杜宾斯基的APOS理论
APOS理论
第四阶段——图式(scheme)阶段
个体对活动、过程、对象以及他原有的相关 方面的图式进行相应的整合、精致就会产生出新 的图式结构 ,从而可运用于问题解决情境。
一个数学概念的“图式”是由相应的活动、 过程、对象以及相关的图式所组成的认知框架。 其作用和特点就是决定某些刺激是否属于这个图 式,从而就会作出不同的反应。
例如:一列火车保持一定的速度行驶,每小时行驶 90千米,请将这列火车行驶的路程与时间的关系填 在表1中(s=90t):
第二阶段——过程(process)阶段
当“活动”经过多次重复而被个体熟悉后, 物理操作就可以内化为一种叫做“过程(process)” 的心理操作,有了这一“程序”,个体就可以想 象之前的活动,而不必通过外部刺激;他可以在 脑中实施这一程序而不需要具体操作;他甚至还 可以对这一程序进行逆转以及与其它程序进行组 合.
他甚至还可以对这一程序进行逆转以及与其它程序进行组例如一旦学生认识到所谓函数只不过是给定一个不同的数就会得出相应的不同值而不必再进行具体的运算时他就已经完成了这种过程模式的建构
主讲人:吴涛 组员:刘高 苏引飞 马婷
一、APOS理论概述
美国学者杜宾斯基(E.Dubinsky)提出的APOS理论, 是以 建构主义为基础的数学学习理论,它的核心是引导学生 在社会线索中学习数学知识,分析数学问题情景,从而 建构他们自己的数学思想。根据上述想法,杜宾斯基成 功地帮助大学生们学习了一系列与微积分,离散数学, 抽象代数等学科分支有关的概念, 如群,子群,陪集, 商群,等等。
例如,一旦学生认识到所谓函数只不过是给定
一个不同的数就会得出相应的不同值,而不必 再进行具体的运算时,他就已经完成了这种过 程模式的建构。
把上述操作活动综合成函数过程,一般地有 x→x2;其它各种函数也可以概括为一般的对应 过程:x→f(x).想象为输入到输出的过程。
apos理论
243页发表《高等数学学习的理论与实践》;
• 5)1994年,与J. Dautermann, U. Leron, R.
Zazkis一同在Educational Studies in
Mathematics(数学教育研究)267-305页发表
《有关群论的基本概念的学习》;
• 6)1996年,与J. Cottrill, D. Nichols, K. Thomas
and D. Vidakovic一同在Journal of Mathematical
Behavior(数学行为杂志)167-192页发表《理解
极限概念:从协调过程图式开始》;
• 7)2001年,与M. McDonald一同发表的论文
4 APOS理论
2010级研究生 周鸣
4.1
作者简介
4.2
APOS理论四个阶段
APOS理论是美国数学家杜宾斯基(Ed Dubinsky)提出的。他将数学概念教学分为活动 (Action)、过程(Process)、对象(Object)
和图式(Scheme)四个阶段。
4.1 作者简介
• 4.1.1 教育背景
4.1.4 发表文章
• 1)1986年,与P. Lewin一同在Journal of Mathematical Behavior(数学行为杂志)55-92 页发表《自反抽象与数学教育》; • 2)1991年,在Advanced Mathematical Thinking (高等数学思想)95-126页发表《高等数学思想 中的自反抽象》;
《APOS:一个基于数学教育研究的建构主义理
论》。
4.2 APOS理论的四个阶段
APOS理论在高中数学教学中的运用与反思
APOS理论在高中数学教学中的运用与反思近年来我国许多著名数学教育学家对美国数学教育家杜宾斯基提出的APOS数学概念教学理论的研究和应用。
为了进一步理解该理论在教学中的运用主要以文献法对论题进行了探索。
以高中数学相互独立事件的教学为例,运用APOS理论成功的指导了定理教学实践。
得出了APOS理论也可以在数学定理以及公式教学中的运用的结论,以及在运用理论指导教学过程中在各个阶段的注意事项。
标签:APOS理论;教学案例设计;反思1. APOS理论概念教学的四个阶段1.1. 第一阶段——“操作阶段”指学生对于感知到的对象发生的心理的或身体的活动,在这个阶段学生的认识只是相对于某一具体问题的感性认识,为观察、联想、归纳、概括等活动打下基础。
教师在这个阶段的作用可分为两点:一是创设问题情境,二是注意所设题目应该在学生已有的知识水平范围内。
1.2. 第二阶段——“过程阶段”指学生总结出第一阶段中所设问题情境的相同点,经过第一阶段的反复操作后,学生能在头脑中对活动进行描述和反思。
在这一阶段教师的作用是引导学生启发学生抽象出概念的特有性质,对感性认识提升。
1.3. 第三阶段——“对象阶段”在这个阶段教师与学生总结出概念的本质属性,也就是使学生的感性认识上升为理性认识,认识概念的本质。
并且对概念精致化,用具体的符号表示出来,成为一个具体的对象。
在这个阶段教师要对学生形成的概念规范,还要对概念的特性进行进一步限定和挖掘。
1.4. 第四阶段——“图示阶段”指与这个概念有关的所有知识形成的认知结构和认知框架,与其它的数学概念建立联系,能够灵活运用所学概念。
此阶段教师要帮助学生结合学生已有的知识框架形成新的知识框架。
我们可以看出APOS的四个阶段,是循序渐进,相对连续的过程。
通过这四个阶段可以使学生知识水平稳固提高,并且建立新的认知结构。
