2020高中数学 2.3.1直线与平面垂直的判定教材分析 新人教A版必修2
高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2 教案
2.3.1直线与平面垂直的判定【教学目标】1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.【教学重难点】教学重点:运用判定定理证明一些空间位置关系的简单命题。
教学难点:运用判定定理证明一些空间位置关系的简单命题。
【教学过程】1. 从实际背景中感知直线与平面垂直的形象问题1:空间一条直线和一个平面有哪几种位置关系?问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.2.提炼直线与平面垂直的定义问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么设计意图:主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念.通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法.通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法.3.探究直线与平面垂直的判定定理创设情境猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上).如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理.学生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)问题5:(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?(组织学生动手操作、探究、确认)设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直.问题6:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD 抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线.问题7:如果将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.根据试验,请你给出直线与平面垂直的判定方法.(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)问题8:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出“为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解.4.直线与平面垂直判定定理的应用如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线.并说明这些直线有怎样的位置关系?思考:如图6,已知,则吗?请说明理由.(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系.练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.求证:AC⊥平面VKB思考:(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;(3)在⑵的条件下,有人说“VB⊥AC, VB⊥EF,∴VB⊥平面ABC”,对吗?设计意图:例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理. 3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.5.总结反思,当堂检测(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?检测设计1.课本66P探究:如图2.3-7,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.2.如图9,PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形.【板书设计】一、直线与平面垂直的定义二、直线与平面垂直的判定定理三、例题例1变式1【作业布置】课本67P练习22.3.1直线与平面垂直的判定导学案课前预习学案一、预习目标:借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;二、预习内容:问题1:空间一条直线和一个平面有哪几种位置关系?问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么直线与直线垂直是的定义________________________________________________________________思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(3) 如何判定一条直线直线和平面垂直呢?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标:(1)探究出直线与平面垂直的判定定理(2)利用定理解决实际问题学习重点:运用判定定理证明一些空间位置关系的简单命题。
高中数学必修二2.3.1直线与平面垂直的判定教案新人教A版必修2
∴AC⊥平面 PBO.
又 PB 平面 PBO,∴ PB⊥AC.
点评: 欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线面垂直
.用
符号语言证明问题显得清晰、简洁 .
例 2 如图 9, 在正方体 ABCD—A1B1C1D1 中,求直线 A1B 和平面 A1B1CD所成的角 .
3
图9 活动: 先让学生思考或讨论后再回答, 经教师提示、 点拨, 对回答正确的学生及时表扬, 对回答不准确的学生提示引导考虑问题的思路 . 解: 连接 BC1 交 B1C 于 点 O,连接 A1O. 设正方体的棱长为 a, 因为 A1B1⊥B1C1,A 1B1⊥B1B, 所以 A1B1⊥平面 BCC1B1. 所以 A1B1⊥BC1. 又因为 BC1⊥B1C,所以 BC1⊥平面 A1B1CD. 所以 A1O为斜线 A1B在平面 A1B1CD内的射影, ∠BA1O为直线 A1B 与平面 A1B1CD所成的角 .
面内任意一条不过点 B 的直线 B′C′也是垂直的 .
思路 2. ( 事例导入 )
如果一条直线垂直于一个平面的无数条直线, 那么这条直线是否与这个平面垂直?举例
说明 .
如图 1,直线 AC1 与直线 BD、EF、GH等无数条直线垂直, 但直线 AC1 与平面 ABCD不垂直 .
图1
(二)推进新课、新知探究、提出问题
0°. 如图 6,l 是平面 α 的
一条斜线, 点 O是斜足, A 是 l 上任意一点, AB 是 α 的垂线, 点 B 是垂足, 所以直线 OB(记
作 l ′)是 l 在 α 内的射影,∠ AOB(记作 θ )是 l 与 α 所成的角 .
直线和平面所成的角是一个非常重要的概念, 在实际中有着广泛的应用, 如发射炮弹时,
高中数学人教A版必修二课件: 2.3.1直线和平面垂直的判定
[规律方法 ]
(1)利用直线与平面垂直的判定定理证明直线与平
面垂直的步骤是: ①在这个平面内找两条直线, 使它和这条直线垂直; ②确定这个平面内的两条直线是相交的直线; ③根据判定定理得出结 论.
