行向量组线性( )关。

3. 设A 为3级方阵,*A 为A 的伴随矩阵,且31=A ,则=--1*A A ( )。

4. 若A 为方阵,则A 可逆的充要条件是——( )。

5. 已知1211A ⎡⎤=⎢⎥⎣⎦,1121B ⎡⎤=⎢⎥⎣⎦,且3AB C A B +=+,则矩阵C =( )。

6. 每一列元素之和为零的n 阶行列式D 的值等于( )。

7. 设行列式014900716=--k,则=k ( )8. 行列式22357425120403---的元素43a 的代数余子式的值为( )9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则=α( )10. 设A 为3阶矩阵,51=A ,则12--A =( ) 11. 已知:s ααα,,,21Λ是n 元齐次线性方程组0=Ax 的基础解系,则系数矩阵A 的秩=)(A R ( )12. 多项式)(),(x g x f 互素的充要条件是( ) 13. 多项式)(x f 没有重因式的充要条件是( )14. 若排列n j j j Λ21的逆序数为k ,则排列11j j j n n Λ-的逆序数为( )15. 当=a ( )时,线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 有零解。

16. 设A 为n n ⨯矩阵,线性方程组B AX =对任何B 都有解的充要( )17. 设00A X C ⎡⎤=⎢⎥⎣⎦,已知11,A C --存在,求1X -等于( ) 18. 如果齐次线性方程组0=AX 有非零解,则A 的列向量组线性( )关 19. )(x p 为不可约多项式,)(x f 为任意多项式,若1))(),((≠x f x p ,则( ) 20. 设A 为4级方阵,3-=A ,则=A 2( )21. 设m ααα,,,21Λ是一组n 维向量,如果n m >.,则这组向量线性( )关22. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则k=( )。

(完整word)高等代数(北大版)第6章习题参考答案

(完整word)高等代数(北大版)第6章习题参考答案

第六章 线性空间1.设,N M ⊂证明:,M N M M N N ==I U 。

证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M I ∈α即证M N M ∈I 。

又因,M N M ⊂I 故M N M =I 。

再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。

但,N M N Y ⊂所以M N N =U 。

2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。

证 ),(L N M x Y I ∈∀则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。

反之,若)()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ⊂于是)()()(L M N M L N M I Y I Y I =。

若x M N L M N L ∈∈∈UI I (),则x ,x 。

在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L )。

,,N L x M N X M L M N M M N M N ∈∈∈∈∈⊂U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。

《高等代数》题库

《高等代数》题库

《高等代数》(上)题库第一章多项式填空题(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x 2-1除f(x)余数 是 。

(1.5)2、当 p(x)是 _______________ 多项式时,由 p(x)| f(x)g(x) 可推出 p(x)|f(x) 或 P(x)|g(x)。

(1.4) 3、当 f(x)与 g(x) _______________ 时,由 f(x)|g(x)h(x) 可推出 f(x)|h(x)。

(1.5) 4、设f(x)=x 3+3x 2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b4 2 ...(1.7) 5、设 f(x)=x +3x -kx+2 用 x-1 除余数为 3,贝U k= ___________________。

22 432(1.7) 6、如果(x -1) |x -3x +6x+ax+b,则 a= b= ______________________________。

(1.7) 7、如果 f(x)=x -3x+k 有重根,那么 k= ________________________ 。

(1.8) 8、以I 为二重根,2 , 1+i 为单根的次数最低的实系数多项式为f(x)=(1.8) 9 、已知 1-i 是 f(x)=x 是(1.7)20、f(x)没有重根的充分必要条件是 _____________________答案1、-x+62、不可约3、互素4、a=0,b=15、k=36、a=3,b=-77、k=±2432-4x +5x -2x-2 的一个根,贝U f(x)的全部根(1.4)10 (1.5)11 (1.3)12 (1.5)13 (1.3) 14 (1.3) 15 (1.4) 16 (1.5) 17 (1.4)18(1.7)19、 、如果(f(x),g(x)) =1 , 、设p(x)是不可约多项式, 、如果 f(x)|g(x),g(x)|h(x)、设p(x)是不可约多项式, 、若 f(x)|g(x)+h(x),f(x)|g(x) 、若 f(x)|g(x),f(x)| h(x) 、若 g(x)|f(x),h(x)|f(x) 、若 p(x) |g(x)h(x),且_、若 f(x)|g(x)+h(x) 且 f(x)|g(x)-h(x),a 是f(x)的根的充分必要条件是_ (h(x),g(x) ) =1 则—p(x)|f(x)g(x), 则— ,则 ______________f(x)是任一多项式,则 ,则 ___________ ,则 _______________ ,且(g(x),h(x))=1,则一—则 p(x)|g(x)或 p(x)|h(x)。