2. 基于APOS理论下的“相互独立事件同时发生的概率”的教学案例设计2.1. 操作阶段问题1:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,他们都是白球的概率是多少?学生动手操作,然后回答,由于该问题相对比较简单,学术性可能利用分步计数原理,枚举法等得出解答,教师小结每种方法的优点,有意的追问利用分步计数原理的思考过程,并加以提炼得到:2.2. 过程阶段问题4:以上两个问题,具体的研究对象以及任务都是不同的,那么请同学们思考从问题的类型上看,这两个问题有什么共同之处呢?学生通过思考,将“从甲坛子里摸出白球与乙坛子里摸出白球同时发生的概率”与“甲的蓝号小于8与乙的蓝号大于等于8同时发生的概率”归纳为两个相互独立事件同时发生的概率,从而得出这两个题是同一类型的题目,共同之处就是两个相互独立事件同时发生的概率的题型问题5:从问题的解决方法上看,以及对所得结果的操作能够找出它们的共同之处吗?学生得出虽然枚举法,分步计数原理是解决问题的方法,但进一步通过关系式得出一个更加简便的方法。
【理论】浅谈APOS理论在高效课堂下的数学教学中的应用
【关键字】理论浅谈APOS理论在高效课堂下的数学教学中的应用浅谈APOS理论在高效课堂下的数学教学中的应用华中师范大学翁明第XX170974【摘要】APOS理论是当今教育界的热议话题,也是数学工作者的研究热点。
本文将利用APOS理论来分析中学进行“211”下的高校课堂模式的得与失,借此寻找更加适合根底较差的学生的教学方法和学习方式进行探讨。
【关键字】高中高校课堂APOS 教学APOS 理论是由美国数学教育学家杜宾斯基(Ed Dubinsky)在20 世纪80 年代提出的一种关于数学概念学习的新理论,是一种具有数学学科特色的建构主义学习理论,被誉为近年来数学教育界最大的理论成果之一。
该理论指出,在数学学习过程中,如果个体的学习经历活动、过程和对象等阶段后,个体一般就能在建构、反思的根底之上将它们组成图式,进而理清问题情景、顺利解决问题。
该理论是杜宾斯基在对皮亚杰(Piaget)关于数学学习过程中个体思维的“自反抽象”(reflective abstraction) 理论进行拓展的根底上而逐步建立起来的。
APOS理论首先在大学教学中加以推广,应用于高等数学各学科,并获得较大成功,得到了美国同行的认可。
后来经研究证实,该理论对于根底数学的学习同样也有指导作用。
APOS 理论充分体现了数学概念过程与对象二重性的统一,反映了个体认知数学概念的思维过程,揭示了数学概念学习的本质。
这与当前我国新课程所倡导的理念也是相一致的,课程标准指出“数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质”。
对于高效课堂,全国各地都在兴起,各个地方的操作方式也不尽相同,目前我们学校采用的是结合“昌乐二中模式”、“杜郎口模式”、“洋思模式”进行整合后得到的“211”模式。
简单来说就是老师讲授10分钟,学生展示10分钟,课堂小结10分钟。
这种模式在海口二中已经实行了5年,不能说有很大成功。
至少基本的上课模式和导学案已经基本普及各个年级(初三、高三除外)。
APOS理论
2. APOS理论的出发点与基本假设
APOS理论的出发点: 任何一个数学教育理论应该致力于“学生是如
何学习的”以及“什么样的教学计划可以帮助这种 学习的理解”,而不仅仅是陈述一些事实。
APOS理论的基本假设: 数学知识是个体在解决所感知到的数学问题的
过程中获得的。在此过程中,个体依序建构了心理 活动、过程和对象,最终组织成用以理解问题情境 的图式结构。
第四阶段——图式(scheme)阶段
个体对活动、过程、对象以及他原有的相关 方面的图式进行相应的整合、精致就会产生出新 的图式结构 ,从而可运用于问题解决情境。
一个数学概念的“图式”是由相应的活动、 过程、对象以及相关的图式所组成的认知框架。 其作用和特点就是决定某些刺激是否属于这个图 式,从而就会作出不同的反应。
Hale Waihona Puke 例如:一列火车保持一定的速度行驶,每小时行驶 90千米,请将这列火车行驶的路程与时间的关系填 在表1中(s=90t):
第二阶段——过程(process)阶段
当“活动”经过多次重复而被个体熟悉后, 物理操作就可以内化为一种叫做“过程(process)” 的心理操作,有了这一“程序”,个体就可以想 象之前的活动,而不必通过外部刺激;他可以在 脑中实施这一程序而不需要具体操作;他甚至还 可以对这一程序进行逆转以及与其它程序进行组 合.
二、APOS理论的涵义
杜宾斯基认为: 1.数学教学的目的是什么? 一个人是不可能直接学习到数学概念的,更确切
地说,人们透过心智结构使所学的数学概念产生意义。 如果一个人对于给予的数学概念拥有适当的心智结构, 那么他几乎自然就学到了这个概念。反之,如果他无 法建立起适当的心智结构,那么他学习数学概念几乎 是不可能的。
基于APOS理论促进学生深度理解概念——以“图形的认识”教学为例
[摘要]APOS理论是一种具有数学学科特色、以建构主义为基础的学习理论。
APOS理论可用于指导小学数学的概念教学。
文章以“图形的认识”教学为例,提出关于小学数学图形概念教学的四个建议,助力“图形的认识”概念课教学的真正落地,促使学生发展空间观念。
[关键词]APOS理论;图形概念;几何教学[中图分类号]G623.5[文献标识码]A[文章编号]1007-9068(2023)26-0059-04APOS理论是美国数学家杜宾斯基等人提出的数学教学理论。
它将学生的数学概念学习过程科学地划分成活动(Action)、过程(Process)、对象(Object)、图式(Schema)四个阶段,同时指出每个阶段对学生的教学要求:活动阶段是学生经历学习活动的过程,目的是更好地感知概念、建立表象;过程阶段是学生在经历活动阶段后对活动进行思考和反思的过程,目的是抓住概念的本质;对象阶段是学生在经历活动和过程这两个阶段后,能够自己对要学习的数学概念赋予定义和符号化的过程,目的是达到精致化;图式阶段是学生将原有认知结构中相关的概念与新获得的概念进行联系的过程,目的是形成新的概念图式。
一、APOS理论有助于指导小学数学图形概念的教学图形与几何在小学阶段包括“图形的认识与测量”“图形的位置与运动”两大主题。
本文主要研究图形的认识。
《义务教育数学课程标准(2022年版)》指出,图形的认识主要是对图形的抽象。
