平面向量及其应用试题及答案百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、多选题1.题目文件丢失!

2.若a →,b →,c →

是任意的非零向量,则下列叙述正确的是( ) A .若a b →→

=,则a b →→

= B .若a c b c →→→→⋅=⋅,则a b →→

= C .若//a b →→,//b c →→,则//a c →→

D .若a b a b →

+=-,则a b →→

3.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知

cos cos 2B b

C a c

=-,

ABC S =

△b = )

A .1cos 2

B =

B .cos 2

B =

C .a c +=

D .a c +=4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列

ABC 有关的结论,正确的是( ) A .cos cos 0A B +>

B .若a b >,则cos2cos2A B <

C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径

D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=

5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,

2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )

A .//P

B CQ B .2133

BP BA BC =

+ C .0PA PC ⋅<

D .2S =

6.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6

A a c π

===则角C 的大小

是( ) A .

6

π

B .

3

π C .

56

π D .

23

π 7.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭

,与向量AB 平行的向量的坐标可以是( )

A .14,33⎛⎫ ⎪⎝⎭

B .97,2⎛⎫ ⎪⎝⎭

C .14,33⎛⎫-- ⎪⎝⎭

D .(7,9)

8.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b

C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立

D .在ABC 中,

sin sin sin +=+a b c

A B C

9.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )

A .2

AB AB AC B .2

BC CB AC C .2AC

AB BD

D .2

BD

BA BD

BC BD

10.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,

则( )

A .12

AF AD AB =+ B .1

()2

EF AD AB =

+ C .2133

AG AD AB =

- D .3BG GD =

11.设a 为非零向量,下列有关向量

||

a

a 的描述正确的是( ) A .|

|1||

a a =

B .

//||

a a a

C .

||

a a a =

D .

||||

a a a a ⋅=

12.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立

C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形

D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 13.给出下面四个命题,其中是真命题的是( )

A .0A

B BA B .AB B

C AC C .AB AC BC +=

D .00AB +=

14.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形 B .若A B >,则sin sin A B >

C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个

D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形 15.已知ABC ∆的面积为3

2

,且2,3b c ==,则A =( ) A .30°

B .60°

C .150°

D .120°

二、平面向量及其应用选择题

16.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则

BD AC ⋅=( )

A .2-

B .3-

C .2

D .5

17.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形

D .等边三角形

18.ABC 中,内角A ,B ,C 所对的边分别为a b c ,

,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则

ABC 一定为直角三角形;④若3

B π

=

,2a =,且该三角形有两解,则b 的范围是

(

)

3+∞,.以上结论中正确的有( )

A .1个

B .2个

C .3个

D .4个

19.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且

27

sin BAD ∠=

,则CD 等于( )

A 23

B 3

C 33

D 43

20.在ABC 中,若()()

0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形

B .直角三角形

C .等腰三角形

D .无法确定

相关文档
最新文档