四年级奥数题:还原问题
新四年级奥数——还原问题
![新四年级奥数——还原问题](https://img.taocdn.com/s3/m/f4d8d729a6c30c2259019eeb.png)
四年级(上)教师:胡老师学生:还原问题方法点拨一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。
对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
快乐学习例1、一个数减24加上15,再乘以8得432,求这个数。
【思路分析】我们可以从最后结果432出发倒着推理。
最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。
【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。
【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。
【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。
竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。
四年级奥数:还原问题
![四年级奥数:还原问题](https://img.taocdn.com/s3/m/f4ee6b3d81c758f5f71f6717.png)
四年级奥数:还原问题还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.典型例题例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.解第1天借书后还剩的本数:32+43=75(本)原有图书的本数:75×2=150(本)综合算式:(32+43)×2=150(本)答:小图书箱原有图书150本.例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.解 5×5=2525+5=3030÷5=66-5=1答:所求的数为1.例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.解一 123-39+85=84+85=169解二 9-5=480-30=50123+50-4=169答:正确的答案是169.例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.解(19+12)×2=62(吨)(62-12)×2=100(吨)答:这个仓库原有大米100吨.小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。
四年级奥数题《还原问题》数学小升初常考例题讲解+练习
![四年级奥数题《还原问题》数学小升初常考例题讲解+练习](https://img.taocdn.com/s3/m/3725db71f342336c1eb91a37f111f18583d00c5e.png)
例题1:把刘老师的年龄,乘4以后减去45再把所得的差除以3,然后加上5,最后得30。
刘老师今年几岁?1.还原时运算顺序和运算符号都会发生变化。
2.加变减,减变加;乘变除,除变乘。
30-5=2525×3=7575+45=120120÷4=30答:刘老师今年30岁。
练习1.一个数乘7除以3,然后加上5,最后再减3所得的结果是16。
那么这个数是多少?2.慢羊羊在黑板上写了一个数,喜洋洋将这个数乘7后,抹掉了末尾的数字0,美羊羊将喜洋洋所得的结果乘6以后,又抹掉了末尾的0,这时黑板上的数字是42。
原来的数是多少?例题2:(1)某商场卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉剩余的一半多3个,此时还剩3个。
那么商场原来有菠萝多少个?(3+3)×2=12(个)(12+2)×2=28(个)答:商场共有菠萝28个。
例题2:(2)某水果店卖苹果,第一天卖出所有苹果的一半少50千克,第二天卖出第一天剩下的一半少20千克,最后还剩下100千克。
这个水果店原来有苹果多少千克?(100-20)×2=160(千克)(160-50)×2=220(千克)答:这个水果店原来有苹果220千克。
练习1.(1)某超市的西红柿做活动,上午卖出所有西红柿的一半多20千克,下午又卖出剩下的一半多30千克,此时还剩下40千克。
超市原来有西红柿多少千克?(2)龙龙有一些巧克力,上午吃了所有巧克力的一半少5块,下午又吃了剩下的一半少3块,此时还剩下10块。
龙龙原来有巧克力多少块?2.某商场做活动,第一天卖出所有商品的一半少15个,第二天卖出剩下的一半少20个,第三天又卖出第二天剩下的一半,此时还剩37个。
这个商场原来有商品多少个?例题3:某水果店上午卖出西瓜总数的一半多2个,下午又卖出剩余的一半少8个,此时还剩28个。
水果店原来有西瓜多少个?(28-8)×2=40(个)(40+2)×2=84(个)答:水果店原来有西瓜84个。
四年级奥数第十一讲解析还原问题
![四年级奥数第十一讲解析还原问题](https://img.taocdn.com/s3/m/40d7a80bad51f01dc381f181.png)
第十一讲解析还原知识要点1、一个因素在经过一些运算后得到一个新的因素,以新的因素为基础按照运算顺序倒退回去,计算原来的因素,这种方法就叫作倒退法或还原法。
这类问题就叫作还原问题。
还原问题又叫作逆推运算问题。
解决这类问题常常利用加减、乘除互为逆运算的道理,根据题意得叙述顺序由后向前逆推计算。