具体表现为:学生经历从实际物体抽象出几何图形的过程,认识图形的特征,感悟点、线、面、体的关系;积累观察和思考的检验,逐步形成空间观念。
APOS理论是针对数学概念学习的建构学习理论,能够很好地帮助教师规划“图形的认识”概念课教学的顺序和过程,对教学具有指导意义。
例如,活动阶段,强调通过学生外显的观察和动手操作或内隐的思维活动,实现对概念的自主探究和初步感知;过程阶段,强调反思总结,实现对概念的理性认识;对象阶段,强调通过同化或顺应,用自己的语言或数学语言对图形进行表征,实现概念的精致化;图式阶段,强调建构总体的知识网络,建立图形与图形之间、图形内部元素之间的联系。
基于APOS理论的初中生函数概念认知调查
基于APOS理论的初中生函数概念认知调查作者:袁柳芳蒋科来源:《中学数学杂志(初中版)》2015年第01期1 APOS理论简述APOS理论是美国的杜宾斯基等人在数学教育研究实践中发展的一种理论,是针对于数学概念学习过程研究的一种建构主义的学习理论,[1]杜宾斯基认为,学生学习数学概念要进行心理建构,这一建构要经历4个阶段:操作阶段(Action)、过程阶段(Process)、对象阶段(Object)和图式阶段(Scheme),取这四个阶段英文单词的首字母,定名为APOS理论[2].这种理论不仅指出学生的学习过程是建构,而且表明了建构的层次.操作阶段(Action)是学生理解概念的一个必要条件,通过操作让学生亲自体验,感受直观背景和概念间的联系.例如,在有现实背景的问题中建立函数关系:y=x2,需要用具体的数字构造对应:2→4;3→9;4→16;5→25;……通过操作,理解函数的意义.过程阶段(Process)是学生对操作进行思考,经历思维的内化,概括过程,学生在头脑中对活动进行操作和反思,抽象出概念所特有的性质.一般地,有x→x2;其它各种函数也可以概括为一般的对应过程:x→f(x).对象阶段(Object)是通过前面的抽象认识到了概念的本质,对其进行压缩并赋予形式化的定义及符号,使其达到精致化,成为一个思维中具体的对象,在以后的学习中以此为对象去进行新的活动.比如函数的加减乘除、复合运算等,在表示式f(x)±g(x)中,函数f(x)和g(x)均作为整体对象出现.图式阶段(Scheme)的形成是要经过长期的学习活动进一步完善,起初的图式包含反映概念的特例、抽象过程、定义及符号,经过学习,建立起与其他概念、规则、图形等的联系,在头脑中形成综合的心理图式[3].APOS理论提出的数学概念学习的四个阶段,从思维层次上反映出数学概念从具体操作行为到抽象的心理结构的过程性,是概念在头脑中建构的一个连贯顺序,是循序渐进螺旋上升的.2 研究的设计2.1 研究工具本测验工具依据APOS理论各层次的具体建构目标,配合我国现行全日制义务教育数学课程标准的要求,同时参考初中数学教科书,以及函数概念相关研究等文献编制而成,编制试题期间多次修正后,进行预试,根据预试的结果再进行修正,成为正式施测题目.正式测试题“函数概念认知测验”包括20道选择题和2道解答题,选择题分属五个函数概念认知层次,每个层次有五题,另外2道解答题则为研究学生函数概念认知提供参考.利用SPSS 12.0 for windows的分析结果,得到总测验的alpha值为.801,显示此份工具的信度相当高.2.2 研究对象为使调查结果具有一定的说服力和推广性,在选择研究样本时考虑所选样本必须具有一定的代表性,且从不同学校选取同一层次上的班级,便于对结果进行比较分析.本研究选取具有代表性的2所初中共490名学生作为样本进行调研.2.3.1 APOS理论各层次表现根据表1的数据可以发现初三学生函数概念认知各层次掌握较好,其中对象层次的第15题和图式层次的第20题正确率较低,这两题考察的分别是函数图象上的动点问题和图形运动中的函数关系问题,这类图形运动的问题综合性较强,怎样把动态问题变为静态问题来解是许多学生难以跨越的障碍.本研究以某一层次正确率达到60%作为通过该层次的标准,例如某个学生在操作层次上的5道题中答对其中任意3道即代表该生通过该层次.由此统计所有样本在各层次上学生通过人数及通过比例.从各层次的平均正确率和通过比例来看,总体上掌握较好,但是过程阶段正确率和通过率都相对较低,说明在教学中应特别重视学生函数概念抽象的过程,怎样让学生经历思维的内化,概括过程,抽象出概念所特有的性质,是教学的一个难点.这也是高中学生函数学习同样面临的问题.2.3.2 学校差异图2 两校各层次通过人数比例对比将两校初三年级学生函数概念认知各层次正确率和通过率进行对比,发现两校学生表现差异不大,总体上Y校比X校表现略好,通过独立样本t检验,表明两校在函数概念认知上没有显著性差异,这也很好的体现了义务教育阶段教育资源均衡化的要求.2.3.3 性别差异以性别来看,在各层次上男生表现优于女生.进一步对测试结果进行学校、性别二因子变异数分析,可以发现学校与性别之间无交互作用.3 结论(1)初三学生函数概念认知在APOS理论各阶段上掌握较好,但是函数图象上的动点问题和图形运动中的函数关系问题正确率较低,亟待加强.(2)从各层次的平均正确率和通过比例来看,过程阶段正确率和通过率都相对较低,在教学中应特别重视学生函数概念抽象的过程.(3)学校之间在函数概念认知上没有显著性差异,这也很好的体现了义务教育阶段教育资源均衡化的要求.(4)在各层次上男生表现优于女生,且学校与性别之间无交互作用.4 函数概念认知影响因素分析学生函数概念认知水平受多种因素的影响,包括教师的教学方式、学生的学习方法、中学数学函数课程的设置等因素.我国中学数学学习向来重视考试,通过大量的习题训练,获得优异的数学成绩,但缺少对数学概念、方法和思想深刻地理解.正如张奠宙先生撰文指出的,东西方数学教育区别之一是:西方人主张“理解、理解、理解”,而华人则多半主张“练习、练习、练习”[4].