幂的运算综合测试卷(含答案)

合集下载

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。

七年级数学下册《幂的运算》练习题附答案(苏科版)

七年级数学下册《幂的运算》练习题附答案(苏科版)

七年级数学下册《幂的运算》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.计算a6•a2的结果是( )A.a12B.a8C.a4D.a32.计算:(-x)3·2x的结果是( )A.-2x4;B.-2x3;C.2x4;D.2x3.3.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a64.计算(-2a2)3的结果是( )A.-6a2B.-8a5C.8a5D.-8a65.下列计算正确的是()A.(xy)3=x3yB.(2xy)3=6x3y3C.(-3x2)3=27x5D.(a2b)n=a2n b n6.如果3a=5,3b=10,那么9a﹣b的值为( )A.12B.14C.18D.不能确定7.下列计算中正确的是( )A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x28.已知23×83=2n,则n的值是( )A.18B.8C.7D.129.若x,y均为正整数,且2x+1·4y=128,则x+y的值为( )A.3B.5C.4或5D.3或4或510.计算x5m+3n+1÷(x n)2•(﹣x m)2的结果是( )A.﹣x7m+n+1B.x7m+n+1C.x7m﹣n+1D.x3m+n+1二、填空题11.计算:(﹣x)3•x2= .12.计算:(34)2027×(-43)2028=13.计算:3a·a2+a3=_______.14.计算:[(-x)2] n·[-(x3)n]=______.15.化简:6a6÷3a3= .16.已知2m=a,32n=b,m,n是正整数,则用a,b的式子表示23m﹣10n=_______.三、解答题17.化简:a3•a2•a4+(﹣a)2;18.化简:(2x2)3-x2·x419.化简:(6x2﹣8xy)÷2x.20.化简:(4m2n﹣6m2n2+12mn2﹣2mn)÷2mn.21.已知4x=8,4y=32,求x+y的值.22.已知4×2a×2a+1=29,且2a+b=8,求a b的值.23.若2×8n×16n=222,求n的值.24.“已知a m=4,a m+n=20,求a n的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得:a m+n=a m a n,所以20=4a n,所以a n=5.请利用这样的思考方法解决下列问题:已知a m=3,a n=5,求下列代数的值:(1)a2m+n; (2)a m-3n.25.已知2n= a,5n= b,20n= c,试探究a,b,c之间有什么关系.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】B11.【答案】﹣x5.12.【答案】4 3.13.【答案】4a314.【答案】-x5n;15.【答案】2a3.16.【答案】3 2 a b17.【答案】解:原式=a9+a2;18.【答案】解:原式=7x6;19.【答案】解:原式=2x(3x﹣4y)÷2x=3x﹣4y20.【答案】解:原式=2m﹣3mn+6n﹣1.21.【答案】解:4x·4y=8×32=256=44而4x·4y=4x+y∴x+y=4.22.【答案】解:由题意得,2a+3=9解得:a=3则b=8﹣2a=8﹣6=2a b=9.23.【答案】解:n=324.【答案】解:(1)45;(2)3 125.25.【答案】解:∵20n= (22×5)n= 22n×5n= (2n)2×5n= a2b,且20n= c ∴c= a2b.。

幂的运算综合测试卷(含答案)

幂的运算综合测试卷(含答案)

第8章 幂的运算 单元综合卷(B)一、选择题。

(每题3分,共21分)1.31m a +可以写成 ( )A .31()m a +B . 3()1m a +C .a ·a3m D .(m a )21m + 2.下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=2a -;④4m 2-=214m;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道3.2013年,我国发现“H 7N 9”禽流感,“H 7N 9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 m ,这一直径用科学记数法表示为 ( )A .1.2×109- mB .1.2×108-m C .12 X 108-m D .1.2×107- m 4.若x 、y 为正整数,且2x ·2y =25;,则x 、y 的值有 ( )A .4对B .3对C .2对D .1对5.若x <一1。

则012x x x --、、之间的大小关系是 ( )A .0x > 2x -> 1x -B .2x ->1x ->0xC .0x >1x ->2x -D ..1x ->2x ->0x6.当x =一6,y =16时,20132014x y 的值为 ( ) A .16 B .16- C .6 D .一6 7.如果(m a ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( )A .m =9,n =一4B .m =3,n =4C .m =4,n =3D .m =9,n =6二、填空题。

(每空2分,共16分)8.将(16)1-、(一2) 0、(一3) 2、一︱-10 ︱这四个数按从小到大的顺序排为 · 9.( )2=42a b ;( )×12n -=223n + 10.若35)x (=152×153,则x = .11.如果43(a )÷25(a )=64,且a <0,那么a = .12.若3n =2,35m =,则2313m n +-的值为 .13.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y .14.如果等式(2a 一1)2a +=1,则a 的值为 .三、解答题。

(完整版)幂的运算单元测试卷(含答案)(2)

(完整版)幂的运算单元测试卷(含答案)(2)

幂的运算 单元测试卷一、选择题1.若a m =12,a n =3,则a m ﹣n 等于( )A .4 B .9 C .15 D .362.在等式a 2×a 4×( )=a 11中,括号里面的代数式应当是( )A .a 3B .a 4C .a 5D .a 63.计算25m ÷5m 的结果是( )A .5 B .20 C .5m D .20m4、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6、数学上一般把n a a a a a 64748个···…·记为( )A .na B .n a + C .n a D .a n7、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅8、计算()4323b a --的结果是( ) A.12881b a B.7612b a C.7612b a - D.12881b a -二、填空题。

1、计算:x 2•x 3= _________ ;(﹣a 2)3+(﹣a 3)2= _________ .2、若2m =5,2n =6,则2m+2n = _________ .3、①最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m ; ②每立方厘米的空气质量约为1.239×10﹣3g ,用小数把它表示为 g .4.= ;﹣y 2n+1÷y n+1= ;[(﹣m )3]2= .5.(a+b )2•(b+a )3= ;(2m ﹣n )3•(n ﹣2m )2= .6.( )2=a 4b 2; ×2n ﹣1=22n+3.7.已知:,,,…,若(a ,b 为正整数),则ab= .8、已知102103m n ==,,则3210m n +=____________.三、解答题1、已知3x (x n +5)=3x n+1+45,求x 的值.3、已知2x+5y=3,求4x •32y 的值.2、若1+2+3+…+n=a,求代数式(x n y )(x n ﹣1y 2)(x n ﹣2y 3)…(x 2y n ﹣1)(xy n )的值.4、已知25m •2•10n =57•24,求m 、n .5、已知a x =5,a x+y =25,求a x +a y 的值.6、若x m+2n=16,x n=2,求x m+n的值. 8、比较下列一组数的大小.8131,2741,9617、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

