拉伸法测金属丝杨氏模量实验数据及数据处理范例知识讲解
用拉伸法测钢丝杨氏模量――实验报告
用拉伸法测钢丝杨氏模量――实验报告本实验使用拉伸法测定钢丝的杨氏模量。
实验过程包括测量原始尺寸和断裂强度,计算应力和应变,绘制应力-应变曲线,利用斜率计算杨氏模量。
一、实验原理1.杨氏模量:杨氏模量也称弹性模量,是研究力学学科中的一项重要物理量,它描述了物体在受力时,单位应力下的应变程度。
可以表示为弹性模量E,其计算公式为E=σ/ε,其中σ为应力,ε为单位应变。
2.拉伸法:拉伸法是测定材料弹性性质的常用方法之一。
先将试样加在拉伸机上,通过施加相应的拉力,使试样发生拉伸变形,然后测量试样在不同应变下的应力,绘制应力-应变曲线,以求得该材料的杨氏模量。
二、实验步骤1.准备实验设备,将钢丝放在拉伸机上。
2.用卡尺测量钢丝的初始长度、直径和断裂长度,记录数据。
3.用拉伸机分别在不同的拉力下进行拉伸,记录拉力和试样的应变。
4.计算每个密度下的应力,应力=拉力/试样横截面积。
5.计算每个密度下的应变,应变=延长长度/原始长度。
6.根据应力-应变曲线,计算杨氏模量。
三、实验数据试样长度:5m原始直径:2.5mm断裂长度:8m钢丝密度:7.85g/cm³拉伸试验数据如下:|拉力F(N)|延长长度L(mm)|试样直径D(mm)||:-:|:-:|:-:||0|0|2.5||50|2|2.5||100|4|2.6||150|6|2.7||200|8|2.8||250|10|2.9||300|12|3.0||350|14|3.1||400|16|3.2||450|18|3.3||500|20|3.4||550|22|3.5||600|24|3.6||650|26|3.7||700|28|3.8||750|30|3.9||800|32|4.0|四、实验计算1.计算实验数据中的横截面积试样横截面积=π*(D/2)²=π*(2.5/2)²=4.91mm² 2.计算每个密度下的应力应力=F/S=700/4.91=142.6N/mm²应变=L/L0=28/5000=0.00564.绘制应力-应变曲线通过计算得出的应力和应变数据,可以绘制出钢丝在拉伸试验中的应力-应变曲线如下:[示例图:应力-应变曲线]5.计算杨氏模量根据应力-应变曲线可以看出,线性部分的斜率即为杨氏模量,计算可得杨氏模量的值为:E=Δσ/Δε=(320-170)/(0.004-0.003)=69000N/mm²五、实验结论通过本次实验,我们使用拉伸法测定了钢丝的杨氏模量,并且得出了结论:杨氏模量为69.0×10⁹N/mm²。
拉伸法测金属丝的杨氏弹性模量
实验4—2 拉伸法测金属丝的杨氏弹性模量【实验目的】1. 掌握光杠杆测量微小长度变化的原理,掌握尺读望远镜的使用方法。
2. 学会用拉伸法测量金属丝的杨氏弹性模量。
3. 加强数据处理能力的训练。
【实验原理】固体材料受外力作用时必然发生形变,本实验仅研究轴向形变(或称拉伸形变)。
设一根长度为L 截面积为S 的均匀金属丝,沿长度方向受外力F 的作用后,伸长量为L ∆,在弹性限度内根据胡克定律,有F LES L∆=, 即//F SE L L=∆ (4-2-1)其中F S 称为正应力(或叫胁强),L L∆称为线应变(或叫胁变),E 称为材料的杨氏模量,它是材料的固有属性。
金属丝的截面积可近似地看作圆,214S d π=,代入(4-2-1)式得: 24FLE d Lπ=∆ (4-2-2)上式中L ∆是一个微小的长度变化量,很难用普通的方法测量,因此采用光杠杆放大法来测量。
光杠杆装置包括两部分:光杠杆和尺读望远镜。
光杠杆(图4-2-1)由支架和平面镜组成,支架上有三个尖足组成等腰三角形,后足到两前足的垂直距离k 可以调节。
尺读望远镜由望远镜和读数标尺组成,实验者在望远镜中可以看到通过光杠杆平面镜反射的标尺像,并通过望远镜中的读数叉丝读出当前标尺上的刻度值。
实验4—2 杨氏弹性模量的测定 61当钢丝伸长时,固定在钢丝上的光杠杆后足会随之移动,导致光杠杆上平面镜的镜面绕两前足的连线发生转动,转动角度很小,用θ表示。
根据高等数学的知识,当θ角很小时,sin tan θθθ≈≈。
如图4-2-2所示,在左侧的小三角形中,tan L k θθ≈=∆;在右侧的大三角形中,2tan 2l D θθ≈=,联立上述两式,可得:2kL l D∆= (4-2-3) 将(4-2-3)式代入(4-2-2)式得: 28LDFE=(4-2-4) 【实验仪器】杨氏模量测定仪,卷尺(分度1mm ,极限误差a =1.2mm ),螺旋测微器(分度0.01mm ,极限误差0.004mm ),直尺(分度1mm ,极限误差0.1mm ),砝码(质量m=1kg )。
拉伸法测金属丝的杨氏模量实验报告
拉伸法测金属丝的杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大原理和测量微小长度变化的方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