李士锜先生在“熟能生巧吗”一文中指出:“一方面,许多优等生勤奋努力的经验,以及我国、日本等东亚地区在多次国际性评估中成绩名列前茅的事实可以从正面肯定我们的传统做法:大量数学习题训练和经常性测验考试是提高学生成绩的有效途径;另一方面,大运动量训练的…题海战术‟使学生和教师的负担不堪忍受,表现出效率低下,抑制学生的创造性和积极性的弊端.”另外,分析中美两国中学数学课程标准关于函数概念的要求也有所区别.美国的课程标准强调从学前教育到高中的过程中,应帮助学生学习各种函数,特别强调运用函数的多种表征方式,加深学生对函数概念的理解,[5]在不同学段,对函数有不同内容、不同程度、不同范围的要求.学生对函数的认识是循序渐进、逐步提高的.我国数学课程标准中只在初中、高中阶段有函数内容和要求,小学阶段没有[6].参考文献[1] 曾国光.中学生函数概念认知发展研究[J].数学教育学报,2002(2):99-102.[2] 徐立英,张丽娜.APOS理论对函数概念教学的启示和应用[J].高等教育研究,2007(3):73,74.[3] 濮安山,史宁中.从APOS理论看高中生对函数概念的理解[J].数学教育学报,2007(2):48-50.[4] 史宁中.中学数学课程与教学中的函数及其思想——数学教育热点问题系列访谈录之三[J].课程·教材·教法,2007(4):36-40.[5] HamideDogan-Dunlap.reasoning with metaphors and constructing an understanding of the mathematical function concept. In Woo, J. H., Lew, H. C., Park, K. S. &Seo, D. Y.(Eds.). Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education. Seoul: PME. Vol. 2∶209-216.2007.[6] 全美数学理事会,蔡金法等译.美国学校数学教育的原则和标准[M].北京:人民教育出版社,2004:21-22,36-37,84-86,142-144,204-206,268-277.。
apos理论在数学教学中应用的探究
一、APOS学习理论和探究式教学1.APOS学习理论APOS理论是一种以建构主义为基础的数学学习理论,是杜宾斯基对皮亚杰的“自反抽象”理论的一种扩展。
其核心是引导学习者在社会线索中开展学习活动,分析问题情境,学习数学知识,从而建构他们自己的数学概念和思想。
AP OS理论集中对数学概念这个特定内容的学习过程的研究,认为高等数学概念的学习过程是建构的,其建构的基本顺序层级为:个体依次构建心理活动(Act ions)、过程(Processes)和对象(0bject),也可以叫做数学概念的三个阶段或者三种中间状态。
最终形成可以理解问题情境的图式结构(Schemas),即形成数学概念的认知结构。
但是在实际学习过程中,学习个体对于某一高等数学概念的理解并不只是线性的,而往往是循环的、渐进的,通过不断的内化、压缩与解压缩,再内化,再压缩与解压缩,最终实现高等数学概念的意义构建。
APOS理论指出,特殊数学思想下的不同概念建构更多是辩证的螺旋上升的而不是线性的结果。
2.探究式教学探究式教学方法又叫做发现法、研究法,是指让学生通过阅读、观察、实验、思考、讨论、听讲等途径独立探究、自行发现并掌握相应的原理和结论的教学方法。
最早提出在教学中使用探究法的是美国著名教育思想家杜威。
探究式教学的核心与载体是问题,从教学的角度,教师要围绕教学目的和内容,精心设计出难度适中、逻辑合理、基于学生最近发展区且利于发掘学生自主探究潜能的问题。
探究式教学要求教师作为一个组织者,提供一定的条件或者必要的资料,学生自己动手寻求答案或者提出假设,教师指导、规范学生的探索过程;整个过程可以由学习者一个人完成或者由教师分组安排完成,不同的学生或者团队可以就同一问题提出不同的解释或者看法并进行讨论。
探究式教学可以有效增强学生的自主学习能力以及培养学生寻求合作的团队精神。
高等数学概念的特点决定了探究式教学模式的适用性和有效性。
通过探究式教学,结合多媒体教学技术等手段,能有效再现概念从产生到形成的思维过程,符合学生的认知规律。
APOS理论下的数学概念教学
APOS理论下的数学概念教学APOS理论是美国数学教育家杜宾斯基提出的一种建构主义学说.认为学生学习数学概念要经历心理建构,其过程包含四个阶段:活动(Action)阶段,过程(Process)阶段,对象(Object)阶段,图式(Scheme)阶段,称为APOS理论。
为概念教学提供了新的理论支持。
华东师大版义务教育九年级数学(下)教材关于二次函数的概念,先举两例来展开数学认知过程。
让我们来看看其中的A、P、O、S各阶段的本质:①A阶段,或称操作阶段。
是理解函数需要的活动或操作。
例1.花圃ABCD的周长为20m,长AB为xm,面积ym2。
怎样围才能使花圃面积最大?教材通过“试一试”的三个步骤的问题进行概念形成的第一阶段——操作活动:问题(1)、让学生填表(本文表略,注:表的左列依次是AB长、BC长、面积y,首行依次1-9数字,对应到4的列依次给出了BC长12和面积48.)接着,教材设问:从所填的表中你能发现什么?对问题(1)的解答能做出什么猜想?问题(2)、研究x的取值范围;问题(3)、通过填表,感受“x确定时则y随之确定”的这种特殊对应关系,发现和理解其中蕴含的“函数”关系,进而建模列出函数关系式[y=x(20-x)(0<x<10),化为y=-x2+20x(0<x<10)];以上是例1中二次函数概念教学的A阶段。
通过活动阶段让学生在“单个具体函数”(——是用来抽象新概念的个例或载体)的研究中亲身体验感受直观背景和概念间的关系。
这是学生理解(确切地说其实应该是“建构”而非被动的“理解”)概念的一个必要阶段(这里我们可以发现建构主义能够帮助我们真正把握学生“学习主体“的意义)。
例2是关于一个商店某商品每天降价x元和每天利润y元时间的关系问题,最后问题是“降价多少,利润最大?”。