在计算过程中采用相反的运算顺序,逐步逆推。
2、解决还原问题的方法:(1)两个相反:运算顺序和原来相反、运算方法和原来相反。
(2)口诀:加减互逆,乘除互逆,要求原数,逆推新数。
芝麻开门学校学生会组织四年级学生到和平广场参加周末大舞台活动,他们的行走路线是:学校东七大厦汽车东站公交公司和平广场。
活动结束后他们要按原来的线路返回,应该怎么走呢?他们返回的路线应该是:和平广场公交公司汽车东站东七大厦学校。
返回的路线就是按照原来的路线发过来走的,这一现象就是生活中的还原,在数学的世界里也有许多这种类似的还原问题。
经典范例例1 一个数加上6、再乘6,在减6,再除6,结果还是6,这个是多少?思路解析:根据题意可以发现:原来的数 +6 ×6 -6 ÷6=6 。
我们可以从结果出发,反过来运算,先乘以6,再加上6,再除以6,再减去6,就可以得到原来的数了。
解:(6×6+6)÷6-6=(36+6)÷6-6=42÷6-6=7-6=1答:这个数是1.例2 小糊涂阿呆在计算一道加法算式时,把一个加数个位上的6看成了9,把十位上的1看成7,结果得到的和是133,求正确的答案?思路解析:阿呆把一个加数16看成了79,单另一个加数没有看错,可以利用错误的结果减去79,还原出另一个正确的加数133-79=54,然后把两个正确的加数相加就可以了。
解:133-79=5454+16=70答:原来正确的和是70。
例3 甲乙两筐苹果各若干千克,如果从甲筐中取出和乙筐一样多的苹果给乙筐,再从乙筐中取出和现在的甲筐一样多的苹果给甲筐,这是甲乙两筐苹果都刚好是16千克。
四年级奥数题:还原问题
![四年级奥数题:还原问题](https://img.taocdn.com/s3/m/96988375793e0912a21614791711cc7931b77893.png)
专题简析: 已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题⼜叫逆运算问题。
解决这类问题通常运⽤倒推法。
遇到⽐较复杂的还原问题,可以借助画图和列表来解决这些问题。
例1:⼩刚的奶奶今年年龄减去7后,缩⼩9倍,再加上2之后,扩⼤10倍,恰好是100岁。
⼩刚的奶奶今年多少岁? 分析与解答:从最后⼀个条件恰好是100岁向前推算,扩⼤10倍后是100岁,没有扩⼤10倍之前应是100÷10=10岁;加上2之后是10岁,没有加 2之前应是10-2=8岁;没有缩⼩9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,⼩刚的奶奶今年是79 岁。
练习⼀ 1,在□⾥填上适当的数。
20×□÷8+16=26 2,⼀个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少? 3,⼩红问王⽼师今年多⼤年纪,王⽼师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王⽼师今年多少岁? 例2:某商场出售洗⾐机,上午售出总数的⼀半多10台,下午售出剩下的⼀半多20台,还剩95台。
这个商场原来有洗⾐机多少台? 分析与解答:从“下午售出剩下的⼀半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即 95+20=115台正好是上午售后剩下的⼀半,那么115×2=230台就是上午售出后剩下的台数。
⽽230台和10台合起来,即230+10=240 台⼜正好是总数的⼀半。
那么,240×2=480台就是原有洗⾐机的台数。
练习⼆ 1,粮库内有⼀批⼤⽶,第⼀次运出总数的⼀半多3吨,第⼆次运出剩下的⼀半多5吨,还剩下4吨。
粮库原有⼤⽶多少吨? 2,爸爸买了⼀些橘⼦,全家⼈第⼀天吃了这些橘⼦的⼀半多1个,第⼆天吃了剩下的⼀半多1个,第三天⼜吃掉了剩下的⼀半多1个,还剩下1个。
四年级奥数——还原问题
![四年级奥数——还原问题](https://img.taocdn.com/s3/m/ff247016ccbff121dd3683b0.png)
四年级(上) 教师:胡老师学生:还原问题方法点拨一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。
对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
快乐学习例1、一个数减24加上15,再乘以8得432,求这个数。
【思路分析】我们可以从最后结果432出发倒着推理。
最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。
【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。
【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。
【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。
竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。
还原问题四年级奥数题及答案参考
![还原问题四年级奥数题及答案参考](https://img.taocdn.com/s3/m/8a1127c9710abb68a98271fe910ef12d2af9a918.png)
还原问题四年级奥数题及答案参考
还原问题四年级奥数题及答案参考
还原问题
妈妈从副食店买回几个鸡蛋。
第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天又吃了余下的一半又半个,恰好吃完。
妈妈从副食店买回多少个鸡蛋?