幂的运算评价测试题及答案

幂的运算评价测试题及答案

七(下)数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是( )??3?a---÷÷101?122nn240a??2ab?01 C. D. A3+2= B.10=.=0.a13b13a822.下列计算不正确的是( )aaa--÷(÷÷pm0mnpmmn aaaa =1 B A.=.)=--(3÷(-x)÷335 2 4=l C.(-x)9)=-x D. 3.下列计算正确的是( )a--5÷3÷÷x÷5÷39910810042 8528a 5=5 A.x=3 D.=1 C=x B..3 ( ) 的计算结果是÷1000nm1004.--mn3nm2mn mn A.100000.100B.101000D. C1-( ) 的值是22+x5=2,则.若x x11 0 D..A.4B. C444a-中A的值应是( )÷A=2m+nm a.在等式6-2 m+n+3 nn+2m+n+2aaaa B.. A..DC等于( ) 2m+4a.7a·m+422mm+2 24 m4aaaaaaa.C D.2 A.. B()+-÷(x ( )的结果是 2m+11mm)8x.xA.-l B.1 C.0 D.±19.下列等式正确的是( )-②3.10×1044 =31 00010 ①0.000 126=1.26×-5610.26×=0.000011 ③1.1×10④12 600 000=1 A.①② B.②④ C.①②③ D.①③④2×10×(1.5×10的值是 ( )243 2 )-)(10.311141414 10D4×105×10. B10.- C.- A.-1.11.下列各式中-定正确的是( )1)- 022 0 00?a=1+1)..( A.(2x-3)=1 B.(m=1 D=0 C2009200811????( )的结果是.计算12???????22????20092008200920091111????????B.. DA.. C???1????????2222????????( ) x的值是,m为正整数,则3mx6m>2.若2>2132m3 D.4m B.3m C. A.a-( ) ÷中括号内的式子应是( )=2m+nm a.在算式14--n+22m+n2m+n+2n aaaa. AD CB... ( ) 结果为02)(2×12÷3-15..12 D.无意义 A.0 B.1C ( ) 的式子是结果为16.aa---÷26 2 43421aaaaa.) C.. A.( D B2a( ).下面计算正确的是1785638243277aaa. A.=. Bb+b=b Cx+x=xD=x.xx等于 ( ) 23 a)-218.(569 6aaaa D C. A.44.-B.4419.下列运算正确的是( )-x·(-y) 7 23 795553102- (-y) A.xx=xy B.xy)=y=y D=x.-C.(20.下列运算正确的是( )÷(x÷x÷(xy) 2 332108 643)=x=x B A.x.(xy)=(xy)y--xx÷÷3n2nnnn+2n+14n x=x D C.x.x=x÷5得( ) mm25.计算21mm20.5 D. A.5 B.20 C ( ) 纳米应表示为2.5纳米1=0.000 000 001米,则22.---×10米米 D.2.5×10 C米.2.5×1052米 B..99810102.×5 A.奥运会场馆之一,它的外层膜的展开面积23.国家游泳中心——“水立方”是北京2008 ( ) 260 000用科学记数法表示应为约260 000平方米,将64 5 6 102.62C..6×10×D A.0.26×10 B.26×10.是的列下运算24正确.( )+5x=m=3x A.n.-= D. B(-y)2x=y C.(mn)222623 36 35322aaa万人,这一数据2008年全国普通高考计划招生66725.国家教育部最近提供的数据娃示,科学记数法表示为(结果保留两个有效数字)( )66 6 610×D.67.. B66×10C.67×10×..A6610二、填空题(每小题2分,共44分)a)(-·22a.=____________.26.--÷x=____________(x.·1332).(x)27·(-b)223)=_____________.b28.-b (-2 3=______________.x)-y) (y-29.(x×820092008=_____________.125. 30. 0-8÷1nn=_____________. 31.-43m+12m+4aaa =__________32.aa-b3b=____________. 10=25,则1033.已知10=5,,则A=_____________.2n+1n+1=xAx34.已知×64×25×48388=______________25.35.0.-55)××(-42 2=_____________. 36.-5a-(-2 32 2 3aaa)=______________.)( (.(b)-b) 37a)-÷(36a=____________.38.(- )a÷625aa=____________.39.--5×120=____________.40.5+25·(m÷m10 632=___________. 41.m)-x÷1m+1m=___________42.-x.a-÷mn1 nm a=___________.)(43.2n=4,则n=__________.44.若2,则x=___________.x3=286445.若×1-,则x=____________.÷(2 53)-x46.若2)=(247.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分)a÷2)3-(.48.3 2a-x÷1n 2nn+1 (x≠(x0) )49.x-x·x·x 2546x.x5011-(-2 03 )+(51.(--3)) 23--·(x-·xx) ·322 2nn x)52.3x+3(----(-3÷3×2009022 232))3×353.(-参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D 12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C1-n34 m7 5aa 28.b 29.(y26.-x) 27. 30.8 31.-2 32.10x n 35.4 5 34.x33.123 5 aa 44. 43..m1 .-36.-1 37.0 38 42.-39.x 40.1 41n a-725×1045.15 46.-2 47.1.aa-÷÷462623 22aaaa =9) =948.解:(-3=9---(x÷·x0n 21(n+1)+(n2nn+11)n=1 .解:x =x)=x49x-·x-x2492569=0x=x. x.解:50x 3?21111??????0???51.解:8????3????1??9??????8283??????-3x nn =052.解:原式=3x.---(-3÷3×200902232 236-1=×9-27-=))3×3-(.解:53.。

(完整版)幂的运算练习及答案

(完整版)幂的运算练习及答案

(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。

各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。

5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。

11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。

苏科版数学七年级下《第八章幂的运算》单元测评卷含答案

苏科版数学七年级下《第八章幂的运算》单元测评卷含答案

第八章 幂的运算 单元测评卷(满分:100分 时间:60分钟)一、选择题 (每题3分,共24分)1.31m a +可以写成 ( )A .()13m a +B .()3m a +1C .a ·a 3mD .()21m m a +2.下列运算正确的是 ( )A .a 3·a 4 =a 12B .a 3+a 3=2a 6C .a 3÷a 3=0D .3a 2·5a 3=15a 53.计算6m 3÷(-3m 2)的结果是 ( )A .-3mB .-2mC .2mD .3m4.如果a =(-)0 ,b =(-0.1)-1,c =232-⎛⎫- ⎪⎝⎭,那么a 、b 、c 三个数的大小为( ) A .a >b >c B .c >a >bC .a >c >bD .c >b >a5.(.邵阳)地球上水的总储量约为1.39×1018 m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018 m 3,因此我们要节约用水,请将0.0107×1018 m 3用科学记数法表示是 ( )A .1.07×1016 m 3B . 0.107×1017 m 3C .10.7×1015 m 3D .1.07×1017 m 36.计算25m ÷5m 的结果为 ( )A .5B .20C .5mD .20m7.一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为 ( )A .12×1024B .1.2×1012C .12×1012D .1.2×10138.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(101)2表示二进制数,将它转换成十进制的形式是:1×22+0×21+1×20=5,那么将二进制数 (10101)2转换成十进制数是 ( )A .41B .21C .13D .11二、填空题 (每题3分,共18分)9.(1)若a ·a 3·a m =a 8,则m =_______;(2)若a 5·(a n )3=a 11,则n =_______.10.如果(a 4)3÷(a 2)5=64,且a <0,那么a =_______.11.某生物教师在显微镜下发现,某种植物的细胞直径约为0.000 12 mm ,用科学记数法表示为_______mm .12.若a 2n =3,则2a 6n -50=_______.13.若3n =2,3m =5,则32m +3n -1的值为_______.14.如果(2a -1)a +2=1,那么a 的值为_______.三、解答题 (共58分)15.(16分)计算:(1)()32x y ·()232xy -; (2)()()2326n n n x y x y +;(3)()()()428236x y x y +-•; (4)a ·a 2·a 3()()2632a a +---.16.(12分)计算: (1)451301222222----⎛⎫++⨯⨯+ ⎪⎝⎭;(2)()()65a a -÷-·()2a -;17.(5分)若a=255,b=344,c=433,试比较a、b、c的大小.18.(12分)(1)已知x3·x a·x2a+1=x31,求a的值;(2)已知9m÷32m+2=(13)n,求n的值;(3)已知9n+1-32n=72,求n的值.19.(5分)一般地,我们说地震的震级为10级,是指地震的强度是1010,地震的震级为8级,是指地震的强度是108.1992年4月,荷兰发生了5级地震,3月,近海发生了9.0级强烈地震,问荷兰的地震强度是近海地震强度的多少倍?20.(8分)阅读下列一段话,并解决下列问题:观察下面一列数:1,2,4,8,…,我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,-10,20,…的第4项是_______;(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,根据上述规定有21a q a =,32a q a =,43a q a =…,因此可以得到a 2=a 1q ,a 3=a 2q =a 1q ·q =a 1q 2,a 4=a 3q =a 1q 2·q =a 1q 3,…,那么a n =_______(用a 1与q 的代数式表示).(3)一个等比数列的第2项是6,第3项是-18,求它的第1项和第4项.参考答案一、1.C 2.D 3.B 4.C 5.A 6.C 7.B8.B二、9.(1)4 (2)2 10.-8 11.1.2×10-412.4 13.200314.-2或1或0三、15.(1)4x8y9(2)2x2n y6n (3)2x8y12(4)4a616.(1)51732(2)-a3(3)-717.a<c<b18.(1)a=9 (2)n=2 (3)n=1 19.10 000倍20.(1)-40 (2)a·q n-1 (3)第1项是-2第4项是54。