假设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),在受到外力\(F\)作用下伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,其比例系数即为杨氏模量\(E\),数学表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\在本实验中,外力\(F\)由砝码的重力提供,横截面积\(S\)可通过测量金属丝的直径\(d\)计算得到(\(S =\frac{\pid^2}{4}\)),金属丝的原长\(L\)用米尺测量,而微小伸长量\(\Delta L\)则采用光杠杆法测量。
光杠杆装置由光杠杆、望远镜和标尺组成。
光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的沟槽内,后尖足置于金属丝的测量端。
当金属丝伸长(或缩短)\(\Delta L\)时,光杠杆的后尖足随之升降\(\Delta L\),从而带动平面镜转动一个角度\(\theta\)。
从望远镜中可以看到标尺像的移动,设标尺像移动的距离为\(n\),光杠杆常数(即两前尖足到后尖足连线的垂直距离)为\(b\),望远镜到光杠杆平面镜的距离为\(D\),则有:\\tan\theta \approx \theta =\frac{n}{D}\\\tan 2\theta \approx 2\theta =\frac{\Delta L}{b}\由上述两式可得:\\Delta L =\frac{nb}{2D}\将\(\Delta L\)代入杨氏模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 n b}\三、实验仪器1、杨氏模量测定仪:包括底座、立柱、金属丝、光杠杆、砝码等。
拉伸法测金属丝杨氏模量实验数据及数据处理范例
拉伸法测金属丝杨氏模量实验数据及数据处理范例实验目的:
通过拉伸法测定金属丝的应变-应力关系,计算出其杨氏模量。
实验装置:
1.拉伸装置
2.千分尺
3.计时器
4.电子秤
5.砝码
实验步骤:
1.将金属丝从盒子中取出,用色布擦拭干净。
2.测量金属丝的直径,取5组数据。
3.挂上金属丝,调整砝码,使其自由悬挂。
5.将千分尺固定在金属丝上,并与拉伸装置连接。
6.千分尺的刻度盘上调整到零点,并记录下来。
7.每增加1kg的砝码,记录下金属丝的长度,直到金属丝拉断。
8.重复以上步骤,取5组数据。
数据处理:
1.计算平均直径d和平均长度l。
2.根据公式计算出金属丝的应变ε和应力σ。
3.画出应变-应力曲线,并计算出杨氏模量E。
范例:
1.直径:
2.长度:
平均直径:d=(0.254+0.251+0.253+0.252+0.250)÷5=0.252mm
平均长度:l=(119.2+118.9+119.4+119.1+119.0)÷5=119.12mm
应变ε=(L-L0)÷L0=(119.2-119.1)÷119.1=0.000840336
应力σ=mg÷A=1×9.8÷(π/4×0.252^2)=103.12MPa
结论:
通过本实验可以得出金属丝的杨氏模量为122658.1MPa,来评估金属丝的性能和用途,具有很高的实用价值。
用拉伸法测金属丝的杨氏模量实验报告
用拉伸法测金属丝的杨氏模量实验报告用拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是材料力学性质的重要指标之一,它描述了材料在拉伸过程中的刚度和变形能力。
本实验通过拉伸金属丝的方法来测量杨氏模量,旨在了解金属丝的力学性质,并探讨拉伸过程中的变形行为。
实验装置和步骤:实验装置主要包括拉伸机、金属丝样品、刻度尺、电子天平和计算机。
具体的实验步骤如下:1. 将金属丝样品固定在拉伸机的夹具上,并调整夹具使其与拉伸机的拉伸轴心对齐。
2. 通过调整拉伸机的拉伸速度和加载范围,使实验能够在合适的条件下进行。
3. 使用刻度尺测量金属丝的初始长度,并记录下来。
4. 启动拉伸机,开始对金属丝进行拉伸。
5. 在拉伸过程中,使用电子天平测量金属丝的质量,并记录下来。
6. 当金属丝断裂时,停止拉伸机的运行,并记录下金属丝的最终长度。
实验数据处理:根据实验步骤所得到的数据,可以计算出金属丝的应力和应变。
应力定义为单位面积上的力,可以通过施加在金属丝上的拉力除以金属丝的横截面积得到。
应变定义为单位长度上的变形量,可以通过金属丝的伸长量除以初始长度得到。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:应力 = 弹性模量× 应变其中,弹性模量即为杨氏模量。
通过绘制应力-应变曲线,可以得到金属丝的杨氏模量。
在实验中,我们可以根据拉伸过程中的应力和应变数据,绘制出应力-应变曲线,并通过线性拟合得到斜率,即金属丝的杨氏模量。
实验结果和讨论:根据实验数据处理得到的应力-应变曲线,我们可以得到金属丝的杨氏模量。
实验结果显示,金属丝的杨氏模量为XXX GPa(Giga Pascal)。
这个结果与文献中的数值相符合,证明了实验方法的可靠性。
在拉伸过程中,金属丝会发生塑性变形,即超过了材料的弹性限度。
这是因为金属丝在受到拉力的作用下,晶体结构发生了位错滑移,导致金属丝的形状发生变化。
当拉力超过金属丝的极限强度时,金属丝会发生断裂。
实验六:拉伸法测金属丝的杨氏弹性模量.
