初中数学中考几何综合题
初中数学几何最值问题综合题
知识板块几何最值问题专项考点一:几何图形中的最小值问题方法:1.找对称点求线段的最小值;步骤:①找点的对称点,动点在哪条线上动,就是对称轴;②连接对称点与另一个点;③与对称轴的交点即是要找的点;通常用勾股定理求线段长;2.利用三角形三边关系:两边之差小于第三边:3.转化成其他线段,间接求线段的最小值:例如:用点到直线的距离最短,通过作垂线求最值;4.用二次函数中开口向上的函数有最小值:考点二:几何图形中的最大值问题方法:1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值:2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值;3.利用三角形三边关系:两边之和大于第三边;4.用二次函数中开口向下的函数有最大值:例题板块考点一:几何图形中的最小值问题例1.如图1,在正方形ABCD中,E是AB上一点,BE=2, AE=3BE, P是AC上一动点,那么PB+PE的最小值是 .例2.如图2,在锐角二ABC中,AB=4V2» LBAC=45°,匚BAC的平分线交BC于点D, M、N分别是AD 和AB 上的动点,那么BM+MN的最小值是.例3.如图3,点P是RtiZABC斜边AB上的一点,PE二AC于E, PF二BC于F, BC=6, AC=8,那么线段EF 长的最小值为:例4,如图,在Rt/kABC 中,AB=BC=6,点E, F 分别在边AB, BC 上,AE=3, CF=1, P 是斜边AC 上的 一个动点,那么aPEF 周长的最小值为.例5,如图,在平面直角坐标系中,RtA OAB 的顶点A 的坐标为(9, 0),点C 的坐标为(2, 0) , tanZBOA= —,点P 为斜边OB 上的一个动点,那么PA+PC 的最小值为( ) 3C.6D. 3 + V19例6.如图6,等腰RS ABC 中,NACB=90.,AC=BC=4, 0c 的半径为1,点P 在斜边AB 上,PQ 切OO 于点Q,那么切线长PQ 长度的最小值为( )考点二:几何图形中的最大值问题例1,点A (1, 2)、B (4, 4) , P 为x 轴上一动点. (1)假设IPAI+IPBI 有最小值时,求点P 的坐标; (2)假设IPBUPAI 有最大值时,求点P 的坐标.例2 .如图8所示,A (!,yJ, B(2,yJ 为反比例函数y =,图像上的两点,动点P(x,O)在x 正半轴 2 ~ x上运动,当线段AP 与线段BP 之差到达最大时,点P 的坐标是 L A. V67 例7.如图7,矩形ABCD 中,AB=4, BC=8, E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当 CQ= 时,四边形APQE 的周长最小.例3,如图,在平面直角坐标系中,0M过原点O,与x轴交于A 〔4, 0〕,与y轴交于B 〔0, 3〕,点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.〔1〕求匚M的半径:〔2〕证实:BD为二M的切线:〔3〕在直线MC上找一点P,使|DP-AP|最大.练习板块1.如图1,正方形ABCD的面积为18, △ ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,那么PD+PE的最小值为 .2. 〔2021•徐州一模〕如图2,在矩形ABCD中,AB=2, AD=4. E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最小值为.3. 〔2021•萧山区模拟〕如图3,直角三角形ABC中,ZC=90% AC=h BC=2, P为斜边AB上一动点.PE1BC, PF±CA,那么线段EF长的最小值为.4. 〔2021•武汉〕如图4, NAOB=30.,点M、N 分别在边OA、OB 上,且OM=1, ON=3,点P、Q分别在边OB、OA上,那么MP+PQ+QN的最小值是:5.如下列图1,反比例函数y = ' (x>0)图象上的两点A、B的横坐标分别为1, 3,点P为x轴x正半轴上一点,假设PA-PB的最大值为2及,贝ijk=x图36.如图2,在△ ABC中,ZC=90°> AC=4, BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是( )A.、疗+ 2B. 2屈C. 275D. 272 + 27.如图3,直线1与半径为4的二0相切于点A, P是二0上的一个动点(不与点A重合),过点P 作PB」垂足为B,连接PA.设PA=x, PB=y,那么(x-y)的最大值是.如图,四边形ABCD是正方形,△ ABE是等边三角形,M为对角线BD (不含B点)上任意一点,将BM绕点B逆时针旋转60.得到BN,连接EN、AM、CM.(1)求证:△ AMB^AENB:(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由:(3)当AM+BM+CM的最小值为6 + 1时,求正方形的边长.8.己知:如图,把矩形OCBA放置于直角坐标系中,0C=3, BC=2,取AB的中点M,连接MC, 把^MBC沿x轴的负方向平移0C的长度后得到△ DAO.〔1〕试直接写出点D的坐标:〔2〕点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ_Lx 轴干点Q,连接0P.①假设△ OQP S^DAO,试求出点P的坐标:②试问在抛物线的对称轴上是否存在一点T,使得ITO-TBI的值最大?作业板块1.如图1,在△ ABC中,AB=1O, AC=8, BC=6,经过点C且与边AB相切的动圆与CB, CA分别相交于点E, F,那么线段EF长度的最小值是.2.如图2,在RtA ABC 中,ZBAC=90% AB=3, AC=4,点P 为BC 边上一动点,PE1AB 于点E,PFLAC于点F,连结EF,点M为EF的中点,那么AM的最小值为A3.如图3,在△ ABC中,ZACB=90°, AC=8, BC=3,点A、C分别在x轴、y轴上,当点A在x 轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为.4.如图4,在边长为2的菱形ABCD中,NA=60.,M是AD边的中点,N是AB边上的一动点, 将△ AMN沿MN所在直线翻折得到△ ANIN,连接AC,那么AC长度的最小值是 .5..如图1,抛物线y=ax2+bx+c 〔a对〕的顶点为C 〔1, 4〕,交x轴于A、B两点,交y轴于点D, 其中点B的坐标为〔3, 0〕.〔1〕求抛物线的解析式;〔2〕如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,假设直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,那么x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?假设存在,求出这个最小值及点G、H的坐标:假设不存在,请说明理由:。
初中数学中考几何综合题
中考数学复习--几何综合题Ⅰ、综合问题精讲:几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点:⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.⑵ 掌握常规的证题方法和思路.⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等).Ⅱ、典型例题剖析【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.解:(1)证明:连接OD ,AD . AC 是直径,∴ AD⊥BC. ⊿ABC 中,AB =AC ,∴ ∠B=∠C,∠BAD=∠DAC.又∠BED 是圆内接四边形ACDE 的外角,∴∠C =∠BED .故∠B =∠BED ,即DE =DB .点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径,即∠DAC =∠BAD =∠ODA .故OD ⊥DF ,DF 是⊙O 的切线.(2)设BF =x ,BE =2BF =2x .又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯.化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).则 BF 的长为2.点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上,点D在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。
【初中数学】几何综合题及答案,13道!
几何综合题复习几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。
一、几何论证型综合题例1、(盐城)如图,已知:⊙O 1与⊙O 2是等圆,它们相交于A 、B 两点,⊙O 2在⊙O 1上,AC 是⊙O 2的直径,直线CB 交⊙O 1于D ,E 为AB 延长线上一点,连接DE 。
(1)请你连结AD ,证明:AD 是⊙O 1的直径;(2)若∠E=60°,求证:DE 是⊙O 1的切线。
分析:解几何综合题,一要注意图形的直观提示,二要注意分析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。
证明:(1)连接AD ,∵AC 是⊙O 2的直径,AB ⊥DC A∴∠ABD=90°,∴AD 是⊙O 1的直径O 1O 2(2)证法一:∵AD 是⊙O 1的直径,∴O 1为AD 中点CDB 连接O 1O 2,∵点O 2在⊙O 1上,⊙O 1与⊙O 2的半径相等,E∴O 1O 2=AO 1=AO 2∴△AO 1O 2是等边三角形,∴∠AO 1O 2=60°由三角形中位线定理得:O 1O 2∥DC ,∴∠ADB=∠AO 1O 2=60°∵AB ⊥DC ,∠E=60,∴∠BDE=30,∠ADE=∠ADB+∠BDE=60°+30°=90°又AD 是直径,∴DE 是⊙O 1的切线证法二:连接O 1O 2,∵点O 2在⊙O 1上,O 1与O 2的半径相等,∴点O 1在⊙O 2∴O 1O 2=AO 1=AO 2,∴∠O 1AO 2=60°∵AB 是公共弦,∴AB ⊥O 1O 2,∴∠O 1AB=30°∵∠E=60°∴∠ADE=180°-(60°+30°)=90°由(1)知:AD 是的⊙O 1直径,∴DE 是⊙O 1的切线.说明:本题考查了三角形的中位线定理、圆有关概念以及圆的切线的判定定理等。
中考数学模拟题《几何综合》专项测试题(附带参考答案)
中考数学模拟题《几何综合》专项测试题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
动态几何问题经常在各地以中考试卷解答压轴题出现也常会出现在选择题最后一题的位置考察知识面较广综合性强可以提升学生的空间想象能力和综合分析问题的能力但同时难度也很大令无数初中学子闻风丧胆考场上更是丢盔弃甲解题思路1 熟练掌握平面几何知识﹕要想解决好有关几何综合题首先就是要熟练掌握关于平面几何的所有知识尤其是要重点把握三角形特殊四边形圆及函数三角函数相关知识.几何综合题重点考查的是关于三角形特殊四边形(平行四边形矩形菱形正方形)圆等相关知识2 掌握分析问题的基本方法﹕分析法综合法“两头堵”法﹕1)分析法是我们最常用的解决问题的方法也就是从问题出发执果索因去寻找解决问题所需要的条件依次向前推直至已知条件例如我们要证明某两个三角形全等先看看要证明全等需要哪些条件哪些条件已知了还缺少哪些条件然后再思考要证缺少的条件又需要哪些条件依次向前推直到所有的条件都已知为止即可综合法﹕即从已知条件出发经过推理得出结论适合比较简单的问题3)“两头堵”法﹕当我们用分析法分析到某个地方不知道如何向下分析时可以从已知条件出发看看能得到什么结论把分析法与综合法结合起来运用是我们解决综合题最常用的办策略3 注意运用数学思想方法﹕对于几何综合题的解决我们还要注意运用数学思想方法这样会大大帮助我们解决问题或者简化我们解决问题的过程加快我们解决问题的速度毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化类比归纳等等模拟预测1 (2024·江西九江·二模)如图 在矩形()ABDC AB AC >的对称轴l 上找点P 使得PAB PCD 、均为直角三角形 则符合条件的点P 的个数是( )A .1B .3C .4D .52 (2024·江西吉安·模拟预测)如图 在平面直角坐标系中 边长为23ABC 的顶点A B ,分别在y 轴的正半轴 x 轴的负半轴上滑动 连接OC 则OC 的最小值为( )A .2B .3C .33D .333 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = 点E 在矩形的边上 则当BEC 的一个内角度数为60︒时 符合条件的点E 的个数共有( )A .4个B .5个C .6个D .7个4 (2023·江西·中考真题)如图 在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为 .5 (2024·江西吉安·二模)如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 点P 在AE 下方矩形的边上.当APE 为直角三角形 且P 为直角顶点时 BP 的长为 .6 (2024·江西九江·二模)如图 在平面直角坐标系中 已知矩形OABC 的顶点()20,0A ()0,8C D 为OA 的中点 点P 为矩形OABC 边上任意一点 将ODP 沿DP 折叠得EDP △ 若点E 在矩形OABC 的边上 则点E 的坐标为 .7 (2024·江西·模拟预测)如图 ABC 中 AB AC = 30A ∠=︒ 射线CP 从射线CA 开始绕点C 逆时针旋转α角()075α︒<<︒ 与射线AB 相交于点D 将ACD 沿射线CP 翻折至A CD '△处 射线CA '与射线AB 相交于点E .若A DE '是等腰三角形 则α∠的度数为 .8 (2024·江西赣州·二模)在Rt ABC △中 已知90C ∠=︒ 10AB = 3cos 5B = 点M 在边AB 上 点N 在边BC 上 且AM BN = 连接MN 当BMN 为等腰三角形时 AM = .9 (2024·江西吉安·模拟预测)如图 在矩形ABCD 中 6,10AB AD == E 为BC 边上一点 3BE = 点P 沿着边按B A D →→的路线运动.