幂的运算综合专项练习题(有答案过程)ok

幂的运算综合专项练习题(有答案过程)ok

幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)一、选择题(每题3分,共24分)1.【2021·南京市玄武区二模】计算a 3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 62.计算⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫15-2的结果是( ) A.110 B .-110 C .25 D .-1253.【2022·宿迁】下列运算正确的是( )A .2m -m =1B .m 2·m 3=m 6C .(mn )2=m 2n 2D .(m 3)2=m 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.已知a a -1÷a =a ,则a =( )A .3B .1C .-1D .3或±16.【2022·长沙市校级期中】已知2x -3y =2,则(10x )2÷(10y )3的值为( )A .10 000B .1 000C .10D .1007.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1 B.-1 C .-1或2 D .28.【2022·青岛期中】如图,已知点P 从距原点右侧8个单位的点M 处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从点M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,…,依次这样进行下去,第2 024次跳动后,该点到原点O 的距离为( )A .2-2 024B .2-2 023C .2-2 022D .2-2 021二、填空题(每题3分,共30分)9.【2022·苏州市吴江区期中】计算:(-3xy 3)3=__________.10.【2021·溧阳市期中】若83=25·2m ,则m =________.11.计算:(-5)2 023×⎝ ⎛⎭⎪⎫15 2 024=________.12.【2021·扬州市江都区期中】已知2a ÷4b =8,则a -2b 的值是________.13.【2022·湖北】科学家在实验室中检测出某种病毒的直径约为0.000 000 103m ,该直径用科学记数法表示为______________m.14.若0<x <1,则x -1,x ,x 2的大小关系是____________.15.【2021·盐城市建湖县月考】已知3x +1=6,2y +2=108,则xy 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________.17.梯形的上、下底的长分别是4×103cm 和8×103cm ,高是1.6×104cm ,此梯形的面积是__________.18.我们知道,同底数幂的乘法法则为a m ·a n =a m +n (其中a ≠0,m 、n 为正整数).类似地,我们规定关于任意正整数m 、n 的一种新运算:g (m +n )=g (m )·g (n ),若g (1)=-13,则g (2 023)·g (2 024)=________________. 三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.计算:(1)a3·a2·a+(a2)3; (2)(2m3)3+m10÷m-(m3)3. 20.计算:(1)0.62 023×(-53)2 024; (2)(-2)-2+⎝⎛⎭⎪⎫13-1×(2 023-π)0.21.已知2a=4b(a、b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.【2021·张家港市月考】(1)已知2×8x×16=223,求x的值;(2)已知a m=2,a n=3,求a3m-2n的值.24.某农科所要在一块长为1.2×105cm,宽为2.4×104cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104cm的正方形实验地,这块长方形实验地最多可以培育多少种新品种粮食?25.【2021·宿迁市沭阳县期中】(1)已知10a=5,10b=6,求102a+103b的值;(2)已知9n+1-9n=72,求n的值.26.【2022·盐城市亭湖区校级月考】规定两数a、b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.。