余数问题
某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?
解答:[(0.5×2+0.5)×2+0.5]×2
=(1.5×2+0.5)×2
=3.5×2=7(个)
【小结】有的同学一看每次都吃"一半又半个",认为这不符合实际,于是就不去进行仔细认真地分析,被"半个"这一假象所迷惑。
其实,只要采用倒推法,就很容易知道第三天吃了0.5×2=1(个),于是问题就可以迎刃而解了。
小学(4)四年级奥数试题解析 还原问题
![小学(4)四年级奥数试题解析 还原问题](https://img.taocdn.com/s3/m/16f0cd21844769eae009ed54.png)
第三十一周还原问题专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。
例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
练习一1,在□里填上适当的数。
20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
小学四年级奥数-还原问题
![小学四年级奥数-还原问题](https://img.taocdn.com/s3/m/ff6df811e2bd960590c677bb.png)
还原问题(一)还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
例1.某数加上6,乘以6,减去6,除以6,其结果等于6,求某数。
例2.有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?例3.在做一道加法式题时,某学生把个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?例4.工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了余下了一半还少1千米,还剩20千米没有修完。
公路的全长是多少千米?练习与思考1.某数加上10,乘以10,减去10,除以10,结果等于10。
这个数是多少?2.《小学生数学报》少年数学爱好者俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
这个俱乐部成立于哪一年?3.有一个说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人多少岁?4.小明在做一道加法计算题时,把个位上的4看作7,十位上的8看作2,结果和是306。
正确的答案应该是多少?5.王大爷去粮站买米,粮站的陈叔叔因粗心,错把一袋米少算了20千克,把另一袋米多算了3千克,合计卖给王大爷60千克米。
王大爷实际购买了多少千克米?6.一捆电线,第一次用去全长了一半多3米,第二次用去余下的一半多5米,还剩下7米。
这捆电线原来长多少米?7.有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次拿出8个,篮里还剩2个鸡蛋。
篮里原来有多少个鸡蛋?8.小刚买毛巾用去所带钱的一半,买手帕用去2元钱,买香皂用去剩余钱的一半,这时还剩4元钱。
小刚买毛巾用去多少钱?一共带了多少钱?9.某仓库运出三次原料,第一次运出总数的一半,第二次运出余下的一半,第三次运出前两次运完后余下的一半,最后把剩下的原料分给甲、乙两个工厂,甲厂得6吨,是乙厂的2倍。
小学四年级奥数课件:还原问题
![小学四年级奥数课件:还原问题](https://img.taocdn.com/s3/m/54546645647d27284a73514f.png)
3,书架上分上、中、下三层,共放192本书。现从上层出与 中层同样多的书放到中层,再从中层取出与下层同样多的书 放到下层,最后从下层取出与上层剩下的同样多的书放到上 层,这时三书架所放的书本数相等。这个书架上中下各层原 来各放多少本书?
分析 与解答:
从“下午售出剩下的一半还多20台”和 “还剩95台”向前倒推,从图中可以看出, 剩下的95台和下午多卖的20台合起来,即 95+20=115台正好是上午售后剩下的一半, 那么115×2=230台就是上午售出后剩下的 台数。而230台和10台合起来,即
230+10=240台又正好是总数的一半。那么, 240×2=480台就是原有洗衣机的台数。
例5 、两只猴子拿26个桃,甲 猴眼急手快,抢先得到,乙看 甲猴拿得太多,就抢去一半; 甲猴不服,又从乙猴那儿抢走 一半;乙猴不服,甲猴就还给 乙猴5个,这时乙猴比甲猴多5 个。问甲猴最初准备拿几个?