在运动过程中 若PAE △中有一个角为45︒ 则PE 的长为 .10 (2024·江西吉安·三模)如图 在ABC 中 AB AC = 30B ∠=︒ 9BC = D 为AC上一点 2AD DC = P 为边BC 上的动点 当APD △为直角三角形时 BP 的长为 .11 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = E 为CD 的中点 连接BE 点P 在矩形的边上 且在BE 的上方 则当BEP △是以BE 为斜边的直角三角形时 BP 的长为 .12 (2024·江西九江·二模)如图 在等腰ABC 中 2AB AC == 30B ∠=︒ D 是线段BC 上一动点 沿直线AD 将ADB 折叠得到ADE 连接EC .当DEC 是以DE 为直角边的直角三角形时 则BD 的长为 .13 (2024·江西·模拟预测)如图 在菱形ABCD 中 对角线AC BD 相交于点O 23AB = 60ABC ∠=︒ E 为BC 的中点 F 为线段OD 上一动点 当AEF △为等腰三角形时 DF 的长为 .14 (2024·江西上饶·一模)如图 在三角形纸片ABC 中 90,60,6C B BC ∠=︒∠=︒= 将三角形纸片折叠 使点B 的对应点B '落在AC 上 折痕与,BC AB 分别相交于点E F 当AFB '为等腰三角形时 BE 的长为 .15 (2024·江西抚州·一模)课本再现(1)如图1 CD 与BE 相交于点,A ABC 是等腰直角三角形 90C ∠=︒ 若DE BC ∥ 求证:ADE 是等腰直角三角形.类比探究(2)①如图2 AB 是等腰直角ACB △的斜边 G 为边AB 的中点 E 是BA 的延长线上一动点 过点E 分别作AC 与BC 的垂线 垂足分别为,D F 顺次连接,,DG GF FD 得到DGF △ 求证:DGF △是等腰直角三角形.②如图3 当点E 在边AB 上 且①中其他条件不变时 DGF △是等腰直角三角形是否成立?_______(填“是”或“否”).拓展应用(3)如图4 在四边形ABCD 中 ,90,BC CD BCD BAD AC =∠=∠=︒平分BAD ∠ 当1,22AD AC == 求线段BC 的长.16 (2023·江西·中考真题)课本再现思考我们知道菱形的对角线互相垂直.反过来对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理小明同学画出了图形(如图1)并写出了“已知”和“求证”请你完成证明过程.已知:在ABCD中对角线BD AC⊥垂足为O.求证:ABCD是菱形.(2)知识应用:如图2在ABCD中对角线AC和BD相交于点O586AD AC BD===,,.①求证:ABCD是菱形②延长BC至点E连接OE交CD于点F若12E ACD∠=∠求OFEF的值.17 (2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处 并绕点O 逆时针旋转 探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1 若将三角板的顶点P 放在点O 处 在旋转过程中 当OF 与OB 重合时 重叠部分的面积为__________ 当OF 与BC 垂直时 重叠部分的面积为__________ 一般地 若正方形面积为S 在旋转过程中 重叠部分的面积1S 与S 的关系为__________(2)类比探究:若将三角板的顶点F 放在点O 处 在旋转过程中 ,OE OP 分别与正方形的边相交于点M N .①如图2 当BM CN =时 试判断重叠部分OMN 的形状 并说明理由②如图3 当CM CN =时 求重叠部分四边形OMCN 的面积(结果保留根号)(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处 该锐角记为GOH ∠(设GOH α∠=) 将GOH ∠绕点O 逆时针旋转 在旋转过程中 GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S 请直接写出2S 的最小值与最大值(分别用含α的式子表示)(参考数据:6262sin15tan1523-+︒=︒=︒=18 (2024·江西吉安·二模)如图 在ABC 和ADE 中 (),AB AC AD AE AD AB ==< 且BAC DAE ∠=∠.连接CE BD .(1)求证:BD CE =.(2)在图2中 点B D E 在同一直线上 且点D 在AC 上 若,AB a BC b == 求AD CD的值(用含a b 的代数式表示).19 (2024·江西九江·二模)初步探究(1)如图1 在四边形ABCD 中 ,AC BD 相交于点O AC BD ⊥ 且ABD CBD S S = 则OA 与OC 的数量关系为 .迁移探究(2)如图2 在四边形ABCD 中 ,AC BD 相交于点O ABD CBD SS = (1)中OA 与OC 的数量关系还成立吗?如果成立 请说明理由.拓展探究(3)如图3 在四边形ABCD 中 ,AC BD 相交于点O 180,ABD CBD BAD BCD S S ∠∠+=︒=△△ 且 33OB OD == 求AC 的长.20 (2024·江西九江·二模)课本再现如图1 四边形ABCD 是菱形 30ACD ∠=︒ 6BD =.(1)求,AB AC 的长.应用拓展(2)如图2 E 为AB 上一动点 连接DE 将DE 绕点D 逆时针旋转120︒ 得到DF 连接EF .①直接写出点D 到EF 距离的最小值②如图3 连接,OF CF 若OCF △的面积为6 求BE 的长.21 (2024·江西赣州·三模)某数学小组在一次数学探究活动过程中经历了如下过程:AB=P为对角线AC上的一个动点以P为直角顶问题提出:如图正方形ABCD中8△.点向右作等腰直角DPM(1)操作发现:DM的最小值为_______ 最大值为_______(2)数学思考:求证:点M在射线BC上=时求CM的长.(3)拓展应用:当CP CM22 (2024·江西赣州·二模)【课本再现】 思考我们知道 角的平分线上的点到角的两边的距离相等 反过来 角的内部到角的两边的距离相等的点在角的平分线上吗?可以发现并证明角的平分线的性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.【定理证明】(1)为证明此逆定理 某同学画出了图形 并写好“已知”和“求证” 请你完成证明过程.已知:如图1 在ABC ∠的内部 过射线BP 上的点P 作PD BA ⊥ PE BC ⊥ 垂足分别为D E 且PD PE =.求证:BP 平分ABC ∠.【知识应用】(2)如图2 在ABC 中 过内部一点P 作PD BC ⊥ PE AB ⊥ PF AC ⊥ 垂足分别为D E F 且PD PE PF == 120A ∠=︒ 连接PB PC .①求BPC ∠的度数②若6PB=23PC=求BC的长.23 (2024·江西吉安·模拟预测)一块材料的形状是锐角三角形ABC下面分别对这块材料进行课题探究:课本再现:(1)在图1中若边120mmBC=高80mmAD=把它加工成正方形零件使正方形的一边在BC上其余两个顶点分别在AB AC上这个正方形零件的边长是多少?类比探究(2)如图2 若这块锐角三角形ABC材料可以加工成3个相同大小的正方形零件请你探究高AD与边BC的数量关系并说明理由.拓展延伸(3)①如图3 若这块锐角三角形ABC材料可以加工成图中所示的4个相同大小的正方形零件则ADBC的值为_______(直接写出结果)②如图4 若这块锐角三角形ABC材料可以加工成图中所示的()3n m≥相同大小的正方形零件求ADBC的值.24 (2024·江西吉安·三模)课本再现 矩形的定义 有一个角是直角的平行四边形是矩形.定义应用(1)如图1 已知:在四边形ABCD 中 90A B C ∠=∠=∠=︒用矩形的定义求证:四边形ABCD 是矩形.(2)如图2 在四边形ABCD 中 90A B ∠=∠=︒ E 是AB 的中点 连接DE CE 且DE CE = 求证:四边形ABCD 是矩形.拓展延伸(3)如图3 将矩形ABCD 沿DE 折叠 使点A 落在BC 边上的点F 处 若图中的四个三角形都相似 求AB BC的值.25 (2024·江西吉安·一模)课本再现在学习了平行四边形的概念后进一步得到平行四边形的性质:平行四边形的对角线互相平分.=(1)如图1 在平行四边形ABCD中对角线AC与BD交于点O 求证:OA OC =.OB OD知识应用=延长AC到E 使得(2)在ABC中点P为BC的中点.延长AB到D 使得BD AC∠=︒请你探究线段BE与线段AP之间的BACCE AB=连接DE.如图2 连接BE若60数量关系.写出你的结论并加以证明.26 (2024·江西九江·二模)问题提出在综合与实践课上 某数学研究小组提出了这样一个问题:如图1 在边长为4的正方形ABCD 的中心作直角EOF ∠ EOF ∠的两边分别与正方形ABCD 的边BC CD 交于点E F (点E 与点B C 不重合) 将EOF ∠绕点O 旋转.在旋转过程中 四边形OECF 的面积会发生变化吗?爱思考的浩浩和小航分别探究出了如下两种解题思路.浩浩:如图a 充分利用正方形对角线垂直 相等且互相平分等性质 证明了OEC OFD ≌ 则OEC OFD S S = OEC OCF OFD OCF OCD OECF S S S S S S =+=+=四边形.这样 就实现了四边形OECF 的面积向OCD 面积的转化.小航:如图b 考虑到正方形对角线的特征 过点O 分别作OG BC ⊥于点G OH CD ⊥于点H 证明OGE OHF ≌△△ 从而将四边形OECF 的面积转化成了小正方形OGCH 的面积.(1)通过浩浩和小航的思路点拨﹐我们可以得到OECF S =四边形__________ CE CF +=__________.类比探究(2)①如图⒉ 在矩形ABCD 中 3AB = 6AD = O 是边AD 的中点 90EOF ∠=︒ 点E 在AB 上 点F 在BC 上 则EB BF +=__________.②如图3 将问题中的正方形ABCD 改为菱形ABCD 且45ABC ∠=︒ 当45EOF ∠=︒时 其他条件不变 四边形OECF 的面积还是一个定值吗?若是 请求出四边形OECF 的面积 若不是 请说明理由.拓展延伸(3)如图4 在四边形ABCD 中 7AB = 2DC = 60BAD ∠=︒ 120BCD ∠=︒ CA 是BCD ∠的平分线 求四边形ABCD 的面积.27 (2024·江西九江·模拟预测)【课本再现】(1)如图1 四边形ABCD 是一个正方形 E 是BC 延长线上一点 且AC EC = 则DAE ∠的度数为 .【变式探究】(2)如图2 将(1)中的ABE 沿AE 折叠 得到AB E ' 延长CD 交B E '于点F 若2AB = 求B F '的长.【延伸拓展】(3)如图3 当(2)中的点E 在射线BC 上运动时 连接B B ' B B '与AE 交于点P .探究:当EC 的长为多少时 D P 两点间的距离最短?请求出最短距离.28 (2024·江西上饶·一模)课本再现:(1)如图1 ,D E 分别是等边三角形的两边,AB AC 上的点 且AD CE =.求证:CD BE =.下面是小涵同学的证明过程:证明:ABC 是等边三角形,60AC BC A ACB ∴=∠=∠=︒.AD CE =()SAS ADC CEB ∴≌CD BE ∴=.小涵同学认为此题还可以得到另一个结论:BFD ∠的度数是______迁移应用:(2)如图2 将图1中的CD 延长至点G 使FG FB = 连接,AG BG .利用(1)中的结论完成下面的问题.①求证:AG BE ∥②若25CF BF = 试探究AD 与BD 之间的数量关系.参考答案考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
2019安徽初中数学中考07 专题七
专题七几何图形综合题类型一与全等三角形有关的探究(2014·安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P点作PM∥AB交AF于点M,作PN∥CD交DE于点N.(1)①∠MPN=________°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM,ON.求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.例1题图【分析】(1)①∵正六边形的每个内角均为120°,且PM∥AB,PN∥CD,∴∠BPM=∠CPN=60°,问题解决:②作A G⊥MP交MP于点G,作B H⊥MP交MP 于点H,作D K⊥NP交NP于点K,作C L⊥NP交NP于点L,得GH=AB=a,KL=CD=a,再利用正六边形内角的关系和性质可求出HP+PL和MG+KN的值,再根据PM+PN=MG+GH+HP+PL+LK+KN计算PM+PN的值即可证明;(2)根据题意,先证明△O A M≌△OEN,即可证得OM=ON;(3)先证明△GOE≌△NO D得OG=ON,再证明△GON和△OMG是等边三角形,得到OM=MG=GN=NO,即可得到四边形OMGN是菱形.【自主解答】【方法点拨】本题是压轴题,综合性较强,每个小问都需作出辅助线,然后利用数形结合、转化思想进行求解,如(1)中的②,将证明PM+PN=3a转化为AB +CD+GM+PH+PL+NK=3a,(3)中将问题转化为证明△MGO与△NGO都为等边三角形,对学生的思维能力要求较高.【难点突破】本题的难点是第(3)问,突破口是作辅助线OE,既可利用(2)的结论及已知推出∠MON=120°,又可以证明△GOE≌△NO D达到证明OG=ON的目的,从而使问题解决.1.(2018·阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠E DF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=2AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.第1题图2.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE;②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.第2题图3.(2018·长春)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图1,过点A作A F⊥BE交BC于点F,易证△AB F≌△BCE.(不需要证明)【探究】如图2,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM.若CM=1,则FG的长为______.【应用】如图3,取BE的中点M,连接CM.过点C作C G⊥BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为______.第3题图类型二与相似三角形有关的探究(2012·安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.例2题图(1)求线段BG的长;(2)求证:DG平分∠E DF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:B G⊥CG.