《高等代数》课程习题 .doc

《高等代数》课程习题 .doc

《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---谢谢观赏(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。

(完整word版)高等代数第二学期试题

(完整word版)高等代数第二学期试题

第二学期期末考试《高等代数》试题一、填空:(每空2分,共30分)1、n 元二次型正定的充分必要条件是它的正惯性指数______________。

2、A 为正定矩阵,则A _______。

3、),(21s L αααΛ的维数__________向量组s αααΛ21,的秩。

4、1V ,2V 都是线性空间V 的子空间,则维1V +维2V =______________。

5、和1V +2V 是直和的充要条件为=⋂21V V ___________。

6、数域P 上两个有限维线性空间同构的充要条件是______________。

7、A ,B 是两个线性变换,它们在基n εεεΛ,,21下的矩阵分别为A ,B ,则A+B 在基n εεεΛ,,21下的矩阵为______________。

8、A 是n 维线性空间V 的线性变换,则A 的秩+A 的零度=______________。

9、在欧几里德空间中,α=_______。

><βα,=_______。

10、欧几里德空间的一组标准正交基的度量矩阵为_______。

11、A 为正交矩阵,则A =_______,1-A =_______。

二、判断(每题2分,共10分)1、A 的值域是A 的不变子空间,但A 的核不是A 的不变子空间( )。

2、两个子空间的交还是线性空间V 的子空间( )。

3、线性变换在不同基下所对应的矩阵是相似的( )。

4、线性变换把线性无关的向量变为线性无关的向量( )。

5、度量矩阵是正定矩阵( )。

三、t 取什么值时,二次型3231212322214225x x x x x tx x x x +-+++正定?(10分)四、在4P 中,求向量ξ在基4321,,,εεεε下的坐标,其中=1ε(1,1,1,1),=2ε(1,1,-1,-1),=3ε(1,-1,1,-1)=4ε(1,-1,-1,1),ξ=(1,2,1,1)(10分)五、3P 中,令),4,2(),,(213131321a a a a a a a a a -+-=σ,求σ在基},,{321εεε下的矩阵。

完整版高等代数习题解答(第一章)

完整版高等代数习题解答(第一章)

完整版高等代数习题解答(第一章)高等代数题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)=x-5与g(x)=a(x-2)^2+b(x+1)+c(x^2-x+2)相等?提示:比较系数得a=-1,b=-1,c=6.补充题2.设f(x),g(x),h(x)∈[x],f^2(x)=xg^2(x)+x^3h^2(x),证明:假设f(x)=g(x)=h(x)不成立。

若f(x)≠0,则∂(f^2(x))为偶数,又g^2(x),h^2(x)等于或次数为偶数,由于g^2(x),h^2(x)∈[x],首项系数(如果有的话)为正数,从而xg^2(x)+x^3h^2(x)等于或次数为奇数,矛盾。

若g(x)≠0或h(x)≠0,则∂(xg^2(x)+x^3h^2(x))为奇数,而f^2(x)为偶数,矛盾。

综上所证,f(x)≠g(x)或f(x)≠h(x)。

1.用g(x)除f(x),求商q(x)与余式r(x):1)f(x) =x^3-3x^2-x-1,g(x) =3x^2-2x+1;2)f(x) =x^4-2x+5,g(x) =x^2-x+2.1)解法一:待定系数法。

由于f(x)是首项系数为1的3次多项式,而g(x)是首项系数为3的2次多项式,所以商q(x)必是首项系数为1的1次多项式,而余式的次数小于2.于是可设q(x)=x+a,r(x)=bx+c。

根据f(x)=q(x)g(x)+r(x),即x^3-3x^2-x-1=(x+a)(3x^2-2x+1)+bx+c,右边展开,合并同类项,再比较两边同次幂的系数,得a=-1/3,b=-2/3,c=-1,故得q(x)=x-1/3,r(x)=-x-1/3.2)解法二:带余除法。

用长除法得商q(x)=x^2+x-1,余式r(x)=-5x+7.2.m,p,q适合什么条件时,有1)x^2+mx-1/x^3+px+q;2)x^2+mx+1/x^4+px^2+q.解:1)将x^3+px+q除以x^2+mx-1得商为x+m+1/(x+m-1),所以当m≠1时有解。