(2)解决线面垂直问题,常转化为证明线线垂直,而证明线线垂 直常见的方法有: ①利用勾股定理的逆定理,即在△ABC 中,若 AB2+BC2=AC2, 则∠B=90° ,即 AB⊥BC; ②利用等腰三角形底边的中线就是底边的高线.即在△ABC 中, AB=AC,E 为 BC 边的中点,则 AE⊥BC; ③利用线面垂直的定义,即 a⊥α,b⊂α,则 a⊥b; ④利用平行转化,即 a∥b,b⊥c,则 a⊥c.
解析:斜线段 AB,设斜足为 B,A 在平面 α 上的射影为 H, ∴BH 为 AB 在平面 α 上的射影. ∴∠ABH 为斜线段 AB 与 α 所成的角. AH AB ∵sin∠ABH= AB ,又∵BH=2, 3 ∴sin∠ABH= 2 , ∵∠ABH 为锐角,∴∠ABH=60° .
答案:A
4.(导学号:71250308)在正方体 A1B1C1D1ABCD 中,E、F 分别 是棱 AB、BC 的中点,O 是底面 ABCD 的中心(如图),则 EF 与平面 BB1O 的关系是________.
答案:垂直
一、直线和平面垂直的概念 对直线与平面垂直的定义的理解 1.直线与平面垂直,不是直线与平面位置关系的一种,而是直 线与平面相交的一个特例. 2.定义中的“任意一条直线”指的是所有直线,与“无数条直 线”不同,因为无数条直线并不能代表所有直线. 3 .直线与平面垂直,则直线与该平面内的任何一条直线都垂 直.这也可作为我们判定两直线垂直的常用方法.
1.(导学号:71250305)直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不 可能( ) B.相交 D.垂直
人教A版高中数学必修二2.3.1直线和平面垂直的判定课件
如果两条直线相交
b
α
直线与平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂 直,则该直线与此平面垂直.
lm
ln mnO
m n
l
线不在多 相交则行
l
m
O
α
n
线线垂直
线面垂直
直线与平面垂直
思考:折痕AD垂直BC时,翻折后直线AD与 桌面所在的平面垂直吗?为什么?
A
A
B
D
B
D C C
例1.如图,点P是平行四边形ABCD所在平面 外一点,O是对角线AC与BD的交点,且PA=PC, PB=PD.求证:PO 平面ABCD.
直,我们说直线l与平面 互相垂直,记作 l .
垂足
平面 的垂线
l
Pa
直线 l 的垂面
l
a
线线垂直
la
线面垂直
线面垂直的判定条件 如果直线 l与平面内的一条直线垂直,
则直线 l 和平面 互相垂直?
l
b
α
如果直线 l与平面内的两条直线垂直, 则直线 l 和平面 互相垂直?
如果两条直线平行
面图中有几个直角三角形? A
O
B
PA 平面ABC
BC
平面ABC
AC BC PA BC PA AC
A
C
BC 平面PAC
PC
平面PAC
BC
PC PBC是直角三角形.
故共有四个直角三角形
例5.在正方体中,求证: (1)BD ⊥ AC,
(2)BD ⊥ 平面ACB
D’
C’
A’
B’
D A
V
P
.K
A B
2.3.1_直线与平面垂直的判定_课件3(新人教版A必修2)
数学思想方法: 3.数学思想方法:转化的思想 空间问题 平面问题
P M N A C
B
第2个 垂线 空间角 平面的一条斜线和它在平 A θ O 面内的射影所成的锐角, 面内的射影所成的锐角,叫做 α 这条直线和这个平面所成的角
斜线在平面上的射影
斜线
P
一条直线垂直于平面,它们所成的角是直角 一条直线垂直于平面,它们所成的角是直角 一条直线和平面平行,或在平面内,它们所 一条直线和平面平行,或在平面内,它们所 成的角是0 成的角是0 °的角
(1)四面体P ABC中有几个直角三角形 (1)四面体P-ABC中有几个直角三角形 四面体 (2)指出PB,PC与平面ABC所成的角 (2)指出PB,PC与平面ABC所成的角 指出PB,PC与平面ABC AC,PC与平面PAB所成的角 AC,PC与平面PAB所成的角 与平面PAB P
A
C B
知识小结
直线和平面所成角的范围是[0° 90° 直线和平面所成角的范围是[0°,90°] 两条异面直线所成的角,(0,900] 两条异面直线所成的角
例2 分别指出对角线 1C 分别指出对角线A
与六个面所成的角. 与六个面所成的角
D1 A1
1
C1 B1 C
1
D A B
练习 在Rt△ABC中,∠B=90°,P为 Rt△ABC中,∠B=90°,P为 ABC所在平面外一点,PA⊥平面 所在平面外一点,PA⊥平面ABC △ABC所在平面外一点,PA⊥平面ABC
⊥ α ,求证 b ⊥ α .
