某工程的温度应力计算

合集下载

温度应力计算·

温度应力计算·

施工配合比(kg/m3)二.温度计算(1)绝热温升Tmax′=WQ/γC(1-e-mt) Tmax′---绝热温升Q-----水泥水化热Q=377x103J/KgC-----砼比热C=0.96X103J/(Kg.℃)γ-----砼重度γ=2400Kg/M3W-----每立方米水泥重量260 Kg/M3m-----热影响系数,m=0.43+0.0018QTmax′=260X377X103/0.96X103X2400(1-e-1.10X3) =44℃Tmax=8℃+44℃=52℃(12℃为入模温度)相应也可以建立绝热温度见公式:Tmax′=WQ/γCxε+F/50F-----粉煤灰用量ε――――不同浇筑块的热系数Tmax′=260X377X103/Tmax=8+55=63℃取Tmax=63℃三. 温应力计算1.将砼的收缩随时间的进程换算成当量温度计算:Ty(t)= εy(t)/αα=1x10-5砼线膨胀系数εy(t)=ε0M1M2M3······M10(1-e0.01t)Ty(t)------当量温度εy(t)----任意时间的收缩(mm/mm)M1-----水泥品种为普通水泥,取1.0M2-----水泥细度为4000孔,取1.35M3-----骨料为石灰石,取1.00M4-----水灰比为0.52,取1.64M5-----水泥浆量为0.2,取1.00M6------自然养护30天,取0.93M7------环境相对湿度为50%,取0.54M8------水里半径倒数为0.4,取1.2M9------机械振捣,取1.00M10------含筋率为8%,取0.9ε0--ε∞---最终收缩,在标准状态下ε0=3.24X10-4εy(30)=1.01x10-4Ty(30)=10.1℃εy(27)=0.92 x10-4Ty(27)=9.2℃εy(24)=0.83 x10-4Ty(24)=8.3℃εy(21)=0.73 x10-4 Ty(21)=7.3℃εy(18)=0.64 x10-4Ty(18)=6.4℃εy(15)=0.54 x10-4Ty(15)=5.4℃εy(12)=0.439 x10-4 Ty(12)=4.39℃εy(9)=0.335 x10-4 Ty(9)=3.35℃εy(6)=0.226 x10-4 Ty(6)=2.26℃εy(3)=0.114 x10-4 Ty(3)=1.14℃计算中心温度当量温差:△T6=2.26-1.14=1.12℃△T9=3.35-2.26=1.09℃△T12=4.39-3.35=1.04℃△T15=5.4-4.39=1.01℃△T18=6.4-5.4=1.0℃△T21=7.3-6.4=0.9℃△T24=8.3-7.3=1.0℃△T27=9.2-8.3=0.9℃△T30=10.1-9.2=0.9℃2.计算中心温度砼基础施工时处于散热条件,考虑上下表面及侧面的散热条件,当体积厚达3m时,,散热影响系数取0.97;当中心浇筑完第四天后,水化热达峰值。

混凝土温度应力计算方法

混凝土温度应力计算方法

混凝土温度应力计算方法混凝土浇筑后18d左右,水化热量值基本达到最大,所以计算此时温差和收缩差引起的温度应力。

1、混凝土收缩变形值计算Σy(t)=Σy0(1-e-0.01t)×M1×M2×M3×······×M10式中:Σy(t)——各龄期混凝土的收缩变形值Σy0——标准状态下混凝土最终收缩量,取值3.24×10-4 e——常数,为2.718t——从混凝土浇筑后至计算时的天数M 1、M2、M3······M10——考虑各种非标准条件的修正值,按《简明施工计算手册》表5-55取用,M1=1.0、M2=1.35、M3=1.0、M4=1.41、M5=1.0、M6=0.93,M7=0.77,M 8=1.4、M9=1.0,M10=0.9Σy(18)=3.24×10-4(1-2.718-0.01×18)×1×1.35×1×1.42×1×0.93×0.77×1.4×1×0.9=0.93×10-42、混凝土收缩当量温差计算Ty(t)=- Σy(t)/α式中:Ty(t)——各龄期混凝土收缩当量温差(℃),负号表示降温。