如图 4-1,实验开始时,平面镜 M 的法线方向水平,望远镜中观察到的点的相应刻度
为 x0 ,当钢丝因悬挂重物而下降 ∆L 时,导致了平面镜 M 的法线方向改变了α 角。设平面
镜 M 的后支点到两个前支点连线的垂直距离为 b ,则有 tanα = ∆L b
而此时由 O 点反射进望远镜中标尺的位置为 x1 ,它与原刻度 x0 对 O 点的张角为 2α (见图
本实验采用静态拉伸法测定钢丝的杨氏模量。
●实验目的与要求:
1.学会用伸长法测量金属丝的杨氏模量; 2.掌握用光杠杆法测量微小长度变化的原理和方法; 3.学会用逐差法处理数据。
●实验仪器:
杨氏模量仪、光杠杆装置、望远镜、水平仪、游标卡尺、螺旋测微器(千分尺)、钢卷尺
●实验原理:
任何固体在外力作用下都要产生形变,如果外力较小,当外力停止作用,形变随之消
6.记录十字叉丝初始读数 x0 ,依次增加一个砝码,记录相应的读数 x1、x2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x6、x7
7.再加一块砝码,不记录其读数,稍后,逐个减少砝码,记录相应的读数 x7' 、x6' 、⋅ ⋅ ⋅ x1'、x0' 。
计算两次的平均值。
8.用螺旋测微器(千分尺)测金属丝的直径 d ,分别在金属丝的上、中、下不同部位、不 同方向进行多次测量。用游标卡尺测量光杠杆长 b 多次(采用压足印)。用钢卷尺测金属丝 的长度 L 一次,测量标尺到光杠杆镜面的距离 D 一次。 9.用逐差法算 ∆x (注意所求 ∆x 是加几块砝码的伸长量),求出其杨氏弹性模量,计算不确
杨氏模量:物体受纵向应力时的伸长模量(或压缩模量)。
一根均匀的金属丝,长度为 L ,截面积为 S ,在受到沿长度方向的外力 F 的作用时发
用拉伸法测定金属丝的杨氏弹性模量
用拉伸法测定金属丝的杨氏弹性模量[播放视频]一、 一、 概念理解杨氏弹性是描述固体材料抵抗形变的能力的物理量,它与固体材料的几何尺寸无关,与外力大小无关,只决定于金属材料的性质,它的国际单位为:牛/米2(N/m 2),它是表征固体材料性质的重要物理量,是选择固体材料的依据之一,是工程技术中常用的参数。
二、 二、 杨氏弹性模量测量的常用方法1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。
所以它不能很真实地反映出材料内部结构的变化。
②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。
此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
三、 三、 理论知识准备1、弹性形变:物理在外力作用下都要或多或少地发生形变。
当形变不超过某一限度时,撤走外力之后,形变能随之消失。
这种形变称为弹性形变。
2、弹性形变类型:对固体来说,弹性形变可分为四种:①伸长或压缩的形变(应变);②切向形变(切变);③扭转形变(扭变);④弯曲形变。
3、基本原理(胡克定律):一根粗细均匀的金属丝,长度为L ,截面积为S ,将其上端固定,下端悬挂砝码,于是,金属丝受外力F 作用而发生形变,伸长了L ∆,比值F/S 是金属丝单位面积上的作用力,称为胁强(正应力);比值L ∆/L 是金属丝的相对伸长,称为胁变(线应变)。
根据虎克定律,金属丝在弹性限度内,它的胁强与胁变成正比, 即L L Y SF ∆= 式中比例系数Y 就是杨氏弹性模量。
拉伸法测金属丝杨氏弹性模量
(2)调节平台的上下位置,使随金属丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。
(3)加1Kg砝码在砝码托盘上,将金属丝拉直,检查 夹具B是否能在平台的孔中上下自由地滑动,金属丝 是否被上下夹子夹紧.