b
n
证明: 证明:在平面 α 内作 a 两条相交直线m, . 两条相交直线 ,n. 因为直线 a ⊥ α, 根据直线与平面垂直的定义知 α m a ⊥ m, a ⊥ n. 又因为 b // a 所以 b ⊥ m, b ⊥ n. 是两条相交直线, 又 m ⊂ α , n ⊂ α , m, n 是两条相交直线, 所以 b ⊥ α .
人教A版高中数学必修二《直线与平面垂直的判定》教学设计
课题:2.3.1 《直线与平面垂直的判定》教学设计一、教学目标教学目标知识目标借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义.能力目标 通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念.情感目标 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣. 重难点重点 操作确认并概括出直线与平面垂直的定义和判定定理.难点 操作确认并概括出直线与平面垂直的定义和判定定理及初步应用.法制渗透 无 教学方法 启发式 教学工具 三角形纸片二、教学设计活动名称 师生互动活动意图活动1[复习旧知引入课题]1.空间中一条直线与平面有哪几种位置关系?答案:直线在平面内、直线与平面平行、直线与平面相交.2. 直线和平面相交时,有一种特殊的位置关系是什么?(垂直) 是否也可以像直线与平面平行那样,也有一个判定定理呢? →引入课题:直线与平面垂直的判定(板书课题)1、答案让学生回答,教师引导和纠正.2、教师引导学生回忆,并对学生活动进行评价;学生回顾知识点时,可互相交流.结合学生已有知识,启发学生思考,激发学生学习兴趣.活动2[探究和证明判定定理]1.知识探究(一):直线与平面垂直的概念 (1)创设情境请同学们找出下图中线与面垂直的地方?(2)思考:如何定义一条直线与一个平面垂直?→通过动画的展示,让学生明白到底什么叫做直线与平面垂直.直线与平面垂直的定义:如果一条直线l 与平面α内的任意一条直线都垂直,则称这条直线与这个平面垂直.记作 α⊥l .l a若a l a l ⊥⇒⊂⊥αα,(线面垂直⇒线线垂直). (3)深入理解“线面垂直定义”教师引导学生去探索和发现直线与平面垂直的判定的证明方法。
让学生知道数学问题源于实际生活,培养学生证明直线与平面垂直的判定的方法,证明思路。
Pα①.如果一条直线与一个平面垂直,那么它与平面内所有的直线都垂直( )②.如果一条直线与平面内无数条直线都垂直,那么它与平面垂直( ) 答案:①√,②×2、知识探究(二):直线与平面垂直的判定定理 (1)思考:是否把平面中的直线一一找出,才能证明直线与平面垂直,该怎样判定直线与平面垂直呢? (2)探究活动:请同学们拿出一块三角形的纸片,做以下试验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触). ①折痕AD 与桌面垂直吗? ②如何翻折才能保证折痕AD 与桌面所在平面肯定垂直 答案:当BC AD ⊥时AD 作为BC 边上的高时,AD ⊥α,这时AD ⊥ BC ,即AD ⊥BD ,AD ⊥CD ,BD ∩CD=D.结论:AD ⊥BD ,AD ⊥CD ,BD ∩CD=D ,有AD ⊥α. (3) 直线与平面垂直的判定定理:一条直线和一个平面内的两条相交直线都垂直,则这条直线垂直于这个平面.n m m n P l l m l n ααα⊂⎫⎪⊂⎪⎪⋂=⇒⊥⎬⎪⊥⎪⊥⎪⎭线线垂直⇒线面垂直活动名称师生互动 活动意图αPnml活动3[学以致用]例1.如图,已知a ∥b 、a ⊥α.求证:b ⊥α.分析已知条件 → 讨论如何利用直线与平面垂直的判定定理 → 示范格式 → 得出结论 证明:在平面α内作两条相交直线n m ,. 因为直线α⊥a ,根据直线与平面垂直的定义知n a m a ⊥⊥,.又因为b ∥a 所以.,n b m b ⊥⊥又因为n m ,是平面α内的两条相交直线, 所以α⊥b .