Σy(t)——各龄期混凝土的收缩变形值α——混凝土的线膨胀系数,取1.0×10-5Ty(t)=-0.93×10-4/1.0×10-5=-9.3℃3、混凝土的最大综合温度差△T=T2+2/3Tmax+Ty(t)-Tn式中:△T ——混凝土的最大综合温度差(℃)T2——混凝土拌合经运输至浇筑完成时的温度(℃)Tmax——混凝土最高温开值(℃)Ty(t)——各龄期混凝土收缩当量温度(℃)Tn ——混凝土浇筑后达到稳定时的气温,取55℃△T=35.95+2/3×78.3+(-9.3)-35=43.85℃4、混凝土弹性模量计算E(t)=Ee(1-e-0.09t)式中:E(t)——混凝土从浇筑后至计算时的弹性模量(N/mm2)Ee——混凝土的最终弹性模量(N/mm2),可近视取28d的弹性模量。

某工程的温度应力计算

某工程的温度应力计算

一、温差效应理论1,局部温差不对整体结构产生影响,只考虑整体温差。

2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。

3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。

二、温差取值对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:1,施工阶段最低或最高温度(T2)选取:A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。

B,对地上结构,可以认为完全暴露在室外。

可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。

2,施工阶段基准温度(T1)选取:结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。

因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。

当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12=13.3。

因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。

只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。

探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。

大体积砼浇筑附件(温度应力计算书)

大体积砼浇筑附件(温度应力计算书)

宁波LNG冷能空分项目大体积混凝土浇筑体施工阶段温度应力与收缩应力的计算一、混凝土温度的计算①混凝土浇筑温度:Tj =Tc+(Tq-Tc)×(A1+A2+A3+……+An)式中:Tc—混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌合温度比当时温度高2-3 ℃,我们按3 ℃计;、Tq—混凝土浇筑时的室外温度(考虑夏季最不利情况以30 ℃计);A 1、A2、A3……An—温度损失系数,A1—混凝土装、卸,每次A=0.032(装车、出料二次);A2—混凝土运输时,A=θt查表得6 m3滚动式搅拌车运输θ=0.0042,运输时间t约30分钟,A=0.0042×30=0.126;A3—浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003×240=0.72;T j =33+(Tq-Tc)×(A1+A2+A3)=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃二、混凝土绝热温升计算T(t)=W×Q×(1-e-mt)/(C×r)式中:T(t)—在t龄期时混凝土的绝热温升(℃);W—每m3混凝土的水泥用量(kg/m3),取420kg/m3;Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号普通硅酸盐水泥Q =375kJ/kg(建筑施工手册 P614表10-81);C—混凝土比热0.97 KJ/(kg·K) ;r—混凝土容重2400 kg/m3;e—常数,2.71828;m—与水泥品种、浇筑时温度有关,可查建筑施工手册 P614表10-82;t—混凝土龄期(d)。

T3= W×Q×(1-e-mt)/(C×r)=420×375×(1- 2.718-0.406×3)/ (0.97×2400)=47.63(℃)T6= W×Q×(1-e-mt)/(C×r)=420×375×(1- 2.718-0.406×6)/ (0.97×2400)=60.89(℃)T9= W×Q×(1-e-mt)/(C×r)=420×375×(1- 2.718-0.406×9)/ (0.97×2400)=58.35(℃)T 12 = W ×Q ×(1-e -mt )/(C ×r )=420×375×(1- 2.718-0.406×12)/ (0.97×2400)=51.35(℃)混凝土最高绝热温升T h =W ×Q/(C ×r )=340×375/(0.97×2400)=54.77(℃)计算结果如下表三、混凝土内部中心温度计算 T 1(t)=T j + Th ·ξ(t)式中:T 1(t)—t 龄期混凝土中心计算温度;T j —混凝土浇筑温度(℃);ξ—不同浇筑块厚度的温降系数,查建筑施工手册P 614表10-83得,对2.5m 厚混凝土3天时ξ=0.65,6天时ξ=0.62,9天时ξ=0.57,12天时ξ=0.48;T 1(3)= T j +T h ×ξ(3)= 30+47.63×0.65=60.9(℃) T 1(6)= T j +T h ×ξ(6)= 30+60.89×0.62=66.55(℃) T 1(9)= T j +T h ×ξ(9)= 30+58.35×0.57=63.26(℃) T 1(12)= T j +T h ×ξ(12)= 30+51.35×0.48=54.65(℃)从混凝土温度计算得知,砼第6天左右内部温度最高,则验算第6天砼温差。