完整word版幂的运算综合专项练习题有答案过程ok

完整word版幂的运算综合专项练习题有答案过程ok

幂的运算专项练习50题(有答案)55443322,试比较a,b,c,b=3,c=4,,d=56.若a=2d的大小..1237÷m.+m7.计算:(﹣2 m )3222)×(﹣a2. (4abb)2﹣33﹣2﹣2))?.计算:8(2m(n﹣mn 1.(;)3.计算:.9 23;)(2 (3x)(?﹣x)0﹣23.)+210.(﹣)÷(﹣2)×(﹣22;7mp m3()?7mp÷(﹣)xy+1yx﹣1,求x﹣=3y的值. 11.已知:2=427, 2a 4()(﹣3a+1).()3xy的值. 4?32﹣12.若2x+5y3=0,求yx+yx2x﹣y的值.aa求:a,a.已知4=2=3与mm16,求m的值.27×.已知1339×=3 3m+2nmn yx,用=y3,=x3.已知5,3表示.nm3915m+nmmmm30,求m的值.=3?27,求2 的值. ?812414.若(a.已知:b3b)=a9b?6﹣b32262b+111a﹣14﹣b5,求a+b??xy=x=y,且y的值.15.计算:(xx? ).已知÷x .25xx22n3n+22﹣1y..,求4=09 ?2726.若16.计算:(a2x+3y)÷a?a﹣3n2m﹣nm =的值.,试求a17.若a=8,a243362.﹣(2a27.计算:(3ax))x.计算:.28 2nn+1 18.已知9﹣3=72的值.,求nm2n﹣22m+nnnmm+32010的值.) n﹣=9×3m29.已知16=4×2,求.已知19x=3,x=5x的值.,求27,(2362m﹣2﹣2m4n+1nm2n12.求m+n1016的值.×4×2)=2 =1039320.已知=6,=2,求(的值.,30.已知5345342.)))(﹣a÷(﹣?(﹣aa31(用幂的形式表示))﹣([yx.21(﹣)yx] .﹣m+n2﹣1﹣﹣mnn3m+2n2﹣2.(xx,求0≠x,=2,=16.若22xx(),的值.32.(a2abb)) ?39﹣2a2b2ba+b24﹣3﹣(23.计算:的值.)(﹣x33 .)ba()b5a?.已知?x3=x,求(﹣)+36/ 244244226nn3n232n)(﹣ab﹣3[?a+(a)﹣(﹣3x)(﹣ab)].42.计算:(ab)+534.a..43 m15n365m+n2m﹣ y)=xy,求35.已知(x的值.nmn3m+2n2n﹣3mn﹣5n+13m﹣22n﹣1m﹣233m+2) b(ab)(﹣44.计算:aba36.已知=2,a=7,求a()﹣a+a 的值.2n+2n332n ])÷[(﹣x37.计算:(﹣3xy)y aba﹣b2a﹣b x2)求的值.(45.已知x=2,x=6.1)求x(的值.232﹣2﹣3﹣1﹣.xy)(xy)?(38.计算:abc为整数,,b,c246.已知?27?37=1998,其中a1998﹣c)的值.a求(﹣b2m3n3m22n32m3n的值+a?b),39.已知a=2b=3,求(a)﹣(b19981999.))×(﹣4.﹣(﹣470.253n23n2n3)4(x3x为正整数,且40.已知nx=7,求()﹣的值.3n23n22n)x﹣34()x41.若n为正整数,且=5,求(3x2n+13n﹣42a+b()?))(1.48()2a+b(2a+b? 的值.6/ 350.计算下列各式,并把结果化为正整数指数幂的形式.52).y﹣(2)(x﹣y)x?(23﹣13);(2ab (1)ab﹣2﹣23﹣13﹣22﹣1﹣223;. 49.(1)(3x y(z(2))(?(5xyabcz)))2﹣32﹣432﹣22﹣12﹣.))3)24x2)((yz2ab )(?2xyz)c÷(÷(yz)ab(.(题参考答案:50幂的运算x2y+2, =2∴2∴x=2y+2 ①﹣1.解:xy+1, =411.解:∵2原式=4﹣14=﹣1;yx﹣1,=327 又∵763248)=16a2. 原式=b﹣2a×(﹣abb3yx﹣1,=33 ∴∴3y=x﹣1②﹣(﹣1)原式=5)×3=15; 3.解:(76 9x=﹣;(2)原式=9xx?(﹣)联立①②组成方程组并求解得,232 pm7mp÷(﹣)=(3)原式=7m﹣p;22∴x﹣y=3 3.﹣3=6a﹣7a﹣=6a(4)原式9a+2a﹣xy2x5y2x+5y227=2.解:4??326a、﹣﹣7a3 2=2、﹣故答案为﹣159xm、﹣12p yxx+y∵2x+5y﹣3=0,即2x+5y=3, 3=6.解:4a;=a?a=2×3=8 =2∴原式22xyy2x﹣÷3==2=a÷aa mm,×2713.解:∵3×92m3m3m2n,5.解:原式=3×3 ,×3=3×31+5m2nm3,(=3)3×(=3),1+5m3216,3 =3=xy ∴11511∴1+5m=16,;(2)=32.解:6a=11114解得m=3 ;(b=3)=81nm311311n3m333n3m+3,b(ab)(c=4) =48;=a(b14.解:∵(a bb))=11211∴3n=9,3m+3=15,;(d=5)=25解得:d acb可见,>>> m=4,n=3,m+n2737=128(﹣7.解:2m)+m÷=2∴2 ,m563223610610﹣64÷x +m,=x15.解:原式=(x=x)÷x=xm)(﹣=2×()2n23n+2266 a)?÷﹣=8m+m,a.解:16(a4n63n+22﹣=7m ?=aa ÷a4n﹣3n﹣22 ?=aa433﹣29﹣6﹣2﹣2﹣2 n﹣22mn=?n)﹣()n2m(8.解:?mn=8m a=a?n﹣2+2=a n1=0 =.解:原式9×+4)4(﹣=a2m﹣3nm2n3, a=())÷(a17.解:a1 ÷(﹣=.解:原式10×)+2nm=,aa∵=8, 2+2 =﹣ =06/ 4∴n=2m①,.÷∴原式=64=5123nnm+3,)27=9×3∵(3m+323n512故答案为)=3×3,∴(3m+53nn+12nn+1nnn∴3=3,93=9﹣=9(9﹣1)=9×8,而72=918.解:∵9﹣∴3n=m+58,②,×n2nn+18=9×8,∴当9﹣3=72时,9×由①②得:n,=9∴9 ,∴n=1 m=1,n=2解得:2010nm2﹣m)∴(19.解:原式=(x)?x n20102﹣1=3×5 )=(2 5 =1 =9×226866202m﹣23=45)(30.解:∵16×4×2=2×2×2=2=210,122nn2nn2m2.=10,.解:由题意得,209=3=2,3=6=36 =104n4n+12m ﹣2m﹣2=20,2n=12,∴2m 33故=3×3÷3=36×÷4=27354354解得:m=11,n=6,=]x=x)](x﹣y)[(﹣y)﹣)21.解:(x﹣y[(y17125m+n=11+6=17∴)y=﹣y)(x﹣x(x﹣y)?(5+125m+2nn1222﹣,=1622.解:∵x,x=2 )=÷(﹣)=﹣aa31.原式=(﹣a)?a÷(﹣a15m+nn172m+2n∴x÷x=x=16÷a.a÷2=8, a=﹣3n3nm+2nm﹣ =2 =16÷2=xx÷x22﹣﹣1﹣3﹣24﹣322﹣2 ?.解:(ab b(5a(b)?a))(2ab)3223.解:2﹣﹣684﹣ab=25ab?4﹣63﹣2? =(ab)(ab)6﹣10 b=25a14﹣ ab= ==mmmm24.解:由题意知,3?9?27?81,m2m3ma+b2b﹣a94m=3?3?3?3, 33.解:∵x?x=x,m+2m+3m+4m∴a+b+2b﹣a=9, =3,30解得:b=3,,=3b3333 m+2m+3m+4m=30∴,=23)=2×(﹣3)3)+(﹣3)=(﹣3)+(﹣∴(﹣×(﹣, 27)=﹣54 整理,得10m=30888m=3 解得 9x,34.解:原式=a+a﹣886﹣b4﹣b2b+1511a﹣125.解:∵x?x9x=x,且y=y, y=2a﹣?3n﹣﹣n315m+3n6m5m+n2m,xy)=xy35.解:(1565m+n2m﹣n3∴,,y)=xy∵(x,∴解得:,解得:,则a+b=10m326.解:∵2x+3y﹣4=0,则n=(﹣9)=﹣243mn,∴2x+3y=436.解:∵a=2,a=7,3m+2n2n﹣21x﹣y2x﹣23y2x+3y﹣23mm3n2n2m3∴a﹣a=(a)?(a)﹣(a)=9 ?9∴?27=33=3=3 ÷(a)=8×49126621261232436﹣(x(27.解:3a)2ax)xxx﹣4a=23a=27a8= 49÷﹣32 28.解:原式=?ab=n2n+2n23337.解:(﹣3xy)÷[(﹣xy)],6n+6m3n32n2n﹣2=﹣27xy÷(﹣xy)2.解:∵2916=4×,,6n+63n2m422n﹣6n2n= 2=2∴(2)×,﹣27xy÷xy,6n2+22n4m﹣=﹣27x,2∴=2 y﹣2﹣3﹣12﹣32﹣∴2n,2+2=4m38.解:(x?y)?(x?y),6/ 5234﹣625)x﹣﹣y)y, ?((=x2y)原式?x=y﹣(x736﹣)x﹣, y=x=y﹣(22﹣ = ())(49.解:(1)原式=?3n2n32m3m2?b﹣(b,a39.解:())+a3n2m32m3n2? = =(a,)?﹣(b)b+a23×+2=23﹣3, =5=;6n6n﹣40.解:原式=27x4x6n =23x23n =23(x)÷?2)原式= (7 ×=23×7 =11272n =5,.解:∵41x26 z=?y3n223n﹣34(3x)x)∴(6n6n 34x=9x﹣32n=125(x)=﹣23﹣1323﹣13+36;b=2a)50.解:(1)a25=﹣×5 bb(2a =2ab =﹣3125﹣2﹣3622n2n6n6nn﹣13,(bc(2)(a42.解:原式=ab)+5ab3﹣(ab))66n2n3﹣36n2n, =ab b=6acb﹣3a6n2n =3ab=;150505010050(x=43.解:原式())x?=x2﹣6m5n﹣2n+2﹣432633n﹣3m﹣3m+2﹣2,),))÷(ab)(.解:原式44=a3a(b2()+a2abbcb(﹣2﹣3n3﹣﹣4﹣6226m﹣﹣﹣6m43n34 c,)÷(ba)=abb(+a=2(﹣b4a,)66﹣46m33n﹣﹣6m﹣3n34﹣4 c,a=8ab =a,bb﹣ =0ba 45,xx1.解:()∵=2,=6 =b﹣aba;÷=x÷x=26=x∴ba)∵(2x=2,,x=62ab2b2a﹣÷xx(=)÷=2∴x6=33bca 46.解:∵×=2,3×3737?23? a=1∴c=1,,,b=11998 1﹣(=∴原式1)1=1 ﹣19981998 4)4×(﹣×(﹣,))=.解:原式47﹣(19981998)44×﹣(=)×(﹣,1998)4×=﹣(×(﹣,)4 ×(﹣﹣=1,)4 =4)n(+3+)2n+1(﹣4 =)原式1(.解:48)2a+b(3n(=;)2a+b6/ 6。

第8章 幂的运算 苏科版数学七年级下册综合检测(含答案)

第8章 幂的运算 苏科版数学七年级下册综合检测(含答案)

