连续梁箱梁设计

合集下载

箱梁模板设计计算汇总

箱梁模板设计计算汇总

箱梁模板设计计算1箱梁侧模以新安江特大桥主桥箱梁为例。

现浇混凝土对模板的侧压力计算:新浇筑的初凝时间按8h,腹板一次浇注高度4.5m,浇注速度1.5m/h,混凝土无缓凝作用的外加剂,设计坍落度16mm。

F=0.22*26*8*1.0*1.15*1.51/2=64.45KN/m2F=26*4.5=117.0KN/m2故F=64.45KN/m2作为模板侧压力的标准值。

q1=64.45*1.2+(1.5+4+4)*1.4=90.64KN/m2(适应计算模板承载能力)q2=64.45*1.2=77.34KN/m2(适应计算模板抗变形能力)1.1侧模面板计算面板为20mm厚木胶板,模板次楞(竖向分配梁)间距为300mm,计算高度1000mm。

面板截面参数:Ix=666670mm4,Wx=66667mm3,Sx=50000mm3,腹板厚1000mm。

按计算简图1(3跨连续梁)计算结果:Mmax=0.82*106N.mm,Vx=16315N,fmax=0.99mm。

由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为 2.48MPa,大于1.35MPa不满足。

由 Mx/Wx得计算得强度应力为4.89MPa,满足。

由fmax/L得挠跨比为1/304,不满足。

按计算简图2(较符合实际)计算结果:Mmax=0.25*106 N.mm,Vx=9064N,fmax=0.12mm。

由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为0.68MPa,满足。

由 Mx/Wx得计算得强度应力为3.82MPa,满足。

由fmax/L得挠跨比为1/1662,满足。

由此可见合理的建立计算模型确实能减少施工投入避免不必要的浪费。

1.2竖向次楞计算次楞荷载为:q3=90.64*103*0.3=27192N/m=27.19N/mm,选用方木100*100mm,截面参数查附表。

水平主楞间距为900mm,按3跨连续梁计算。

按计算简图计算Mmax=2.20*106N.mm,Vx=14683N,fmax=1.92mm,Pmax=26.92*103N。

交通部箱梁标准图箱形连续梁桥说明

交通部箱梁标准图箱形连续梁桥说明

说明一、技术标准与设计规范1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 4.《公路桥涵施工技术规范》JTJ041-20005.《公路交通安全设施设计技术规范》(JTG D81-2006)二、技术指标主要技术指标表三、主要材料1.混凝土1) 水泥:应采用高品质的强度等级为62.5、52.5、42.5的硅酸盐水泥,同一座桥的预制梁应采用同一品种水泥。

2) 粗骨料:应采用连续级配,碎石宜采用锤击式破碎生产。

碎石最大粒径不宜超过20mm,以防混凝土浇筑困难或振捣不密实。

3) 混凝土:预制主梁、端横梁、中横梁、现浇接头、湿接缝、封锚、桥面现浇层混凝土均采用C50;桥面铺装采用沥青混凝土。

2.普通钢筋普通钢筋采用R235和HRB335钢筋,钢筋应符合《钢筋混凝土用热轧光圆钢筋》(GB13013-1991)和《钢筋混凝土用热轧带肋钢筋》(GB1499-1998)的规定。

凡钢筋直径≥12mm者,采用HRB335热轧带肋钢;凡钢筋直径<12mm者,采用R235 (A3)钢。

本册图纸中R235钢筋主要采用了直径d=8、10mm两种规格;HRB335钢筋主要采用了直径d=12、16、20、22、25mm五种规格。

3.预应力钢筋预应力钢绞线采用抗拉强度标准值pkf=1860MPa、公称直径d=15.2mm的低松弛高强度钢绞线,其力学性能指标应符合《预应力混凝土用钢绞线》(GB/T5224-2003)的规定。

4.其他材料1)钢板:钢板应采用《碳素结构钢》GB700-1998规定的Q235B钢板。

2)锚具:预制箱梁正弯矩钢束采用M15-3、M15-4圆形锚具及其配套的配件,预应力管道采用圆形金属波纹管;箱梁墩顶连续段处负弯矩钢束采用BM15-4、BM15-5扁形锚具及其配套的配件,预应力管道采用扁形金属波纹管。

等截面连续箱梁施工方案

等截面连续箱梁施工方案

现浇等截面连续箱梁施工方案1、设计简介本桥上部结构为4孔一联(4×25m)现浇预应力混凝土箱梁,梁高为1.40m,箱室高1.0m,桥梁全长100m,桥宽15.0m,分左右双幅,单幅宽7.5m,其中梁底宽3.75m。

本桥与主线成正交,平面大部分位于直线段内,后小部分位于A=60、R=60m的缓和曲线段上,纵断位于纵坡+3.8%、-2.4%、竖曲线半径R=2000m的竖曲线上,桥面采用双向横坡2%,桥面横坡以箱梁整体旋转而成。

桥台采用单幅双GPZ3DX盆式支座,2号墩采用墩梁固结,1号、3号墩采用单幅单GPZ6DX盆式支座。

桥下地质为分别为4m厚亚粘土、5m厚含粘性土卵石、粉砂岩等。

2、施工方案概述(1)支架基础对可以施工的桥位进行清理、整平、回填清宕渣1m、碾压密实,然后用粉砂岩宕渣填筑至梁底下1m处,填筑时分层摊铺碾压,分层厚度为40cm,填筑时埋置沉降桩进行沉降观测,每三天观测一次,直至填筑完成一个月后,且连续三次每次沉降量不超过3mm,然后卸载1m,整平、碾压,经检测符合要求后最后铺设10cm厚的河卵石、浇筑10cm厚的C20素混凝土作为支架基础。

具体见附图1。

(2)支架搭设按设计方案采用满堂支架现浇施工,施工时左右幅分幅前后进行。

在支架基础施工完成后,对箱梁支架进行放样,确定其平面位置,在架设时按预先确定的位置,竖向钢管平面纵横间距为80cm×80cm,腹板处支撑纵横间距加密为40cm×40cm,墩四周的纵横间距同样加密为40cm×40cm。