大体积混凝土温度应力实用计算方法及控制工程实例

大体积混凝土温度应力实用计算方法及控制工程实例

大体积混凝土温度应力实用计算方法及控制
工程实例
大体积混凝土的温度应力主要由于混凝土内部温度梯度不均匀所
引起,温度应力大小与混凝土的水泥含量、骨料类型、孔隙结构以及
环境温度等因素有关。

计算温度应力可采用以下公式:σ=αEΔT+(1-ν)αmΔT,其中,σ为温度应力,α为混凝土的线膨胀系数,E为混凝土的弹性模量,
ν为混凝土的泊松比,αm为混凝土的平均线膨胀系数,ΔT为混凝土内部温度差。

控制大体积混凝土的温度应力,可采取以下措施:
1. 使用高性能混凝土材料,降低混凝土线膨胀系数;
2. 对混凝土的成分、配合比等进行优化设计,降低混凝土内部温度梯度;
3. 控制施工环境的温度和湿度,提高混凝土的早期强度和抗裂性能;
4. 采用降温措施,如水帘喷淋、冷却剂等,降低混凝土的温度。

实际工程中,可通过对混凝土施工过程进行监控和管控,以及采
用温度预应力技术等措施,有效控制大体积混凝土的温度应力。

例如,在某大型桥梁工程中,采用了温度预应力技术,并通过建立温度控制
模型对施工过程进行精细化监控,成功地控制了混凝土的温度应力,
确保了施工质量和结构安全。

超长结构计算温度应力对设计结果的影响

超长结构计算温度应力对设计结果的影响

超长结构计算温度应力对设计结果的影响摘要:根据《建筑结构荷载规范》GB 50009-2012,建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。

当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。

本文将通过具体工程分析对比超长结构考虑了温度应力后钢筋用量的变化。

关键词:温度应力;超长结构;钢筋用量一、工程概况某酒店地下车库,单层层高4.5m,长x宽:81.6x36.6㎡,未设缝。

所处场地抗震设防烈度为8度(0.20g)第三组。

框架-剪力墙结构,楼板采用现浇钢筋混凝土楼板。

框架抗震等级为二级,剪力墙抗震等级为一级。

结构平面图见下图。

二、温度应力计算1.基本气温气温是指在气象台站标准百叶箱内测量所得按小时定时记录的温度。

基本气温根据当地气象台站历年记录所得的最高温度月的月平均最高气温值和最低温度月的月平均最低气温值资料,经统计分析确定。

根据《建筑结构荷载规范》GB 50009-2012附录E.5可查出工程项目所在地50年重现期的月平均最高气温Tmax和月平均最低气温Tmin。

2.温度应力的计算整体结构分析软件:盈建科结构计算软件。

根据计算软件,程序假定采用杆件截面均匀受温、均匀伸缩的温度荷载加载方式。

在杆件两端节点上分别定义节点温差,从而定义了一根杆件的温度升高或降低。

这里的温差指结构某部位的当前温度值与该部位处于无温度应力时的温度值的差值。

程序中输入“最高升温”和“最低降温”两组温差,分别用以考虑结构的膨胀和收缩两组温度荷载工况。

进行温度荷载下的分析时,应该将温度荷载影响范围内的楼板定义为弹性膜,之后点选结构总体信息中的“计算温度荷载”,目前程序是按照线弹性理论计算结构的温度效应,对于混凝土结构,考虑到徐变应力松弛特性等非线性因素,实际的温度应力并没有弹性计算的结果那么大。

大体积混凝土温度和温度应力计算

大体积混凝土温度和温度应力计算

大体积混凝土温度和温度应力计算在大体积混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的发展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量。