结论:若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.例2.如图,已知OA 、OB 、OC 两两垂直.(1)求证:OA ⊥平面OBC (2)求证:OA ⊥BC.B分析已知条件 → 讨论如何利用直线与平面垂直的判定定理 → 示范格式答案:(1)OC OB OA ,, 两两垂直 OC OA OB OA ⊥⊥∴, 又O OC OB =⋂ ⊥∴OA 平面OBCBCOA OBCBC OBC OA ⊥∴⊂⊥ , )2(平面平面教师引导学生由已知条件,并结合判定定理去解决问题;并让抽学生解答, 教师应该关注并发现学生的做题步骤,对做得好的学生应该给予表扬.同时强调,立体几何是一门数与形结合的学科.教师引导学生发现答案,并让学生上黑板来板书解答过程。
2020高中数学 2.2.1直线与平面平行的判定教材分析 新人教A版必修2
2020高中数学 2.2.1直线与平面平行的判定教材分析新人教A版必
修2
一.地位与作用
本节是人教A版必修二第二章第二节第一课时,它充分体现了线线平行和线面平行之间的转化,既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带,在高中立体几何中占有很重要的地位,按照新课标的设计理念,本节的教学设计淡化了几何论证的要求,遵循直观感知——操作确认——思辨论证——度量计算的认识过程展开,让学生经历“将空间问题平面化”的“降维”过程,体现化归与转化的思想.培养学生空间想象能力,发展学生的合情推理能力及一定的推理论证能力,为学生后继学习做好准备.
二.教学目标
1.知识与技能:
(1)理解并掌握直线与平面平行的判定定理;
(2)进一步培养学生观察、发现的能力和空间想象能力;
2.过程与方法
(1)通过直观感知、动手操作、抽象概括的数学化过程,自主建构直线与平面平行的判定定理;
(2)经历运用判定定理的过程,培养学生发现问题、提出问题、分析问题、解决问题的能力;
(3)经历“空间转化为平面”“无限转化为有限”等转化过程,体现本节课的核心数学思想———化归与转化.
3.情感、态度与价值观
(1)让学生在发现中学习,增强学习的积极性;
(2)通过创设情景,让学生亲身经历数学研究的过程,体现数学的理性之美;
(3)展现“线线——线面”的联系与转化,渗透唯物主义观点.
三.教学重点、难点
重点:直线与平面平行的判定定理及其应用.
难点:直线与平面平行的判定定理的建构过程.。
【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)
垂足
平面 的垂线
l
直线 l 的垂面
P
对定义的认识
①“任何”表示所有.
②直线与平面垂直是直线与平面相交的一种特殊情况,在 垂直时,直线与平面的交点叫做垂足.
③
等价于对任意的直线
,都有
利用定义,我们得到了判定线面垂直的最基本方法,同时 也得到了线面垂直的最基本的性质.
直线与平面垂直 除定义外,如何判断一条直线与平面垂直呢?
解析:(1)如图 23,∵PO⊥平面 ABC, ∴PA 、PB、PC 在平面 ABC 上的射影分别是 OA、OB、OC. 又∵PA =PB=PC,∴OA=OB=OC. ∴O 是△ ABC 的外心.
图 23
图 24
(2)如图 24,∵PO⊥平面 ABC,
∴PA 在平面 ABC 上的射影是 OA.
∵BC⊥PA ,∴BC⊥OA. 同理可证 AC⊥OB, ∴O是△ ABC 的垂心.故填垂心.
4-1.P 为△ABC 所在平面外一点,O 为 P 在平面 ABC 上的 射影.
(1)若 PA =PB=PC,则 O 是△ABC 的_外__心__; (2)若 PA ⊥BC,PB⊥AC,则 O 是△ABC 的_垂__心__; (3)若 P 到△ABC 三边的距离相等,且 O 在△ABC 内部,则 O 是△ABC 的_内__心___; (4)若 PA 、PB、PC 两两互相垂直,则 O 是△ABC 的垂__心___.