为了增加支架的整体性对于每根竖向钢管用纵横钢管水平相连结,水平钢管的竖向间距为120cm,支架顶部的水平钢管纵向(根据纵坡为弧线形)间距调整为40cm。

为了确保满堂支架的整体强度、刚度和稳定性,每跨纵向每隔3m分别在桥墩处、1/8跨、3/8跨、跨中设置9道钢管剪刀撑,每跨横向设立5道剪刀撑。

搭设要求:竖杆要求每根竖直,采用单根钢管。

变截面箱型连续梁桥桥梁工程毕业设计

变截面箱型连续梁桥桥梁工程毕业设计

目录第一章方案比选 (1)1.1方案选取 (1)1.11方案一:50+80+50M的变截面箱型连续梁桥 (1)1.12方案二:4×45M等截面预应力砼连续刚构梁 (2)1.13方案三:65+115M斜拉桥 (3)1.2各方案主要优缺点比较表 (4)1.3.结论 (4)第二章毛截面几何特性计算 (5)2.1基本资料 (5)2.1.1主要技术指标 (5)2.1.2材料规格 (5)2.2结构计算简图 (5)2.3毛截面几何特性计算 (6)第三章内力计算及组合 (9)3.1荷载 (10)3.1.1结构重力荷载 (10)3.1.2支座不均匀沉降 (11)3.1.3活载 (11)3.2结构重力作用以及影响线计算 (11)3.2.1输入数据 (11)3.3支座沉降(SQ2荷载)影响计算 (20)3.5荷载组合 (24)3.5.1按承载能力极限状态进行内力组合 (25)3.5.2按正常使用极限状态进行内力组合 (27)第四章配筋计算 (31)4.1计算原则 (31)4.2预应力钢筋估算 (31)4.2.1材料性能参数 (31)4.2.2预应力钢筋数量的确定及布置 (31)4.3预应力筋的布置原则 (37)第五章预应力钢束的估算及布置 (39)5.1按正常使用极限状态的应力要求估算 (39)5.1.1截面上、下缘均布置预应力筋 (39)5.1.2仅在截面下缘布置预应力筋 (40)5.1.3仅在截面上缘布置预应力筋 (41)5.2按承载能力极限状态的强度要求估算 (41)5.3预应力筋估算结果 (42)5.4预应力筋束的布置原则 (44)5.5预应力筋束的布置结果 (45)第六章净截面及换算截面几何特性计算 (45)6.1净截面几何特性计算(见表6-1) (46)6.2换算截面几何特性计算(见表6-2) (46)第七章预应力损失及有效预应力计算 (47)7.1控制应力及有关参数的确定 (48)7.1.1控制应力 (48)7.1.2其他参数 (48)σ的计算 (48)7.2摩阻损失1lσ的计算 (50)7.3混凝土的弹性压缩损失4lσ的计算 (52)7.4预应力筋束松弛损失5l的计算 (52)7.5混凝土收缩、徐变损失6l7.6预应力损失组合及有效预应力的计算 (53)第八章强度验算 (56)8.1基本理论 (56)8.2计算公式 (56)8.2.1矩形截面 (57)8.2.2工形截面 (57)8.3计算结果 (58)第九章应力验算 (61)9.1正常使用极限状态应力验算 (61)9.2短期效应组合 (62)9.3长期效应组合 (67)9.4基本组合 (73)9.5.承载能力极限状态正截面强度验算 (78)第十章变形验算 (83)10.1挠度验算 ........................................................................................ 错误!未定义书签。

三跨预应力混凝土连续箱梁桥设计

三跨预应力混凝土连续箱梁桥设计
The second step is to use qiaoliang software to analyze internal gross force of the structures (including dead load and lived load), the internal force composition can be done by using the compute results. According to the internal force composited, the evaluated amount of longitudinal tendons can be worked out, then we can distribute the tendons to the bridge.
1.1.2工程概况....................................................7
1.1.3地基评价....................................................8
1.2设计资料.......................................................8
The third steps is to calculate the loss of pre-stressing and secondary force due to pre-stressing, first dead loads and temperature, bearing displacement, and so on.
3.3桥梁设计荷载..................................................18

多跨连续现浇梁支架及箱梁施工方案

多跨连续现浇梁支架及箱梁施工方案

多跨连续现浇梁支架及箱梁施工方案支架为钢管桩+贝雷梁的结构形式,贝雷梁纵向按不大于6米一跨布置,当通过桥墩断开时,在墩顶两侧加钢管桩基础支撑。

钢管桩顶设2140a工字钢作为下横梁。

贝雷梁上铺112.6工字钢作为横向分布梁,纵向间距30cm,分布梁上设纵向方木支撑箱梁底模。

钢管喇格为&529x1Omm,箱梁顶宽16.4时横向每排布置6根、顶宽大于16.4m时横向每排布置6~10根,钢管桩上下各焊接一块钢板,下端支撑在条形基础上,上端布置砂箱作卸落装置。

砂箱上下钢板分别与钢管桩顶上钢板和下横梁焊接固定。

2.支架结构管桩规格为529×10mm,贝雷梁纵向按不大于6米一跨布置,当通过桥墩断开时,在墩顶两侧加钢管桩基础支撑。

钢管桩顶设214Oa工字钢作为下横梁。

贝雷梁上铺112.6工字钢做为横向分布梁,纵向间距30cm,分布梁上设纵向方木支撑箱梁底模。

支架典型断面如下图痛:箱梁顶宽16.4m时钢管桩横向每排6根按3+2.5χ3+3m间距布置。

箱梁顶宽大于16.4m 时,横向每排布置6~10根钢管桩,横向间距按3+2.5+1×n+2.5+3m间距布置,1数值不大于3m。

2.1、地基基础原地貌为稻田软基区,同时由于纵向便道设置在左右幅中间,桩基钻孔施工的泥浆池、沉淀池均设置在墩与墩之间,再次形成部分软基,现场地基承载力较差。

同时承台厚度有2.5米、3米结构形式,现场埋设约2~3米,承台基坑开挖深度约5米,采用放坡明开挖,基坑开挖的面积与深度均较大,基坑周围回填区被水浸泡再次形成软基区。