1温度计算1、混凝土拌合物的温度混凝土拌合物的温度是各种原材料入机温度的中和。

温度计算:水泥:328 Kg 70℃砂子:742 Kg 35℃含水率为3%石子:1070Kg 35℃含水率为2%水:185 Kg 25℃粉煤灰:67 Kg 35℃外加剂:8 Kg 30℃TO=[0.9(MceTce+MsaTsa+MgTg)+2Tw(Mw-WsaMsa-WgMg)+C1(WsaMsaTsa+WgMgTg)-C2(WsaMsa+WgMg)]/[2Mw+0.9(Mce+Msa+Mg)]式中:TO ——混凝土拌合物的温度(℃)Mw、Mce、Msa、Mg ——水、水泥、砂、石每m3的用量(kg/m3) Tw、Tce、Tsa、Tg ——水、水泥、砂、石入机前温度Wsa、Wg ——砂、石的含水率(%)C 1、C2——水的比热溶(kJ/Kg K)及溶解热(kJ/Kg)C 1=2,C2=0(当骨料温度>0℃时)TO=[0.9(328×70+67×35+8×30+742×35+1070×35)+2×25(185-742×3%-1070×2%)+2(3%×742×35+2%×1070×35)-0]/[2×185+0.9(328+742+1070)]=37.49℃2、混凝土拌合物的出机温度T 1=T-0.16(T-Ti)式中: T1——混凝土拌合物的出机温度(℃)Ti——搅拌棚内温度,约30℃∴ T1=37.49-0.16(37.49-30)=36.3℃3、混凝土拌合物浇筑完成时的温度T2= T1-(αtt+0.032n)(T1-Ta)℃式中:T2——混凝土拌合物经运输至浇筑完成时的温度(℃)α——温度损失系数取0.25tt——混凝土自运输至浇筑完成时的时间取0.7h n ——混凝土转运次数取3Ta——运输时的环境气温取35T2=36.3-(0.25×0.7+0.032×3)(36.3-35)=35.95℃混凝土拌合物浇筑完成时温度计算中略去了模板和钢筋的吸热影响。

大体积混凝土温度应力计算

大体积混凝土温度应力计算

计算结果分析
温度应力分布情况 应力与应变关系 裂缝产生原因及分布规律 计算结果与实际监测数据的对比分析
结论与建议
结论:大体积混凝土温度应力计算案例 分析表明,温度应力对混凝土结构的影 响较大,需要采取有效的措施进行控制。
建议:在设计和施工过程中,应充分考 虑温度应力的影响,采取适当的构造措 施和施工方法,以减少温度应力对混凝 土结构的影响。
求解温度场:通过有限元法或有限差分法等数值计算方法,求解大体积混凝土的温度场。
计算应力应变:根据温度场计算结果,结合弹性力学理论,计算大体积混凝土的应力应 变。
建立数学模型
确定温度场和应力场的基本方程
建立温度应力和收缩应力的计算公 式
添加标题
添加标题
确定边界条件和初始条件
添加标题
添加标题
考虑混凝土的弹塑性本构关系
Part Five
大体积混凝土温度 应力计算案例分析
工程概况
工程名称:大体积混凝土温度应力计算案例分析 建设地点:某市 建设规模:建筑面积约为XX平方米 建设单位:某建筑公司
计算模型建立
确定计算模型:根据实际情况选择合适的计算模型,如有限元法、有限差分法等。 建立温度场:根据混凝土的物理性质和边界条件,建立温度场方程。 确定初始条件和边界条件:根据实际情况确定初始温度和边界温度。 求解温度场:采用合适的数值方法求解温度场方程,得到各点的温度分布。
确定材料参数
混凝土的弹性模量 混凝土的热膨胀系数 混凝土的导热系数 混凝土的密度
求解方程
建立数学模型
求解温度场方 程
确定边界条件 和初始条件
计算温度应力
结果分析
计算结果:根据计算公式和参数,得出大体积混凝土温度应力计算结果 结果分析:分析计算结果,确定大体积混凝土的温度应力分布和变化规律 影响因素:分析各因素对大体积混凝土温度应力的影响程度和作用机制 优化建议:根据计算结果和分析,提出优化大体积混凝土温度应力的建议和措施

温度场和温度应力计算

温度场和温度应力计算

附计算书3:温度场和温度应力计算一、温度场计算计算以本工程1.2m 厚底板为例,用差分法计算底板28d 水化热温升曲线。

计算中各参数的取值如下:W ——每m 3胶凝材料用量,440kg/ m 3;Q ——胶凝材料水化热总量(kJ/kg );,本例采用实测值260kJ/kg ;c ——混凝土的比热,取1.0kJ/ (kg ∙C );ρ——混凝土的质量密度,取2400kg/ m 3;α——导温系数,取0.0035m 2/h ;m ,取0.5。

混凝土的入模温度取10C ,地基温度为18C ,大气温度为18C 。

温度场计算差分公式如下:1,1,,1,,222(21)2n k n kn k n kn k T T t t T aT a T x x -+++∆∆=∙--+∆∆∆ (B.4.2-1)⑴试算t ∆、x ∆,确定2x t∆∆α。