教材上对这个例子主要通过“建构函数关系式”和“理解对x取值范围的限制”两方面来实施A阶段。
[得到的函数关系式为y=(10-x-8)(100+100x)(0≤x≤2),化为y=-100x2+100x+200(0≤x≤2)].概括地讲,A阶段就是概念形成之初的特例研究阶段,在特例中感受将要“出生”的新概念的部分本质.②P阶段,是把活动阶段的操作活动综合为一个二次函数的过程,是由特殊走向一般的对比抽象归纳概括的过程,是学生对活动进行思考,经历思维的内化、概括过程,学生在头脑中对活动进行描述和反思,抽象出概念所特有的性质,是把已发现的东西映射或反射到一个新的层面上,并对此进行重新建构。
APOS理论的学习
学概念学习过程是建构的,并表明建构的顺序层次。强
调在学习数学概念中首先处理的数学问题要具有社会现 实背景,并要求学生开展各种各样的数学活动,活动中 学生在已有的知识和经验基础上通过思维运算和反省抽 象,对概念所具有的直观背景和形式定义迚行必要的综 合,从而达到建构数学概念的目的。
下来可以让学生回顼之前学过的数轴的内容 ,数轴上的每
一个点都对应着一个实数值,也即找到那一点,以此诱发
学生思考平面上一个点的位置确定。结合先前活动的经验
,抽象得出平面上确定位置的过程。
当个体能够把“程序”作为一个整体迚 行操作时,这就迚入了“对象”阶段。 也就是说,学习者丌断丰富表象,最终 通过综合、压缩,把概念作为一个整体 对徃,即将此概念作为整个认知结构中 的一个节点。
概念的抽象过程,函数完整的定义、定义域、值域、
对应法则等的定义,函数符号的意义等。在此基础上
,函数的内容不数学其它概念如斱程、曲线、图象等
的区别和联系,不数列、丌等式、极限等的联系,这
些联系使函数不数学其它知识形成一个庞大的知识网
络,使函数概念的建构有了一个广阔的数学背景。
认知结构 数学知识的三种 状态
应该是指头脑中的思维活动,学习等差数列时
可以这样设计:
• 例:观察下列数列有何共同特点? 问题 1: 1,2,3,4,5······(军训时某排同学报数 ) 10000,9500,9000,8500······ ;(某品牌笔记本电脑今年每月价 格) (学生会发现很多规律如都是整数都是正数等) • 问题2 :1,-1,-3,-5······ 1,1.5,2,2.5,3······ (学生会意识到不应该再从单独各项的类型来找共同点应 该着眼于项与项之间的关系) • 问题 3:当 为常数时d为常数时, d,2d,3d,4d,5d,······ (学生会意识到项与项之间的关系不仅局限于具体的数应 该能进一步地抽象)
APOS理论的内涵及其对中学数学概念教学的启示6页word
APOS理论的内涵及其对中学数学概念教学的启示概念教学举足重轻。
数学概念的基础性工具性,使数学教师倾向于让学生在运用概念中深化对概念的理解,教学过程往往被简约,似乎大容量就带来了学习的高效率。
事实上,数学学习往往具有很大的隐蔽性,会求解运算并不一定意味着真正的理解,教学环节的缺失给学生概念建构的丰富与全面带来了影响。
美国教育家杜宾斯基针对数学学科提出了APOS 学习理论,其概念建构的层次性观点为数学概念教学应逐层渐进提供了理论基础,并且具有现实的可操作性。
研究如何将APOS理论与传统教学中成功的变式教学和双基教学有机结合,完善数学概念的教学方法,提高教学的有效性,具有积极的现实意义。
一、APOS理论概述杜宾斯基等人在20世纪80年代针对数学学习的特点,在建构主义背景下提出了APOS理论。
APOS分别是由英文“操作(Action)”、“过程(Process)”、“对象(Object)”、“概型(Scheme)”的第一个字母组合而成,该理论认为数学概念的学习需要经历这四个阶段。
“活动阶段”学生理解了概念的直观背景和概念间的关系;“过程阶段”学生对“活动操作阶段”进行思考,经历内化压缩的过程;学生在头脑中对活动进行描述和反思,抽象出概念所特有的性质,对其赋予形式化的定义和符号,这时成为“对象”,认识进人“对象阶段”;随着学习深入,以此为对象进行新的活动,进入到“概型阶段”。
包括反映概念的特例、抽象过程、定义和符号,最终形成综合的心理图式。
二、APOS理论的内涵分析APOS理论运用于中学概念教学,需要结合中学的数学概念对其内涵作进一步的分析。
1.数学概念学习中学生的“操作A”是广义上的活动“操作A”阶段应是学生建构数学概念的起点,它为“过程P”阶段提供了感性的素材,学生在“过程P”中观察、联想、归纳、概括,需要以其作为对象,建构的概念才会有所依托。
我们认为,这里学生的“操作”应该指广义上的活动。
既有具体的动作操作,如学习二面角概念时学生观看门的开合与墙位置的变化的活动。
第八章 APOS学习理论
APOS理论的理论模型 二、 APOS理论的理论模型
1. 四阶段模型 杜宾斯基认为,学生学习数学概念就是要 认为,学生学习数学概念就是要 建构心智结构,这一建构过程要经历以下4 建构心智结构,这一建构过程要经历以下4个阶段 (以函数概念为例): 第一阶段——操作(或活动) action)阶段 第一阶段——操作(或活动)(action)阶段 这里的活动是指个体通过一步一步的外显性 (或记忆性)指令去变换一个客观的数学对象. (或记忆性)指令去变换一个客观的数学对象.
第三阶段——对象(object)阶段 第三阶段——对象(object)阶段 当个体能把这个“过程”作为一个整体进行 操作和转换的时候,这个过程就变成了他的一种 心理“对象(object)”. 这时, 心理“对象(object)”. 这时,个体可以操控对象去实 施各种相关的数学运算。需要的时候,也可以具 体再现对象所包含的过程步骤. 体再现对象所包含的过程步骤. 例如,将函数的对应过程压缩为一个“整 体”,形成函数的“对象”这一心理结构,从而 可以实现函数的复合、微分、积分这些运算,进 一步可发展出函数空间、算子这些更抽象的数学 概念. 概念.