现浇梁支架施工前,先挖除淤泥质软基或泥浆沉渣彻底清除干净,再换填片石,片石层上施工条形基础。

根据现场地质条件,换填片石平均厚度约2.5米,宽3.0米,条形基础宽1.5米,高1.5米,上下各布置一层钢筋网片。

2.2、钢管桩支架钢管桩采用529×10mm规格钢管桩,随箱梁顶宽变化、每6~10根为一排,纵向分布间距不大于6米,墩柱处加密。

连续梁施工设计方案及施工方法

连续梁施工设计方案及施工方法

连续梁施工案及施工法一、概述本项目桥梁上部结构采用预应力混凝土连续箱梁,截面采用单箱单室截面形式,均为等截面连续梁。

全桥共分8 个箱,每两个箱为一组,期间留有后浇湿接缝,该湿接缝待各箱施工完毕,桥面铺装完成之前浇注。

连续梁四跨一联,跨度组成为30.65+2 X 36+30.65m,全桥分四幅布置。

所有箱梁采用满膛脚手支架施工。

分为三节段四次浇注完成,每次浇注完成后,拉节段纵向预应力。

主要施工案1、根据现场施工情况及实际存在的据体情况对开工报告中的施工案特作修改,上报给项目经理部及驻地办请审批。

2、第四、第三跨箱梁位于 4 号台与 3 号墩之间及 3 号墩与 2 号墩之间,地形较好.第一案:地面用60%砂砾掺20% 白灰或者用粉煤灰再加20% 的土充分拌合,找平辗压达到95%的密实度.第二案:地面用90% 砂砾加10% 水泥充分拌合辗压,养护到一定时间后,再进行下道工作.地面上铺20 X 25的枕木间距50公分通铺,考虑到地面到箱梁底部只有 1.3 米至 1.7 米之间,除去枕木及支柱顶部的纵向、横向的 2 道12 X 15 的木后支柱实际高度仅剩0.8 —1.2 之间,原报施工案所用钢管支柱已不适用。

现改为圆木支柱,支柱纵、横向都用板条钉死,支柱间距纵、横向都采用50 公分设一支柱的办法。

支柱顶部道先每间隔50 公分设一通道纵向12X 15 木,再在纵向上面间隔50 公分设横向12X 15 的枕木,上满跨铺15cm 的高压竹胶板。

(附简图说明)3、而桥位于 2 号墩与 1 号墩及 1 号墩柱与0 号桥台之间,部分因为是旧河道及河道长年形成的淤泥和堆积沙形成的软地基,我们施工中除用上述办法处理地面承受力外考虑到地基是软基础形成,所以除用砂砾处理外,不适用枕木的办法来支承全跨的的部分,采用砂砾处理后,改用钢筋砼底梁取代地面枕木而立支柱,支柱采用木支柱。

支架搭设完毕,要求标高、坡度、轴线基本形成,使底模能顺利铺设。

结构设计知识:钢筋混凝土箱梁桥梁结构的设计与计算

结构设计知识:钢筋混凝土箱梁桥梁结构的设计与计算

结构设计知识:钢筋混凝土箱梁桥梁结构的设计与计算钢筋混凝土箱梁桥梁结构的设计与计算随着经济发展和城市建设的不断推进,桥梁作为城市重要的交通建设工程之一,也得到了越来越多的关注和重视。

在众多桥梁结构中,钢筋混凝土箱梁桥梁结构因其优良的抗弯、抗剪能力和较强的耐久性,被广泛应用于高速公路、城市道路等场所。

本文将从钢筋混凝土箱梁桥梁结构的设计和计算两个方面进行详细阐述。

一、结构设计1.材料的选用在钢筋混凝土箱梁桥梁结构的设计中,材料的选用是首要问题。

一般来说,梁的上下翼缘应采用C50以上的混凝土,而配筋应符合相关要求,同时要考虑到加固筋的最大孔隙率。

而箱梁的主体部分选用C35以上的混凝土,内部加筋可以采用Q345等牢固钢材。

2.桥梁的结构类型钢筋混凝土箱梁桥梁结构在结构类型方面可分为简支梁、连续梁和钢混组合梁三种类型。

对于简支梁和连续梁,选用时需要考虑桥梁横向刚度的要求,对于较长的桥梁,建议采用连续梁结构;对于较短的桥梁,如道路桥梁,基本上都可以选择使用简支梁结构。

3.桥梁的结构尺寸在进行钢筋混凝土箱梁桥梁结构设计时,需要根据桥梁所处场所、承载能力和使用要求等因素来确定桥梁的结构尺寸。

其中,梁的高度、上下翼缘宽度、箱梁壁厚、纵向和横向加筋等都需要适当控制。

在此基础上,在考虑到钢筋混凝土箱梁桥梁整体的受力特点,逐步完成整个桥梁的结构设计。

二、结构计算1.立柱的计算在钢筋混凝土箱梁桥梁的结构计算中,箱梁内部采用立柱承载的结构形式,而立柱则是桥梁结构的重要组成部分。

立柱按照受力状态可分为压力柱和拉力柱,通过对应的计算方法,计算出立柱的承载能力和受力状态。

2.梁的受力计算桥梁中梁的受力计算是整个结构设计过程的重点。

梁的受力状态需要根据桥梁的荷载、支座和箱梁等因素来进行分析,其中弯矩、剪力和轴力是梁受力中需要特别关注的三个方面。

在梁的整体计算中,需要先分析梁的静力特性、计算梁的内力分布,再分别进行翼缘加强和箱梁加强的计算,最终将各个分项计算结果进行综合,得出梁的受力状态和结构合理性的评价结果。

05 预应力混凝土简支变连续小箱梁示例

05 预应力混凝土简支变连续小箱梁示例

05 预应力混凝土简支变连续小箱梁示例1.本文目的本文的目的是,通过一个预应力混凝土简支变连续小箱梁示例的演示,使大家掌握在“桥梁设计师”中简支变连续小箱梁的设计过程。