取t ∆ = 0.5天 = 12小时,x ∆ = 0.4m ,即分3层则412625.04.0120035.022≈=⨯=∆∆x t α,可行。

代入该值得出相应的差分法公式为k k n kn k n k n T T T T T ∆+⋅++⋅=+-+,,1,11,475.02525.0⑵画出相应的计算示意图,并进行计算。

底板厚1.2m ,分3层,每层0.4m ,相应的计算示意如下图。

从上至下各层混凝土的温度分别用1T 、2T 、3T 表示,相应k 时刻各层的温度即为k T ,1、k T ,2、k T ,3。

混凝土与大气接触的上表面边界温度用0T 表示,与地基接触的下表面边界温度用0'T 表示。

k = 0,即第05.00=⋅=∆⋅t k 天,上表面边界0T ,取大气温度,0T = 18C 各层混凝土温度取入模温度,即0,1T =0,2T = 0,3T = 10C下表面边界0'T ,取地基温度,0'T = 18C ;k = 1,即第5.05.01=⋅=∆⋅t k 天,温升=-⋅⋅⋅=-=∆⋅⋅-⋅-⋅-∆⋅⋅-∆⋅-⋅-)(24000.1260440)(5.015.05.0)11(5.0)1(max 1e e e eT T t k m tk m10.544C上表面边界温度0T ,散热温升为0,始终保持不变,0T = 18C第一层混凝土温度1,1T ,见计算图示中方框1,1,1T 的边界为0T 和0,2T ,在0,1T 的基础上考虑温升1T ∆,即C T T T T T 644.22475.02525.010,10,201,1=∆+⋅++⋅=第二层混凝土温度1,2T ,见计算图示中方框2,1,2T 的边界为0,1T 和0,3T ,在0,2T 的基础上考虑温升1T ∆,即C T T T T T 544.20475.02525.010,20,30,11,2=∆+⋅++⋅=m m m第三层混凝土温度1,3T ,见计算图示中方框3,1,3T 的边界为0,2T 和0'T ,在0,3T 的基础上考虑温升1T ∆,即2,003,13,010.5250.47522.6442T T T T T C'+=+⋅+∆=︒下表面边界温度0'T ,需要考虑散热温升2/1T ∆,所以需每一步都需进行修正。

大体积混凝土温度和温度应力计算

大体积混凝土温度和温度应力计算

大体积混凝土温度和温度应力计算在大体积混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的开展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量。

(一)温度计算搅拌站提供的混凝土每立方米各项原材料用量及温度如下:水泥:367kg,11℃;砂子:730kg,13℃,含水率为3%;石子:1083kg,9℃,含水率为2%;水:195kg,9℃;粉煤灰:35kg,11℃;外加剂:27kg,11℃。

混凝土拌合物的温度:T0=[0.9(mceTce+msaTsa+mgTg)+4.2Tw(mw-ωsamsa-ωgmg)+c1(ωsamsa+Tsa+wgmgTg)-c2(wsamsa+wgmg)]÷[4.2mw +0.9(mce+msa+mg)]式中T0——混凝土拌合物的温度(℃);mw、mce、msa、mg——水、水泥、砂、石的用量(kg);Tw、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃);wsa、wg——砂、石的含水率(%);c1、c2——水的比热容(kJ/kg·K)及溶解热(kJ/kg)。

当骨料温度>0℃时,C1=4.2,C2=0;≤0℃时,c1=2.1,c2=335。

为计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。

T0=[0.9(429×11+730×13+1083×9)+4.2×9(195-3%×730-2%×1083)+4.2(3%×730×13+2%×1083×9)-0]÷[4.2×195+0.9(429+730+1083)]=10.3℃。

混凝土拌合物的出机温度:T1=T0-0.16(T0-Ti)式中T1——混凝土拌合物的出机温度(℃);Ti——搅拌棚内温度(℃)。

T1=10.3-0.16(10.3-14)=10.9℃3.混凝土拌合物浇筑完成对的温度T2=T1-(att+0.032n)(T1-Ta)式中T2——混凝土拌合物经运输至浇筑完成时的温度(℃);a——温度损失系数(h-1);tt——混凝土自运输至浇筑完成时的时间(h);n——混凝土转运次数;Ta——运输时的环境气温(℃)。