(完整word版)高等代数多项式习题解答

(完整word版)高等代数多项式习题解答

第一章多项式习题解答1. 用g(x)除f(x),求商q(x)与余式r(x).5x2. m, p,q 适合什么条件时,有 1) x 2 mx 11 x 3 px qq(x)x 2 x 1, r(x)5x 7.x 3 0x 2 px q xp 10,q m 时 x 2 mx 11 x 3 px1) f(x)x 3 3x 2 2x3x 232x 3xx 1 3 2 2 1x —x -x3 3 7 24 1 x x 3 37 2 14 7 —x ■ x — 3 9 926 2 —x9 9q(x) £ r (x )26 x92) f(x)2x 5, g(x)4 x 4x0x 3 0x 2 x 3 2x 2 x 3 2x 22x 32x x 2xx2x2x 54x 5 x 2 mx 1当且仅当m 2 i,g(x)x 2x 1 1—x 3 3x 2本题也可用待定系数法求解 .当X 2 mx 1| x 3 px q 时,用x 2 mx 1去除x 3 px q ,余式为零,比较首项系数及常数项可得其商为 x q.于是有因此有m 2 p 1 0, q m .2) x 2 mx 11 x 4 2px q由带余除法可得42/ 2x px q (x mx1)( x2mx 2p 1 m ) m(2pm 2)x (q 1 pm 2) 当且仅当r(x) m(2 p 2m )x (q 1 p m 2) 0 时2x 42mx 11 x pxq .即m(2 p m 2) 2m,即 mQ 或 p 2小m 2,q 1p 0q 1 p,q 1.本题也可用待定系数法求解.当x 2 mx 1|x 4px 2 q 时,用x 2 mx 1去除x 4 px 2 q ,余式为零,比较首项系数及常数项可得其商可设为 x 2 ax q .于是 有3. 求 g(x)除 f (x)的商 q(x)与余式 r(x). 531) f (x) 2x 5x 8x, g(x) x 3; 解:运用综合除法可得 32580 6 18 39 1173272 6 1339 109 327商为 q(x) 2x 4 6x 3 13x 2 39x 109,余式为 r(x) 327.4 2x pxq (x 2ax q)( 2x mx 1)(m a)x 3 (ma2q 1)x(a mq)x q.ma q 1 p,a mq 0.消去a 可得m 0,或2p m 2,q 1 p,q 1.x 4 比较系数可得m a 0,2px q (x q)(x mx 1)x 3 (m q)x 2(mq 1)x q .2) f(x) x 3 x 2x,g(x) x 1 2i .解:运用综合除法得:1 2i 11 1 0 1 2i4 2i 9 8i 1 2i5 2i9 8i商为x 2 2ix (5 2i),余式为9 8i .c 0即为x X o 除f (x)所得的余式,商为q(x) q 可得C 1为x x o 除商q(x)所得的余式,依次继续即可求得展开式的各项系数 解:1)解法一:应用综合除法得•1 1 o o o o o11111 111111 112 3 4 1 1 2 3 4 51 3 6 1 1 3 6 1o1 4 1 1 4 1o 14.把 f(; x)表成x X °的方幂和,即表示成CoC 1(X X o ) C 2(X X o )2的形1) f(x) 5x12) f(x) 4x 2x 23, xo2;3) f(x) 4x2ix 3 (1 i)x 2 3x 7 i,x o1分析: 假设 f(x) 为n 次多项式,令f(x)C o G (x X o ) C 2(X X o )2C n (x X o )n式.x o )n1]C o (x X o )[G C 2(x x o )C n (x C 2(x X 。

(完整word版)高等数学习题集(word文档良心出品).doc

(完整word版)高等数学习题集(word文档良心出品).doc
sin x
, x
0
(1)f ( x)
x), x

ln(1
0
x
, x
0
(2)f ( x)1
1
e上取横坐标为x1
1和x2
3的两点,作过这两点的割线,问该抛物
线上哪一点的切线可平行于这割线?
2
高等数学习题集
§2函数的和、差、积、商的求导法则
§3反函数的导数复合函数的求导法则
0
g(x)
在x
0处二阶可导。
四、设xg( y)是yf ( x)的反函数,问如何由f ( x), f(x)算出g ( y)?
8
高等数学习题集
§6隐函数的导数由参数方程所确定的函数的导数相关变化率
必作习题
P138-1401,2,3,7,8,11
必交习题
一、 求下列函数的导数
(1)设arctanylnx2y2,求dy;
2x在x
1处当x
0.02时的增量
y与微分dy。
二、求下列函数的微分:
(1)yln( 2x1) sin x2;
(2)y
1
x37
x
2。
x
2
( x
4)
11/14
三、(1)当| x |
1
x
1时,求出
的关于x的线性近似式;
1
x
3
(2)计算998的近似值。
四、一个圆扇形,测得半径R10cm,圆心角600.5,求扇形面积的绝对误差
x0
(3)指出是否有lim
f
( )
f
(0)。
x 0
x
二、设函数f (x)与g ( x)在x可导,求下列函数的导数:
(1)y[ f (x)]2[ g( x)]2;