分析 :先求出两个猴现在各拿多少,根据
“有26个桃”和“这时乙猴比甲猴多2个”,可 知乙猴现在拿(26+2)÷2=14个,甲猴现在拿 26-14=12个。甲猴从乙猴那儿抢走一半,又还 给乙猴5个后有12个,如果甲猴不还给乙猴,那 么甲猴有12+5=17个;如果甲猴不抢乙猴一半, 那么乙猴现在有(26-17)×2=18个。乙猴看 甲猴拿得太多,抢去甲猴的一半后有18个,如 果不抢,那么甲猴最初准备拿
练习一
1,在□里填上适当的数。 20×□÷8+16=26
2,一个数的3倍加上6,再减去9,最后乘 上2,结果得60。这个数是多少?
四年级奥数还原问题练习题
![四年级奥数还原问题练习题](https://img.taocdn.com/s3/m/1b8c7f0b0722192e4536f6cd.png)
还原问题
1、有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
”这位老人有多少岁呢?
2、小乐爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100。
问:小乐爷爷今年多少岁?
3、有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?
4、小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
问:正确的结果应是多少?
5、学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?
6、甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。
问:甲、乙、丙三个组原来各有多少本图书?
7、某数加上11,减去12,乘以13,除以14,其结果等于26,这个数是多少?
8、某数加上6,乘以6,减去6,其结果等于36,求这个数。
9、在125×□÷3×8—1=1999中,□内应填入什么数?
10、粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半少7吨,还剩4吨。
问:粮库里原有面粉多少吨?
11、有一筐梨,甲取一半又一个,乙取余下的一半又一个,丙再取余下的一半又一个,这时筐里只剩下一个梨。
这筐梨共有多少个梨?
12、某人去银行取款,第1次取了存款的一半还多5元,第二次取了余下的一半还多10元,这时存折上还剩125元。
问:此人原有存款多少元?。
四年级奥数 还原问题
![四年级奥数 还原问题](https://img.taocdn.com/s3/m/6c448f703c1ec5da50e27070.png)
还原问题例1:一个数减去8,加上10,再除以7,乘以4,结果是48,问:这个数是多少?例2:有一老人说:“把我的年龄加上17用4除,再减去15后用10乘,恰巧是100岁。
”这位老人今年多少岁?例3:小马虎做一道减法题,把被减数十位上的6当做9,把减数个位的3当做5,结果是217,正确的答案是多少?例4:王叔叔到银行取钱,第一次取了存款数的一半还多6元,第二次取了余下的一半还多8元,这时还剩100元,王叔叔原有存款多少元?例5:甲乙两个油桶各装了15千克的油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶油增加1倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加1倍,这时甲桶油恰好是乙桶油的3倍。
问:售货员从两个桶里个卖了多少千克油?例6:甲、乙、丙各有卡片若干张,甲拿出与乙相同张数的卡片给乙,甲也拿出与丙相同张数的卡片给丙,然后乙拿出与甲、丙相同张数的卡片给甲、丙,最后丙也拿出与甲、乙相同张数的卡片给甲、乙,此时三个小朋友都有卡片16张。
问三个小朋友最初各有多少张卡片?1.某数加上1,减去2,乘以3,除以4得9,求这个数?2.某数加上6,乘以6,减去6,除以6,其结果等于6,这个数是多少?3.一根绳子剪去一半多40厘米,再减去余下的一半,还剩430厘米,这根绳子原来长多少厘米?4.在做一道加法试题时,某学生把个位上的5看做9,把十位上的8看做3,结果“和”得123.正确的答案是多少?5.某数扩大5倍,再减去6得39,如这个数先减去6,再扩大5倍得多少?6.小军在计算两个数相加时,把一个加数个位上的1错误地当做7,把另一个加数十位上的8错误的当做3,所得的和是1946,原来两数相加的正确答案是多少?7.有一条铁丝,第一次用去它的一半少100厘米,第二次用去了剩下的一半多100厘米,最后还剩250厘米。
这条铁丝原来长多少厘米?8.甲、乙、丙三个中队共有图书498册,如果甲中队给乙中队4册,乙中队给丙中队10册,那么三个中队的图书册数相等。
小学四年级奥数(还原法解题)
![小学四年级奥数(还原法解题)](https://img.taocdn.com/s3/m/8b04450f43323968001c9234.png)
小学四年级奥数第5讲还原法解题知识方法…………………………………………………已知一个数的变化过程和最后结果,求原来的数,通常称此类问题叫“还原问题”,解答“还原问题”一般采用倒推法,简单地说:就是倒过来想。
解答“还原问题”,我们可以采用从结果出发,按它变化的相反方向一步步倒着想,直到解决问题。
同时也可以利用线段图、表格、示意图等方式来帮助理解题意,解答问题。
重点点拨…………………………………………………【例1】甲、乙两桶各有若干升水。