【分析】 (1)根据△BDG与四边形ACDG的周长相等和D是BC的中点,可知BG =AC+AG.根据等量代换即可求得BG的长.(2)由题可知DF、BF的长,根据等边对等角的性质,可知∠F DG=∠FG D,由三角形中位线定理可知D E∥AB,根据角的基本运算和角平分线的定义即可得证.(3)根据相似三角形对应角相等的性质和等量代换,可知∠FG D=∠B,根据等角对等边的性质的等量代换,可知DG=BD=CD,根据圆内接三角形的性质,可得B、G、C三点在以BC为直径的圆上,根据直径所对的圆周角是直角的性质即可证得B G⊥CG.【自主解答】【方法点拨】本题中涉及线段长度的求解有两个思路:一是直接求;二是通过等量代换来求.而证明角平分线常用到角平分线定义或判定定理,证明两直线垂直常用到勾股定理或圆中直径所对的圆周角是直角的性质.【难点突破】结合图形可以发现如果B G⊥CG,则B、G、C三点共圆,故只需证明DG=BD=CD即可突破难点.1.(2018·芜湖繁昌县一模)如图1,点D为正△ABC的BC边上一点(D不与点B,C重合).点E、F分别在边AB、AC上,且∠E DF=∠B.(1)求证:△BD E∽△CFD;(2)设BD=a,CD=b,△BDE的面积为S1,△CDF的面积为S2,求S1·S2(用含a,b的式子表示);(3)如图2,若点D为BC边的中点,求证:DF2=EF·F C.2.(2018·安庆二模)在△ABC中.∠ACB=90°,∠BAC=30°,点C为等边△DEF 的边DE 的中点.(1)如图1,当DE 与BC 在一条直线上时,已知CF AF =12,求EDDB的值;(2)如图2.当DE 与AC 在同一条直线上时,分别连接AF ,BD ,试判断BD 和AF 的位置关系并说明理由;(3)如图3,当DE 与△ABC 的边均不在一条直线上时,分别连接AF ,BD.求证:∠F AC =∠CBD.第2题图3.(2018·枣庄)如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边上的点E 处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.第3题图4.(2018·咸宁)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.第4题图理解:(1)如图1,已知Rt△ABC,在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为23,求FH的长.类型三与全等和相似三角形有关的探究(2017·安徽)已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.①求证:BE=CF;②求证:BE2=BC·CE.例3题图【分析】(1)①由互余及等量代换可证∠BAE=∠CBF,再证明△AB E≌△BCF即可得出结论,②由已知先证∠G AM=∠AGM,再证△C GE∽△CBG,可推CG2=BC·CE,结合①下面只需证明CF=CG,BE=CG.【自主解答】(2)如图2,在边BC上取一点E,满足BE2=BC·CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∠CBF的值.【分析】 (2)两个思路:一是延长AE,DC交于点N,先证△C EN∽△BEA,可得B E·CN =AB ·CE ,再证FC =CN =BE ,令BE =x ,BC =1,根据BE 2=BC ·CE 求出x ,而tan ∠CBF =CF BC =BEBC =BE 即可求;二是作GN∥BC ,令BE =x ,BC =1,根据BE 2=BC ·CE 求出x ,再令MN =y ,易得GN =2y ,由GN BE =AN AB 可求y ,从而GM =12=MA =MB ,说明G 点在以AB 为直径的圆上,∴∠AGB =90°,由(1)知BE =CF ,∴tan ∠CBF =CF BC =BEBC =BE 即可求.【自主解答】【方法指导】本题以正方形为载体,往往要用到正方形的直角及边的平行且相等,从而可以应用三角形全等及三角形相似的判定与性质.注意,在这样的压轴题中往往需要作辅助线才可以用上全等或相似.【难点突破】证明BE =CF 是本题的关键,第(2)问的突破口是作辅助线并利用相似三角形的性质和M是AB的中点.1.(2018·安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,D E⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DA E≌△CEM,点N为CM的中点,求证:A N∥EM.2.(2018·庐阳区一模)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作C E⊥AB于点E,点F为AB上一点,且EF=EB,连接DF.(1)求证:CD=CF;(2)连接DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H 为线段DG 上一点,连接AH ,若∠ADC =2∠H AG ,AD =3,DC =2,求FGGH 的值.第2题图3.(2018·海南)已知,如图1,在▱ABCD 中,点 E 是AB 中点,连接DE 并延长,交CB 的延长线于点 F. (1)求证:△AD E≌△BFE ;(2)如图2,点G 是边BC 上任意一点(点G 不与点B 、C 重合),连接AG 交DF 于点H ,连接HC ,过点A 作A K∥H C ,交DF 于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有 HD=n·HK(n为正整数),求n的值.第3题图4.(2018·禹会区二模)如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF 与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△D OK≌△BOG;(2)求证:AB+AK=BG;(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.第4题图5.(2018·瑶海区三模)如图1,点O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△E BF的周长等于BC的长.(1)求∠EOF的度数;(2)连接OA、OC(如图2).求证:△A OE∽△CFO;(3)若OE=52OF,求AECF的值.第5题图6.(2018·资阳)已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,D E⊥AB于点E,连接AD、CD.(1)求证:△ME D∽△BCA;(2)求证:△AMD≌△CMD;(3)设△M DE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.第6题图参考答案类型一【例1】 (1)①解:60;②证明:如解图1,作AG⊥MP 交MP 于点G ,作BH⊥MP 交MP 于点H ,作DK⊥NP 交NP 于点K ,作CL⊥NP 交NP 于点L ,PM +PN =MG +GH +HP +PL +LK +KN , ∵正六边形各个角都等于120°,且PM∥AB,PN∥CD, ∴GH=AB =a ,KL =CD =a ,且∠BPM=∠CPN=60°, ∴HP=BP·cos 60°=12BP ,PL =PC·cos 60°=12PC ,∴HP+PL =12(BP +PC)=a2,∵六边形ABCDEF 是正六边形,且PM∥AB,PN∥CD,∴四边形ABPM 和四边形CDNP 均为等腰梯形,根据等腰梯形的性质MG =HP ,KN =LP ,∴MG+KN =HP +LP =a2,∴PM+PN =MG +GH +HP +PL +LK +KN =a +a +a 2+a2=3a.例1题解图(2)证明:如解图2,连接OE ,∵六边形ABCDEF 是正六边形,且PM∥AB,PN∥CD,则可得四边形ABPM 和四边形CDNP 为等腰梯形,则AM =BP ,CP =ND , 又∵BC=ED ,则AM =BP =EN , ∵点O 是AD 的中点,∴OA=OE ,∠OAM=∠OEN=60°, 在△OAM 和△OEN 中,⎩⎪⎨⎪⎧AM =EN ,∠OAM=∠OEN,OA =OE ,∴△OAM≌△OEN(SAS ).∴OM=ON ; (3)解:四边形OMGN 是菱形, 理由如下:如解图3,连接OE ,由(2)得△OAM≌△OEN,∴∠AOM=∠EON, ∵EF∥AD,AF∥OE,∴四边形AOEF 是平行四边形, ∵∠F=120°,∴∠AOE=120°,∠DOE=60°,∵∠AOM=∠EON,∴∠MON=120°, ∵OG 平分∠MON,∴∠GON=∠MOG=60°, ∵∠GOE=∠GON-∠EON=60°-∠EON, ∠NOD=∠DOE-∠EON=60°-∠EON, ∴∠GOE=∠NOD,在△GOE 和△NOD 中, ⎩⎪⎨⎪⎧∠GOE=∠NOD OE =OD∠OEG=∠ODN, ∴△GOE≌△NOD(ASA ),∴OG=ON ,∵∠GON=60°,∴△GON 是等边三角形,∴GN =ON , ∵OM=ON ,∴OM=OG ,∵∠MOG=60°,∴△OMG 是等边三角形, ∴OM=MG =GN =NO , ∴四边形OMGN 是菱形. 针对训练1.证明:(1)∵∠BAC=90°,AB =AC ,∴∠B=∠C=45°, ∵AD⊥BC,∴BD=CD ,∠BAD=∠CAD=45°, ∴∠CAD=∠B,AD =BD , ∵∠EDF=∠BDA=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA ), ∴BE=AF ;第1题解图(2)①证明:如解图,过点M 作MP⊥AM,交AB 的延长线于点P , ∴∠AMP=90°,∵∠PAM=45°, ∴∠P=∠PAM=45°, ∴AM=PM ,∵∠BMN=∠AMP=90°, ∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA ), ∴AN=PB ,∴AP=AB +BP =AB +AN , 在Rt △AMP 中,∠AMP=90°,AM =MP , ∴AP=2AM ,∴AB+AN =2AM ; ②解:AM =2-63.2.解:(1)∵△ABC 和△ADE 都是等边三角形, ∴AB=AC =BC ,AD =AE ,∠BAC=∠DAE=60°. ∴∠BAC-∠CAD=∠DAE-∠CAD, 即∠BAD=∠CAE.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ∠BAD=∠CAE AD =AE ,∴△ABD≌△ACE(SAS ),∴BD=CE. ∵BC=BD +CD ,AC =BC ,∴AC=CE +CD ;(2)AC =CE +CD 不成立,AC 、CE 、CD 之间存在的数量关系是:AC =CE -CD. 理由:∵△ABC 和△ADE 都是等边三角形,∴AB=AC =BC ,AD =AE ,∠BAC=∠DAE=60°. ∴∠BAC +∠CAD=∠DAE+∠CAD, ∴∠BAD=∠CAE,在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ∠BAD=∠CAE AD =AE ,∴△ABD≌△ACE(SAS ),∴BD=CE , ∴C E -CD =BD -CD =BC =AC , ∴AC=CE -CD ; (3)补全图形(如解图),第3题解图AC 、CE 、CD 之间存在的数量关系是:AC =CD -CE. 理由:∵△ABC 和△ADE 都是等边三角形, ∴AB=AC =BC ,AD =AE ,∠BAC=∠DAE=60°. ∴∠BAC-∠BAE=∠DAE-∠BAE, ∴∠BAD=∠CAE,在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE ,∴△ABD≌△ACE(SAS ),∴BD=CE. ∵BC=CD -BD , ∴AC=CD -CE.3.【探究】(1)证明:如解图,过点A 作AH∥GF,交BC 于点H ,则AH =FG ,第3题解图∵FG⊥BE,∴AH⊥BE, ∴∠ABE+∠BAH=90°. ∵四边形ABCD 是正方形, ∴∠ABC=∠BCE=90°,AB =BC , ∴∠ABE+∠EBC=90°, ∴∠BAH=∠EBC. 在△ABH 和△BCE 中,∵∠BAH=∠EBC,AB =BC ,∠ABC=∠BCE, ∴△ABH≌△BCE(ASA ),∴AH=BE. 又∵AH=FG ,∴BE=FG ; (2)解:FG =2. 【应用】S 四边形CEGM =9. 类型二【例2】 (1)∵△BDG 与四边形ACDG 的周长相等, ∴BD+BG +DG =AC +CD +DG +AG.∵D 是BC 的中点,∴BD=CD ,则BG =AC +AG , ∵BG+AG =AB ,∴BG=AC +AB -BG , 即BG =12(AB +AC)=12(b +c);(2)∵点D 、F 分别是BC 、AB 的中点, ∴DF=12AC =12b ,BF =12AB =12c.∵FG=BG -BF =12(b +c)-12c =12b ,∴DF=FG ,则∠FDG=∠FGD, ∵点D 、E 分别是BC 、AC 的中点, ∴DE∥AB,故∠EDG=∠FGD, ∴∠FDG=∠EDG,即DG 平分∠EDF; (3)当△BDG∽△DFG 时,则∠B=∠FDG, 由FD =FG =12b 可得∠FDG=∠FGD,∴∠FGD=∠B,故DG =BD. ∵BD=CD ,BD =GD ,∴DG=BD =CD ,则B 、G 、C 三点在以D 为圆心、BC 为直径的圆上,故∠BGC=90°,即BG⊥CG. 针对训练1.(1)证明:在△BDE 中,∠BDE+∠DEB+∠B=180°, 又∵∠BDE+∠EDF+∠FDC=180°,∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC , ∵∠EDF=∠B,∴∠DEB=∠FDC, 又∵∠B=∠C,∴△BDE∽△CFD;第1题解图(2)解:分别过E ,F 作EG⊥BC 于点G ,FH⊥BC 于点H ,如解图, S 1=12BD·EG=12a·BE·sin 60°=34a·BE,S 2=12CD·FH=34b·CF,∴S 1·S 2=316ab·BE·CF,由(1)得△BDE∽△CFD,∴BD BE =FCCD ,即BE·FC=BD·CD=ab ,∴S 1·S 2=316a 2b 2;(3)证明:由(1)得△BDE∽△CFD,∴BD DE =FCDF ,又∵BD=CD ,∴CD DE =FCDF,又∵∠EDF=∠C=60°,∴△DFE∽△CFD, ∴EF DF =DFFC ,即DF 2=EF·FC. 2.(1)解:易得DF∥AB, ∵CF AF =12,∴CD DB =12, ∵ED=2CD ,∴EDDB的值为1;(2)解:如解图1,连接CF ,延长BD 交AF 于点G ,则BD⊥AF 于G.