《高等代数》课程习题 .doc

《高等代数》课程习题 .doc

感谢你的观看《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:感谢你的观看(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211ΛΛΛΛΛΛΛΛΛΛn n a a a a a a ---感谢你的观看(5)xaaa x a a a xΛΛΛΛΛΛΛ (6)abb a b a b a 000000000000ΛΛΛΛΛΛΛΛΛΛ 习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+ΛΛΛΛΛΛΛΛ212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。

高等代数例题(全部)

高等代数例题(全部)

⾼等代数例题(全部)⾼等代数例题第⼀章多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最⼤公因式是⼀个⼆次多项式,求t 、u 的值。

3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。

5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。

8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。

求证:11((),())((),())f x g x f x g x =。

10.48P 5 多项式()m x 称为多项式()f x ,()g x 的⼀个最⼩公倍式,如果(1)()()f x m x ,()()g x m x ;(2)()f x ,()g x 的任意⼀个公倍式都是()m x 的倍式。

我们以[(),()]f x g x 表⽰⾸项系数为1的那个最⼩公倍式。

证明:如果()f x ,()g x 的⾸项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。

11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为。

(完整word版)高等代数I

(完整word版)高等代数I

课程编号:MTH17167 北京理工大学 2013 — 2014 学年第一学期2013级数学与统计学院高等代数(I )期末试题B 卷班级 学号 姓名 成绩一、(18分)下列断言中哪些正确(只需给出判断,不需说明理由)(1)若向量组)2}(,,,{21≥s s ααα 线性相关,则其中每一个向量都可以由其余向量线性表出;(2)若n s <,数域K 上由s 个方程组成的n 元齐次线性方程组一定有非零解;(3)数域K 上n 元非齐次线性方程组的解集合总是n K 的一个线性子空间;(4)两个实对称矩阵相似的充分必要条件是它们有相同的特征多项式;(5)数域K 上n 级矩阵A 可对角化当且仅当A 在K 中有n 个不同的特征值;(6)实数域R 上的每个n 级初等矩阵都是正交矩阵.二、(14分)计算下述行列式:25664164812793168421111=D三、(10分)已知向量组4321,,,αααα线性无关,试求向量组},,,{14433221αααααααα----的秩,并写出它的一个极大线性无关组。

四、(12分)设A 是数域K 上n 级矩阵,如果0=k A ,对某个正整数k 。

证明:A I +一定可逆,并求A I +的逆矩阵,这里I 为n 级单位矩阵.五、(16分)设A 是实数域上定义的n s ⨯矩阵,证明A A T 的每个特征值都是非负实数。

六、(14分)叙述实数域上一个n 元二次型AX X x x f T n =),,(1 半正定的至少两个充分必要条件,并举一个非半正定的3元实二次型的例子。

七、(16分)求下述矩阵A 的特征多项式、特征值与相应的特征向量,并求正交矩阵T ,使得AT T 1-为对角阵,这里⎪⎪⎪⎭⎫ ⎝⎛-=100012021A 并计算2013A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数习题集苏州大学数学科学学院高等代数组收集2003, 4,301.设X = ,求X。