2.光杠杆及望远镜尺组的调节
(1)外观对准——调节光杠杆与望远镜、标尺中部 在同一高度上。 (2)镜外找像——缺口、准星、平面镜中标尺 像.三者在一条水平 线上。 (3)镜内找像 ——先调节目镜使叉丝清晰,再调节 调焦距看清标尺像,直到无视差为准。 (4)细调对零——对准标尺像零刻线附近的任一刻
4 n4 9 n9
n7 n2
5 n5 10 n10
n8 n3
n9 n4
n10 n5
5
2
A t0 .9 55i 1
N iN 5 1
,
B仪,
因 n1N
5
所 以 n5 1N
N
2 2
AB
nnn
返回
实验内容
1.杨氏模量测定仪的调整
i1
31
B 仪
nnn
n 2A2B
杨氏模量 E计 8FL算D
d2bn
不确定度计算:
EEFF2LL2D D24dd2bb2nn2
E
E E
E
用拉伸法测量金属丝杨氏模量
1. 实验简介 2. 实验目的 3. 实验原理 4. 逐差法处理数据 5. 实验内容 6. 注意事项 7. 数据记录与处理 8. 课后思考题
实验简介
材料受外力作用时必然发生形变,杨氏模量(也称弹性模量)是 反映固体材料弹性形变的重要物理量,在一般工程设计中是一个 常用参数, 是选定机械构件材料的重要依据之一。常用金属材
大学物理实验--拉伸法测金属丝杨氏模量
实验一拉伸法测金属丝杨氏模量一实验目的1.用伸长法测定金属丝的杨氏模量2.掌握光杠测微原理及使用方法3.掌握不同长度测量器具的选择和使用,学习误差分析和误差均匀原理思想。
4.学习使用逐差法和作图法处理数据及最终处理结果的表达。
二实验原理1. 设金属丝的原长为L,横截面积为A,外加力为P,伸长了长度为△L,则单位长度的伸长量为△L/L,叫应变。
单位横截面所受的力为P/A,叫应力。
根据胡克定理,应变和应力有如下关系:P/A=E×△L/L,其中E为杨氏弹性模量(它仅与材料性质)2.在已知外加力P,横截面积为A,金属丝的原长为L,及伸长了长度为△L的情况下,就可以根据一下公式求得氏弹性模量E:E=P×L/(A×△L)3.实验装置的使用原理解析:根据杠杆原理:aa`/bb=Oa/Ob可以测量每次加载后的微小的△L的变量,又由于S1S2之间的夹角为2α所以在使用光扛杠镜后测量出来的△L的变量为:△L=b(S2— S1)/2D=b*△S/2D4.在已知b为短臂长,2D为长臂长,△L为短臂末梢的微小位移,△S=(S2— S1)为光臂末端的位移,及A=πρ 2 /4(ρ为钢丝的直径),则最后的E可为一下公式表达:E=8LDP/(πρ2b△S)三实验内容1仪器的认识和调整。
调节杨氏模量仪器支架成铅垂,调节光杠杆镜和望远镜。
2.实验现象的观察和数据测量。
(1)在测量之前,必须先观察实验基本的现象,思考可能的误差来源。
(2)测量钢丝在不同荷重下的伸长变化。
先放1个1kg砝码,记下读数,然后逐次增加1kg砝码,记下每次的读数,共10次。
再将所加大砝码逐次拿下,记下每次都读数。
(3)根据误差均匀思想(应选择适当的测量仪器,使得各直接测量的误差分量最终结果断误差的影响大致相同),合理选择并正确使用不同测长仪器来测量光杠杆镜至标尺的距离D,钢丝的长度L 和直径ρ以及光杠杆镜后脚尖至O点多垂直距离b,最后求E最大误差限△E(4)测量时注意这些量的实际存在的测量偏差,从而决定测量次数。
拉伸法测金属丝杨氏模量实验报告
拉伸法测金属丝杨氏模量实验报告拉伸法测金属丝杨氏模量实验报告引言金属材料的力学性能是工程设计和材料研究的重要指标之一。
而杨氏模量是评价金属材料弹性性能的重要参数之一。
本实验通过拉伸法测定金属丝的杨氏模量,旨在探究金属材料的弹性性能。
实验原理拉伸法是一种常用的测定材料杨氏模量的方法。
拉伸试验时,通过施加外力,使金属丝产生应变,进而测定应力和应变之间的关系。
根据胡克定律,应力与应变之间成正比,比例系数即为杨氏模量。
实验步骤1. 实验前准备:准备一根长度较长的金属丝,称重并记录质量。
2. 固定金属丝:将金属丝固定在实验台上,确保其平整和垂直。
3. 测量初始长度:使用游标卡尺测量金属丝的初始长度,并记录。
4. 施加外力:逐渐施加外力,使金属丝发生拉伸,同时记录外力的大小。
5. 测量伸长量:使用游标卡尺测量金属丝的伸长量,并记录。
6. 计算应力和应变:根据外力和伸长量的测量结果,计算金属丝的应力和应变。
7. 绘制应力-应变曲线:将应力和应变的测量结果绘制成曲线图。
8. 计算杨氏模量:根据应力-应变曲线的斜率,计算金属丝的杨氏模量。
实验结果实验中,我们选取了一根长度为L的金属丝进行拉伸试验。
通过测量,我们得到了金属丝的初始长度为L0,质量为m,外力F的大小,以及金属丝的伸长量ΔL。
根据这些数据,我们可以计算出金属丝的应力σ和应变ε。
应力σ的计算公式为:σ = F / A其中,F为外力的大小,A为金属丝的横截面积。
应变ε的计算公式为:ε = ΔL / L0通过绘制应力-应变曲线,我们可以观察到金属丝在拉伸过程中的变化情况。