318号桥墩混凝土温度及温度应力计算书

318号桥墩混凝土温度及温度应力计算书

318号桥墩混凝土温度及温度应力计算书一、计算所用数据浇筑温度28p T =℃ 砼标号:C40 C40砼基本资料:二、混凝土温度计算(1)混凝土绝热温升表达式: (1)mt c m Q T e c ρ-=-⋅0T ——混凝土浇筑温度,本次计算取28℃; )(t T ——浇完一段时间,混凝土的绝热温升值,℃;t 为混凝土浇筑后到计算时的天数;c m ——每立方米混凝土水泥用量,319kg/m 3;Q ——水泥水化热量,查表P.O42.5普通硅酸岩水泥水化热Q =377J/kg ; c ——混凝土的比热,一般取0.92~1.00,取0.96kg/m 3;ρ——混凝土的质量密度,取2400kg/m 3;e ——常数,为2.718;m ——与水泥品种,浇捣时与温度有关的经验系数,取值见表1,取0.396。

表1 计算水化热温升的m 值通过以上理论计算可得,混凝土绝热温升值最大为52.2℃,大于规范要求的50℃。

混凝土内部最高温度为max 2852.20.869.76P T T T ξ=+⨯=+⨯=℃(2)混凝土表层温度ξ——不同浇筑块厚度降温系数,因桥墩横向长6.08m ,取0.8。

混凝土的表面最高温度2bmax 4(H h )/2h h /q T T T H H h K λβ'=+⨯-⨯∆'=+'=⨯式中:Tbmax —混凝土表面最高温度(℃);Tq —大气的平均温度(℃),取26℃; H —一混凝土的计算厚度; h'—混凝土的虚厚度; h —混凝土的实际厚度;△T —混凝土中心温度与外界气温之差的最大值,△T=Tmax —Tq ; λ—混凝土的导热系数,此处可取2.33W/m/k ; k —计算折减系数,根据试验资料可取0.666;β—混凝土模板及保温层的传热系数(W/m2/K), 大体积混凝土未采取保温措施时,此处取空气的平均传热系数23W/m2/K ;7月平均气温Tp=26℃ h 取6m ;h /0.666 2.33/230.067K mλβ'=⨯=⨯=2h 6.135H h m'=+=△T=69.76-26=43.76℃ 混凝土的表面最高温度T bmax =26+4*(6.135-0.067)*43.76/6.135*6.135=33.1℃ ①内外温差计算△T 1=69.76-33.1=36.66℃>25℃所以砼表面不能满足防裂要求,需要采用内部降温措施。

混凝土温度应力计算技术规程

混凝土温度应力计算技术规程

混凝土温度应力计算技术规程一、前言混凝土结构的设计中,温度应力计算是一个重要的环节。

温度应力是由于混凝土的收缩和膨胀引起的,如果不加以考虑将会对结构的安全性造成影响。

本文将详细介绍混凝土温度应力计算的技术规程。

二、温度应力的影响因素混凝土温度应力受到以下因素的影响:1.混凝土的线膨胀系数:随着混凝土内部温度的升高,混凝土膨胀系数也会增大。

2.混凝土的收缩系数:随着混凝土内部温度的升高,混凝土的收缩系数也会增大。

3.混凝土的干缩率:混凝土在干燥环境下会发生干缩,随着混凝土内部温度的升高,干缩率也会增大。

4.混凝土的材料参数:混凝土的弹性模量、抗拉强度、抗压强度等材料参数,都会对温度应力产生影响。

5.混凝土的几何形状:混凝土的截面形状和尺寸,也会对温度应力产生影响。

三、计算方法1.温度应力的计算公式温度应力的计算公式为:σt=αΔT+Eε其中,σt为温度应力(MPa),α为混凝土的线膨胀系数(1/℃),ΔT为混凝土内部温度升高值(℃),E为混凝土的弹性模量(MPa),ε为混凝土的应变。

2.温度应变的计算公式温度应变的计算公式为:ε=ΔTα-βΔL/L其中,ε为混凝土的应变,ΔT为混凝土内部温度升高值(℃),α为混凝土的线膨胀系数(1/℃),β为混凝土的收缩系数(1/℃),ΔL 为混凝土长度变化值(mm),L为混凝土初始长度(mm)。