斜线与平面所成的角θ的取值范围 是:______________
线面所成的角 关键:过斜线上一点作平面的垂线
斜线
斜足
A α
射影
P
线面所成角 (锐角∠PAO)
O
1.如图:正方体ABCD-A1B1C1D1中,求: (1)A1C1与面ABCD所成的角 (2) A1C1与面BB1D1D所成的角
高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2[1]
第一课时直线与平面垂直的判定(一)教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理;(2)直线和平面所成的角.难点:直线与平面垂直判定定理的探究.教学过程教学内容师生互动设计意图新课导入问题:直线和平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、直线和平面垂直的定义、画法如果直线l与平面α内的任意一条直线都垂直,我们说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图.师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?生:旗杆与地面内任意一条经B的直线垂直.师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)生:垂直,依据是异面直培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无数条直线?学生找一反例说明.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面α垂直?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂直的判定定理中的“两条相交直线”改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面α垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.典例剖析例 1 如图,已知a∥b,a⊥α,求证:b⊥α.证明:在平面α内作两条相交直线m、n.因为直线a⊥α,根据直线与平面垂直的定义知师:要证b⊥α,需证b与α内任意一条直线的垂直,又a∥b,问题转化为a与面α内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明过程.巩固所知识培养学生转化化归能力、书写表达能力.a ⊥m ,a ⊥n .又因为b ∥a ,所以b ⊥m ,b ⊥n .又因为,m n αα⊂⊂,m 、n 是两条相交直线,b ⊥α.……师:此结论可以直接利用,判定直线和平面垂直.探索新知二、直线和平面所成的角如图,一条直线PA 和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A 叫做斜足.过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.典例剖析例2 如图,在正方体ABCD – A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.分析:找出直线A 1B 在平面A 1B 1CD 内的射影,就可以求出A 1B 和平面A 1B 1CD 所成的角.解:连结BC 1交B 1C 于点O ,连结A 1O .设正方体的棱长为a ,因为师:此题A 1是斜足,要求直线A 1B 与平面A 1B 1CD 所成的角,关键在于过B 点作出(找到,面A 1B 1CD 的垂线,作出(找到)了面A 1B 1CD 的垂线,直线A 1B 在平面A 1B 1CD 内的射影就知道了,怎样过B 作平面A 1B 1CD的垂线呢?生:连结BC 1即可. 师:能证明吗? 学生分析,教师板书,共同完成求解过程.点拔关键点,突破难点,示范书写及解题步骤.A 1B 1⊥B 1C 1, A 1B 1⊥B 1B ,所以A 1B 1⊥平面BCC 1B 1.所以A 1B 1⊥BC 1.又因为BC 1⊥B 1C ,所以B 1C ⊥平面A 1B 1CD .所以A 1O 为斜线A 1B 在平面A 1B 1CD 内的射影,∠BA 1O 为A 1B与平面A 1B 1CD 所成的角.在Rt △A 1BO 中,12AB a =,22BO a =, 所以112BO A B =, ∠BA 1O = 30°因此,直线A 1B 和平面A 1B 1CD 所成的角为30°.随堂练习 1.如图,在三棱锥V –ABC 中,VA = VC ,AB = BC ,求证:VB ⊥AC .2.过△ABC 所在平面α外一点P ,作PO ⊥α,垂足为O ,连接PA ,PB ,PC .(1)若PA = PB = PC ,∠C =90°,则点O 是AB 边的 心.(2)若PA = PB =PC ,则点O 是△ABC 的 心.(3)若P A ⊥PB ,PB ⊥PC ,PB ⊥P A ,则点O 是△ABC 的 .心.3.两条直线和一个平面所成的角相等,这两条直线一定平学生独立完成 答案: 1.略2.(1)AB 边的中点;(2)点O 是△ABC 的外心;(3)点O 是△ABC 的垂心.3.不一定平行. 4.AC ⊥BD .巩固所学知识行吗?4.如图,直四棱柱A ′B ′C ′D ′ – ABCD (侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD 满足什么条件时,A ′C ⊥B ′D ′?归纳总结 1.直线和平面垂直的定义判定2.直线和平面所成的角定义与解答步骤、完善.3.线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结的习惯和能力.课后作业2.7 第一课时 习案学生独立完成强化知识 提升能力备选例题例1 如图,在空间四边形ABCD 中,AB = AD ,CB = CD ,M 为BD 中点,作AO ⊥MC ,交MC 于O .求证:AO ⊥平面BCD .【解析】连结AM∵AB = AD ,CB = CD ,M 为BD 中点. ∴BD ⊥AM ,BD ⊥CM .又AM ∩CM = M ,∴BD ⊥平面ACM . ∵AO 平面ACM ,∴BD ⊥AO . 又MC ⊥AO ,BD ∩MC = M ,∴AO ⊥平面貌BCD .