根据应力-应变曲线的斜率,即可计算出金属丝的杨氏模量E。
讨论与分析根据实验结果,我们可以得到金属丝的杨氏模量。
杨氏模量是衡量金属材料弹性性能的重要参数,它反映了金属材料在拉伸过程中的变形能力。
在实验过程中,我们发现金属丝在受力后会发生弹性变形。
当外力达到一定程度时,金属丝开始发生塑性变形,伸长量增加较快。
用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)
用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。
条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。
测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。
伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。
本实验采用拉伸法当中的显微镜直读法。
【实验目的】1. 熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2. 学习用逐差法处理数据;3. 了解CCD 成像系统。
【实验仪器】YWC-III 杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg 、0.2kg 的砝码若干。
杨氏模量测定仪的结构如图4-2-1所示。
(a)学生实验配置 (b)教学演示配置图4-2-1 杨氏模量测定仪1. 金属丝支架S 为金属丝支架,高约1.30m ,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm ,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。
支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。
2. 读数显微镜读数显微镜M 用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm, 分度值0.01mm ,每隔1mm 刻一数字。
H 1为读数显微镜支架。
D 成像、显示系统(作为示教仪)CCD 黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD 接在显微镜目镜与电视显示器上。
H 2为CCD 黑白摄像机支架。
【实验原理】物体在外力作用下,总会发生形变。
当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。
发生弹性形变时,物体内部产生恢复原状的内应力。
用拉伸法测定金属丝的杨氏模量
实验步骤
(3)调节望远镜,使其光轴成水平状态,并使镜筒与平面反射镜等高。 (4)调整望远镜目镜,使能看清楚十字叉丝并转动目镜,使叉丝横平竖直
望远镜物镜
目镜
调焦手轮
标尺
底座
(5)仔细调节望远镜的焦距及左右位置,使得标尺经过平面反射镜反射后的像刚好处于 望远镜的视场中。
技巧:在望远镜目镜附近,不经过望远镜而直接观察平面反射镜,如在平面反射镜内看不到标 尺的像,可将望远镜镜架左右稍微移动一下,直到用肉眼在平面反射镜内看到标尺的像,然后调节望 远镜的调焦手轮,直到望远镜的视场中看到清晰的标尺像。
F : 可由实验中钢丝下面悬挂的砝码的重力给出 L:可由米尺测量 D:为金属丝的直径,可用螺旋测微仪测量 ΔL: 是一个微小长度变化量,本实验利用光杠杆的光学放大 作用实现对金属丝微小伸长量L 的间接测量。
实验原理
光杠杆的光学放大原理
目镜
望远镜物镜
调焦手轮
标尺 底座
实验原理
光杠杆常数b
x
n0
n0 b
读数过程中不要按压桌面。
3、光杠杆后脚尖不能接触钢丝。 4、注意维护钢丝的平直状态,在钢丝两端夹点外测量直径,避
免伸长部分扭折。
实验报告
1. 计算杨氏模量的不确定度 u (Y )
u (Y ) Y
u 2 L u 2 x 4u 2 D u 2 b u 2 n 2 2 2 2 L x D b n 2
掌握用伸长法测量金属丝杨氏模量的方法
理解光杠杆测量长度微小变化的原理
学会用逐差法处理数据
进行测量结果的不确定度分析
实验原理
1、杨式模量:
在外力F的作用下,原长L,截面积S的金属丝在弹性 限度内产生形变,根据胡克定律,应力与应变成正比: :应变 Y :杨氏模量
实验一、用拉伸法测金属丝的杨氏模量
2.4 用拉伸法测金属丝的杨氏弹性模量固体材料的长度发生微小变化时,用一般测量长度的工具不易测准,光杠杆镜尺法是一种测量微小长度变化的简便方法。
本实验采用光杠杆放大原理测量金属丝的微小伸长量,在数据处理中运用两种基本方法—逐差法和作图法。
【实验目的】⑴ 掌握光杠杆镜尺法测量微小长度变化的原理和调节方法。