第8章 幂的运算综合检测幂的运算一、选择题(共8小题,每小题3分,共24分) 1.(2022江苏徐州一模)下列计算正确的是 ( )A.3x 2·2x =5x 2B.y 6÷y 2=x 4C.(-3)-2×(−13)0=1 D.-a 2·(-a )3a 4=a 9 2.【跨学科·物理】 石墨烯是目前世界上最薄、最坚硬的纳米材料,单层石墨烯的厚度仅为0.000 000 000 34 m .用科学记数法表示0.000 000 000 34是( )A.34×10-9B.3.4×10-10C.3.4×10-9D.0.34×10-10 3.若(a -2)-1有意义,则a 的取值范围是 ( )A.a ≠0B.a ≠2C.a ≠-1D.a ≠1 4.已知3a =10,9b =5,则3a -2b 的值为 ( )A .5B .12C.25D .25.若3y -2x +2=0,则9x ÷27y 的值为 ( )A.9B.-9C.19D.−196.(2021江苏盐城射阳月考)如果m =3a +1,n =2+9a ,那么用含m 的代数式表示n 为( )A .n =2+3mB .n =m 2C .n =2+(m -1)2D .n =m 2+27.(2021四川泸州中考)已知10a =20,100b =50,则12a +b +32的值是( )A.2B.52C.3D.928. 【新独家原创】 观察下列等式:71=7,72=49,73=343,74=2 401,75= 16 807,……,通过观察,用你所发现的规律确定整数72 023的个位数字是( )A.9B.7C.3D.1 二、填空题(每题3分,共24分)9.一种细菌的半径是4.3×10-3 cm,则用小数可表示为 cm . 10.计算:y 3·(-y )·(-y )5·(-y )2= . 11.(2022江苏宿迁沭阳月考)计算:(−23)2 024×1.52 023= .12.若x a =2,x b =16,则ba = .13.(2022江苏苏州相城月考)若n 为正整数,且x 2n =2,则(3x 2n )2-4(x 2)2n 的值为 .14.(2022江苏泰州海陵月考)已知4x =6,2y =8,8z =48,那么x ,y ,z 之间满足的等量关系是 .15.【新独家原创】 若(2x +3)x +2 023=1,则x = .16.(2022江苏镇江期中)规定:a*b =2a ×2b ,例如:1*2=21×22=23=8,若2*(x +1)=32,则x = . 三、解答题(共52分) 17.(10分)计算:(1)(−14)−1+(-2)2×2 0230-(13)−2;(2)5.4×108÷(3×10-5)÷(3×10-2)2.18.(10分)计算:(1)m4·m5+m10÷m-(m3)3;(2)(x-y)2·(y-x)7·[-(x-y)3].19.【跨学科·物理】(6分)光的速度约为3×108 m/s,一颗恒星发出的光需要4年时间才能到达地球,1年以3×107 s计算,求这颗恒星与地球之间的距离.20.(2022江苏泰州姜堰月考)(8分)已知4×16m×64m=421,求(-m2)3÷(m3·m2)的值.21.(2022江苏无锡江阴月考)(8分)若a m=a n(a>0且a≠1,m,n是正整数),则m=n,利用上面结论解决下面的问题:(1)如果2÷8x×16x=25,求x的值;(2)如果3x×2x+1+2x×3x+1=180,求x的值.22.(2022江苏泰州兴化期中)(10分)规定:a☆b=10a×10b,如:2☆3=102×103=105.(1)求12☆3和4☆8的值;(2)(a+b)☆c与a☆(b+c)相等吗?请说明理由.答案全解全析1.D A .3x 2·2x =6x 3,故该选项不符合题意; B .y 6÷y 2=y 4,故该选项不符合题意;C .(-3)-2×(−13)0=19×1=19,故该选项不符合题意;D .-a 2·(-a )3a 4=a 9,故该选项符合题意.故选D.2.B 0.000 000 000 34=3.4×0.000 000 000 1=3.4×10-10.故选B. 3.B 若(a -2)-1有意义,则a -2≠0,解得a ≠2.故选B.4.D 因为3a =10,9b =32b =5,所以3a -2b =3a ÷32b =10÷5=2.故选D .5.A 因为3y -2x +2=0,所以3y -2x =-2,所以2x -3y =2, 则9x ÷27y =32x ÷33y =32x -3y =32=9.故选A.6.C 因为m =3a +1,所以3a =m -1,所以n =2+9a =2+(3a )2=2+(m -1)2.故选C .7.C 因为10a ×100b =10a ×102b =10a +2b =20×50=1 000=103,所以a +2b =3,所以12a +b +32=12(a +2b +3)=12×(3+3)=3.故选C.8.C 因为71=7,72=49,73=343,74=2 401,75=16 807,……, 所以这列数的个位数字依次以7,9,3,1循环出现, 因为2 023÷4=505……3,所以72 023的个位数字是3.故选C. 9.答案 0.004 3解析 4.3×10-3=4.3×0.001=0.004 3. 10.答案 y 11解析 原式=y 3·(-y )·(-y )5·y 2=y 3·(-y )·(-y 5)·y 2=y 3·y ·y 5·y 2=y 3+1+5+2=y 11. 11.答案 23解析 (−23)2 024×1.52 023=(23)2 024×(32)2 023=(23)2 023×23×(32)2 023=(23×32)2 023×23=12 023×23=1×23=23.故答案为23.12.答案 4解析 因为x a =2,所以(x a )4=24=16, 又x b =16,所以(x a )4=x b , 所以4a =b ,所以ba =4.13.答案 20 解析 当x 2n =2时,(3x 2n )2-4(x 2)2n =(3x 2n )2-4(x 2n )2=(3×2)2-4×22=62-4×4=36-16=20.故答案为20.14.答案 2x +y =3z解析 因为4x =6,2y =8,8z =48, 所以4x ·2y =8z , 所以22x ·2y =23z , 所以22x +y =23z , 所以2x +y =3z. 故答案为2x +y =3z. 15.答案 -1或-2 023解析 当x +2 023=0时,x =-2 023,此时2x +3≠0,符合题意. 当2x +3=1时,x =-1,此时x +2 023=2 022,符合题意. 当2x +3=-1时,x =-2,此时x +2 023=2 021,不符合题意. 故答案为-1或-2 023.16.答案 2解析根据题意,得2*(x+1)=22×2x+1=32,即22×2x+1=25,所以2+x+1=5,解得x=2.17.解析(1)原式=-4+4×1-9=-4+4-9=-9.(2)原式=5.4×108×1×105÷(9×10-4)3=1.8×1013÷(9×10-4)=0.2×1013-(-4)=0.2×1017=2×1016.18.解析(1)原式=m9+m9-m9=m9.(2)(x-y)2·(y-x)7·[-(x-y)3]=(y-x)2·(y-x)7·(y-x)3=(y-x)12.19.解析3×108×3×107×4=3.6×1016 (m).答:这颗恒星与地球之间的距离约为3.6×1016 m.20.解析因为4×16m×64m=421,所以41+2m+3m=421,所以5m+1=21,所以m=4,所以(-m2)3÷(m3·m2)=-m6÷m5=-m=-4.21.解析(1)因为2÷8x×16x=25,所以2÷(23)x×(24)x=25,所以2÷23x×24x=25,所以21-3x+4x=25,所以1-3x+4x=5,所以x=4.(2)因为3x×2x+1+2x×3x+1=180,所以3x×2x×2+2x×3x×3=180,所以3x×2x×(2+3)=22×32×5,所以3x×2x×5=32×22×5,所以x=2. 22.解析(1)12☆3=1012×103=1015; 4☆8=104×108=1012.(2)相等.理由如下:因为(a+b)☆c=10a+b×10c=10a+b+c, a☆(b+c)=10a×10b+c=10a+b+c,所以(a+b)☆c=a☆(b+c).。