【评析】本题为了证明AO ⊥平面BCD ,先证明了平面BCD 内的直线垂直于AO 所在的平面.这一方法具有典型性,即为了证明线与面的垂≠直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直.这样互相转化,螺旋式往复,最终使问题得到解决.例2 已知棱长为1的正方体ABCD – A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.【解析】取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连AO . 由已知正方体,易知EO ⊥ABC 1D 1,所以∠EAO 为所求. 在Rt △EOA 中,11122EO EF AD ==,AE =,sin ∠EAO =EO AE =.所以直线AE 与平面ABC 1D 1. 【评析】求直线和平面所成角的步骤: (1)作——作出斜线和平面所成的角;(2)证——证明所作或找到的角就是所求的角;(3)求——常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角形) (4)答.。
高中数学说课稿----直线与平面垂直的判定
《直线与平面垂直的判定》——第一课时 府城中学 郑小芳一、教材分析1、 教材的地位和作用:《直线与平面垂直的判定》是高中新教材人教A 版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。
其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!(如图)学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
2、 教学目标根据大纲要求,考虑到学生的接受能力和课容量,确定了本次课的教学目标:A 、知识与技能:通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理;并能运用定义和定理证明一些空间位置关系的简单命题。
B 、过程与方法:通过线面垂直定义及定理的探究过程,感知几何直观能力和抽象概括能力,体会转化思想在解决问题中的运用。
C 、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点根据《课程标准》,线面垂直判定定理的严格证明在本节课中不做要求,这样降低了难度。
因而,我将本节课的教学重点确立为:重点:操作确认并概括出直线与平面垂直的定义和判定定理。
由于学生的抽象概括能力、空间想象力还有待提高,而线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到,因此我把操作确认并概括出直线与平面垂直的判定定理及初步运用作为本节课的难点。
二、课前准备1.教师准备:长方体模型、多媒体课件2.三、教学设计本节的教学设计由以下几个环节构成②思考:从直线与直线垂直、直线与平面平行的定义过程得到启发,能否用一条直线垂直于一个平面画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。
再展示动画2引导学生根据异面直线所成角的概念得出旗杆AB所在直线与地面内任意一条不过点B的直线B1C1也垂直。
2020-2021学年高中数学人教A版必修2第二章2.3.1 直线与平面垂直的判定 教学设计
《直线与平面垂直的判定》教学设计一、学习内容分析本节课内容选自《普通高中课程标准实验教科书·数学必修2(人教A版)》第二章2.3.1节。
本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。
本节课中的线面垂直定义是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带。
学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
二、学习者分析本节课的学生是高一的学生,在学习本节课之前,学生已经学习了掌握了线线垂直的证明,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识,因此学生对于线面垂直的判定定理的学习有良好的认知基础。
但是学生对于理解线面垂直的定义有一定的困难,受线面平行的影响,很容易由一直线垂直于一平面内一直线得出线面垂直,由于平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。
三、教学重点、难点重点:直线与平面垂直的判定定理。
难点:探究得出出直线与平面垂直的判定定理及初步运用.四、教学目标(1)知识与技能目标:1.描述直线与平面垂直的定义;2.运用直线与平面垂直的判定定理证明简单的的空间位置关系问题.(2)过程与方法目标:1.通过对实例、图片的观察,概括定义,正确理解定义,增强观察能力;2.在探索直线与平面垂直判定定理的过程中感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.(3)情感态度与价值观目标:1.通过对空间中直线与平面垂直定义的归纳,感受生活中的数学美;2.通过经历直线与平面垂直判定定理的探究,体验探索的乐趣五、教学过程1.复习回顾,引入新课问题:同学们,我们已经学习了空间中直线与平面的位置关系,有哪些位置关系?【师生活动】学生集体可能回答:直线在平面内,直线与平面平行,直线与平面相交【追问】有些位置关系是比较特殊的,一种是线面平行,还有一种呢?【师生活动】教师引导学生回答线面垂直这种位置关系是一种特殊的线面位置关系并揭示课题2.逐步探索,得出定义问题:在日常生活中你见到的线面垂直的现象有哪些?【师生活动】学生列举生活中的线面垂直现象,然后教师也展示生活中的一些线面垂直现象,例如篮球架和地面垂直,旗杆和地面垂直。
2020版人教A数学必修2:2.3.1 直线与平面垂直的判定
题型三 直线与平面所成的角 [例3]在正方体ABCD-A1B1C1D1中, (1)求直线A1C与平面ABCD所成角的正切值;
解:(1)因为直线 A1A⊥平面 ABCD, 所以∠A1CA 为直线 A1C 与平面 ABCD 所成的角, 设 A1A=1,则 AC= 2 , 所以 tan∠A1CA= 2 .