⑵ 用拉伸法测量金属丝的杨氏弹性模量。
⑶ 学习处理数据的一种方法——逐差法。
【实验原理】1. 拉伸法测金属丝的杨氏弹性模量 设一各向同性的金属丝长为L ,截面积为S ,在受到沿长度方向的拉力F 的作用时伸长 ΔL ,根据虎克定律,在弹性限度内,金属丝的胁强F/S (即单位面积所受的力)与伸长应变ΔL/L (单位长度的伸长量)成正比LLE SF ∆= (1) 式中比例系数E 为杨氏弹性模量,即LS FLE ∆=(2) 在国际单位制中,E 的单位为牛每平方米,记为N/m 2。
实验表明,杨氏弹性模量E 与外力F 、金属丝的长度L 及横截面积S 大小无关,只与金属丝的材料性质有关,因此它是表征固体材料性质的物理量。
(2)式中F 、L 、S 容易测得,ΔL 是不易测量的长度微小变化量。
例如一长度L=90.00cm 、直径d=0.500mm 的钢丝,下端悬挂一质量为0.500kg 砝码,已知钢丝的杨氏弹性模量E=2.00×1011N/m 2, 根据(2)式理论计算可得钢丝长度方向微小伸长量ΔL =1.12×10-4m 。
如此微小伸长量,如何进行非接触式测量,如何提高测量准确度?本实验采用光杠杆法测量。
2. 光杠杆测微小长度将一平面镜M 固定在有三个尖脚的小支架上,构成一个光杠杆,如图1所示。
用光杠杆法测微小长度原理如图2所示。
假设开始时平面镜M 的法线OB 在水平位置,B 点对应的标尺H 上的刻度为n 0,从n 0发出的光通过平面镜M 反射后在望远镜中形成n 0的像,当金属丝受到外力而伸长后,光杠杆的后尖脚随金属丝下降ΔL ,带动平面镜M 转一角度α到M ˊ,平面镜的法线OB 也转同一角度α到OB ˊ,根据光的反射定律,镜面旋转α角,从B 发出光的反射线将旋转2α角,即到达B ′′,由光线的可逆性,从B ′′发出的光经平面镜M 反射后进入望远镜,因此从望远镜将观察到刻度n 1。
用拉伸法测金属丝的杨氏模量报告
用拉伸法测金属丝的杨氏模量报告杨氏模量是用来描述固体材料在受力时的弹性特性的重要参数,可以描述材料在受力时的抗拉能力和变形能力。
拉伸法是测量材料杨氏模量的常用方法之一,本报告将详细介绍使用拉伸法测量金属丝的杨氏模量的实验步骤、仪器设备、数据处理和结果分析等内容。
一、实验目的:本实验的目的是通过拉伸法测量金属丝的杨氏模量,从而了解金属丝的力学性质。
二、实验原理:拉伸法是测量杨氏模量的常用方法之一,基本原理是通过测量金属丝在受拉力作用下的变形量与受力的关系,得到杨氏模量。
三、实验仪器设备:1.金属丝样品(材料:金属丝);2.拉力机;3.游标卡尺等测量工具;4.外力计。
四、实验步骤:1.准备工作:a.将金属丝剪成合适的长度,并用离心机清洗干净;b.按照实验要求,在拉力机上安装好金属丝样品,并调整好拉力机的参数。
2.实验测量:a.测量金属丝样品的初始长度和直径,并记录测量结果;b.在拉力机上施加一个逐渐增大的拉力,记录拉力和相应的伸长量。
3.数据处理:a.根据实验测量结果,计算金属丝的应变(单位长度的伸长量),并绘制应变-应力图;b.根据应变-应力图中线性部分的斜率,计算金属丝的杨氏模量。
五、结果分析:根据实验测量的数据和计算结果,可以得到金属丝的杨氏模量。
根据实验测量的应变-应力图中线性部分的斜率,可以计算出杨氏模量的数值。
六、实验注意事项:1.实验过程中需要注意安全,避免发生意外情况;2.测量金属丝的长度和直径时,要使用合适的测量工具进行准确测量;3.在实验过程中需要仔细记录实验数据,并及时进行数据处理;4.在数据处理过程中需要注意计算的准确性和可靠性。
七、实验总结:通过本次实验,成功使用拉伸法测量了金属丝的杨氏模量。
实验过程中,需要仔细操作测量仪器和记录实验数据,以提高实验的准确性和可靠性。
本次实验的结果可用于研究金属丝的力学性质和应用等方面,对进一步了解材料的性能和特性具有重要意义。
拉伸法测定金属丝的杨氏模量
拉伸法测定金属丝的杨氏模量一、引言拉伸法是测量金属丝的杨氏模量的一种常用方法。
杨氏模量是描述材料在受力时变形程度的物理量,它是指单位面积内受力方向上的应力与相应的应变之比。
在实际工程中,了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。
二、实验原理拉伸法测定金属丝的杨氏模量原理是通过对金属丝在外力作用下产生的弹性变形进行测试,计算出其应力和应变之间的比值即为该金属丝所具有的杨氏模量。
三、实验步骤1. 准备工作:选择合适尺寸和长度的金属丝,并将其固定在测试机上。
2. 施加外力:通过测试机施加外力使得金属丝发生弹性变形。
3. 测定数据:在施加外力过程中,记录下相应的载荷值和伸长值等数据。
4. 计算结果:根据所记录下来的数据计算出金属丝所具有的杨氏模量。
四、实验注意事项1. 选择合适尺寸和长度的金属丝,并将其固定在测试机上,保证金属丝处于水平状态。
2. 在施加外力时,应逐渐增加外力的大小,避免瞬间施加过大的载荷导致金属丝断裂。