如果从甲桶中倒出和乙桶同样多的水放入乙桶,再从乙桶倒出和甲桶同样多的水放人甲桶,这时两桶水恰好都是48升。
问:两桶原来各有多少升水?分析甲桶乙桶从最后状态都是48升入手,如果后来乙桶不倒出和甲桶同样多的水放入甲桶,甲桶应有水48÷2=24(升),乙桶应有水48+24=72(升);如果开始不从甲桶倒出和乙桶同样多的水倒入乙桶,乙桶原有水72÷2=36(升),甲桶原有水24+36=60(升)(回到了最初的状态)。
解答48÷2=24(升) (48+24)÷2=36(升) 36+24=60(升)答:甲桶原有水60升。
乙桶原有水36升。
【例2】班级分得42本故事书,丽丽和明明两人争着去领。
丽丽先拿了若干本,明明看丽丽拿得太多了,就从丽丽的手中拿过来10本,丽丽不肯,就又从明明那里夺得6本。
这时丽丽的本数是明明的2倍。
最初丽丽拿了多少本?分析从最后的状态“丽丽拿的故事书是明明的2倍”可知,丽丽现在拿42÷(2+1)×2=28(本),丽丽从明明手中夺了6本后是28本。
如果不夺,丽丽应该有28-6=22(本),开始明明看见丽丽拿得太多,就抢了10本;如果不抢,丽丽就有22+10=32(本)。
解客42÷(2+1)×2=28(本)28-6+10=32(本) 答:最初丽丽拿了32本。
【例3】书架分上、中、下三层,一共放192本书。
四年级奥数还原问题专项练习
![四年级奥数还原问题专项练习](https://img.taocdn.com/s3/m/06f60644f4335a8102d276a20029bd64783e62aa.png)
四年级奥数还原问题专项练习例1.一个数加上14减去26,再除以5得40.这个数是多少?练习:一个数加上6,乘6,再减去6,最后除以6,结果还是6.这个数是几?例2. 一段布,第一次用去一半,第二次又用去一半,还剩下6米。
这段布原来长多少米?练习:水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩15个西瓜。
原来水果店有多少个西瓜?例3.一位农民伯伯卖鸡蛋,他上午卖出鸡蛋总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩下35个鸡蛋没有卖出。
这位农民伯伯原来有多少个鸡蛋?练习:有一根电线,第一天用去一半多4米,第二天又用去剩下的一半多4米,最后还剩下16米。
这根电线原来长多少米?例4.一桶水,第一次倒出一半,然后倒回桶中50千克,第二次又倒出桶中水的一半,最后再倒出120千克,这时桶中还剩下30千克水。
原来桶中有水多少千克?练习:货场原来有一些煤,第一次运出原有煤的一半,第二次运进450吨,第三次又运出现有煤的一半还多50吨,结果剩余600吨煤。
货场原有煤多少吨?例5.三只笼里一共养着24只兔子。
如果从第一只笼里取出5只放到第二只笼里,再从第二只笼里取出4只放进第三只笼里,这时三只笼里的兔子就同样多。
求三只笼里原来各养了多少只兔子?练习:三棵树上停着30只鸟。
如果从第一棵树上飞6只到第二棵树上去后,又从第二棵树上飞4只到第三棵树上去,那么这三棵树上的鸟数就相等了。
原来每棵树上听着多少只鸟?例6.某商场出售洗衣机,上午售出总数的一半少10台,下午售出剩下的一半少5台,还剩50台,这个商场原来有洗衣机多少台?练习:妈妈买来了一些桔子,小明第一天吃了一半少2个,第二天吃了剩下的一半少1个,这时还剩下8个,妈妈买了多少个桔子?例7.四个小朋友共有课外读物120本,甲给了乙3本,乙给了丙4本,丙给了丁5本,丁给了甲6本,这时他们四个人课外读物的本数相等。
他们原来各有课外书多少本?1.某数加上4,乘5,再减去11,等于24.求这个数。
还原问题四年级奥数题及解答
![还原问题四年级奥数题及解答](https://img.taocdn.com/s3/m/47603be205a1b0717fd5360cba1aa81144318ff8.png)
还原问题四年级奥数题及解答还原问题四年级奥数题及解答有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,们不难看出,这位老人的年龄是(100÷10+15)×4-12=88(岁)。
从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。
例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?分析:这个问题是由(□×4-46)÷3-10=4,求出□。
我们倒着看,如果除以3以后不减去10,那么商应该是4+10=14;如果在减去46以后不除以3,那么差该是14×3=42;可知这个数乘以4后的积为42+46=88,因此这个数是88÷4=22。
解:[(4+10)×3+46]÷4=22。
答:这个数是22。
例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
问:正确的结果应是多少?分析:利用还原法。
因为把个位上的5看成9,所以多加了4;又因为把十位上的'8看成3,所以少加了50。
在用还原法做题时,多加了的4应减去,多减了的50应加上。
解:123-4+50=169。
答:正确的结果应是169。
例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?分析:先求乐乐与欢欢现在各拿了多少棵树苗。
四年级奥数还原问题
![四年级奥数还原问题](https://img.taocdn.com/s3/m/3e59fec8cc22bcd126ff0cff.png)
24÷3=8(本)
上:8÷2=4 4