第2题解图1理由:∵tan 60°=CF CD =ACCB =3,∠ACF=∠BCD=90°, ∴AC CF =CB CD, ∴△ACF∽△BCD,∴∠FAC=∠CBD,∵∠BDC+∠DBC=90°,∴∠ADG+∠DAG=90°, 即BD⊥AF 于G ;(3)证明:连接CF ,如解图2,易得∠FCD=90°,第2题解图2∵∠FCA+∠ACD=∠BCD+∠ACD=90°, ∴∠FCA=∠BCD,∵tan 60°=CF CD =ACCB =3,∴△ACF∽△BCD,∴∠FAC=∠CBD.3.(1)证明:∵GE∥DF,∴∠EGF=∠DFG.由翻折的性质可知GD =GE ,DF =EF ,∠DGF=∠EGF, ∴∠DGF=∠DFG.∴GD=DF.∴DG=GE =DF =EF.∴四边形EFDG 为菱形; (2)解:EG 2=12GF·AF.理由:如解图1所示,连接DE ,交AF 于点O.第3题解图1∵四边形EFDG 为菱形, ∴GF⊥DE,OG =OF =12GF ,∵∠DOF=∠ADF=90°,∠OFD=∠DFA, ∴△DOF∽△ADF.∴DF AF =FODF,即DF 2=FO·AF. ∵FO=12GF ,DF =EG ,∴EG 2=12GF·AF;(3)解:如解图2:过点G 作GH⊥DC,垂足为H.第3题解图2∵EG 2=12GF·AF.AG=6,EG =25,∴20=12FG·(FG+6),整理得:FG 2+6FG -40=0. 解得FG =4,FG =-10(舍去). ∵DF=GE =25,AF =10, ∴AD=AF 2-DF 2=45, ∵GH⊥DC,AD⊥DC,∴GH∥AD. ∴△FGH∽△FAD.∴GH AD =FGAF,即GH 45=410.∴GH=855.∴BE=AD -GH =45-855=1255.4.解:(1)如解图1所示(找出D 1,D 2,D 3,D 4中任意3个即可);第4题解图(2)证明:∵∠ABC=80°,BD 平分∠ABC, ∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°. ∵∠ADC=140°,∴∠BDC+∠ADB=140°. ∴∠A=∠BDC.∴△ABD∽△DBC. ∴BD 是四边形ABCD 的“相似对角线”; (3)解:∵FH 是四边形EFGH 的“相似对角线”, ∴△EFH 与△HFG 相似.又∠EFH=∠HFG, ∴△FEH∽△FHG,∴FE FH =FHFG .即FH 2=FE·FG.过点E 作EQ⊥FG,垂足为Q.如解图2, 则EQ =FE·sin 60°=32FE. ∵12FG·EQ=23,∴12FG·32FE =23, ∴FG·FE=8,∴FH 2=FE·FG=8,∴FH=2 2. 类型三【例3】 (1)证明:①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCF=90°,又∵∠AGB=90°,∴∠BAE+∠ABG=90°,又∵∠ABG+∠CBF=90°,∴∠BAE=∠CBF.∴△ABE≌△BCF(ASA),∴BE=CF;②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM.又∵∠CGE=∠AGM,从而∠CGE=∠CBG,又∵∠ECG=∠GCB,∴△CGE∽△CBG.∴CECG=CGCB,即CG2=BC·CE,∵四边形ABCD是正方形,∴AB∥CD,∴∠CFG=∠GBM=∠BGM=∠CGF,得CF=CG. 由①知,BE=CF,∴BE=CG,∴BE2=BC·CE;(2)解:(方法一)延长AE,DC交于点N(如解图1),例3题解图1 ∵四边形ABCD是正方形,所以AB∥CD.∴∠N=∠EAB,又∠CEN=∠BEA,∴△CEN∽△BEA.∴CE BE =CN BA ,即BE·CN=AB·CE,∵AB=BC ,BE 2=BC·CE,∴CN=BE ,由AB∥DN,知CN AM =CG GM =CF MB .又∵AM=MB ,∴FC=CN =BE ,不妨假设正方形边长为1.设BE =x ,则由BE 2=BC·CE,得x 2=1·(1-x).解得x 1=5-12,x 2=-5-12(舍去),∴BE BC =5-12.∴tan ∠CBF=FC BC =BE BC =5-12;(方法二)不妨假设正方形边长为1,设BE =x ,则由BE 2=BC·CE,得x 2=1·(1-x).解得x 1=5-12,x 2=-5-12(舍去),即BE =5-12.作GN∥BC 交AB 于点N(如解图2),则△MNG∽△MBC,例3题解图2∴MN NG =MBBC =12.∵GN BE =AN AB ,即2y 5-12=y +121, 解得y =510,∴GM=12, 从而GM =MA =MB ,此时点G 在以AB 为直径的圆上.∴△AGB 是直角三角形,且∠AGB=90°.由(1)知BE =CF ,∴tan ∠CBF=FC BC =BE BC =5-12. 针对训练1.(1)证明:∵∠ACB=90°,点M 为BD 的中点,∴CM=12BD ,同理EM =12BD , ∴CM=EM ;(2)解:方法一:∵∠ACB=90°,∠BAC=50°,∴∠ABC=40°,由(1)得CM =DM =BM =EM ,∴点B ,C ,D ,E 在以点M 为圆心,BD 为直径的⊙M 上,∴∠CME=2∠ABC=80°,∴∠EMF=180°-80°=100°;方法二:∵∠ACB=90°,∠BAC=50°,∴∠ABC=40°,∵DE⊥AB,∴∠CDE=∠A+∠DEA=140°,由(1)得CM =DM =EM ,∴∠MCD=∠MDC,∠MED=∠MDE,∴∠DCM+∠DEM=∠MDC+∠MDE=140°,∴∠CME=360°-140°-140°=80°,∴∠EMF=180°-80°=100°.(3)证明:方法一:∵△DAE≌△CEM,∴∠CME=∠DEA=90°,DE =CM ,AE =EM ,又∵CM=DM =EM ,∴DM=DE =EM ,∴△DEM 是等边三角形,∴在Rt △EMF 中,∠EMF=90°,∠MEF=∠DEF-∠DEM =30°,∴MF EF =12,又∵NM=12CM =12EM =12AE ,∴FN=FM +NM =12EF +12AE =12(AE +EF)=12AF.∴MF EF =NF AF =12.∵∠AFN=∠EFM,∴△AFN∽△EFM,∴∠NAF=∠MEF,故AN∥EM.方法二:如解图,连接AM ,则∠EAM=∠EMA=12∠MEF=15°,第1题解图∴∠AMC=∠EMC-∠EMA=75°,①又∠CMD=∠EMC-∠EMD=30°,且MC =MD ,∴∠ACM=12(180°-30°)=75°.② 由①②可知AC =AM ,又N 为CM 的中点,∴AN⊥CM,而EM⊥CM,∴AN∥EM.2.(1)证明:AC 平分∠DAB,∴∠DAC=∠BAC,在△ADC 和△ABC 中,⎩⎪⎨⎪⎧AC =AC ∠DAC=∠BAC AD =AB,∴△ADC≌△ABC(SAS ),∴CD=CB ,∵CE⊥AB,EF =EB ,∴CF=CB ,∴CD=CF ;(2)证明:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB ,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD 的内角和等于360°,∴∠DCF+∠DAF =180°,∵CD=CF. ∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,∠CDG=∠DAC ,CG CD =DG AD, ∵∠ADC=2∠HAG,AD =3,DC =2,∴∠HAG=12∠DGC,CG 2=DG 3, ∴∠HAG=∠AHG,CG DG =23,∴HG=AG , ∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∽△AGF,∴GF AG =CG DG =23,∴FG GH =23. 3.(1)证明:在▱ABCD 中,AD∥BC,∴∠ADE=∠F,∵E 是AB 的中点,∴AE=BE ,又∵∠AED=∠BEF(对顶角相等),∴△ADE≌△BFE(AAS );(2)①证明:如解图1,第3题解图1在▱ABCD 中,AB∥CD,AB =CD ,∴∠AEK=∠CDH,∵AK∥HC,∴△AEK∽△CDH.∴AE CD =AK CH, 又∵E 是边AB 的中点,∴2AE=AB =CD ,∴HC=2AK ;②解:当点G 是BC 的中点时,如解图2,第3题解图2在▱ABCD 中,AD∥BC,AD =BC ,∴△AHD∽△GHF,∴AD GF =HD HF, 由(1)得,△ADE≌△BFE,∴AD=BF ,又∵G 是BC 的中点,∴2BG=AD =BF ,∴AD GF =23,∴HD=23HF , 如解图3,第3题解图3∵AD∥FC,∴∠ADK=∠F,∵AK∥HC,∴∠AKH=∠CHK,∴∠AKD=∠CHF(等角的补角相等),∴AD CF =KD HF =12,∴KD=12HF ,∴HK=HD -KD =16HF ,∴HD HK =23HF16HF=4,∴HD=4HK ,∴n=4.4.(1)证明:∵在矩形ABCD 中,AD∥BC,∴∠KDO=∠GBO,∠DKO=∠BGO,∵点O 是BD 的中点,∴DO=BO ,∴在△DOK 和△BOG 中,⎩⎪⎨⎪⎧∠KDO=∠GBO,∠D KO =∠BGO,DO =BO ,∴△DOK≌△BOG(AAS );(2)证明:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=90°,AD∥BC,又∵AF 平分∠BAD,∴∠BAF=∠DAF=45°,∴∠BAF=∠BFA,∴AB=BF ,∵OK∥AF,AK∥FG,∴四边形AFGK 是平行四边形,∴AK=FG ,(3)解:如解图,过点G 作GI⊥KD 于点I ,由(2)知,四边形AFGK 是平行四边形,△ABF 为等腰直角三角形.第4题解图∴AF=KG =2,AB =22AF =2, ∵四边形ABCD 是矩形,∴GI=AB =2,S △KDG =12KD·GI=12×2×2= 2. ∵PD=x ,∴PK=2-x ,∵PM∥DG,PN∥KG,∴四边形PMGN 是平行四边形,△DKG∽△PKM∽△DPN ,∴S △DPN S △DGK =(x 2)2=x 24,即S △DPN =x 24S △DKG =24x 2. 同理,S △KPM =2(2-x )24, S ▱PMGN =S △DKG -S △DPN -S △KPM =2-24x 2-2(2-x )24. 则S △PMN =12S ▱PMGN =-24x 2+22x.(0<x<2) 5.(1)解:如解图,在BC 上取一点G ,使得CG =BE ,连接OB 、OC 、OG. ∵点O 为正方形ABCD 的中心,第5题解图∴OB=OC ,∠BOC=90°,∠OBE=∠OCG=45°. ∴△OBE≌△OCG(SAS ).∴∠BOE=∠COG,∠BEO=∠CGO,OE =OG.∴∠EOG=90°,∵△BEF 的周长等于BC 的长,∴EF=GF.∴△EOF≌△GOF(SSS ).∴∠EOF=∠GOF=45°.(2)证明:如解图,∵点O 为正方形ABCD 的中心, ∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3)解:∵△AOE∽△CFO,∴AO CF =OE FO =AE CO. 即AE =OE FO ·CO,CF =AO÷OE FO. ∵OE=52OF ,∴OE FO =52. ∴AE=52CO ,CF =25AO. AE 56.(1)证明:∵MD∥BC,∴∠DME=∠CBA, ∵∠ACB =∠MED=90°,∴△MED∽△BCA;(2)证明:∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC =AM ,∴∠MCB=∠MBC,∵∠DMB=∠MBC,∴∠MCB=∠DMB=∠MBC, ∵∠AMD=180°-∠DMB,∠CMD=180°-∠MCB-∠MBC+∠DMB=180°-∠MBC, ∴∠AMD=∠CMD,在△AMD 与△CMD 中,⎩⎪⎨⎪⎧MD =MD ,∠AMD =∠CMD,AM =CM ,∴△AMD≌△CMD(SAS );(3)解:∵MD=CM ,∴AM=MC =MD =MB ,∴MD=12AB.由(1)可知:△MED∽△BCA,∴S 1S △ACB=(MD AB )2=14,∴S △ACB =4S 1,∵CM 是△ACB 斜边AB 上的中线,∴S △MCB =12S △ACB =2S 1,∴S △EBD =S 2-S △MCB -S 1=25S 1,∵S 1S △EBD =ME EB ,∴S 125S 1=ME EB , ∴ME EB =52, 设ME =5x ,EB =2x , ∴MB=7x ,∴AB=2MB =14x , ∵MD AB =ME BC =12,7x 14x =5x BC , ∴BC=10x ,∴cos ∠ABC=BC AB =10x 14x =57.。
初中数学几何综合题及答案