第八章 APOS学习理论 学习理论
第一节 APOS理论概述 理论概述
美国学者杜宾斯基(E.Dubinsky)提出的APOS理 论, 是以建构主义为基础的数学学习理论,它的核 心是引导学生在社会线索中学习数学知识,分析数 学问题情景,从而建构他们自己的数学思想。根据 上述想法,杜宾斯基成功地帮助大学生们学习了一 系列与微积分,离散数学,抽象代数等学科分支有 关的概念, 如群,子群,陪集,商群,等等。
良好的函数概念图式: “函数是两个非空数集之间的一种对应关系; 在一个集合中任意取定一个数,总可以在另一个集 合里找到唯一确定的数与它对应;前面的集合叫定 义域,那些被唯一确定的所有数组成了叫做值域的 集合;函数概念的关键是由谁唯一确定了谁;函数 概念与函数所用的符号没有什么关系,就像人的名 字一样;……” 字一样;……” 这一心理图式含有具体的函数实例(解析式、 图像、表格、映射图)、抽象的对应过程、定义的 言语编码,以及与其它概念的联系(方程、曲线、 不等式、代数式等)。
APOS理论的内涵及其对中学数学概念教学的启示
《教学与管理》2010年8月20日概念教学举足重轻。
数学概念的基础性工具性,使数学教师倾向于让学生在运用概念中深化对概念的理解,教学过程往往被简约,似乎大容量就带来了学习的高效率。
事实上,数学学习往往具有很大的隐蔽性,会求解运算并不一定意味着真正的理解,教学环节的缺失给学生概念建构的丰富与全面带来了影响。
美国教育家杜宾斯基针对数学学科提出了APOS 学习理论,其概念建构的层次性观点为数学概念教学应逐层渐进提供了理论基础,并且具有现实的可操作性。
研究如何将APOS理论与传统教学中成功的变式教学和双基教学有机结合,完善数学概念的教学方法,提高教学的有效性,具有积极的现实意义。
一、APOS理论概述杜宾斯基等人在20世纪80年代针对数学学习的特点,在建构主义背景下提出了APOS理论。
APOS分别是由英文“操作(Action)”、“过程(Process)”、“对象(Object)”、“概型(Scheme)”的第一个字母组合而成,该理论认为数学概念的学习需要经历这四个阶段。
“活动阶段”学生理解了概念的直观背景和概念间的关系;“过程阶段”学生对“活动操作阶段”进行思考,经历内化压缩的过程;学生在头脑中对活动进行描述和反思,抽象出概念所特有的性质,对其赋予形式化的定义和符号,这时成为“对象”,认识进入“对象阶段";随着学习深入,以此为对象进行新的活动,进入到“概型阶段”。
包括反映概念的特例、抽象过程、定义和符号,最终形成综合的心理图式。
二、APOS理论的内涵分析APOS理论运用于中学概念教学,需要结合中学的数学概念对其内涵作进一步的分析。
1.数学概念学习中学生的“操作A”是广义上的活动“操作A”阶段应是学生建构数学概念的起点,它为“过程P”阶段提供了感性的素材,学生在“过程P”中观察、联想、归纳、概括,需要以其作为对象,建构的概念才会有所依托。
我们认为,这里学生的“操作”应该指广义上的活动。
既有具体的动作操作,如学习二面角概念时学生观看门的开合与墙位置的变化的活动。
基于APOS理论的直线的倾斜角与斜率教学研究
基于APOS理论的直线的倾斜角与斜率教学研究罗湘摘要:APOS 理论是由美国数学家杜宾斯基提出来的一种建构主义学说,在美国取得了一定的成功。
已有教育工作者也将这一理论引入我国。
这一理论主要用于抽象的领域,与中小学阶段关联较少。
通过对APOS理论的介绍,以“直线的倾斜角与斜率”设计为载体,展示APOS 理论的4个成分,并在此基础上得到教学启示。
关键词:概念教学、APOS理论、教学设计、直线的倾斜角与斜率一、APOS理论概述APOS理论是美国数学教育家杜宾斯基等人提出的关于概念教学的一种理论。
杜宾斯基指出学生的学习是一个不断建构的过程,学生通过不断调整自己的认知结构使得主客观得到统一,最终建立新的认知结构。
因此,如何帮学生建立起适当的心智结构是一个值得研究的问题。
APOS分别是由英文action(操作)、process(程序)、object(对象)和scheme(图式)的第一个字母所组合而成。
APOS理论包含以下四个基本成分:活动(Action):个体通过指令对客观数学对象进行变换,或是做出反应。
这里的活动强调亲身经历、感受,通过不同的活动来获得知识(概念)的意义。
程序(Process):个体通过并不断重复这个活动,个体通过对其反思,进而形成内部结构,活动内化为程序。
只要给出相应的活动或者刺激,个体便会做出相应的反应,这时活动内化为过程。
对象(Object):个体将上述程序作为整体进行操作,能了解和推出该对象的性质,并能进行一定的数学运算,这时程序就变成了对象。
图式(Scheme):个体通过上述三个成分及他原有的图式进行整合,从而产生新的图式,建立新的知识网络,有利于学习其他高层次的知识。
二、直线的斜率和倾斜角教材说明本文选取的教材是人教A版必修2的第三章的第一节内容。
在普通高中数学课程标准实验教科书数学2必修(A版)(人民教育出版社2007年2月第3版)82-86页中,直线的倾斜角和斜率一节的内容安排是这样的。
APOS理论指导下的映射概念教学探究
APOS理论指导下的映射概念教学探究APOS理论是美国数学家杜宾斯基(Dubinsky)等人提出的一种数学教学理论。
他将数学概念的建立分为四个阶段,并用于指导教学实践。
本文尝试通过“映射”的教学设计分析APOS理论在数学概念教学中的应用。
标签:APOS理论;数学概念;映射概念是人们对客观事物在感性认识的基础上经过比较、分析、综合、概括、判断、抽象等一系列思维活动,逐步认识到它的本质属性以后才形成的。
概念是思维的基本单位,理解概念是一切数学活动的基础,概念混淆不清就无法进行其他数学活动。
然而受应试教育的影响,概念的教学往往易被忽视,许多教师认为:概念就是一种规定,让学生记住是主要的,“填鸭式”教学和“启发式”教学没什么区别,讲与不讲效果也差不多。
因此,“一个定义,几项注意”式的概念教学方式比比皆是,在高中数学教学实际中表现得更为突出。
一、什么是APOS理论任何一个数学教育中的理论或模型都应该致力于对“学生是如何学数学的”及“什么样的教学计划可以帮助这种学习”的理解,而不仅仅是陈述一些事实。
[1]基于这样的考虑,1991年美国数学家、教育家杜宾斯基等人提出了APOS理论:APOS分别是由英文action(操作)、process(过程)、object(对象)和scheme (图示)的第一个字母所组合而成。
这种理论认为,在数学学习中,如果引导个体经过思维的操作、过程和对象等几个阶段后,个体一般就能在建构、反思的基础上把它们组成图式,从而理清问题情景、顺利解决问题。
[2]APOS理论被引入到我国的数学教育界,是为数不多的依据数学学科特点而建立的教学理论。
与传统的数学概念相比较,APOS理论教学更能体现“学生主体,教师主导”的建构主义理念,更符合学生的认知特点。
1.第一阶段——操作(或活动)(action)阶段数学来源于实际,并应用于实际。
而数学教学活动就是将实际问题抽象概括为理论问题,并给予科学的定义即数学概念,同时应用于研究和实际。
Apos 理论使小学数学概念教学锦上添花-教学论文评审
Apos 理论使小学数学概念教学锦上添花摘要:小学数学是一门逻辑思维很强的学科,学好数学的概念是学好数学的基础。
美国著名的教育学家杜宾斯基提出了apos 理论,它是针对概念学习的过程理论,围绕着“操作”、“过程”、“对象”、和“图式”四个阶段实施概念的教学,四个阶段环环相扣,循序渐进,所以,在小学数学的概念教学中应用apos 理论,可以使学生正确地理解与应用数学概念,从而促进教学效率的提升。
关键词: apos 理论;概念教学;小学数学小学数学是一门逻辑思维很强的学科,学好数学的概念是学好数学的基础。
概念的教学是小学数学中的重难点内容,是基础知识的起点,也是双基教学的核心内容。
美国著名的教育学家杜宾斯基提出了apos 理论,它是针对概念学习的过程理论,apos 理论是由action、process、object 和 schema 的第一个字母组合而成。
它包括以下 4 个阶段——“操作(或活动)阶段”、“过程阶段”、“对象阶段”和“图式阶段”。
下面以学习长方形的周长为例,进一步说明apos 理论使小学数学概念教学锦上添花。
﹙一﹚活动阶段:活动体验,形象感知apos 理论当中的“活动阶段” 是基础阶段,学生只有在活动中才能加深对概念的理解。
借助具体的操作和观察,呈现出数学概念具体的实例阶段,用学生在平时生活中所接触到的事物、教材中的实际问题,以及模型、图形和图表等,作为直观感性的材料, 合理地制定相应的教学活动,使学生通过亲身体验、真切感受到不同概念间的联系,通过认真观察、比较、归纳和概括去获取概念,要将其抽象并上升到数学层面。
【活动 1】理解周长的概念。
1.1感受什么是封闭图形。
师:请同学们认认真真地观察,你发现了红色图形和蓝色图形有什么不同?生:蓝色图形有缺口,红色图形是闭合起来的。
师:闭合起来图形叫做封闭图形。
1.2感受一周。
师:今天,图形王国里来了一些好朋友,是谁呢?生:小蚂蚁和两只小瓢虫。
师:它们在干什么呢?生:它们在做运动呢! 沿树叶爬行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
APOS: A Constructivist Theory of Learningin Undergraduate Mathematics Education ResearchEd Dubinsky, Georgia State University, USAandMichael A. McDonald, Occidental College, USAThe work reported in this paper is based on the principle that research in mathematics education is strengthened in several ways when based on a theoretical perspective. Development of a theory or model in mathematics education should be, in our view, part of an attempt to understand how mathematics can be learned and what an educational program can do to help in this learning. We do not think that a theory of learning is a statement of truth and although it may or may not be an approximation to what is really happening when an individual tries to learn one or another concept in mathematics, this is not our focus. Rather we concentrate on how a theory of learning mathematics can help us understand the learning process by providing explanations of phenomena that we can observe in students who are trying to construct their understandings of mathematical concepts and by suggesting directions for pedagogy that can help in this learning process.Models and theories in mathematics education can•support prediction,•have explanatory power,•be applicable to a broad range of phenomena,•help organize one’s thinking about complex, interrelated phenomena,•serve as a tool for analyzing data, and•provide a language for communication of ideas about learning that go beyond superficial descriptions.We would like to offer these six features, the first three of which are given by Alan Schoenfeld in “Toward a theory of teaching-in-context,” Issues in Education, both as ways in which a theory can contribute to research and as criteria for evaluating a theory.In this paper, we describe one such perspective, APOS Theory, in the context of undergraduate mathematics education. We explain the extent to which it has the above characteristics, discuss the role that this theory plays in a research and curriculum development program and how such a program can contribute to the development of the theory, describe briefly how working with this particular theory has provided a vehicle for building a community of researchers in undergraduate mathematics education, and indicate the use of APOS Theory in specific research studies, both by researchers who are developing it as well as others not connected with its development. We provide, in connection