四、温度应力的计算步骤1.确定混凝土的线膨胀系数α,收缩系数β,弹性模量E等材料参数。

2.确定混凝土的几何形状,包括截面形状和尺寸。

3.确定混凝土的内部温度升高值ΔT。

4.根据温度应变的计算公式,计算混凝土的应变ε。

5.根据温度应力的计算公式,计算混凝土的温度应力σt。

6.根据混凝土的抗拉强度和抗压强度以及温度应力的大小,确定混凝土的安全性。

五、温度应力的控制措施为了控制混凝土的温度应力,可以采取以下措施:1.控制混凝土的内部温度升高值,例如采用隔热、通风等措施。

2.增加混凝土的截面尺寸,减少温度应力的大小。

工程的温度应力计算

工程的温度应力计算

工程的温度应力计算温度应力是指由于温度变化引起的物体内部的应力。

在工程领域中,温度应力的计算对于材料的选择、结构设计和工程的安全性评估都具有重要意义。

本文将介绍温度应力的计算方法以及常见的应用案例。

温度应力的计算方法主要有两种:线性热弹性法和非线性热塑性法。

线性热弹性法是一种基于线性弹性理论的计算方法,适用于温度变化幅度较小、材料线性弹性行为较好的情况。

该方法的基本步骤如下:1.确定温度应变:根据温度变化情况和材料的线膨胀系数,计算出温度应变。

2.确定材料的弹性模量:根据材料的力学特性和温度,选择适当的弹性模量。

3.计算温度应力:根据线性弹性理论,利用得到的温度应变和弹性模量,计算出温度应力。

非线性热塑性法是一种基于材料的非线性力学行为的计算方法,适用于温度变化幅度较大、材料非线性行为较明显的情况。

该方法的基本步骤如下:1.确定温度应变:根据温度变化情况和材料的热膨胀系数,计算出温度应变。

2.确定材料的本构关系:根据材料的热塑性行为,选择适当的本构关系。

3.进行有限元分析:利用有限元分析软件,建立模型并进行计算。

4.计算温度应力:根据模型的计算结果,得到温度应力。

温度应力的计算在工程中有许多应用案例。

以下是一些常见的案例:1.管道的热应力计算:管道在运行过程中由于温度变化会产生应力,如果应力超过材料的强度极限,就会导致管道的破裂。

因此,计算管道的热应力是管道工程设计的重要环节。

2.钢结构的温度应力计算:钢结构在夏季高温和冬季低温的环境中,由于温度变化会产生应力,如果应力过大,就会引起结构的变形和破坏。

因此,计算钢结构的温度应力是钢结构工程设计的重要内容。

3.复合材料的热应力计算:复合材料由于材料的组分不同,在温度变化时会产生不同的热应力。

对于复合材料的设计,需要计算不同温度下的热应力,以保证材料的安全性。

4.太阳能电池板的温度应力计算:太阳能电池板在太阳光的照射下会发生温度变化,如果温度应力过大,就会影响电池板的性能和寿命。

用ANSYS软件计算桥梁结构的温度应力

用ANSYS软件计算桥梁结构的温度应力

第31卷 第3期2005年6月四川建筑科学研究Sichuan Building Science收稿日期:2004-05-10作者简介:段 凯(1979-),男,湖北武汉人,工学硕士,主要从事桥梁结构及有限元数值计算方面的研究。

用ANSYS 软件计算桥梁结构的温度应力段 凯1,杨新华1,杨文兵1(华中科技大学土木工程与力学学院,湖北武汉 430074)摘 要:温度应力是混凝土桥梁开裂的主要因素,曾造成多座预应力混凝土桥梁结构严重损害,所以在进行桥梁结构设计时,必须考虑温度应力的影响。

本文在分析桥梁结构温度应力基本特点和AN SY S 软件特性的基础上,利用ANSY S 软件及其提供的二次开发工具开发了一个计算模块,实现了桥梁结构温度应力的求解。

关键词:温度应力;A NSYS 软件;桥梁结构中图分类号:T U 311 41 文献标识码:A 文章编号:1008-1933(2005)03-0055-051 概 述暴露在自然环境中的混凝土结构,受到周围环境气温以及日照等因素影响,外表面温度可能发生急变(升高或降低)。

由于混凝土材料的导热系数小(一般仅为黑色金属的几十分之一),混凝土内部的温度变化非常缓慢,从而产生明显的滞后现象,并且在混凝土结构内部形成较大的温度梯度。

当由此产生的温度变形被结构的内、外约束阻碍时,会产生相当大的温差应力。

在混凝土桥梁结构中,温度应力有时甚至比活载产生的应力还要大,不少预应力混凝土桥梁因此发生严重裂损。

随着大跨度预应力混凝土箱形桥梁结构的发展,温度应力对桥梁结构的影响和危害越来越大,因此在桥梁结构设计中,必须考虑温度应力的影响。

目前,桥梁结构温度应力的计算基本上采用力等效原理,由于过于简化,在处理复杂温度场时面临很大困难;计算使用的桥梁专用程序大多基于二维有限元理论,难以考虑梁的空间效应。