最新初中数学几何综合题及答案1、已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.解:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π•(DC)2=π•DC2=π(4y)2=4πy2,四边形ABCD的面积为BC•DF=6y•2y=12y2,∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.2、半径为2cm的⊙O与边长为2cm的正方形ABCD在水平直线L的同侧,⊙O与L相切于点F,DC在L上.(1)过点B作⊙O的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置....,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O上时,过点B作的一条切线BE,E为切点,∴OB=4,EO=2,∠OEB=90°,∴∠EBA的度数是:30°;②如图2,∵直线l与⊙O相切于点F,∴∠OFD=90°,∵正方形ADCB中,∠ADC=90°,∴OF∥AD,∵OF=AD=2,∴四边形OFDA为平行四边形,∵∠OFD=90°,∴平行四边形OFDA为矩形,∴DA⊥AO,∵正方形ABCD中,DA⊥AB,∴O,A,B三点在同一条直线上;∴EA⊥OB,∵∠OEB=∠AOE,∴△EOA∽△BOE,∴=,∴OE2=OA•OB,∴OA(2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法二:在Rt△OAE中,cos∠EOA==,在Rt△EOB中,cos∠EOB==,∴=,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法三:∵OE⊥EB,EA⊥OB,∴由射影定理,得OE2=OA•OB,∴OA(2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;(2)如图3,设∠MON=n°,S扇形MON=×22=n(cm2),S随n的增大而增大,∠MON取最大值时,S扇形MON最大,当∠MON取最小值时,S扇形MON最小,过O点作OK⊥MN于K,∴∠MON=2∠NOK,MN=2NK,在Rt△ONK中,sin∠NOK==,∴∠NOK随NK的增大而增大,∴∠MON随MN的增大而增大,∴当MN最大时∠MON最大,当MN最小时∠MON最小,①当N,M,A分别与D,B,O重合时,MN最大,MN=BD,∠MON=∠BOD=90°,S扇形MON最大=π(cm2),②当MN=DC=2时,MN最小,∴ON=MN=OM,∴∠NOM=60°,S扇形MON最小=π(cm2),∴π≤S扇形MON≤π.故答案为:30°.3、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G 处,EG的延长线交直线BC于点F.(1)点E可以是AD的中点吗?为什么?(2)求证:△ABG∽△BFE;(3)设AD=a,AB=b,BC=c①当四边形EFCD为平行四边形时,求a,b,c应满足的关系;②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.解:(1)不是.据题意得:AE=GE,∠EGB=∠EAB=90°,∴Rt△EGD中,GE<ED,∴AE<ED,故,点E不可以是AD的中点;(注:大致说出意思即可;反证法叙述也可)(2)方法一:证明:∵AD∥BC,∴∠AEB=∠EBF,∵△EAB≌△EGB,∴∠AEB=∠BEG,∴∠EBF=∠BEF,∴FE=FB,∴△FEB为等腰三角形.∵∠ABG+∠GBF=90°,∠GBF+∠EFB=90°,∴∠ABG=∠EFB,在等腰△ABG和△FEB中,∠BAG=(180°﹣∠ABG)÷2,∠FBE=(180°﹣∠EFB)÷2,∴∠BAG=∠FBE,…5分∴△ABG∽△BFE,方法二:∠ABG=∠EFB(见方法一),证得两边对应成比例:,由此可得出结论.(3)①方法一:∵四边形EFCD为平行四边形,∴EF∥DC,证明两个角相等,得△ABD∽△DCB,∴,即,∴a2+b2=ac;…8分方法二:如图,过点D作DH⊥BC,∵四边形EFCD为平行四边形∴EF∥DC,∴∠C=∠EFB,∵△ABG∽△BFE,∴∠EFB=∠GBA,∴∠C=∠ABG,∵∠DAB=∠DHC=90°,∴△ABD∽△HCD,∴,∴,∴a2+b2=ac;方法三:证明△ABD∽△GFB,则有,∴,则有BF=,∵四边形EFCD为平行四边形,∴FC=ED=c﹣,∵ED∥BC,∴△EDG∽△FBG,∴,∴,∴a2+b2=ac;…8分方法一②:解关于a的一元二次方程a2﹣ac+22=0,得:a1=,a2=由题意,△=0,即c2﹣16=0,∵c>0,∴c=4,∴a=2…10分∴H为BC的中点,且ABHD为正方形,DH=HC,∠C=45°;方法二:设关于a的一元二次方程a2﹣ac+22=0两根为a1,a2,a1+a2=c>0,a1•a2=4>0,∴a1>0,a2>0,…9分由题意,△=0,即c2﹣16=0,∵c>0,∴c=4,∴a=2,…10分∴H为BC的中点,且ABHD为正方形,DH=HC,∠C=45°.4、如图1,Rt△ABC两直角边的边长为AC=1,BC=2.图1Z O YXC BAP 1(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边CB 相切于点Y .请你在图2中作出并标明⊙O 的圆心O ;(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙的面积为s ,你认为能否确定s 的最大值?若能,请你求出s 的最大值;若不能,请你说明不能确定s 的最大值的理由.解:(1看见垂足为Y (X )的一 条 垂 线 (或 者∠ABC 的平分线)即评1分,(2)①当⊙P 与Rt △ABC 的边 AB 和BC 相切时,由角平分线的性质,动点P 是∠ABC 的平分线BM 上的点.如图1,在∠ABC 的平分线BM 上任意确定点P 1 (不为∠ABC 的顶点),∵ OX =BOsin ∠ABM, P 1Z =BP 1sin ∠ABM .当 BP 1>BO 时 ,P 1Z >OX,即P 与B 的距离越大,⊙P 的面积越大. 这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点. 如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边第23题图2图1YXC BC AA图2E图3DA AB 相切于E ,即这时的⊙P 是符合题意的圆. 这时⊙P 的面积就是S 的最大值.∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE , ∴BCPEAB PA =. ∵AC =1,BC =2,∴AB =5.设PC =x ,则PA =AC -PC =1-x, PC =PE ,∴251x x =-, ∴x =522+ . ②如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时,设PC =y ,则152y y =-, ∴y=512+. (7分)21世纪教育网③如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF =z ,则122z z =-, ∴z=32. (8分) 由①,②,③可知:∵ 5 >2,∴ 5+2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大, (或者:∵x=522+=25-4, y=512+ =215- 5,∴y-x=24549->0, ∴y>x. ∵z-y=645721532-=-->0)∴52251232+>+>2, (9分,没有过程直接得出酌情扣1分)∴ z >y >x. ∴⊙P 的面积S 的最大值为π94.5、如图①,P 是△ABC 边AC 上的动点,以P 为顶点作矩形PDEF ,顶点D,E 在边BC 上,顶点F 在边AB 上;△ABC 的底边BC 及BC 上的高的长分别为a , h,且是关于x 的一元二次方程20mx nx k ++=的两个实数根,设过D,E,F 三点的⊙O 的面积为O S ๏,矩形PDEF 的面积为PDEF S 矩形。
初中数学几何综合试题1及答案
初中数学几何综合试题班级____ 学号____ 姓名____ 得分____一、 单选题(每道小题 3分 共 9分 )1. 下列各式中正确的是[ ]A.sin12=30 B.tg1=45C.tg30=3D.cos60=122. 如图,已知AB 和CD 是⊙O 中两条相交的直径,连AD 、CB 那么α和β的关系是 [ ]A B C D ....αββαβαβα=><=121223. 在一个四边形中,如果两个内角是直角,那么另外两个内角可以 [ ] A .都是钝角 B .都是锐角C .一个是锐角一个是直角D .都是直角或一个锐角一个钝角二、 填空题(第1小题 1分, 2-7每题 2分, 8-9每题 3分, 10-14每题 4分, 共 39分)1. 人们从实践经验中总结出来的图形的基本性质,我们把它叫做_______.2. 小于直角的角叫做______;大于直角而小于平角的角叫做________.3. 已知正六边形外接圆的半径为R , 则这个正六边形的周长为_______.4. 在中若则Rt ABC ,C =90,cosB =23,sinA =∆∠ .5. 如果圆的半径R 增加10% , 则圆的面积增加_____________.6. cos sin cos sin .45306030-+=7. 已知∠a=60°,∠AOB=3∠a,OC 是∠AOB 的平分线,则∠a=___∠AOC .8. 等腰Rt △ABC, 斜边AB 与斜边上的高的和是12厘米, 则斜边AB= 厘米.9. 已知:如图△ABC 中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________.10. 在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧______;所对的弦_______, 所对弦的弦心距_______.11. 如图,在直角三角形ABC 中,∠C=90°,D 、E 分别是AB 、AC 中点, AC=7,BC=4,若以C 为圆心,BC 为半径做圆,则ED 与⊙o 的位置关 系是:D 在______, E 在_____.12. 在△ABC 中,∠C=90°若a=5,则S △ABC =12.5,则c=_________,∠A=_________13. 如图:CB ⊥AB,CE 平分∠BCD,DE 平分∠CDA,∠1+∠2=90° 求证:DA ⊥AB证明:∵∠1+∠2=90°(已知)∠2=∠4,∠1=∠3(角平分线定义) ∴∠3+∠4=90°(等量代换)∴∠ADC+∠BCD=180°(等量代换) AD ∥BC( )∵BC ⊥AB(已知)∴AD ⊥AB( )14. 圆外切四边形ABCD 中,如果AB=2,BC=3,CD=8,那么 AD= .三、 计算题(第1小题 4分, 2-3每题 6分, 共 16分)1. 求值:cos 245°+tg30°sin60°2. 已知正方形ABCD ,E 是BC 延长线上一点,AE 交CD 于F ,如果AC=CE , 求∠AFC 的度数.3. 如图:AB 是半圆的直径,O 为圆心,C 是AB 延长线上的一点,CD 切半圆于,于,已知:,,求之长.D DE AB E EB AB CD BC ⊥==152四、 解答题(1-2每题 4分, 第3小题 6分, 第4小题 7分, 共 21分)1. 在△Rt △ABC 中,∠C=90°,AB+AC=a,∠B=a,求AC.2. 如图:铁路的路基的横截面是等腰梯形斜坡的坡度为为米基面宽米求路基的高,基底的宽及坡角的度数答案可带根号,AB 13,33,AD 2,AE BEC B .():BE3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD 和上弦AC 的长(答案可带根号)4. 如图:已知AB∥CD , ∠BAE=40°, ∠ECD=62°, EF平分∠AEC , 则∠AEF是多少度?五、证明题(第1小题 4分, 2-4每题 7分, 共 25分)1. 已知:如图 , AB=AC , ∠B=∠C.BE、DC交于O点.求证:BD=CE2. 已知:如图,PA=PB,PA切⊙O于A,BCD交⊙O于C、D,PC延长交⊙O于E,连结BE交⊙O于F.求证:DF∥PB.3. 如图:EG∥AD , ∠BFG=∠E.求证:AD平分∠BAC.4. 已知:如图 , 在∠AOB的两边OA , OB上分别截取OQ=OP , OT=OS , PT 和QS相交于点C.求证:OC平分∠AOB六、画图题(第1小题 2分, 2-3每题 4分, 共 10分)1. 已知:如图, ∠AOB求作:射线OC, 使∠AOC=∠BOC.(不写作法)2. 已知:两角和其中一个角的对边 ,求作:三角形ABC(写出已知 , 求作 , 画图,写作法)3. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地方, 可使所用的水管最短?(写出已知, 求作, 并画图)初中数学模拟考试题答案一、单选题1. D2. D3. D二、填空题1. 公理2. 锐角,钝角3. 6R4. 2 35. 0.21πR26. 21 27. 2 38. 89. 70°10. 越长, 越长, 越短11. 在圆外,在圆内12. 5245,13. 同旁内角互补,两直线平行;一条直线和两条平行线中的一条垂直,也和另一条垂直14. 7三、计算题1. 解:原式=+⨯=+=()2233321212122. 解:∵AC=CE 则∠1=∠2 又∵∠ACE=135°∴∠1=(180°-135°)÷2=22.5°故∠AFC=180°-(45°+22.5°)=112.5°3. 解:如图,连结、,为直径∴又∵,∽∴·同理·而,∴··∴::∵切半圆于,∽,:::AD DB ABADBDE AB ADE ABDADABAEADAD AE ABBD BE AB BE ABADBDAE ABBE ABC CAD BDCD D CDB A ADC DBC DC BC AD BD CDBC∠=⊥======∠=∠=∠=∠====︒9015412121212222∆∆∆∆四、解答题1. 解:在中则即即Rt ABC CACABAC ABACaACACa∆∠==+=+=+=+∴90111sinsinsinsinsinsinsinααααααα2. 解:米米AEAEBCB3313326330===+∠=∴()()()3. CDAC为米为米2343解:过E作EG∥AB∵∠BAE=40°∴∠AEG=40°同理∠CEG=62°∴∠AEC=102°又∵EF平分∠AEC ∴∠AEF=51°五、证明题4.1. 证:∵∠A=∠A , AB=AC , ∠B=∠C.∴△ADC≌△AEB(ASA)∴AD=AE∵AB=AC,∴BD=CE.2. 证明:如图,切⊙于,交⊙于、,又的公用∽又∥PA O A BCD O C DAP PC PEPA PB PB PC PEPBPCPEPBBPC PBC PEBEE BDF BDF DF PB∴=⋅=∴=⋅∴=∠∴∴∠=∠∴∠=∠∴∠=∠∴2211∆∆证明:∵∠BFG=∠E=∠EFAEG∥AD∴∠E=∠DAC ∠BFG=∠BAD∴AD平分∠BAC4. 证:作射线OC , 连结TS.在△SOP和△TOQ中 ,OS=OT , OQ=OP , ∠AOB=∠BOA.∴△SOP≌△TOQ(SAS) ∴∠1=∠2.∵OT=OS , ∴∠OST=∠OTS3.∴∠3=∠4 ∴CT=CS∵OC=OC , OS=OT , CT=CS∴△OCS≌△OCT (SSS)∴∠5=∠6∴OC平分∠AOB六、画图题1. 射线OC为所求.2. 已知:∠a、∠b、线段a求作:△ABC使∠A=∠a , ∠B=∠b, BC=a作法:1.作线段BC=a2.在BC的同侧作∠DBC=∠b,∠ECB=180-∠a-∠b,BD和CE交于A, 则△ABC为所求的三角形.3. 已知:直线a和a的同侧两点A、B.求作:点C, 使C在直线a上, 并且AC+BC最小.作法:1.作点A关于直线a的对称点A'.2.连结A'B交a于点C.则点C就是所求的点.证明:在直线a上另取一点C', 连结AC,AC', A'C', C'B.∵直线a是点A, A'的对称轴, 点C, C'在对称轴上∴AC=A'C, AC'=A'C'∴AC+CB=A'C+CB=A'B在△A'C'B中,∵A'B<A'C'+C'B∴AC+CB<AC'+C'B即AC+CB最小.。
初中数学四边形、三角形几何综合题目汇总(动点、旋转)大全