课堂探究·素养提升
题型一 线面垂直的概念与定理的理解 [例1]下列说法中正确的个数是( ) ①如果直线l与平面α 内的两条相交直线都垂直,则l⊥α ; ②如果直线l与平面α 内的任意一条直线垂直,则l⊥α ; ③如果直线l不垂直于α ,则α 内没有与l垂直的直线; ④如果直线l不垂直于α ,则α 内也可以有无数条直线与l垂直. (A)0 (B)1 (C)2 (D)3
解析:由直线和平面垂直的判定定理知①正确;由直线与平面垂直的定 义知,②正确;当l与α不垂直时,l可能与α内的无数条直线垂直,故③ 不正确;④正确.故选D.
方法技巧
(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理 解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面 垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条 直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个 平面垂直. (2)由定义可得线面垂直⇒线线垂直,即若a⊥α ,b⊂α ,则a⊥b.
2.(2018·四川广安高一期末)如图,在正方体ABCD-A1B1C1D1中,求证: (1)AC∥平面A1C1D;
证明:(1)因为在正方体ABCD-A1B1C1D1中,AA1������ CC1, 所以四边形AA1C1C为平行四边形, 所以AC∥A1C1, 又AC⊄平面A1C1D,A1C1⊂平面A1C1D, 所以AC∥平面A1C1D.
高中数学新人教版A版精品教案《2.3.1 直线与平面垂直的判定》
直线与平面垂直的判定(教材:人教A版必修2)【教学目标】(一)知识目标:1、直线与平面垂直的定义2、直线与平面垂直的判定定理(二)能力目标:1、转化思想:空间问题转化为平面问题是处理立体几何问题的重要思想空间中线线位置关系与线面位置关系的互相转化;2、类比思想:研究线面平行时研究了定义,判定定理和性质定理,类比研究线面垂直3、培养数学思维过程【教学重点】直线与平面垂直的定义、判定定理及其简单应用.【教学难点】1、判定定理的探索与归纳;2、判定定理和定义在解决垂直问题中的交互与转化.【教学方式】启发探究式【教学手段】计算机、课件、实物模型【教学过程】一、直观感知直线与平面垂直的位置关系前面我们学习了直线与平面平行的判定与性质。
今天我们来研究直线与平面垂直的判定。
请同学们观看图片,直观感受路灯杆与地面、运载火箭与地面、大桥的桥柱与水面、旗杆与地面的位置关系.这些例子都给我们以直线和平面垂直的形象。
问题1:你还能举出生活中直线与平面垂直的例子吗?设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的.二、抽象概括直线与平面垂直的定义在阳光下观察直立于地面的旗杆和它在地面上的影子有怎样的位置关系?随着时间的变化,尽管影子的位置在移动,但无论影子的位置如何改变,旗杆所在直线始终垂直于影子所在直线。
请把这一现象用数学语言描述:旗杆AB所在直线始终垂直于地面上过B点的任意一条直线。
问题2:和不过B点的直线呢?是否也垂直?为什么?(把不过B点的直线平移到过B点即可)得到:直立于地面的旗杆与地面内任意一条直线都垂直。
引出直线与平面垂直的定义:如果直线l与平面α内的任意一条直线l都垂直,我们说直线l与平面α互相垂直。