幂的运算练习题及答案

幂的运算练习题及答案

幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299B。

-2C。

299D。

22.当m是正整数时,下列等式成立的有()1) a^(2m)=(a^m)^2;2) a^(2m)=(a^2)^m;3) a^(2m)=(-a^m)^2;4) a^(2m)=(-a^2)^m.A。

4个B。

3个C。

2个D。

1个3.下列运算正确的是()A。

2x+3y=5xyB。

(-3x^2y)^3=-9x^6y^3C。

(x-y)^3=x^3-y^3D。

无正确答案4.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXXB。

a^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1)D。

a^(2n-1)与(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6*(-a)^3*a=a^10;③(-a)^4*(-a)^5=a^20;④25+25=26.A。

0个B。

1个C。

2个D。

3个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^(n+1)+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))的值。

10.已知2x+5y=3,求4x*3^(2y)的值.11.已知25^m*2^10n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.17.删除该题18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^(n-1),当a=2,n=3时,求a^n*x-a*y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)3]答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299D、2解答:根据负数的奇偶次幂性质,(-2)100为正数,(-2)99为负数,所以(-2)100+(-2)99=-299.因此,选A。

(2021年整理)幂的运算检测题及答案

(2021年整理)幂的运算检测题及答案

幂的运算检测题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(幂的运算检测题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为幂的运算检测题及答案的全部内容。

第8章《幂的运算》水平检测题一、选择题1、下列计算正确的是( )A 。

a 3·a 3=a 9B 。

(a 3)2=a 5 C. a 3÷a 3=a D 。

(a 2)3=a 62、计算(-3a 2)3÷a 的正确结果是( )A 。

-27a 5B 。

-9a 5 C.-27a 6 D.-9a 63、如果a 2m -1·a m +2=a 7,则m 的值是( ) A.2 B 。

3 C 。

4 D 。

54、若a m =15,a n =5,则a m -n 等于( )A.15 B 。

3 C 。

5 D.755、下列说法中正确的是( )A.-a n 和(-a ) n 一定是互为相反数B.当n 为奇数时,-a n 和(-a ) n相等C 。

当n 为偶数时,-a n 和(-a )n 相等 D. -a n 和(-a )n 一定不相等6、已知│x │=1,│y │=12,则(x 20)3-x 3y 2的值等于( ) A 。

-34或-54 B 。

34或54 C 。

34 D 。

-54 7、已知(x -2)0=1,则( )A. x=3B. x=1C. x 为任意数D. x ≠28、210+(-2)10所得的结果是( )A.211 B 。

-211C 。

-2 D. 2 9、计算:()()()4325a a a -÷⋅-的结果,正确的是( )A 、 7aB 、 6a -C 、 7a -D 、 6a10、下列各式中:(1)()1243a a =--; (2)()()nn a a 22-=-; (3)()()33b a b a -=--; (4)()()44b a b a +-=-正确的个数是( )A 、1个B 、2个C 、3个D 、4个二、填空题11、计算:a m ·a n =___;(a ·b )m = ;(a n )m = 。