初中数学几何四边形、三角形综合题大全(含动点、旋转等类型)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.(1)若AB=4,BC=6,求EC的长;(2)若∠F=55°,求∠BAE和∠D的度数.如图,在△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.(1)求证:AD=EC.(2)当∠BAC=90°时,证明四边形ADCE是菱形.如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB 交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;(2)连接线段MN,探究当MN取到最小值时,判断MN与对角线BD 的数量关系和位置关系,并说明你的理由.已知四边形ABCD 是边长为2的菱形,∠BAD =60°,对角线AC 与BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F .(1)求证:△AOE ≌△COF ;(2)若∠EOD =30°,求CF 的长.已知,如图,在Rt △ABC 中,CD 是斜边上的中线,DE ⊥AB 交BC 于点F ,交AC 的延长线于点E .(1)△ADE ∽△FDB 吗?为什么?(2)你能推出结论CD 2=DE ·DF 吗?请试一试.如图,在四边形ABCD 中,AC 、BC 相交于点O ,∠ABD=∠ACD ,试找出图中的相似三角形,并加以证明.如图,E 、F 是□ABCD 的对角线AC 上的两点,且AE =CF .请你以点F 为一个端点与图中已标明字母的某一点连成一条线段,猜想并说明它与图中已有的某一条线段相等(只需说明一组线段相等即可).(1)连结;(2)猜想:=;(3)证明:如图,将?ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接AC 、BE ,求证:四边形ABEC 是矩形.ODCBABCDE FA在平行四边形ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2) ∠BAD=60°,AC平分∠BAD ,AC=2,求BN的长。
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
春中考数学总复习 第二轮 中考题型专题 专题复习(六)几何综合题试题-人教版初中九年级全册数学试题
专题复习(六) 几何综合题1.(2016·某某)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形. (1)如图1,四边形ABCD 中,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA =PB ,PC =PD ,∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD. ∵E 、H 分别是AB 、AD 的中点, ∴EH =12BD ,EH ∥BD.∵F 、G 分别是BC 、CD 的中点, ∴FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD,∴∠APB +∠APD=∠CPD+∠APD,即∠BPD=∠APC. 又∵PA=PB ,PC =PD ,∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点, ∴EF =12AC ,FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形, ∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时,如图3,AC与BD交于点O,BD与EF,AP分别交于点M,Q,中点四边形EFGH是正方形.理由如下:由(2)知:△APC≌△BPD,∴∠PAC=∠PBD.又∵∠AQO=∠BQP,∴∠AOQ=∠APB=90°.又∵EF∥AC,∴∠OMF=∠AOQ=90°.又∵EH∥BD,∴∠HEF=∠OMF=90°.又∵四边形EFGH是菱形,∴中点四边形EFGH是正方形.2.(2016·某某)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数;(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=23CM+233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED,∴AC=BC,CD=CE. ∵∠CAB=∠CBA=∠C DE=∠CED,∴∠ACB=∠DCE.∴∠ACD=∠BCE.∴△ACD≌△BCE(SAS).∴AD=BE.②由①得△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE , ∴∠DCM =12∠DCE=60°,DM =EM.在Rt △CDM 中,DM =CM·tan ∠DCM =CM·tan 60°=3CM ,∴DE =23CM. 由(1),得∠ADC =∠BEC=150°,AD =BE , ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中,BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD ,∴AE =23CM +233BN.3.(2016·东营)如图1,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长DB 交CF 于点H ,交AF 于点N. ①求证:BD⊥CF;②当AB =2,AD =32时,求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC ,∠BAD =∠CAF=θ,AD =AF , ∴△ABD ≌△ACF(SAS ).∴BD =CF. (2)①证明:由(1)得,△ABD ≌△ACF , ∴∠HFN =∠ADN. 又∵∠HNF=∠AND, ∴∠NHF =∠NAD=90°. ∴HD ⊥HF ,即BD⊥CF.②连接DF ,延长AB 交DF 于点M. 在△MAD 中,∵∠MAD =∠MDA=45°, ∴∠BMD =90°.∵AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,FD =6.∴MB =3-2=1,DB =12+32=10. 在Rt △BMD 和Rt △FHD 中, ∵∠MDB =∠HDF, ∴△BMD ∽△FHD. ∴MD HD =BD FD ,即3HD =106.∴DH=9105.4.(2016·某某)在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD.若两个点同时运动的时间为x 秒(0<x≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值; (2)是否存在x 的值,使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形,∴BC =AD =4,CD =AB =3. 当运动x 秒时,则AQ =x ,BP =x , ∴BQ =AB -AQ =3-x ,CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x ,S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2,S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12,∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4,即S =12(x -2)2+4.∴S 为开口向上的二次函数,且对称轴为直线x =2.∴当0<x≤2时,S 随x 的增大而减小; 当2<x≤3时,S 随x 的增大而增大, 又当x =0时,S =6,当S =3时,S =92.但x 的X 围内取不到x =0,∴S 不存在最大值. 当x =2时,S 有最小值,最小值为4.(2)存在,理由:由(1)可知BQ =3-x ,BP =x ,CP =4-x. 当QP⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC, ∴∠BPQ =∠PDC.又∵∠B=∠C, ∴△BPQ ∽△CDP. ∴BQ PC =BP CD ,即3-x 4-x =x 3,解得x =7+132(舍去)或x =7-132. ∴当x =7-132时,QP ⊥DP.5.(2016·某某)(1)已知:△ABC 是等腰三角形,其底边是BC ,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC =∠DCE,若∠A=60°(如图1),求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图2),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其他条件不变,则EB AD 的值是多少?(直接写出结论,不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形,∠A =60°, ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC ,∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF ,∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°,∴∠DFC =∠DBE. 又∵∠FDC=∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形, ∴AD =DF ,∠AFD =60°.∵∠DBE =∠ABC=60°,∴∠DBE =∠AFD. ∵∠FDC =∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3,过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形,∠A =90°, ∴∠ABC =∠ACB=45°, ∴∠DBE =180°-45°=135°. ∵DG ∥BC ,∴∠GDC =∠DCE,∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC, ∴ED =CD ,∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°,∠A =90°, ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·某某)【探究证明】(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.求证:EF GH =ADAB ;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M ,N 分别在边BC ,CD 上.若EF GH =1115,则BNAM 的值为________;【联系拓展】(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF,交CD 于点P ,过点B 作BQ∥GH,交AD 于点Q. ∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF ,GH =BQ. 又∵GH⊥EF,∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形,∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH,AM ⊥BN ,∴由(1)中的结论可得EF GH =AD AB ,BN AM =ADAB ,∴BN AM =EF GH =1115.故答案为1115. (3)连接AC ,过点D 作AB 的平行线交BC 的延长线于点E ,作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°,∴四边形ABEF 是矩形.易证△ADC≌△ABC,∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠EC D =90°,∴∠FDA =∠ECD. 又∵∠E=∠F, ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x ,则AF =2x ,DF =10-x.在Rt △ADF 中,AF 2+DF 2=AD 2,即(2x)2+(10-x)2=100,解得x 1=4,x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·某某)在△ABC 中,P 为边AB 上一点. (1)如图1,若∠ACP=∠B,求证:AC 2=AP·AB; (2)若M 为CP 的中点,AC =2.①如图2,若∠PBM=∠ACP,AB =3,求BP 的长;②如图3,若∠ABC=45°,∠A =∠BMP=60°,直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B,∠CAP =∠BAC, ∴△ACP ∽△ABC. ∴AC AB =AP AC,即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q ,则∠PBM=∠Q. ∵∠PBM =∠ACP,∴∠ACP =∠Q. 又∠PAC=∠CAQ,∴△APC ∽△ACQ. ∴AC AQ =AP AC,即AC 2=AP·AQ. 又∵M 为PC 的中点,BM ∥CQ ,∴设BP =x ,则BQ =x.∴AP=3-x ,AQ =3+x. ∴22=(3-x)(3+x),解得x 1=5,x 2=-5(不合题意,舍去).∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0. ∵AC =2,∴AQ =1,CQ =BQ = 3.设AP 0=x ,则P 0Q =PQ =1-x ,BP =3-1+x , ∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0, ∴△AP 0C ∽△MPB ,∴AP 0MP =P 0CBP.∴MP ·P 0C =12P 0C 2=(3)2+(1-x )22=AP 0·BP =x(3-1+x).解得x =7-3或x =-7-3(舍去). ∴BP =3-1+7-3=7-1.8.(2016·某某)数学活动——旋转变换(1)如图1,在△ABC 中,∠ABC =130°,将△ABC 绕点C 逆时针旋转50°得到△A′B′C,连接B B′.求∠A′B′B 的大小;(2)如图2,在△ABC 中,∠ABC =150°,AB =3,BC =5,将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C ,连接BB′.