2.设二次型f(x1, x2,... , x n)是不定的,证明:存在n维向量X0,使X0'AX0= 0,其中A是该二次型的矩阵。

3.设W = {f (x)| f (x) P[x]4, f (2) = 0}。

a证明:W是P[x]4的子空间。

b求W的维数与一组基。

4.在R3中定义变换A:任意 (x1, x2, x3) R3, A(x1, x2, x3) = (2x2 + x3,x-4x2, 3x3)。

11,证明:A是Rr3上线性变换,2,求A在基xi1 = (1, 0, 0), xi2 = (0, 1, 0), xi3 = (1, 1, 1)下的矩阵。

5.设,求正交矩阵T,使T'AT成对角形。

6.设V是数域P上n维线性空间,A是V上可逆线性变换,W是A的不变子空间。

证明:W也是A-1的不变子空间。

7.设V是n维欧氏空间,A是V上变换。

若任意,V,有 (A, A)= (,)。

证明:A是V上线性变换,从而是V上正交变换。

8.设X = ,求X。

9.设A是奇数级的实对称矩阵,且| A| > 0,证明:存在实n维向量X00,使X0'AX0 > 0。

10.设A = ,W = {|R4, A = 0}。

证明:1.[1,]W是4的一个子空间。

2.[2,]求W的维数与一组基。

11.设B,C = ,在R2 x 2中定义变换A:任意X R2 x 2, A(X) = BXC。

1,证明:A是R2 x 2上线性变换。

2,求A在基E11, E12, E21, E22下的矩阵。

12.用正交线性替换,化实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标准形。

13.设V为数域P上线性空间,A是V上线性变换,若 (A2)-1(0) = A-1(0),证明:V = AV.+A-1(0)。

14.设V是n维欧氏空间。

A是V上正交变换,W是A的不变子空间。

证明:W也是A的不变子空间。

15.设X = ,求X。

16.设A是奇数级的实对称矩阵,且| A| > 0,证明:存在实n维向量X00,使X0'AX0 > 0。

17.设A = ,W = {|R4, A = 0}。

证明:1.[1,]W是4的一个子空间。

2.[2,]求W的维数与一组基。

18.设B,C = ,在R2 x 2中定义变换A:任意X R2 x 2, A(X) = BXC。

1.[1,]证明:A是R2 x 2上线性变换。

2.[2,]求A在基E11, E12, E21, E22下的矩阵。

19.用正交线性替换,化实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标准形。

20.设V为数域P上线性空间,A是V上线性变换,若 (A2)-1(0) = A-1(0),证明:V = AV.+A-1(0)。

21.设V是n维欧氏空间。

A是V上正交变换,W是A的不变子空间。

证明:W也是A的不变子空间。

22.设X = ,求矩阵X。

23.设实二次型f(x1, x2, ... , x n) = X'AX的秩是n,其中A是实对称矩阵. 证明:实二次型g(x1, x2, ... , x n) = X'A-1X与f (x1, x2, ... , x n)有相同的正负惯性指数和符号差。

24.设W = {(a1, a2, ... , a n)| a i R,a i = 0} 证明1.[1,]证明:W是R n的子空间。

2.[2,]求W的维数与一组基。

25.设B= , B= .在R2中定义变换 : 对任意XR2 x 2,X = BX + XC1.[1,]证明:是V上线性变换。

2.[2,]求在基E 11, E12, E21, E22下的矩阵。

26.设A = ,求正交矩阵T,使T'AT成对角形。

27.设V为数域P上n维线性空间,V 1, V2为其子空间,且V = V1V2,为V上可逆的线性变换. 证明:V = V+ V2。

128.设V为n维欧氏空间,若A既是V上对称变换且A2 = E。

证明:存在V的一组标准正交基,使得在该基下的矩阵为。

29.设X = ,求矩阵X。

30.设f(x1, x2, ... , x n) = X'AX是实二次型,其中A是实对称矩阵.如果X'AX= 0当且仅当X = 0。

证明:f (x1, x2, ... , x n)的秩为n,符号差是n 或- n.31.设= (1, 2, 3, 0), = (- 1, -2, 0, 3), = (0, 0, 1, 1),= (1, - 2, - 1, 0),W = {k i| k i R}。