2.系统支持设计师1.0.2版本预应力混凝土简支变连续小箱梁的依据:2005年出版的由中交第一公路勘察设计研究院编制的《装配式部分预应力混凝土箱形连续梁桥》公路桥涵通用图、2007年由交通部出版的《装配式部分预应力混凝土箱形连续梁桥》公路桥涵通用图;交通部《公路桥涵设计通用规范》(JTG D60-2004)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)只支持直桥,支持斜交,且只支持各标准跨径相同的简支变连续小箱梁。

斜交时小箱梁两端的斜交角度需相等。

3.流程介绍按如下流程可从无到有建立一个简支变连续小箱梁。

图3-14.工程示例4.1工程概况为使大家比较直观的了解桥梁设计师中简支变连续小箱梁的设计过程,下面我们以一个4跨斜交的预应力混凝土简支变连续小箱梁为例来进行介绍。

(图4-1-1)图4-1-14.2布孔信息双击打开路线下的路线总体,打开布孔信息标签进行编辑。

(图4-2-1)图4-2-1●布孔线里程这列,第一行数字表示里程桩号,其后各行数字表示跨径。

●布孔线序号这列的数字,和构件名中的“##”后的数字需对应起来。

对上部构件,如果构件名是“新跨1##n”(n为阿拉伯数字),则布孔线序号的第n行是这个构件的起始位置,n+1行的跨径为该构件的第一孔跨径。

本例我们的构件名是“简支变连续小箱梁##1”,那么布孔线序号的第1行桩号10是当前连续小箱梁的起始绝对里程,此示例共有4跨,那我们在第2行到第5行的布孔线里程列都输入30表示第一孔到第四孔跨径都为30m(实际里程在表格的最后一列中由程序自动计算)。

●桥墩中心线距离布孔线L:桥墩中心线在布孔线大桩号侧为正,小桩号侧为负。

本例中L为0。

●斜交角A(度):水平面内,由道路设计线法线旋转至布孔线的角度。

16m现浇连续梁施工方案

16m现浇连续梁施工方案

16m现浇连续梁施工方案一、桥梁概况东古丘三桥为6*16m一联,单箱双室现浇钢筋砼连续箱梁桥。

本桥位于二反向缓和曲线上,反向曲线共切点位于K30+071。

673处。

桥上纵坡-2.5%,全桥在第一、二、三桥孔内右侧加宽到K30+071.673,加宽最大值为54。

7cm;其余桥孔不加宽,故此采用6*16m 现浇箱梁,起讫桩号为K30+033.46-K30+130.54,桥梁中心桩号为K30+082,全桥长97.68m。

主梁中心高度为1。

4m,箱底板平置,标准宽7。

0m,按规定曲线内侧加宽,本桥梁体最大宽度为7。

537m。

箱梁顶板设置横向坡度,顶板标准宽为10m,曲线内侧最大加宽0.537m;(0#台右侧)左,右侧翼板宽为1.5m不变。

二、施工方案现浇箱梁支架采用满堂钢管支架,纵横梁采用100*100松方木。

模板采用1.2cm漆膜竹胶板。

第三跨设机动车道4*5。

0m,支架全宽11~13m。

6孔箱梁砼分两次浇筑:第一次浇筑(6孔)底板及腹板砼(至顶腹板交界处);第二次浇筑(6孔)顶板及翼板砼。

箱梁砼设计总量为635m3,第一次浇筑约340m3,第二次浇筑约295m3。

采用汽车泵浇筑.钢管架底部支撑及地基处理:由于东古丘三桥地处山丘地带,地势不平坦,每孔原地面高差起伏较大。

第一、二、六桥孔处于山坡上,地基处理时必须设置台阶,用打夯机夯实;第三孔横跨老路,安设4*5m的机动车道;第四孔为跨越小溪处,在小溪内埋设圆管排水,第四、五孔用碎石土回填,回填高度为3m左右,经压路机碾压密实.最后全桥地基采用C25砼铺底,以保证地基坚实可靠,减少地基不均匀沉降,确保支架的稳定性.扎设钢管架时,钢管不能直接接触地面。

钢管直接接触地面时,受力面积小,导致应力增大。

因此采用10*10cm的小方块竹胶板垫起来减小应力对地基的影响。

钢管支架的搭设及模板的铺设:满堂钢管支架布设间距采用:顺桥向70cm,横桥向60cm,上下间距120cm;靠横梁处钢管间距加密,顺桥向按40cm布置;机动车道(4*5m)处钢管间距按顺桥向30cm布置两侧,每侧共4排,搭设时多设置剪力支撑加强.桥两侧翼板处,横桥向按80cm布置.支架搭设时应保持钢管的垂直及水平。

变截面连续箱梁桥设计

变截面连续箱梁桥设计

本科毕业论文(设计)诚信声明本人郑重声明:所呈交的毕业论文(设计),题目《资江大桥设计(五)》是本人在指导教师的指导下,进行研究工作所取得的成果。

对本文的研究作出重要贡献的个人和集体,均已在文章以明确方式注明。

除此之外,本论文(设计)不包含任何其他个人或集体已经发表或撰写过的作品成果。

本人完全意识到本声明应承担的责任。

作者签名:日期:年月日摘要本设计题目为资江大桥(五)预应力混凝土连续梁桥,本项目位于益阳市资阳区和赫山区境内,线路全长2547.8m,其中大桥桥长550m,桥头接线长752.18m,另外在大桥资阳岸设匝道桥一座,长185.24m。

单向三车道,上部结构采用先简支后连续的预应力混凝土连续箱型梁桥。

简支转连续是桥梁施工中较为常见的一种方法,该施工方法的主要特点是施工方法简单可行,施工质量可靠,实现了桥梁施工的工厂化、标准化和装配化。

目前随着高等公路的发展,为改善桥梁行车的舒适性,简支转连续梁桥在中、小跨径的连续梁桥中得到了广泛地应用。

随着社会的发展,建立起更加发达、快捷、便利的交通网络成为了影响区域经济发展的重要因素。

上世纪60年代至今,由于科学技术的发展,现代工业制造水平的提高,对桥梁建造提出了越来越高的要求,通过一代又一代的土木人的辛勤奋斗,高速公路上循环交叉的立交桥,高架桥,长达几十公里的跨海大桥,新发展的城郊高速公路,铁路桥与轻轨运输高架桥等。