近十几年来,随着计算机技术的日益发展和有限元法的广泛应用,出现了一些大型通用的有限元分析程序,但是这些程序应用于桥梁结构温度应力计算有一定的局限性,操作过程复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某工程的温度应力计算 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
一、温差效应理论
1,局部温差不对整体结构产生影响,只考虑整体温差。

2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。

3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。

二、温差取值
对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:
1,施工阶段最低或最高温度(T2)选取:
A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。

B,对地上结构,可以认为完全暴露在室外。

可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。

2,施工阶段基准温度(T1)选取:
结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。

因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。

当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=
(+++++++++++)/12
=。

因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。

只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。

探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。

三、混凝土长期收缩的影响
根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。

混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。

由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。

参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:)1(1024.3)1(1024.3)(01.042101.04t n t y e M M M e t -----⨯≈⋅⋅⋅-⨯=ε 其中为各种修正系数,各修正系数的取值和对应的影响因素见下表: 表 计算混凝土收缩的修正系数 影响因素
实际情况 修正系数 取值 水泥品种
普通水泥 M1 水泥细度
3500 M2 骨料
无粗骨料 M3 水灰比
M4 水泥浆量
30% M5 初期养护时间
14天 M6 使用环境湿度
40% M7 构件水力半径倒数
各层按300mm 等效楼板厚度计算r = M8 操作方法
机械振捣 M9
模量比×配筋率/()
假设梁板平均截面配筋率%,
/()= M10 时间无限长即整个龄期混凝土的收缩徐变应变为
401.041024.3)1(1024.3)(-∞--⨯=-⨯=∞e y ε
这样,任意时间t (天数)时混凝土剩余未完成的收缩应变为:
t t y y e e t 01.0401.0441024.3)1(1024.31024.3)()(-----⨯⨯=-⨯-⨯=-∞εε 混凝土收缩的应变量可等同于混凝土在一定负温差下产生的收缩应变量,混凝土温差应变为T y ∆⋅=αε,其中α为混凝土线膨胀系数,α =1×10-5/℃ 因此混凝土剩余未完成的收缩应变当量负温差为 t y e T 01.04.32/-⨯==∆αε。

(1)假设结构后浇带在施工2个月后浇注,则结构剩余未完成的收缩应变当量负温差为8.174.32/6001.060=⨯==∆⨯-e T y αε℃;
(1)假设结构后浇带在施工6个月后浇注,则结构剩余未完成的收缩应变当量负温差为4.54.32/18001.0180=⨯==∆⨯-e T y αε℃;
计算时的总温差为季节温差与收缩当量温差相叠加,如果结构后浇带在施工6个月后封闭,则降温温差为24+=℃;升温温差=℃。

四、计算操作
采用PMSAP 软件对整体模型进行温差和收缩效应分析,楼板采用弹性膜模拟,分层对整个平面内的节点施加相应的温差作用进行计算。

楼板应力不考虑梁及其翼缘对其的分担作用
【1)为考虑砼的徐变应
力松弛,砼构件的温度内力可以乘以折减系数,钢构件不折减;2)温度效应的组合贡献:可以取组合值系数乘以分项系数=;3)为考虑砼构件裂缝引起的刚度退化,砼构件的刚度(即混凝土弹性模量)可以乘以折减系数,钢构件不折减。


从计算结果中可以读出楼板最大主拉应力值σMPa (局部应力引起的裂缝对整个结构的影响不大,可不考虑),也可读出相应楼板温度配筋面积。

则需要配置双层双向温度筋的单层每延米钢筋面积:As=钢筋抗拉强度标准值
楼板厚度)混凝土抗拉强度标准值(楼板应力x 2x 1000x -,如C30混凝土(ftk=),三级钢(fyk=400MPa ),楼板厚度150mm ,楼板温度应力(拉力),则楼板单侧每米钢筋面积
As=
00
4x250x1000
1x
.01
2-
62
.4)
(=489mm2,即需要另外附加的楼板温度钢筋为双层10@150(524 mm2)可满足要求。

至于温度效应引起的压力,混凝土自身抗压强度基本可以抵消,不再另行计算。

相关文档
最新文档