1.[1,]证明:W是Rr4的子空间。

2.[2,]求W的维数与一组基。

32.设A三维向量空间V上可逆线性变换,A在基,,下的矩阵是。

1.[1,]证明:A的逆变换A-1也是V上线性变换。

2.[2,]求A-1的在,,下的矩阵。

33.设,求正交矩阵T,使T'AT成对角形。

34.设V为n维欧氏空间,若A既是V上正交变换,又是V上对称变换。

证明:A2是V上的恒等变换。

35.设V为数域P上n维线性空间,W为其子空间,A为V上线性变换。

证明:维(AW) +维 (A-1(0) W) =维W。

36.设X = ,求矩阵X。

37.设W = {A| A R3 x 3, A' = - A}。

1.[1,]证明:W是R3 x 3的一个子空间。

2.[2,]求W的维数与一组基。

38.设实二次型f (x1, x2, ... , x n) = X'AX的秩为n,符号差是s。

证明:R中存在(n - | s|)维子空间W使任意X0W,X0'AX0 = 0。

39.在R[x]3中定义变换A:任意f (x) R[x]3, A(f (x)) = xf'(x)。

1.[1,]证明:A是R[x]3上线性变换。

2.[2,]求A在基 1, x + 1, x2 + x + 1下的矩阵。

40.设A = ,求正交矩阵T,使T'AT成对角形。

41.设V为数域P上n维线性空间,A为V上线性变换。

证明:维(AV) +维 (A-1(0)) =维V。

42.设V为n维欧氏空间,若A是V变换,若任意,V, (A,) = (,A)。

证明:A是V上线性变换,从而为V上对称变换。

43.设V = P[x]5,f (x) V,有f (x) = (x2 - 1)q(x) + r(x),其中r(x) = 0或次(r(x)) < 2,1.[1,]证明:f (x) V,令A(f (x)) = r(x),则A是V的一个线性变换;2.[2,]求A在基 1, x, x2, x3, x4下的矩阵.44.用正交线性替换,把实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 +2x2x3化为标准形,并求所用的正交线性替换,45.设A, B是n x n正定矩阵,证明:A2 + B2是正定矩阵,46.设W = {A| A = (a ij)n P n x n,a ii = 0},1.[1,]证明:W是P n x n的子空间,2.[2,]求W的维数与一组基,47.判别下述结论是否正确,并说明理由,1.[1,]若n x n矩阵A, B有相同特征多项式,则A与B相似;2.[2,]若W是n维欧氏空间V的子空间W的正交补,则V = WW,48.设A为n维欧氏空间V的线性变换,证明:A是对称变换的充要条件是A有n个两两正交的特征向量,49.设A, B是数域P上n维线性空间V的两线性变换,若AB = BA,并且A有n个互异的特征值, 证明:A, B有n个线性无关的公共的特征向量.50.求矩阵A = 的特征值和特征向量。

51.求二次型f (x1, x2, x3) = x12 +5x1x2 -3x2x3的标准型,并写出所用的非退化的线性替换。

52.设V是由零多项式和数域上次数小于3的一元多项式的全体组成的P上线性空间。

对于任意的f(x) V,定义(f(x)) = f'(x) - f''(x).证明1.[1,]证明:是V的线性变换。

2.[2,]求在基 1, x + 1, x2 - x下的矩阵。

53.设V是一个欧氏空间,,V。

证明: || = || ( + ,- ) = 054.设W = {f (x)| f (x) P[x]4, f (2) = 0}.1.[1,]证明:W是P[x]4的子空间。

2.[2,]求W的维数与一组基。

55.设A为线性空间V上线性变换。

证明:A是可逆的线性变换的充要条件是A的特征值一定不等于零.56.设A为n x n实矩阵,A = A', A3 = E n证明:A = E n。

57.设X = ,求矩阵X。

58.在Rr3中定义线性变换A:(a 1, a2, a3) R3, A(a1, a2, a3) = (2a2 +a, a1 -4a2, 3a1)。

求在基 {(1, 0, 0),(1, 1, 0),(1, 1, 1)}下的矩3阵.59.用正交线性替换化二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标准形60.设V为数域P上n维线性空间,A是V的一个可逆线性变换,W是A子空间。

证明:W也是A-1-子空间。

61.设A是正定矩阵,证明:A-1, A2都是正定矩阵。

62.设V为数域P上n维线性空间,A是V的线性变换,且kerA= kerA2。

证明:V = kerA AV。

63.设V为n维欧氏空间,A是V上对称变换,且A2 = E。

证明:存在V的一标准正交基,使A在该基下的矩阵是.64.设B P2 x 2,1.[1,]证明:A(X) = BX- XB,X P2 x 2是P2 x 2上一个线性变换;2.[2,]当B = 时,求A在基E11, E12, E21, E22下的矩阵。

65.用正交线性替换,把实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 +2x2x3化为标准形,并求所用的正交线性替换。

66.设W1= | x, y, z P, W2= | A,b, c P都是P2 x 2的子空间。

1.[1,]求W 1W2的维数和一组基;2.[2,]求W1 + W2的维数。

67.判别下述结论是否正确,并说明理由。

1.[1,]设A, B P n x n,若A, B有相同特征多项式,则A与B相似;2.[2,]设A是P上n维线性空间V的线性变换,若A有n个不同特征值,则A在某基下的矩阵是对角形。

68.判别实二次型f (x1, x2, x3) = 3x12 +4x22 +5x32 +2x1x2 -4x2x3是不是正定的?并说明理由。

相关文档
最新文档