3. 在测定数据时,应注意记录下相应的载荷值和伸长值等数据,并进行准确计算。
4. 在实验过程中应注意安全,避免发生意外事故。
五、实验结果分析通过实验可以得到金属丝的杨氏模量。
根据实验结果可以了解到该金属丝在受力时变形程度的大小,为设计和制造各种机械零件和结构件提供了重要参考依据。
六、结论拉伸法测定金属丝的杨氏模量是一种常用方法,通过实验可以得到该金属丝所具有的杨氏模量。
了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。
在实验过程中应注意安全,并进行准确计算。
用拉伸法测定金属丝的杨氏模量
用拉伸法测定金属丝的杨氏模量拉伸法是测定金属丝杨氏模量的常用方法之一。
其原理是用外力拉伸金属丝,测定在一定的拉伸力下,金属丝的伸长量与其截面积的比值,即应力,与该力下金属丝的伸长量与原始长度的比值,即应变,之间的关系。
通过实验数据计算得到杨氏模量。
实验器材:拉伸试验机、金属丝、游标卡尺、电子秤等。
实验步骤:1.准备金属丝:选择合适的金属丝,并根据实际需要测量的杨氏模量,把金属丝切割成合适的长度,用游标卡尺测量金属丝的直径,计算金属丝的截面积。
2.制作拉伸样品:将金属丝固定在拉伸试验机的夹具上,固定后尽可能使金属丝在平衡状态下。
3.进行拉伸实验:启动拉伸试验机,控制升降速度,使得金属丝不断地受到外力拉伸,记录下拉伸过程中所施加的载荷以及相对应的拉伸量。
特别地,每当金属丝的载荷发生变化时,需要记录下来以便后续数据处理。
4.数据处理:根据拉伸过程中所施加的载荷与相对应的拉伸量,计算得到金属丝受力下的应力值,即σ=F/A,其中F为施加在金属丝上的外力,A为样品的截面积。
同时,计算出金属丝受力下的应变值,即ε=(L-L0)/L0,其中L为拉伸后的长度,L0为原始长度。
5.绘制应力-应变曲线:根据数据处理得到的应力与应变值,可以绘制出应力-应变曲线。
根据这条曲线的斜率,即可计算出杨氏模量,其公式为E=σ/ε,其中σ为曲线斜率,ε为曲线的坡度。
注意事项:1.在实验进行过程中,要尽可能地保证金属丝的处于稳定的状态下进行拉伸实验。
2.实验数据记录要准确,遇到试验机的偏差时需要及时记录并进行修正。
3.要注意保护好实验器材,以免在实验中出现故障影响实验结果。
4.当金属丝长度增加时,载荷的大小应注意控制,以保证该载荷是线性的。
用拉伸法测金属丝的杨氏弹性模量实验报告示范
实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据.二.实验原理长为l ,截面积为S 的金属丝,在外力F 的作用下伸长了l ∆,称ll SF Y //∆=为杨氏模量(如图1)。
设钢丝直径为d ,即截面积42/d S π=,则24ld lFY ∆=π。
伸长量l ∆比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量l ∆(如图2).由几何光学的原理可知,n L bn n L b l ∆⋅=-≈∆220)(, nb d FlL Y ∆=∴28π 。
图1 图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码.记录此时望远镜十字叉丝水平线对准标尺的刻度值0n 。
(2) 依次增加1个砝码,记录相应的望远镜读数''',,721n ,n n . (3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数'''''''',,,0167n n ,n n 。
(4) 计算同一负荷下两次标尺读数('i n 和''i n )的平均值2/)('''i i i n n n +=。
(5) 用隔项逐差法计算n ∆.5. 用钢卷尺单次测量标尺到平面镜距离L 和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b 。
6.进行数据分析和不确定度评定,报道杨氏模量值.五.数据记录及处理1.多次测量钢丝直径d表1 用千分卡测量钢丝直径d (仪器误差取0.004mm )测量部位 上中下平均测量方向 纵向横向纵向横向纵向横向)(mm d0。
用拉伸法测金属丝的杨氏弹性模量
用新型杠杆-光杠杆放大法测定金属丝的杨氏模量一、 前言杨氏模量是工程材料重要参数,它反映了材料弹性形变与内应力的关系,它只与材料性质有关,是选择工程材料的重要依据之一。
设长为L ,截面积为S 的均匀金属丝,在两端以外力F 相拉后,伸长ΔL 。
实验表明,在弹性范围内,单位面积上的垂直作用力F/S (正应力)与金属丝的相对伸长ΔL/L(线应变)成正比,其比例系数就称为杨氏模量,用Y 表示,即//F S FLY L L S L==∆∆ (1) 这里的F 、L 和S 都易于测量,ΔL 属微小变量,我们将用光杠杆放大法测量。
放大法是一种应用十分广泛的测量技术。
我们将在本课程中接触到机械放大、光放大、电子放大等测量术。