with this paper, an annotated bibliography of research reports which involve this theory.APOS TheoryThe theory we present begins with the hypothesis that mathematical knowledge consists in an individual’s tendency to deal with perceived mathematical problem situations by constructing mental actions, processes, and objects and organizing them in schemas to make sense of the situations and solve the problems. In reference to these mental constructions we call it APOS Theory. The ideas arise from our attempts to extend to the level of collegiate mathematics learning the work of J. Piaget on reflective abstraction in children’s learning. APOS Theory is discussed in detail in Asiala, et. al. (1996). We will argue that this theoretical perspective possesses, at least to some extent, the characteristics listed above and, moreover, has been very useful in attempting to understand students’learning of a broad range of topics in calculus, abstract algebra, statistics, discrete mathematics, and other areas of undergraduate mathematics. Here is a brief summary of the essential components of the theory.An action is a transformation of objects perceived by the individual as essentially external and as requiring, either explicitly or from memory, step-by-step instructions on how to perform the operation. For example, an individual with an action conception of left coset would be restricted to working with a concrete group such as Z20 and he or she could construct subgroups, such asH={0,4,8,12,16} by forming the multiples of 4. Then the individual could write the left coset of 5 as the set 5+H={1,5,9,13,17} consisting of the elements of Z20which have remainders of 1 when divided by 4.When an action is repeated and the individual reflects upon it, he or she can make an internal mental construction called a process which the individual can think of as performing the same kind of action, but no longer with the need of external stimuli. An individual can think of performing a process without actually doing it, and therefore can think about reversing it and composing it with other processes. An individual cannot use the action conception of left coset described above very effectively for groups such as S4, the group of permutations of four objects and the subgroup H corresponding to the 8 rigid motions of a square, and not at all for groups S n for large values of n. In such cases, the individual must think of the left coset of a permutation p as the set of all products ph, where h is an element of H. Thinking about forming this set is a process conception of coset.An object is constructed from a process when the individual becomes aware of the process as a totality and realizes that transformations can act on it. For example, an individual understands cosets as objects when he or she can think about the number of cosets of a particular subgroup, can imagine comparing two cosets for equality or for their cardinalities, or can apply a binary operation to the set of all cosets of a subgroup.Finally, a schema for a certain mathematical concept is an individual’s collection of actions, processes, objects, and other schemas which are linked by some general principles to form a framework in the individual’s mind that may be brought to bear upon a problem situation involving that concept. This framework must be coherent in the sense that it gives, explicitly or implicitly, means of determining which phenomena are in the scope of the schema and which are not. Because this theory considers that all mathematical entities can be represented in terms of actions, processes, objects, and schemas, the idea of schema is very similar to the concept image which Tall and Vinner introduce in“Concept image and concept definition in mathematics with particular reference to limits and continuity,” Educational Studies in Mathematics, 12, 151-169 (1981). Our requirement of coherence, however, distinguishes the two notions.The four components, action, process, object, and schema have been presented here in a hierarchical, ordered list. This is a useful way of talking about these constructions and, in some sense, each conception in the list must be constructed before the next step is possible. In reality, however, when an individual is developing her or his understanding of a concept, the constructions are notactually made in such a linear manner. With an action conception of function, for example, an individual may be limited to thinking about formulas involving letters which can be manipulated or replaced by numbers and with which calculations can be done. We think of this notion as preceding a process conception, in which a function is thought of as an input-output machine. What actually happens, however, is that an individual will begin by being restricted to certain specific kinds of formulas, reflect on calculations and start thinking about a process, go back to an action interpretation, perhaps with more sophisticated formulas, further develop a process conception and so on. In other words, the construction of these various conceptions of a particular mathematical idea is more of a dialectic than a linear sequence.APOS Theory can be used directly in the analysis of data by a researcher. In very fine grained analyses, the researcher can compare the success or failure of students on a mathematical task with the specific mental constructions they may or may not have made. If there appear two students who agree in their performance up to a very specific mathematical point and then one student can take a further step while the other cannot, the researcher tries to explain the difference by pointing to mental constructions of actions, processes, objects and/or schemas that the former student appears to have made but the other has not. The theory then makes testable predictions that if a particular collection of actions, processes, objects and schemas are constructed in a certain manner by a student, then this individual will likely be successful using certain mathematical concepts and in certain problem situations. Detailed descriptions, referred to as genetic decompositions, of schemas in terms of these mental constructions are a way of organizing hypotheses about how learning mathematical concepts can take place. These descriptions also provide a language for talking about such hypotheses.Development of APOS