幂的运算综合题专练(含答案)讲课讲稿

幂的运算综合题专练(含答案)讲课讲稿

幂的运算综合题专练(含答案)幂的运算综合题专练一.解答题(共30小题)1.已知x2m=2,求(2x3m)2﹣(3x m)2的值.2.若2•8n•16n=222,求n的值.3.已知a x=﹣2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.4.已知2m=5,2n=7,求 24m+2n的值.5.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.6.已知9n+1﹣32n=72,求n的值.7.已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.8.已知 a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.9.已知a m=5,a2m+n=75,求①a n;②a3n﹣2m的值.10.已知10a=5,10b=6,求:(1)102a+103b的值;(2)102a+3b的值.11.用幂的运算知识,你能比较出3555与4444和5333的大小吗?请给出科学详细的证明过程.12.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.13.已知x3=m,x5=n用含有m、n的代数式表示x14.14.已知2m=a,2n=b(m,n为正整数).(1)2m+2=,22n=.(2)求23m+2n﹣2的值.15.将幂的运算逆向思维可以得到a m+n=a m•a n,a m﹣n=a m÷a n,a mn=(a m)n,a m b m=(ab)m,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解,收到事半功倍的效果如:(1)=;(2)若3×9m×27m=311,则m的值为;(3)比较大小:a=255,b=344,c=533,d=622,则a、b、c、d的大小关系是.(提示:如果a>b>0,n为正整数,那么a n>b n)16.已知4m=2,8n=5,(1)求:22m+3n的值;(2)求:24m﹣6n的值.17.已知3m=6,9n=2,求32m﹣4n+1的值.18.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.19.已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.20.若2x+5y﹣3=0,求4x•32y的值.21.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.22.已知2a=5,2b=3,求2a+b+3的值.23.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24.已知2x=8y+2,9y=3x﹣9,求x+2y的值.25.已知2x+3y﹣3=0,求9x•27y的值.26.已知3x+2•5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值.27.已知:2x+3y﹣4=0,求4x•8y的值.28.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.29.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.30.“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.幂的运算综合题专练参考答案与试题解析一.解答题(共30小题)1.已知x2m=2,求(2x3m)2﹣(3x m)2的值.【分析】根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得已知条件,根据已知条件,可得计算结果.【解答】解:原式=4x6m﹣9x2m=4(x2m)3﹣9x2m=4×23﹣9×2=14.【点评】本题考查了幂的乘方与积得乘方,先由积的乘方得出已知条件是解题关键.2.若2•8n•16n=222,求n的值.【分析】把等号左边的数都能整理成以2为底数的幂相乘,再根据同底数幂相乘,底数不变指数相加计算,然后根据指数相等列式求解即可.【解答】解:2•8n•16n,=2×23n×24n,=27n+1,∵2•8n•16n=222,∴7n+1=22,解得n=3.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.已知a x=﹣2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.【分析】(1)逆运用同底数幂相乘,底数不变指数相加解答;(3)逆运用幂的乘方,底数不变指数相乘解答;(3)逆运用幂的乘方和同底数幂的乘法进行计算即可得解.【解答】解:(1)a x+y=a x•b y=﹣2×3=﹣6;(2)a3x=(a x)3=(﹣2)3=﹣8;(3)a3x+2y=(a3x)•(a2y)=(a x)3•(a y)2=(﹣2)3•32=﹣8×9=﹣72.【点评】本题考查了同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键.4.已知2m=5,2n=7,求 24m+2n的值.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘计算即可.【解答】解:∵2m=5,2n=7,又∵24m=625,∴22n=49,∴24m+2n=625×49=30625故答案为30625.【点评】本题考查同底数幂的除法,同底数幂的乘法,幂的乘方,解题时记准法则是关键.5.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【分析】(1)利用积的乘方和同底数幂的除法,即可解答;(2)利用完全平方公式,即可解答.【解答】解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.【点评】本题考查了同底数幂的除法,积的乘方,以及完全平分公式,解决本题的关键是熟记相关公式.6.已知9n+1﹣32n=72,求n的值.【分析】由于72=9×8,而9n+1﹣32n=9n×8,所以9n=9,从而得出n的值.【解答】解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=1.【点评】主要考查了幂的乘方的性质以及代数式的恒等变形.本题能够根据已知条件,结合72=9×8,将9n+1﹣32n变形为9n×8,是解决问题的关键.7.已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.【分析】(1)根据同底数幂的乘法,可得底数相同的幂的乘法,根据根据幂的乘方,可得答案;(2)根据同底数幂的除法,可得底数相同幂的除法,根据幂的乘方,可得答案;(3)根据同底数幂的乘法、幂的乘方,可得答案.【解答】解:(1)52a+b=52a×5b=(5a)2×5b=42×6=96(2)5b﹣2c=5b÷(5c)2=6÷92=6÷81=2/27(3)5a+c=5a×5c=4×9=3652b=62=36,因此5a+c=52b所以a+c=2b.【点评】本题考查了同底数幂的除法,根据法则计算是解题关键.8.已知 a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.【分析】(1)首先求出a3m=23,a2n=42=24,a k=32=25,然后根据同底数幂的乘法、除法法则计算即可;(2)首先求出a k﹣3m﹣n的值是1;然后根据a0=1,求出k﹣3m﹣n的值是多少即可.【解答】解:(1)∵a3m=23,a2n=42=24,a k=32=25,∴a3m+2n﹣k=a3m•a2n÷a k=23•24÷25=23+4﹣5=22=4;(2)∵a k﹣3m﹣n=25÷23÷22=20=1=a0,∴k﹣3m﹣n=0,即k﹣3m﹣n的值是0.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握.(2)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).9.已知a m=5,a2m+n=75,求①a n;②a3n﹣2m的值.【分析】①根据幂的乘方,可得要求的形式,根据同底数幂的乘法,可得答案;②根据幂的乘方,可得要求的形式,根据同底数幂的除法,可得答案.【解答】解:①由a m=5,平方,得a2m=25.由同底数幂的乘法,得a2m+n=a2m•a n=75,即a n=75÷a2m=75÷25=3;②立方,得a3n=33=27,由同底数幂的除法,得a3n﹣2m=a3n÷a2m=27÷25=.【点评】本题考查了同底数幂的除法,先利用幂的乘方化成要求的形式,再利用同底数幂的乘除法.10.已知10a=5,10b=6,求:(1)102a+103b的值;(2)102a+3b的值.【分析】(1)根据幂的乘方,可得要求的形式,根据有理数的加法,可得答案;(2)根据幂的乘方,可得幂的形式,根据同底数幂的乘法,可得答案.【解答】解:(1)原式=(10a)2+(10b)3=52+63=241;(2)原式=(10a)2•(10b)3=52×63=5400.【点评】本题考查了幂的乘方,先算幂的乘方,再算幂的乘法.11.用幂的运算知识,你能比较出3555与4444和5333的大小吗?请给出科学详细的证明过程.【分析】此题根据幂的乘方,底数不变,指数相乘,把3555、4444和5333变形为指数相同的三个数,再比较它们的底数即可求出答案.【解答】解:因为它们的指数为555,444,333,具有公因式111,所以3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,而256111>243111>125111,所以4444>3555>5333【点评】此题考查了幂的乘方与积的乘方,此题较简单,解题时要能把三个数变形为指数相同的三个数是此题的关键.12.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.【分析】根据同底数幂的乘法法则,可得出关于a、b的方程组,解出即可得出a、b,代入可得出代数式的值.【解答】解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=10.【点评】本题考查了同底数幂的乘法,属于基础题,掌握同底数幂的乘法法则是关键.13.已知x3=m,x5=n用含有m、n的代数式表示x14.【分析】根据幂的乘方和同底数幂的乘法的性质可得出m、n的代数式.【解答】解:根据题意可把14次方分为9次方加5次方,∵x3=m,x5=n,∴x14=x9•x5=(x3)3•x5=m3n.【点评】本题考查幂的乘方和同底数幂的乘法,属于基础题,关键在于掌握幂的乘方的运用.14.已知2m=a,2n=b(m,n为正整数).(1)2m+2=,22n=2b.【分析】(1)分别求出m、n的值,然后代入即可;(2)先求出3m+2n+2的值,然后求解.【解答】解:(1)m=,n=,则2m+2=,22n=2b;(2)3m+2n﹣2=a+b﹣2,则23m+2n﹣2=.故答案为:,2b.【点评】本题考查了同底数幂的除法,涉及了同底数幂的乘法、幂的乘方和积的乘方等运算,掌握运算法则是解答本题的关键.15.将幂的运算逆向思维可以得到a m+n=a m•a n,a m﹣n=a m÷a n,a mn=(a m)n,a m b m=(ab)m,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解,收到事半功倍的效果如:(1)=1;(2)若3×9m×27m=311,则m的值为2;(3)比较大小:a=255,b=344,c=533,d=622,则a、b、c、d的大小关系是a<d<b<c.(提示:如果a>b>0,n为正整数,那么a n>b n)【分析】(1)根据积的乘方公式,进行逆运算,即可解答;(2)转化为同底数幂进行计算,即可解答;(3)转化为指数相同,再比较底数的大小,即可解答.【解答】解:(1)==12013,故答案为:1.(2)3×9m×27m=3×(32)m×(33)m=3×32m×33m=31+5m=311,∴1+5m=11,解得:m=2.故答案为:2.(3)a=255=(25)11=3211,b=344=(34)11=8111,c=533=(53)11=12511,d=622=(62)11=3611,∵32<36<81<125,∴3211<3611<8111<12511∴a<d<b<c,故答案为:a<d<b<c.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是公式的逆运用.16.已知4m=2,8n=5,(2)求:24m﹣6n的值.【分析】(1)直接利用积的乘方运算法则结合同底数幂的乘法运算法则求出即可;(2)利用幂的乘方运算法则结合同底数幂的除法运算法则求出即可.【解答】解:(1)∵4m=2,8n=5,∴22m=2,23n=5,∴22m+3n=22m×23n=2×5=10;(2)∵4m=2,8n=5,∴22m=2,23n=5,∴24m=(22m)2=4,26n=52=25,∴24m﹣6n=4÷25=.【点评】此题主要考查了同底数幂的乘方以及同底数幂的除法运算和幂的乘方等知识,正确将原式变形得出是解题关键.17.已知3m=6,9n=2,求32m﹣4n+1的值.【分析】根据9n=32n,32m﹣4n+1=32m×3÷34n,代入运算即可.【解答】解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=27.【点评】此题考查了同底数幂的乘除法则,属于基础题,注意掌握同底数幂的除(乘)法法则:底数不变,指数相减(加).18.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.19.已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.【分析】转化为同底数幂的乘法,求出m的值,即可解答.【解答】解:3×9m×27m=3×32m×33m=31+5m=321,∴1+5m=21,∴m=4,∴(﹣m2)3÷(m3•m2)=﹣m6÷m5=﹣m=﹣4.【点评】本题考查了同底数幂的除法,解决本题的关键是把3×9m×27m转化为同底数幂的乘法进行计算,求出m的值.20.若2x+5y﹣3=0,求4x•32y的值.【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.【解答】解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.21.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.【分析】(1)先根据同底数幂乘法运算的逆运算得出a x+y=a x•a y=25,根据a x=5可得a y=5,代入即可求解;(2)将原式利用同底数幂乘法运算的逆运算进行变形为(10α)2•(10β)2,即可求解.【解答】解:(1)∵a x+y=a x•a y=25,a x=5,∴a y=5,∴a x+a y=5+5=10;(2)102α+2β=(10α)2•(10β)2=52×62=900.【点评】本题主要考查的是正数指数幂的你运算,掌握整数指数幂的运算公式是解题的关键.22.已知2a=5,2b=3,求2a+b+3的值.【分析】直接利用同底数幂的乘法运算法则求出即可.【解答】解:2a+b+3=2a•2b•23=5×3×8=120.【点评】此题主要考查了同底数幂的乘法运算,熟练掌握运算法则是解题关键.23.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.【分析】首先合并同类项,根据同底数幂相乘,底数不变,指数相加的法则即可得出答案.【解答】解:(a m+1b n+2)(a2n﹣1b2n)=a m+1×a2n﹣1×b n+2×b2n=a m+1+2n﹣1×b n+2+2n=a m+2n b3n+2=a5b3.∴m+2n=5,3n+2=3,解得:n=,m=,m+n=.【点评】本题考查了同底数幂的乘法,难度不大,关键是掌握同底数幂相乘,底数不变,指数相加.24.已知2x=8y+2,9y=3x﹣9,求x+2y的值.【分析】根据原题所给的条件,列方程组求出x、y的值,然后代入求解.【解答】解:根据2x=23(y+2),32y=3x﹣9,列方程得:,解得:,则x+2y=11.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.25.已知2x+3y﹣3=0,求9x•27y的值.【分析】先把9x和27y都化为3为底数的形式,然后求解.【解答】解:∵2x+3y﹣3=0,∴2x+3y=3,则9x•27y=32x•33y=32x+3y=33=27.故答案为:27.【点评】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答本题关键.26.已知3x+2•5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值.【分析】首先由3x+2•5x+2=153x﹣4,可得3x+2•5x+2=(15)x+2=153x﹣4,即可得方程x+2=3x ﹣4,解此方程即可求得x的值,然后化简(x﹣1)2﹣3x(x﹣2)﹣4,再将x=3代入,即可求得答案.【解答】解:∵3x+2•5x+2=(15)x+2=153x﹣4,∴x+2=3x﹣4,解得:x=3,∴(x﹣1)2﹣3x(x﹣2)﹣4=x2﹣2x+1﹣3x2+6x﹣4=﹣2x2+4x﹣3=﹣2×9+4×3﹣3=﹣9.【点评】此题考查了积的乘方的性质与化简求值问题.此题难度适中,注意由3x+2•5x+2=153x﹣4,得到方程x+2=3x﹣4是解此题的关键.27.已知:2x+3y﹣4=0,求4x•8y的值.【分析】首先根据2x+3y﹣4=0,求出2x+3y的值是多少;然后根据4x•8y=22x•23y=22x+3y,求出4x•8y的值是多少即可.【解答】解:∵2x+3y﹣4=0,∴2x+3y=4,∴4x•8y=22x•23y=22x+3y=24=16,∴4x•8y的值是16.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.28.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.【分析】(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.【解答】解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.【点评】本题考查的是幂的乘方与同底数幂的乘法法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.29.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.【分析】根据幂的乘方,可化已知成要求的形式,根据已知,可得答案.【解答】解:4m=22m=y﹣1,9n=32n=x,原式等价于;2×22m÷(32n÷3)=12,2(y﹣1)÷(x÷3)=122y﹣2=12(x÷3)2y﹣2=4xy=2x+1.【点评】本题考查了同底数幂的除法,把已知化成要求的形式是解题关键.30.“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.【分析】(1)把等号左边的式子利用幂的乘方转化为以3为底数的幂,根据等式的左边=右边,即可求解.(2)把等号左边的式子利用幂的乘方以及同底数的幂的乘法法则转化为以2为底数的幂,则对应的指数相等,即可求解;(3)把等号左边的式子利用积的乘方的逆运用转化为以15为底数的幂,则对应的指数相等,即可求解.【解答】解:(1)27x=(33)x=33x=39,∴3x=9,解得:x=3.(2)2÷8x•16x=2÷(23)x•(24)x=2÷23x•24x=21﹣3x+4x=25,∴1﹣3x+4x=5,解得:x=4.(3)3x+2•5x+2=(3×5)x+2=15x+2=153x﹣8,∴x+2=3x﹣8,解得:x=5.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 幂的运算 单元综合卷(B)
一、选择题。