如螺旋测微计是通过机械放大而提高测量精度的,示波器是通过将电子信号放大后进行观测的。
本实验采用的光杠杆法是属光放大技术。
光杠杆放大原理被广泛地用于许多高灵敏度仪表中,如光电反射式检流计、冲击电流计等。
放大法的核心是将微小变化量输入一“放大器”,经放大后再作精确测量。
设微小变化量用ΔL 表示,放大后的测量值为N ,我们称N A L=∆ 为放大器的放大倍数。
原则上A 越大,越有利于测量,但往往会引起信号失真。
研究保真技术已成为测量技术的一个专门领域。
二、 实验目的:1、 学会测量杨氏弹性模量的一种方法2、 掌握光杠杆放大法测量微小长度的原理3、 学会用逐差法处理数据三、 实验原理本实验的整套装置由“杠杆式加力杨氏模量拉伸仪”和“新型光杠杆”组成。
杠杆式加力杨氏模量拉伸仪如图1所示,金属丝上下两端用钻头夹具夹紧,上端固定于双立柱的横梁上,下端钻头卡的连接拉杆穿过固定平台中间的套孔与一拉力盒相连,盒内装置有1:10的杠杆加力系统,即在砝码托盘上加100g 的力,将对金属丝产生1000g 的拉力。
在本实验中每个砝码(插图用CAXA 软件绘的另外用邮件寄出或传真)为200g ,钢丝相当于受到2000g 的拉力,在实验中若用逐差法计算时,特别要注意公式中的加力F 所代表的拉力大小。
用拉伸法测定金属丝的杨氏模量
用拉伸法测定金属丝的杨氏模量【实验目的】【实验目的】1.1. 掌握用光杠杆方法测量微小伸长量的原理和方法; 2.2. 学会用拉伸法测定金属丝的杨氏模量; 3.3. 学会用逐差法及作图法处理数据,并作比较。
学会用逐差法及作图法处理数据,并作比较。
【实验操作内容】【实验操作内容】1.1.仪器调整仪器调整仪器调整 调节望眼镜目镜,使叉丝清晰;调节物镜,使标尺成像清晰。
调节望眼镜目镜,使叉丝清晰;调节物镜,使标尺成像清晰。
2.2.测量钢丝伸长量测量钢丝伸长量测量钢丝伸长量利用光杠杆方法测量微小伸长量的原理,用望远镜测出钢丝负重后的伸长量。
利用光杠杆方法测量微小伸长量的原理,用望远镜测出钢丝负重后的伸长量。
3.3.测量测量D 、L 、b 、d 和m用钢卷尺测D 、L 一次,用钢板尺测b 一次,用螺旋测微器测d d 十次,十次,用电子天平测m m 七次。
七次。
【数据处理】【数据处理】一、用逐差法处理数据一、用逐差法处理数据1.1.将多次测量值将多次测量值m 、d 、i l 求平均得到m 、d 、i l 值,将它们和单次测量L 、 D 、b 值代入下式中值代入下式中bl d gLD m E i 232p = ((1) 2.(1)式两边取对数,全微分,得到相对误差传递公式为)式两边取对数,全微分,得到相对误差传递公式为2222222÷øöçèæD +÷øöçèæD +÷øöçèæD +÷øöçèæD +÷øöçèæD +÷øöçèæD =D b b l l d d D D L L m m E E i i ((2) 其中m 、d 、i l 是多次测量,它们的误差m D 、d D 、i l D 由两项合成,一项为随机误差,另一项为仪器误差。
拉伸法测量金属杨氏模量-讲义
实验七拉伸法测量金属杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL(为微小变化量)时,F/S叫应力,即金属丝单位截面积所受到的力;ΔL/L叫应变,即金属丝单位长度所对应的伸长量;应力与应变的比叫弹性模量。
杨氏模量(Young's modulus),又称拉伸模量(tensile modulus)是沿纵向的弹性模量(elastic modulus or modulus of elasticity)。
除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。
杨氏模量是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法属静态法,后一种属动态法)。
本实验是用拉伸法测定金属丝的杨氏模量,它提供了测量微小长度的方法,既有光杠杆法,也有显微镜法。
显微镜测量基本分2种:目镜分化测量和软件测量。
实验仪器兼具光杠杆法和显微镜法两种功能,后者采用软件测量方式,两种方法相互独立,实验时既可只采用其中一种方法,也可两种方法同时采用。
实验目的1. 学会用拉伸法测量金属丝的杨氏模量2. 理解光杠杆法测量微小伸长量的原理实验仪器ZKY-YM-3双法杨氏模量测量仪,主要包括实验架、光杠杆组件(含望远镜)、数码显微组件,以及数字拉力计、长度测量工具(包括卷尺、游标卡尺、螺旋测微器)、安装有专业测量软件的计算机,如图1所示。
1. 实验架实验架是待测金属丝杨氏模量测量的主要平台。
金属丝一端穿过横梁被上夹头夹紧,另一端被下夹头夹紧,并与拉力传感器相连,拉力传感器再经螺栓穿过下台板与施力螺母相连。
施力螺母通过旋转方式加力。
拉力传感器输出拉力信号通过数字拉力计显示金属丝受到的拉力值。