以A′为圆心,A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系,并证明你的结论; ②连接A′B,求线段A′B 的长度;(3)如图3,在△ABC 中,∠ABC =α(90°<α<180°),AB =m ,BC =n ,将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B 和BB′.以A′为圆心,A ′B ′长为半径作圆.问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°,CB =CB′,∠BCB ′=50°, ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°,CB =CB′,∠BCB ′=60°, ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°,即B′B⊥A′B′. 又A′B′为半径, ∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3,B ′C =BC =5,∠BCB ′=60°, ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中,A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中,∠BB ′C =180°-2β2=90°-β,∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°,∴∠A ′B ′B =α+β-90°=180°-90°=90°,即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中,B ′D =B′C·s in β=B C·sin β=n sin β,∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形,∴A ′B =(A′B′)2+(BB′)2=m 2+(2n sin β)2=m 2+4n 2sin 2β.9.(2016·某某)在△ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH ,AD ,当GH⊥AD 时,请判断四边形AGDH 的形状,并证明; ②当四边形AGDH 的面积最大时,过A 作AP⊥EF 于P ,且AP =AD ,求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2,∴∠BAC =90°.又∵△DEF∽△ABC,∴∠D =∠BAC =90°.(2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N.∵△DEF ∽△ABC ,∴∠E =∠B.又∵EF∥BC,∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA.同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°,∴四边形AGDH 是矩形.又∵AD⊥GH,∴四边形AGDH 是正方形.②当D 点在△ABC 内部时,四边形AGDH 的面积不可能最大.其理由是:如图1,点D 在内部时,延长GD 到D′,过D′作MD′⊥AC 于点M ,则四边形GD′MA 的面积大于矩形AGDH 的面积,∴当点D 在△ABC 内部时,四边形AGDH 的面积不可能最大.按上述理由,只有当D 点在BC 边上时,面积才有可能最大.图1 图2如图2,D 在BC 上时,易证明DG∥AC,∴△GDB ∽△ACB.∴BG BA =GD AC ,即BA -AG BA =AH AC . ∴6-AG 6=AH 8,即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12. 当AG =3时,S 矩形AGDH 最大,此时DG =AH =4.即当AG =3,AH =4,S 矩形AG DH 最大.在Rt △BGD 中,BD =BG 2+DG 2=5,则DC =BC -BD =5.即D 为B C 上的中点时,S 矩形AGDH 最大.∴在Rt △ABC 中,AD =BC 2=5,∴PA =AD =5. 延长PA 交BC 于点Q ,∵EF ∥BC ,QP ⊥EF ,∴QP ⊥BC.∴QP 是EF 、BC 之间的距离.∴D 到EF 的距离为PQ 的长.在Rt △ABC 中,12AB·AC=12BC·AQ, ∴AQ =4.8.又∵△DEF∽△ABC,∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·某某)(1)发现如图1,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于CB 延长线上时,线段AC 的长取得最大值,且最大值为a +b .(用含a ,b 的式子表示)图1(2)应用点A 为线段BC 外一动点,且BC =3,AB ,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE. ①请找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下:∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CA E=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.∴△CAD≌△EAB.∴DC=BE.②BE长的最大值是4.(3)AM的最大值为3+22,点P的坐标为(2-2,2).提示:如图3,构造△BNP≌△MAP,则NB=AM,易得△APN是等腰直角三角形,AP=2,∴AN=2 2.由(1)知,当点N在BA的延长线上时,NB有最大值(如备用图).∴AM=NB=AB+AN=3+2 2.过点P作PE⊥x轴于点E,PE=AE= 2.又∵A(2,0),∴P(2-2,2).。
中考复习初中数学几何证明经典试题(含答案)
P CG FAD E初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG , 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。
2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 的延长线交MN 于E 、F .求证:∠DEN =∠F . 经典1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .AQ P NM · O B D AF D AFGCEBO D求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二) 4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,=AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA DPC .(初二) 经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数. 经典题(一)1.如下图做GH ⊥AB,连接EO 。
初中数学--几何综合题
1、 已知:MAN ∠,AC 平分MAN ∠.(1) 在图1中,若M A N ∠=120°,ABC ∠=ADC ∠=90°,AB +ADAC .(填写“>”,“<”,“=”)(2) 在图2中,若MAN ∠=120°,ABC ∠+ADC ∠=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3) 在图3中:①若MAN ∠=60°,ABC ∠+ADC ∠=180°,判断AB +AD 与AC 的数量关系,并说明理由;②若MAN ∠=α(0°<α<180°),ABC ∠+ADC ∠=180°,则AB +AD =____AC (用含α的三角函数表示,直接写出结果,不必证明)2、已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠. 连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点.图1 图2(2)如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明P M N B A O △∽△,并计算ADBC的值(用含α的式子表示); (3)在图2中,固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值.N MC D BA MN D B A CNMA B DC 60,则△________________3、在Rt △ABC 中,∠ACB =90°,tan ∠BAC=12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点.(1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1。
设CF kEF =,则k = ; (2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE-DE=2CF ;(3)若BC=6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值.4、已知:在△ABC 中,∠ABC =90︒, 点E 在直线AB 上, ED 与直线AC 垂直, 垂足为D ,且点M 为EC 中点, 连接BM , DM .(1)如图1,若点E 在线段AB 上,探究线段BM 与DM 及∠BMD 与∠BCD 所满足 的数量关系, 并直接写出你得到的结论;(2)如图2,若点E 在BA 延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E 在AB 延长线上,请你根据条件画出相应的图形,并直接写出线段BM 与DM 及∠BMD 与∠BCD 所满足的数量关系.图1 图2B C A D E FB D E A FC B A C 1图2图备图BED A M CB E D A MC EB A DM5、(2008年北京,25)请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值;(2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. (3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6、(2010西城一模,24)如图1,在□ABCD 中,AE ⊥BC 于E ,E 恰为BC 的中点,2tan =B .(1)求证:AD =AE ;(2)如图2,点P 在BE 上,作EF ⊥DP 于点F ,连结AF .求证:AF EF DF 2=-;(3)请你在图3中画图探究:当P 为射线E C 上任意一点(P 不与点E 重合)时,作EF ⊥DP 于点F ,连结AF ,线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.D A BE FC P G 图1 DC G P AB F 图27、(2006年北京,25)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。
2023年中考数学总复习:代数几何综合问题
2023年中考数学总复习:代数几何综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径.解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.第1页共23页。
广东省深圳市中考数学复习 多结论几何综合题专题-人教版初中九年级全册数学试题
多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、4 4、如图,把一X长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD 2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE 、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S 四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A、1B、2C、3D、47、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC 于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S ▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE ,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、1 11、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF 为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、414、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A、4个B、3个C、2个D、1个15、(2016•某某)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数为()A、2B、3C、4D、516、如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠B QP= ;④S四边形ECFG=2S△BGE.A、4B、3C、2D、1 17、如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD ,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB 于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D 【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b 时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC =a2, S△CDE=b2, S梯形ABDE=(a+b)2,∴S△ACE=S 梯形ABDE-S△ABC-S△CDE=ab ,S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N 为中点,∴△BMD 为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C 