这些桥梁犹如一条横跨江海上的“彩带”,将我们的世界装扮的愈发多姿多彩。

纵观世界各国的大城市,常以工程雄伟的大桥作为城市的标志与骄傲。

桥梁建筑已不仅仅是一种交通出行的要求,而且作为一种结构艺术的形式,存在于我们的生活中。

梁桥体系桥梁是一种非常古老而实用的桥型。

梁作为承重结构,是以它的抗弯能力来承受荷载的,梁分简支梁、悬臂梁、固端梁和连续梁等,悬臂梁,固端梁和连续梁都是利用支座上的卸载弯矩去减少跨中弯矩使梁跨内的内力分配更合理,以同等抗弯能力的构件断面就可建成重大跨径的桥梁。

上海凌空路川杨河大桥箱梁设计——悬臂浇筑预应力混凝土连续箱梁

上海凌空路川杨河大桥箱梁设计——悬臂浇筑预应力混凝土连续箱梁
置 见 图 1 。
梁外 . 亲部位较少设 置.本桥仅在 支点处设 其 横梁a 中支点处设 置 2 m厚 的中横 梁,中横 2
梁处设人孔 , 端支点 处设置 1 m厚 的端横粱 , S 端横梁为 L .以利于引桥板梁 的架设。 形 2 2 预应 力筋 2 本桥箱 粱设置双向预 应力 . 即纵 向预应力 和横向预应 力 纵向预应 力钢束包括 两大类,
高跨 比为 13 1 54。
腹板 束和顶 板束 通常对 称于 箱梁 断面 中心布
置,钢束随 着悬臂施 工的进展不 断加长 . 腹板 束分上下几 层布置 , 束布置在下 层,长束布 短 置在上层 ,顶板束的短束 布置在靠 近腹板的位 置,长束布 置在远离腹板的 位置。 在台拢 成桥后 ,需张拉根据使 用阶段要求 设 置的顶底 板束及合拢 束 在边跨 现浇段,底 板 束需向上 弯起分别锚 固于梁端及顶 板顶面的 槽 形口内 .其作用除 7 支点、边跨 跨中截面 对
在边跨靠 近支点的现浇 段,梁高相对 较低 , 主 拉应力较 大,受力比较 复杂, 因 此本 桥将底板 殛腹板 同 时设 计为变厚度 。 横 隔粱 的主要 作用 是增 加箱梁 的横 向刚
提 高抗弯能 力外,主要用来 改善腹板 的受力情 况 ,解决近支点截 面主拉应 力 大问题。 较 跨中合 拢段锚固于底板 上的台拉 束由于底 板在 纵向呈 曲线.在合拉束 张拉后会沿 底板曲
1 工 程概 况
凌空路川杨 河桥位于浦东 新 龙东大 道至 华 夏东路之间 , 于新建工程 ,凌空路与 川杨 属
河 斜交 1 。 ,桥梁采 用斜桥正 做的 方法进 行 I 设 计,分两幅桥进 行布置 , 在跨 径布置上 ,从
S一 0 m。腹 板及 顶底板 厚度 的变 化,可以 O8c 较好的满 足梁内各截面 不同的受 力要求。尤其

工学连续梁桥的设计与计算

工学连续梁桥的设计与计算

2)一次落架时
两跨连续梁
根据施工 情况确定
3)各跨龄期不同时
4)多跨连续梁
五、结构因混凝土收缩引起的次内力计算
1、收缩变化规律
– 假设混凝土收缩规律与徐变相同
收缩终极值
2、微分平衡法(Dinshinger法)
– 位移微分公式
收缩产生的弹 性应变增量
收缩产生的应力状态的 徐变增量,初始应力为0
二、自应力计算
温差应变 平截面假定 温差自应变 温差自应力
T(y)=T(y) a(y)=0+y (y)=T(y)-a(y)=T(y)-(0+y) s0(y)=E(y)=E{T(y)-(0+y)}
截面内水平力平衡 截面内力矩平衡 求解得
三、温度次应力计算
力法方程
11x1T+1T=0
温度次力矩 温差次应力
一、温度变化对结构的影响
– 产生的原因:常年温差、日照、砼水化热 – 常年温差:构件的伸长、缩短;
连续梁——设伸缩缝 拱桥、刚构桥——结构次内力 – 日照温差:构件弯曲——结构次内力; 线性温度场——次内力 非线性温度场——次内力、自应力
线性温度梯度对结构的影响 非线性温度梯度对结构的影响
温度梯度场
瞬时沉降弹性 及徐变变形
沉降徐变 增量变形
三、力法方程
沉降弹性 增量变形
后期沉降 自身变形
• 墩台基础沉降规律与徐变变化规律相似时 • 墩台基础沉降瞬时完成时 • 徐变使墩台基础沉降的次内力减小
• 连续梁内力调整措施
– 最好的办法是在成桥后压重 – 通过支承反力的调整将被徐变释放
第七节 温度应力计算
主梁预制
主梁吊装——梁重116吨
后期预应力钢筋张拉

连续梁施工技术方案

连续梁施工技术方案

挂篮悬浇连续箱梁施工方案1.概述桥型设计为(56+90+56)m=202m变截面预应力混凝土连续箱梁。

箱梁横断面为直腹板单箱单室整体断面,墩顶梁高5。

06m,跨中梁高2.46m,梁底呈二次抛物线变化,箱梁顶板宽13m,底板宽6。

5m,两侧悬臂长3.45m(3.05m),底板腹板变化厚度,顶板等厚.连续箱梁采用三向预应力,纵向、横向预应力均为¢j15。

24高强低松驰钢绞线,Rby=1860Mpa,OVM锚具,全桥竖向预应力为φ25高强精轧螺纹钢筋。

主墩和过渡墩均为钢筋砼薄壁墩,壁厚2。

5m,墩宽7。

5m,承台厚为2。

5m,主墩每墩24¢1.2m钻孔灌注桩,过渡墩每墩12根¢1。

2m钻孔灌注桩,钻孔桩按摩擦桩设计。

桥面铺装采用6cm沥青砼+4cm沥青砼防滑损耗面层,桥面横坡2%;钻孔灌注桩均在岸上埋设钢护筒钻孔,灌注水下砼成桩.上部结构采用挂篮悬臂浇筑的施工方式,整个施工过程不影响运河通航.本桥共有钻孔灌注桩72根,计3960m,桩长为55m,其中过渡墩¢1200mm钻孔灌注桩24根,主墩¢1200mm钻孔灌注桩48根。