4+7=11
中:8
8+6=14 14÷2=7
下:8+4=12 12÷2=6 6
甲
乙
丙
丁
4+17+9=30 34÷2=17 18÷2=9
8
4
8+18+8=34 36÷2=18 16÷2=8
8÷2=4
8
16+4+16=36 32÷2=16
16÷2=8 16÷2=8
16
16+8+8=32
大家好
15
作业
大家好
16
大家好
17
Thank you !
大家好
18
结束
大家好
19
第一次
大家好
12Байду номын сангаас
甲给乙的球和乙现有的球一样多,甲给丙的球也和丙现有的球一样多
甲
乙
丙
最后
16
16
16
第三次 16÷2=8
16÷2=8 16+8+8=32
第二次 8÷2=4
8+4+16=28 32÷2=16
第一次 4+14+8=26 28÷2=14 16÷2=8
大家好
【举一反三】 6.书架分上、中、下三层,一共放书24本,现在
大家好
2
【拓展】 文峰大世界运进一批液晶面板彩色电视机,第一
四年级奥数:还原问题
![四年级奥数:还原问题](https://img.taocdn.com/s3/m/fac66429a26925c52cc5bfcb.png)
四年级奥数:还原问题(一)有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,同学们不难看出,这位老人的年龄是(100÷10+15)×4—12=88(岁)。
从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。
例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?分析:这个问题是由(□×4—46)÷3—10=4,求出□。
我们倒着看,如果除以3以后不减去10,那么商应该是4+10=14;如果在减去46以后不除以3,那么差该是14×3=42;可知这个数乘以4后的积为42+46=88,因此这个数是88÷4=22。
解:[(4+10)×3+46]÷4=22。
答:这个数是22。
例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
问:正确的结果应是多少?分析:利用还原法。
因为把个位上的5看成9,所以多加了4;又因为把十位上的8看成3,所以少加了50。
在用还原法做题时,多加了的4应减去,多减了的50应加上。
解:123-4+50=169。
答:正确的结果应是169。
例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?分析:先求乐乐与欢欢现在各拿了多少棵树苗。
四年级奥数-还原问题讲义(附答案)
![四年级奥数-还原问题讲义(附答案)](https://img.taocdn.com/s3/m/8d9a8bf9f524ccbff12184e7.png)
还原问题【知识梳理】还原问题是逆解应用题,一般特点是:已知对某个数按照一定的顺序进行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。
【例题精讲】【例1】某数加上3,乘以5,再减去8,等于12,求某数。
( 1 )【例2】马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111,问正确答案是多少?( 57 )例3.在☑里填上适当的数。
20×□÷8+16=26例4.粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?( 42 )【基础巩固】一、填空1、某数加2,乘5,再减3得27。
这个数是_______。
42、某数加上10,乘以10,减去10,除以10,结果等于10,这个数是_______。
13、有人说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人应是___32__岁。
4、一根钢管,第一次截去2米,第二次截去剩下的一半,还剩下5米.这根钢管原来长12 米5、一个数经过自加、自减、自乘、自除得到的四个数之和是100,这个数是_9___。
二、应用题2、联通公司出售手机,第一个月售了的比总数的一半多2部,第二个月售出的比第一个月剩下的一半多15部,还剩75部。
原有手机多少部?( 364 )3、耕一块地,第一天耕的比整块地的一半少5公顷,第二天耕的比余下的一半多2公顷,第三天耕了20公顷后还剩下5公顷。
这块地有多少公顷?( 98 )4、小芳在做一道加法题时,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案应是多少?( 169 )【培优训练】1、A、B、C三个仓库共存粮180吨,如果从A仓库调6吨给B仓库,又从B仓库调10吨给C仓库,这时三个仓库的存粮吨数相等。
问A、B、C三个粮仓原来各存粮多少吨?A:66 B:50 C:642、工人们修一条路,第一天修的公路比全长的一半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数题:还原问题
专题简析:
已知某个数经过加、减、乘、除运算后所得的结果,要求原数,
这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通
常使用倒推法。
遇到比较复杂的还原问题,能够借助画图和列表来解决这些问题。
例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?