【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD的面积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD 时,△ABE与△ACD不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D 【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB =CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B 【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD 中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C 【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠D FC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C 【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C 【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S ▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA ,∴OE=AB ,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE 平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D 【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD中,∴△AED≌△AFD (AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE 成立,据此解答即可.9、【答案】B 【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD 是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A 【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB (半径),OD=OC (半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C 【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO 为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D 【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D 【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA 和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG 是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B 【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OE B得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S:S=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B 【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD 是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE <AB,∴ >2,故②错误.∵∠AOB=90°,∴AG=FG>OG ,△AGD与△OGD 同高,∴S △AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG ,∴BE= EF= × OG=2OG .故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OG F 时等腰直角三角形.∵S△OGF=1,∴ OG2=1,解得OG= ,∴BE=2OG=2 ,GF= = =2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG 是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B 【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ 中,设QB=x ,∴x2=(x ﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D 【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a ﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD 是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D 【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL ),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x ,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F 作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C 【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴ ,DG=CG ,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵ = ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD 中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S △ADF= DF•AG= ×6× =3 ,∵△ADF∽△AED,∴ =()2,∴ = ,∴S△AED=7 ,∴S △DEF=S△AED ﹣S△ADF=4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E= .④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE 的面积,继而求得S△DEF =4 .20、【答案】D 【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴ = ,∴∠CAD=∠ABC,故①正确;∵ ≠ ,∴ ≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴ = ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P 为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵ ≠ ,∴ ≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△A CQ的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.。
初中数学中考数学几何综合压轴题专项训练
;
拓展应用:如图 3,在平面直角坐标系 xOy 中,点 A 的坐标为(﹣3, 3),点 B 是 x 轴正半轴上的一动
点,以 AB 为边作等边△ABC,当 C 点在第一象限内,且 B(2 3,0)时,求 C 点的坐标.
8.如图,平面直角坐标系中,菱形 OABC 的边 OA 在 x 轴正半轴上,OA=10,cos∠COA= .一个动点
(3)如图 3,在(2)的条件下,点 G 为△DEF 内一点,且∠DGF=150°,试探究 DG,EG,FG 的数 量关系.
第1页
3.已知矩形纸片 ABCD 中,AB=2,BC=3. 操作:将矩形纸片沿 EF 折叠,使点 B 落在边 CD 上. 探究:(1)如图 1,若点 B 与点 D 重合,你认为△EDA1 和△FDC 全等吗?如果全等,请给出证明,如果 不全等,请说明理由; (2)如图 2,若点 B 与 CD 的中点重合,请你判断△FCB1、△B1DG 和△EA1G 之间的关系,如果全等,只 需写出结果,如果相似,请写出结果和相应的相似比; (3)如图 2,请你探索,当点 B 落在 CD 边上何处,即 B1C 的长度为多少时,△FCB1 与△B1DG 全等.
P 从点 O 出发,以每秒 1 个单位长度的速度沿线段 OA 方向运动,过点 P 作 PQ⊥OA,交折线段 OC﹣ CB 于点 Q,以 PQ 为边向右作正方形 PQMN,点 N 在射线 OA 上,当 P 点到达 A 点时,运动结束.设 点 P 的运动时间为 t 秒(t>0).
(1)C 点的坐标为
,当 t=
不存在,请说明理由.
第4页
;
(2)如图 2,点 D 是边 CB 上任意一点,连接 AD,作等边△ADE,且点 E 在∠ACB 的内部,连接 BE.试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习--几何综合题
Ⅰ、综合问题精讲:
几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点:
⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基
本图形.
⑵ 掌握常规的证题方法和思路.
⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数
学思想方法伯数形结合、分类讨论等).
Ⅱ、典型例题剖析
【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是
BE 的中点.
(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.
解:(1)证明:连接OD ,AD . AC 是直径,
∴ AD⊥BC. ⊿ABC 中,AB =AC ,
∴ ∠B=∠C,∠BAD=∠DAC.
又∠BED 是圆内接四边形ACDE 的外角,
∴∠C =∠BED .
故∠B =∠BED ,即DE =DB .
点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径,
即∠DAC =∠BAD =∠ODA .
故OD ⊥DF ,DF 是⊙O 的切线.
(2)设BF =x ,BE =2BF =2x .
又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯.
化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).
则 BF 的长为2.
点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.
【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上,点D
在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。
证明:因为∠ABD=∠ACD,∠BDE=∠CDE 而∠BDE=∠ABD+∠BAD,∠CDE=∠ACD+∠CAD
所以 ∠BAD=∠CAD,而∠ADB=180°-∠BDE
∠ADC=180°-∠CDE,所以∠ADB =∠ADC
在△ADB 和△ADC 中,
∠BAD=∠CAD
AD =AD
∠ADB =∠ADC
所以 △ADB≌△ADC 所以 BD =CD 。
(注:用“AAS”证三角形全等,同样给分)
点拨:要想证明BD=CD ,应首先观察它们所在的图形之间有什么联系,经观察可得它们所在的三角形有可能全等.所以应从证明两个三角形全等的角度得出,当然此题还可以采用“AAS ”来证明.
【例3】(内江,10分)如图⊙O 半径为2,弦BD =32,A 为弧BD
的中点,E 为弦AC 的中点,且在BD 上。
求:四边形ABCD 的面积。
解:连结OA 、OB ,OA 交BD 于F 。
⎭
⎬⎫===⊥⇒2 3,BD A OB FD BF BD OF 的中点为弧 1AF 1OF =⇒=⇒ ABD 1S BD AF 32
∆⇒=⋅=ADE CDE ABE CBE AE CE S S ,S S ∆∆∆∆=⇒==322S S ABD ABCD ==⇒∆四边形
【例4】(博兴模拟,10分)国家电力总公司为了改善农村用电电费过高的现状,目前正在
全国各地农村进行电网改造.莲花村六组有四个村庄A 、B 、CD 正好位于一个正方形的四个顶点.现计划在四个村庄联合架一条线路,他们设计了四种架设方案,如图2-4-4中的实线部分.请你帮助计算一下,哪种架设方案最省电线.
A
B C D
E
解:不妨设正方形的边长为1,显然图2-4-4⑴、⑵中的线路总长相等都是3.图2-4-4⑶中,利用勾股定理可求得线路总长为2 2 ≈2.828.
图2-4-4(4)中,延长EF交BC于H,由∠FBH=30°,BH=1
2
,
利用勾股定理,可求得333
121 FH EF FH
∴=-=
所以⑷中线路总长为:4EF+EF=433
(113 2.732.
-=+≈
显然图2-4-4⑷线路最短,这种方案最省电线.
点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股未理讲行计算线路长,然后通过比较,得出结论.
【例5】(绍兴)如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连结EF。
⑴求证:∠CEF=∠BAH,⑵若BC=2CE=6,求BF的长。
⑴证明:∵CE切⊙O于E,
∴∠CEF=∠EBC,
∵四边形ABCD是矩形,
∴∠ABC=90°
∴∠ABE+∠EBC=90°,
∵AH丄BE,∴∠ABE+∠BAH=90°
∴∠BAH=∠EBC,∴∠CEF=∠BAH
⑵解:∵CE切⊙O于E
∴CE2=CF·BC,BC=2CE=6
∴CE2=CF·6,所以CF= 3
2∴BF=BC-CF=6-
3
2
=
9
2
点拨:熟练掌握切线的性质及切线长定理是解决此题的关键.。