本桥共有承台4座,薄壁墩8根.1.1设计标准及设计荷载:1。

1.1桥梁宽度:0.5m(防撞栏)+0.5m(路缘带)+11。

75m(行车道)+0.5m (分隔带)+11.75m(行车道)+0.5m(路缘带)+0。

5m(防撞栏)。

1.1.2设计洪水频率1/100。

1.1.3设计通航洪水频率1/20,设计通航水位2。

206m。

1.1。

4通航等级:Ⅲ级。

1。

1。

5设计荷载:汽车—-超20,挂车—-120。

1.2上部结构:本方案为(56+90+56)m三孔预应力砼连续梁。

1.3下部结构:1.3.1主墩为钢筋混凝土薄壁墩,基础为¢1200mm钻孔灌注桩。

1.3.2过渡墩为钢筋混凝土薄壁墩,基础为¢1200mm钻孔灌注桩。

2。

施工流程2。

1第一阶段在承台上架设钢管作为临时支撑,并采用HR型可调重型门式脚手搭设0#块浇筑支架,安装永久支座和临时支座,临时支座顶须高出永久支座10mm,并将临时支座锚固.0#块支架预压,并调整其标高,在0#块的支架上浇筑0#块件,张拉0#块件XD、XF束。

交通部箱梁标准图箱形连续梁桥说明

交通部箱梁标准图箱形连续梁桥说明

说明一、技术标准与设计规范1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 4.《公路桥涵施工技术规范》JTJ041-20005.《公路交通安全设施设计技术规范》(JTG D81-2006)二、技术指标主要技术指标表三、主要材料1.混凝土1) 水泥:应采用高品质的强度等级为62.5、52.5、42.5的硅酸盐水泥,同一座桥的预制梁应采用同一品种水泥。

2) 粗骨料:应采用连续级配,碎石宜采用锤击式破碎生产。

碎石最大粒径不宜超过20mm,以防混凝土浇筑困难或振捣不密实。

3) 混凝土:预制主梁、端横梁、中横梁、现浇接头、湿接缝、封锚、桥面现浇层混凝土均采用C50;桥面铺装采用沥青混凝土。

2.普通钢筋普通钢筋采用R235和HRB335钢筋,钢筋应符合《钢筋混凝土用热轧光圆钢筋》(GB13013-1991)和《钢筋混凝土用热轧带肋钢筋》(GB1499-1998)的规定。

凡钢筋直径≥12mm者,采用HRB335热轧带肋钢;凡钢筋直径<12mm者,采用R235 (A3)钢。

本册图纸中R235钢筋主要采用了直径d=8、10mm两种规格;HRB335钢筋主要采用了直径d=12、16、20、22、25mm五种规格。

3.预应力钢筋预应力钢绞线采用抗拉强度标准值pkf=1860MPa、公称直径d=15.2mm的低松弛高强度钢绞线,其力学性能指标应符合《预应力混凝土用钢绞线》(GB/T5224-2003)的规定。

4.其他材料1)钢板:钢板应采用《碳素结构钢》GB700-1998规定的Q235B钢板。

2)锚具:预制箱梁正弯矩钢束采用M15-3、M15-4圆形锚具及其配套的配件,预应力管道采用圆形金属波纹管;箱梁墩顶连续段处负弯矩钢束采用BM15-4、BM15-5扁形锚具及其配套的配件,预应力管道采用扁形金属波纹管。

midas--预应力混凝土连续梁桥设计1+RC设计验算说明

midas--预应力混凝土连续梁桥设计1+RC设计验算说明

MIDAS Information Technology(Beijing) Co., Ltd
概要
本例题使用一个简单的预应力混凝土两跨连续梁箱模型(图1)来重点介 绍MIDAS/Civil 2006 软件的新增功能,PSC桥梁建模助手、横向分析、任意 截面显示等的输入方法。
图1. 分析模型
2
MIDAS Information Technology(Beijing) Co., Ltd
模型>单元> 扩展单元
全选
扩展类型>节点 Æ线单元
单元类型>梁单元 ; 材料>1:C50 ; 截面> 1: span
生成形式>复制和移动
复制和移动>等间距>dx,dy,dz>(2, 0, 0)
复制次数>(60) ↵
模型>单元>复制和移动
单选 (节点:31)
等间距>dx,dy,dz>(0,0,-7.13)
3.500 450 1.750
12.700 500
1.350 1.350
3.500 1.750
2.000 600 450 1.750 1.050
CL OF BOX
275 250
325 250
275 250 260 1.840 350 80 2.700 250
250350 802源自05.680850
450 1.250
同时定义多种材料
特性时,使用 键可以连续输入。
下面定义PSC Beam所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50 ↵

现浇箱梁设计存在问题及解决办法

现浇箱梁设计存在问题及解决办法

现浇箱梁设计存在问题及解决办法随着我国桥梁技术的提高,桥梁的美观也越来越高,现浇连续箱梁因具有外形简捷、美观、抗扭刚度大、整体性好、适用性强等优点,在桥梁建设中发挥着重要的作用。

由于箱梁问题较为复杂,国内研究也并非完全成熟,各单位总体设计思想也存在差异,导致现浇箱梁设计图纸的多样性。

点我:领取工程大礼包。

如何让现浇箱梁设计和施工标准化良好衔接,本文会对设计师有良好的启发。

以往设计、施工中存在的主要问题1、箱梁拆模后在腹板与底部承托部位出现空洞、蜂窝、麻面,部分腹板距底板1m高范围内出现空洞、蜂窝、麻面。

2、箱梁底板在沿预应力钢束波纹管位置下出现的断断续续、长度不等的纵向裂缝。

3、箱梁底板横向裂缝4、箱梁腹板出现斜向裂缝现浇混凝土箱梁经常出现腹板斜向裂缝,表现为45°的斜裂缝和沿预应力索管方向的斜裂缝,往往靠近锚头处裂缝开展较宽,逐渐变窄而至消失。