(每题3分,共21分)
1.31m a +可以写成 ( )
A .31()m a +
B . 3()1m a +
C .a ·a
3m D .(m a )21m + 2.下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=
2a -;④4m 2-=214m
;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道
3.2013年,我国发现“H 7N 9”禽流感,“H 7N 9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 m ,这一直径用科学记数法表示为 ( )
A .1.2×109- m
B .1.2×10
8-m C .12 X 108-m D .1.2×107- m 4.若x 、y 为正整数,且2x ·2y =25;,则x 、y 的值有 ( )
A .4对
B .3对
C .2对
D .1对
5.若x <一1。

则012x x x --、、之间的大小关系是 ( )
A .0x > 2x -> 1x -
B .2x ->1x ->0x
C .0x >1x ->2x -
D ..1x ->2x ->0x
6.当x =一6,y =16
时,20132014x y 的值为 ( ) A .16 B .16
- C .6 D .一6 7.如果(m a ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( )
A .m =9,n =一4
B .m =3,n =4
C .m =4,n =3
D .m =9,n =6
二、填空题。

(每空2分,共16分)
8.将(16
)1-、(一2) 0、(一3) 2、一︱-10 ︱这四个数按从小到大的顺序排为 · 9.( )
2=42a b ;( )×12n -=223n + 10.若35)x (=152×153,则x = .
11.如果43(a )÷25(a )=64,且a <0,那么a = .
12.若3n =2,35m =,则2313m n +-的值为 .
13.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y .
14.如果等式(2a 一1)
2a +=1,则a 的值为 .
三、解答题。

(共63分) 15.(每小题4分,共16分)计算:
(1)一3x + (-4x )2x ; (2)( 2a )3·(2a )4÷(一2a )5;
(3)(-2)
2-一32÷(3.144+π) 0;
(4)把下式化成()a b ρ-的形式:
15(a -b ) 3 [一6(a -b )
5ρ+](b -a ) 2÷45(b -a ) 5.
16.(8分)用简便方法计算下面各题:
(1) 4
()52012×(一 2013; (2)(318)12×(825
)11×(一2) 3
17.(4分)先化简,再求值:一(一2a )3·(一b 3)2+(一
32ab 2)3。

,其中a =一12
,b =2.
18.(4分)已知n 为正整数,且2()9n x =,求32221
()3()3
n n x x -的值;
19.(1)(4分)已知5×25m ×125m =516,求m 的值;
(2)(4分) 已知x +3y -2=0,求6x ·216y 的值;
(3)(4分)已知9m ÷322m +=1
()3n
,求n 的值;
20.(5分)若a =2
55,b =344,c =433,试比较a 、b 、c 的大小
21.(6分)(1)你发现了吗(23)2=23×23,(23)2-=2
1113322222()333
=⨯=⨯,由上述计算,我们发现(23)2 (23)2
- (2)仿照(1),请你通过计算,判断335
4()()45
-与之间的关系。

(3)我们可以发现:()m b
a - ()m a b
(0ab ≠)。

(4)计算:2277()()155
-g 。

22.22.(8分)阅读下列材料:
一般地,n 个相同的因数a 相乘, 记为n a .如2×2×2=32=8,此时,3叫做以2为底8的对数,记为log 8a (即log 8a =3).一般地,若n a =6(a >0且a ≠1,6>0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ).如34
=81,则4叫做以3为底81的对数,记为3log 81 (即3log 81=4).
(1)计算以下各对数的值:
2log 4= ;2log 16= ;2log 64= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又
满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗
log log a a M N += (a >0且a ≠1,M >0,N >0);
(4)根据幂的运算法则:n m a a g =n m a +以及对数的含义证明上述结论.
参考答案
1.C 2.B 3.D 4.A 5.A 6.B 7.B
8.10--<(一2)°<11
()6-<(一3) 2
9.±以42,2n a b + 10.6 11.—8 12.2003
13.6x 14.-2或1或0
15.(1)155x (2) 4a - (3) 3
84- (4)25()p a b +-
16.(1)- (2)-25 17.36378
a b ,-37 18.一162 19.(1) 3m = (2)36 (3) 2n =
20.∵555111144111133311112(2)32,3(34)81,4(4)64a b c ========= 又∵1132<1164<1181,∴a <C <b .
21.(1)= (2)= (3)= (4)9
22.解:(1)2 4 6
(2)4×16=64,222log 4log 16log 64+=;
(3) log log log ()a a a M N MN +=;
(4)证明:设1,2og log a a M b N b ==,
则12,b b a M a N ==,
∴M ·N = 1b a ,2b a =21b b a +.
∴12log ()a b b MN +=,即log log log ()a a a M N MN +=。

相关文档
最新文档