若,则若任意直线a∈且,α,则αa⊥ll⊥(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)辨析:如果直线l与平面α内的所有直线l都垂直,直线l与平面α互相垂直吗?(对辨析可引导学生观察放置于桌面的直角三角板)三、探究直线与平面垂直的判定定理思考:如何验证学校广场上的旗杆是否与地面垂直?(用定义证明线面垂直不易操作,我们希望不用证任意一条,而是有限条,越少越好)请同学们借助手中的直角三角形纸片探究一下:得到线面垂直,直线最少垂直于平面内的几条直线?(1)如果一条直线与平面内的一条直线垂直,这条直线与这个平面垂直吗?(2) 如果一条直线与平面内的两条直线垂直,这条直线与这个平面垂直吗?无数条呢?师生活动:1.直角三角板一条直角边放在桌面上,发现条直线与平面内的一条直线垂直,这条直线与这个平面不一定垂直。
人教A版高中数学必修二课件直线与平面垂直的判定
二、教法分析
采用启发式、引导式、参与式的 教学方法。
三、学法分析
直
动合
归
观
手作
纳
感
操探
总
知
作究
结
分析:整个过程让学生体会转化、归 纳、类比等数学思想方法在解决问题 中的作用。
四、教学设计
实例引入, 形成概念
动画3
四、教学设计
2、合作探究,揭示定理
设计意图:学
生可以通过这两个 特例的类比,归纳 出两种情形的共同 本质特征。
四、教学设计
2、合作探究,揭示定理
问题⑧:有些同学课前准备的半圆形和 梯形的纸片,你是否也可以折出直线与 平面垂直呢?
四、教学设计
2、合作探究,揭示定理
四、教学设计
2、合作探究,揭示定理
问题⑤:如何翻折才能使折痕AD与桌面 所在的平面垂直? 问题⑥:由折痕AD⊥BC,翻折之后垂直 关系发生变化吗?(即AD⊥CD,AD⊥BD 还成立吗?)
四、教学设计
2、合作探究,揭示定理
A
B
D
C
A
B
D
C
动画1 动画2
四、教学设计
2、合作探究,揭示定理
问题⑦:不过三角形ABC的顶点A,如 何翻折纸片才能使纸片竖起放置在桌面 上(BD,DC与桌面接触)?
P
选做题:探究:PA⊥圆O所在平面,
AB是圆O的直径,C是圆周上一点,
则图中有几个直角三角形?由此你 A 认为三棱锥中最多有几个直角三角
形?四棱锥呢?
B O
C
设计意图: 必做题旨在让学生巩固加
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高中数学 2.3.1直线与平面垂直的判定教材分析新人教A版必修
2
本节课选自普通高中课程标准实验教科书人教版A必修2第二章第三节.
《直线与平面垂直的判定》共两课时,本节课是第一课时,主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理。
这节课的内容以判定为主线展开,定义的描述在位置关系中起着重要的作用,具体表现在直线与直线垂直与直线与平面垂直关系的相互转化.
教学目标
知识与技能
1.掌握直线与平面垂直的概念并能用三种语言表示;
2.掌握直线与平面垂直的判定定理及语言表示;
3.会用线面垂直的定义和判定定理证明简单命题.
过程与方法
1.能从日常生活中的实际例子中抽象出直线与平面垂直问题,培养学生的观察与抽象能力;
2.培养学生的几何直观和空间想象能力;
3.通过转化的思想,培养学生思考问题、并能探究发现问题、解决问题能力;
4.通过对定理及定理应用的探求培养学生的逻辑推理能力和综合利用已有的知识解决问题的能力.
情感、态度与价值观
1.通过联系实际认识直线和平面垂直,让学生体会数学与现实生活的密切联系,感受数学的现实价值,培养学生良好的审美观点.
2.学生在参与数学探究活动中,挖掘观察、概括和抽象等潜能,培养自主探索、团队合作精神与意识.
教学重点、难点
重点:直线与平面垂直的定义和判定定理的探究及简单应用
难点:直线与平面垂直的判定定理的探究及初步运用.。