5 、箱梁翼缘板横向裂缝翼缘板横向裂缝一般在施工期就出现,一般由腹板处向悬臂外伸展。

6 、预应力钢束张拉时,钢束伸长量超出了允许偏差值如包含平弯、竖弯的长钢束伸长值比设计值偏小,短钢束的伸长值比设计值偏大。

7、预应力筋的断丝和滑丝预应力混凝土箱梁张拉时发生预应力钢索的断丝和滑丝,使得箱梁的预应力钢束受力不均匀或使构件不能达到所要求的预应力度。

8、锚头下锚板处混凝土变形开裂成因:1)锚板附近钢筋布置较密,浇筑混凝土时,振捣不实、混凝土疏散或仅有砂浆,导致该处混凝土强度低。

2 )锚垫板下钢筋布置偏少、局部承压尺寸偏小,受压面积偏小,局部应力过大。

3)锚板或锚垫板设计厚度偏薄,受力后变形多大。

9、表面龟裂一般是由于连续梁在施工过程中养护不及时或温度变化较大时产生的。

10、管道压浆不密实管道压浆不密实是目前预应力桥梁的质量通病。

点我:领取工程大礼包。

11、分段施工时,连接器附近腹板开裂连接器处腹板厚度较小,施工缝处钢筋连接长度不够,施工缝未按冷缝进行处理等。

简支变连续箱型梁桥桥梁毕业设计

简支变连续箱型梁桥桥梁毕业设计

目录第1章桥梁方案比选 (4)1.1桥梁设计工程资料 (4)1.1.3 水文及工程地质 (4)1.2 桥梁方案拟定 (5)1.2.1 方案一:简支转连续分离式箱梁桥 (5)1.2.2 方案二:连续梁桥 (8)1.3 桥型方案综合比选 (11)1.3.1 拟定方案比较 (11)1.3.2 选定桥梁细部尺寸拟定 (11)第2章 MIDAS建模 (15)2.1特性值 (15)2.1.1定义材料: (15)2.1.2时间依存材料(收缩徐变) (16)2.1.4截面 (17)2.1.5修改单元的材料依存特性(修改截面计算厚度) (18)2.2 结构 (19)2.2.1节点 (19)2.2.1单元 (19)2.3 边界条件 (20)2.3.1支撑 (20)2.4 静力荷载 (21)2.3.1 自重 (21)2.3.2 二期 (21)2.3.3预应力 (22)2.3.4 温度 (23)2.4 张拉钢束 (23)2.4.1钢束特性值 (23)2.4.2 钢束形状 (24)2.5 移动荷载分析 (24)2.5.1移动荷载规范 (24)2.5.2 车道 (25)2.5.3车辆 (25)2.5.4移动荷载工况 (26)2.6支座沉降分析 (27)2.6.1支座沉降组 (27)2.6.2支座沉降荷载工况 (28)2.7施工阶段 (29)2.7.1 施工阶段数据分析 (29)第3章桥面板计算 (30)3.1 自由悬臂板 (30)3.1.1 永久作用 (30)3.1.2 可变作用 (31)3.1.3 荷载内力组合 (32)13.2 连续单向板 (32)3.2.1 永久作用效应 (32)3.2.2 可变作用效应 (34)3.2.3 可变作用效应组合 (36)3.3 截面配筋设计以及承载能力验算 (37)3.3.1 悬臂板支点截面配筋设计 (37)3.3.2 连续板跨中截面配筋设计 (38)第4章MIDAS参数计算 (39)4.1 车道荷载计算 (39)4.2 人群荷载标准值计算 (39)4.3 二期恒载计算 (39)4.4 施工方法: (40)第5章内里组合 (40)5.1 作用分类 (40)5.2 承载能力极限状态设计组合 (41)5.2.1 基本组合 (41)5.2.2 输出基本组合内力图 (42)5.2.3 偶然组合 (42)5.3 正常使用极限状态设计组合 (42)5.3.1 作用短期效应组合 (42)5.3.2 输出短期效应组合图形 (43)5.3.3 作用长期效应组合 (43)5.3.4 输出长期效应组合图形 (44)第6章钢束计算 (44)6.1跨中截面预应力钢束估算 (44)6.2 钢束配束原则 (45)6.3 预应力钢束参数计算 (45)第7章截面验算 (47)7.1. 设计规范 (47)7.2. 设计资料 (47)7.3. 主要材料指标 (47)7.3.1. 混凝土 (47)7.3.2. 预应力钢筋 (47)7.3.3. 普通钢筋 (47)7.4. 模型简介 (48)7.4.6. 成桥阶段 (48)7.5. 荷载组合说明 (48)7.5.1. 荷载工况说明 (48)7.5.2. 荷载组合说明 (49)7.6. 验算结果表格 (51)7.6.1. 施工阶段法向压应力验算 (51)7.6.2. 使用阶段正截面抗裂验算 (56)7.6.3. 使用阶段斜截面抗裂验算 (63)7.6.4. 使用阶段正截面压应力验算 (66)27.6.5. 使用阶段斜截面主压应力验算 (69)7.6.6. 使用阶段正截面抗弯验算 (72)7.6.7. 使用阶段抗扭验算 (74)3第1章桥梁方案比选1.1桥梁设计工程资料1.1.1 方案比选原则在桥梁方案比选中要注意以下四项主要指标:安全、功能、经济与美观,其中安全与经济最为重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、通航要求:无
7、温度:最高月平均温度405º 最低月平均温度0º 施工温度22º
8.平曲线半径:7000米 竖曲线半径 : 4500米
9.纵坡: <=3% 横坡:<=1.5%
10.桥头引道填土高度:<=4米
1.3地质条件
该处地质条件较差,地面上不为粘土,再往下为中细沙,再往下为亚粘土,再往下为粘土夹卵砾石,直到地下将近四五十米的地方才为卵砾岩。
总而言之,一座桥的设计包含许多考虑因素,在具体设计中,要求设计人员综合各种因素,作分析、判断,得出可行的最佳方案。
