数学文化之海伦—秦九韶公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了公式①和它的证明,这一公式称为海伦公式.

我国南宋时期数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式

下面我们对公式②进行变形:

这说明海伦公式与秦九韶实质上是同一个公式,所以我们也称①为海伦—秦九韶公式.

证明过程 ①海伦公式的证明

证明:如图,在△ABC 中,过A 作高AD 交BC 于D,设BD = x ,那么DC = a-x,

由于AD 是△ABD 、△ACD 的公共边,

则h 2=c 2-x 2=b 2-(a-x )2,

解出x 得x=222

c -b +a 2a , 于是h=2

22

2c -b +a c -2a 2(), S △ABC 的面积=1ah 2=12a ·222

2c -b +a c -2a 2

(),

即S=122

22

22c +a -b c a -22

(),

令p=1

2(a+b+c ),

对被开方数分解因式,并整理得到 S=.))()((c p b p a p p --- 得证.

②由海伦公式推导秦九韶公式

秦九韶公式:])2([412

2

22

22c b a b a S -+-=. 推导过程:

))()((c p b p a p p ---.

=)22(2)22(22161

c p p b p a p -⋅⋅--)(

相关文档
最新文档