分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍
后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是
10岁,没有加 2之前应是10-2=8岁;没有缩小9倍之前应是
8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79 岁。
练习一
1,在□里填上适当的数。
20×□÷8+16=26
2,一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这
个数是多少?
3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王老师今年多少岁?
例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售
出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?
分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中能够看出,剩下的95台和下午多卖的20台合
起来,即 95+20=115台正好是上午售后剩下的一半,那么
115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240 台又正好是总数的一半。
那么,240×2=480台就是原
有洗衣机的台数。
练习二
1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运
出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?
2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,
还剩下1个。
爸爸买了多少个橘子?
3,某水果店卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉
了剩下的一半多1个,第三次卖掉第二次卖后剩下的一半多1个,这
时只剩下一外菠萝。
三次共卖得48元,求每个菠萝多少元?
例3:小明、小强和小勇三个人共有故事书60本。
如果小强向小
明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?
分析与解答:不管这三个人如何借来借去,故事书的总本数是60本,根据结果三个人故事书本数相同,能够求最后三个人每人都有故
事书60÷3=20本。
如果小强不借给小勇5本,那么小强有20+5=25本,小勇有20-5=15本;如果小强不向小明借3本,那么小强有25-
3=22本,小明有20+3=23 本。
练习三
1,甲、乙、丙三个小朋友共有贺年卡90张。
如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。
问三人原来各
有贺年卡多少张?
2,小红、小丽、小敏三个人各有年历片若干张。
如果小红给小丽
13张,小丽给小敏23张,小敏给小红3张,那么他们每人各有40张。
原来三个人各有年历片多少张?
3,甲、乙、丙、丁四个小朋友有彩色玻璃弹子10颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,四人的个数相等。
他们原来各有弹
子多少颗?
例4:甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两
桶油恰好都是36千克。
问两桶油原来各有多少千克?
分析与解答:如果后来乙桶不倒出和甲桶同样多的油放入甲桶,
甲桶内应有油36÷2=18千克,乙桶应有油36+18=54千克;如果开始
不从甲桶倒出和乙桶同样多的油倒入乙桶,乙桶原有油应为54÷2=27
千克,甲桶原有油18+27=45千克。
练习四
1,王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画
片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都
有24张。
问王亮和李强原来各有画片多少张?
2,甲、乙、丙三个小朋友各有玻璃球若干个,如果甲按乙现有的
玻璃球个数给乙,再按丙现有的个数给丙之后,乙也按甲、丙现有的
个数分别给甲、丙。
最后,丙也按同样的方法给甲、乙,这时,他们
三个人都有32个玻璃球。
原来每人各有多少个?
3,书架上分上、中、下三层,共放192本书。
现从上层出与中层
同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最
后从下层取出与上层剩下的同样多的书放到上层,这时三书架所放的
书本数相等。
这个书架上中下各层原来各放多少本书?
例5:两只猴子拿26个桃,甲猴眼急手快,抢先得到,乙看甲猴
拿得太多,就抢去一半;甲猴不服,又从乙猴那儿抢走一半;乙猴不。