本次设计为(60+90+60)m预应力混凝土连续梁,桥宽为25m,分为两幅,设计时只考虑单幅的设计。梁体采用单箱单室箱型截面,全梁共分118个单元,单元长度分别有3m、2m、1m。由于多跨连续梁桥的受力特点,支点附近承受较大的负弯矩,而跨中则承受正弯矩,则梁高采用变高度梁,按二次抛物线变化。这样不仅使梁体自重得以减轻,还增加了桥梁的美观效果。
在我国,预应力混凝土连续梁虽然也在不断地发展,然而,想要在本世纪末赶超国际先进水平,就必须解决好下面几个课题:
1.发展大吨位的锚固张拉体系,避免配束过多而增大箱梁构造尺寸,否则混凝土保护层难以保证,密集的预应力管道与普通钢筋层层迭置又使混凝土质量难以提高。
2.在一切适宜的桥址,设计与修建墩梁固结的连续—刚构体系,尽可能不采用养护调换不易的大吨位支座。
地质取样报告
ZK1 K53+103
标高
地质状况
23. 90
素填土
10.70
粘土
4.50
中细沙
-11.80
亚粘土
-23.70
粘土夹卵砾石
-25.38
卵砾岩
ZK2 K53+132
然而,当跨度很大时,连续梁所需的巨型支座无论是在设计制造方面,还是在养护方面都成为一个难题;而T型刚构在这方面具有无支座的优点。因此有人将两种结构结合起来,形成一种连续—刚构体系。这种综合了上述两种体系各自优点的体系是连续梁体系的一个重要发展,也是未来连续梁发展的主要方向。
另外,由于连续梁体系的发展,预应力混凝土连续梁在中等跨径范围内形成了很多不同类型,无论在桥跨布置、梁、墩截面形式,或是在体系上都不断改进。在城市预应力混凝土连续梁中,为充分利用空间,改善交通的分道行驶,甚至已建成不少双层桥面形式。
3.充分发挥三向预应力的优点,采用长悬臂顶板的单箱截面,既可节约材料减轻结构自重,又可充分利用悬臂施工方法的特点加快施工进度。
另外,在设计预应力连续梁桥时,技术经济指针也是一个很关键的因素,它是设计方案合理性与经济性的标志。目前,各国都以每平方米桥面的三材(混凝土、预应力钢筋、普通钢筋)用量与每平方米桥面造价来表示预应力混凝土桥梁的技术经济指针。但是,桥梁的技术经济指针的研究与分析是一项非常复杂的工作,三材指标和造价指标与很多因素有关,例如:桥址、水文地质、能源供给、材料供应、运输、通航、规划、建筑等地点条件;施工现代化、制品工业化、劳动力和材料价格、机械工业基础等全国基建条件。同时,一座桥的设计方案完成后,造价指针不能仅仅反应了投资额的大小,而是还应该包括整个使用期限内的养护、维修等运营费用在内。通过连续梁、T型刚构、连续—刚构等箱形截面上部结构的比较可见:连续—刚构体系的技术经济指针较高。因此,从这个角度来看,连续—刚构也是未来连续体系的发展方向。
连续梁箱梁设计
第一章 概述
1.1预应力混凝土连续梁桥概述
预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。本章简介其发展:
由于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地采用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。
由于预应力混凝土连续梁桥为超静定结构,手算工作量比较大,且准确性难以保证,所以采用桥梁博士软件进行,这样不仅提高了效率,而设计桥梁的桥位地型及地质图一份。
2、设计荷载:公路—Ⅰ级
3、桥面宽度::2×(0.5+净—11.5+0.5)
4、抗震烈度: 7级烈度设防
5.风荷载:500Pa
为了解决这些问题,预应力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。这样就可以抵消外荷载作用下混凝土产生的拉应力。自从预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。
预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,为节省钢材,各国开始竞相采用预应力结构代替部分的钢结构以尽快修复战争带来的创伤。50年代,预应力混凝土桥梁跨径开始突破了100米,到80年代则达到440米。虽然跨径太大时并不总是用预应力结构比其它结构好,但是,在实际工程中,跨径小于400米时,预应力混凝土桥梁常常为优胜方案。
我国的预应力混凝土结构起步晚,但近年来得到了飞速发展。现在,我国已经有了简支梁、带铰或带挂梁的T构、连续梁、桁架拱、桁架梁和斜拉桥等预应力混凝土结构体系。
虽然预应力混凝土桥梁的发展还不到80年。但是,在桥梁结构中,随着预应力理论的不断成熟和实践的不断发展,预应力混凝土桥梁结构的运用必将越来越广泛。
连续梁和悬臂梁作比较:在恒载作用下,连续梁在支点处有负弯矩,由于负弯矩的卸载作用,跨中正弯矩显著减小,其弯矩与同跨悬臂梁相差不大;但是,在活载作用下,因主梁连续产生支点负弯矩对跨中正弯矩仍有卸载作用,其弯矩分布优于悬臂梁。虽然连续梁有很多优点,但是刚开始它并不是预应力结构体系中的佼佼者,因为限于当时施工主要采用满堂支架法,采用连续梁费工费时。到后来,由于悬臂施工方法的应用,连续梁在预应力混凝土结构中有了飞速的发展。60年代初期在中等跨预应力混凝土连续梁中,应用了逐跨架设法与顶推法;在较大跨连续梁中,则应用更完善的悬臂施工方法,这就使连续梁方案重新获得了竞争力,并逐步在40—200米范围内占主要地位。无论是城市桥梁、高架道路、山谷高架栈桥,还是跨河大桥,预应力混凝土连续梁都发挥了其优势,成为优胜方案。目前,连续梁结构体系已经成为预应力混凝土桥梁的主要桥型之一。
相关文档
最新文档