TheoryAPOS Theory arose out of an attempt to understand the mechanism of reflective abstraction, introduced by Piaget to describe the development of logical thinking in children, and extend this idea to more advanced mathematical concepts (Dubinsky, 1991a). This work has been carried on by a small group of researchers called a Research in Undergraduate Mathematics Education Community (RUMEC) who have been collaborating on specific research projects using APOS Theory within abroader research and curriculum development framework. The framework consists of essentially three components: a theoretical analysis of a certain mathematical concept, the development and implementation of instructional treatments (using several non-standard pedagogical strategies such as cooperative learning and constructing mathematical concepts on a computer) based on this theoretical analysis, and the collection and analysis of data to test and refine both the initial theoretical analysis and the instruction. This cycle is repeated as often as necessary to understand the epistemology of the concept and to obtain effective pedagogical strategies for helping students learn it.The theoretical analysis is based initially on the general APOS theory and the researcher’s understanding of the mathematical concept in question. After one or more repetitions of the cycle and revisions, it is also based on the fine-grained analyses described above of data obtained from students who are trying to learn or who have learned the concept. The theoretical analysis proposes, in the form of a genetic decomposition, a set of mental constructions that a student might make in order to understand the mathematical concept being studied. Thus, in the case of the concept of cosets as described above, the analysis proposes that the student should work with very explicit examples to construct an action conception of coset; then he or she can interiorize these actions to form processes in which a (left) coset gH of an element g of a group G is imagined as being formed by the process of iterating through the elements h of H, forming the products gh, and collecting them in a set called gH; and finally, as a result of applying actions and processes to examples of cosets, the student encapsulates the process of coset formation to think of cosets as objects. For a more detailed description of the application of this approach to cosets and related concepts, see Asiala, Dubinsky, et. al. (1997).Pedagogy is then designed to help the students make these mental constructions and relate them to the mathematical concept of coset. In our work, we have used cooperative learning and implementing mathematical concepts on the computer in a programming language which supports many mathematical constructs in a syntax very similar to standard mathematical notation. Thus students, working in groups, will express simple examples of cosets on the computer as follows.Z20 := {0..19};op := |(x,y) -> x+y (mod 20)|;H := {0,4,8,12,16};5H := {1,5,9,13,17};To interiorize the actions represented by this computer code, the students will construct more complicated examples of cosets, such as those appearing in groups of symmetries.Sn := {[a,b,c,d] : a,b,c,d in {1,2,3,4} | #{a,b,c,d} = 4};op := |(p,q) -> [p(q(i)) : i in [1..4]]|;H := {[1,2,3,4], [2,1,3,4], [3,4,1,2], [4,3,2,1]};p := [4,3,2,1];pH := {p .op q : q in H};The last step, to encapsulate this process conception of cosets to think of them as objects, can be very difficult for many students. Computer activities to help them may include forming the set of all cosets of a subgroup, counting them, and picking two cosets to compare their cardinalities and find their intersections. These actions are done with code such as the following.SnModH := {{p .op q : q in H} : p in Sn};#SnModH;L := arb(SnModH); K := arb(SnModH); #L = #K; L inter K;Finally, the students write a computer program that converts the binary operation op from an operation on elements of the group to subsets of the group. This structure allows them to construct a binary operation (coset product) on the set of all cosets of a subgroup and begin to investigate quotient groups.It is important to note that in this pedagogical approach, almost all of the programs are written by the students. One hypothesis that the research investigates is that, whether completely successful or not, the task of writing appropriate code leads students to make the mental constructions of actions, processes, objects, and schemas proposed by the theory. The computer work is accompanied by classroom discussions that give the students an opportunity to reflect on what they have done in the computer lab and relate them to mathematical concepts and their properties and relationships. Once the concepts are in place in their minds, the students are assigned (in class, homework and examinations) many standard exercises and problems related to cosets.After the students have been through such an instructional treatment, quantitative and qualitative instruments are designed to determine the mental concepts they may have constructed and the mathematics they may have learned. The theoretical analysis points to questions researchers may ask in the process of data analysis and the results of this data analysis indicates both the extent to which the instruction has been effective and possible revisions in the genetic decomposition.This way of doing research and curriculum development simultaneously emphasizes both theory and applications to teaching practice.Refining the theoryAs noted above, the theory helps us analyze data and our attempt to use the theory to explain the data can lead to changes in the theory. These changes can be of two kinds. Usually, the genetic decomposition in the original theoretical analysis is revised and refined as a result of the data. In rare cases, it may be necessary to enhance the overall theory. An important example of such a revision is the incorporation of the triad concept of Piaget and Garcia (1989) which is leading to a better understanding of the construction of schemas. This enhancement to the theory was introduced in Clark, et. al. (1997) where they report on students’ understanding of the chain rule, and is being further elaborated upon in three current studies: sequences of numbers (Mathews, et. al., in preparation); the chain rule and its relation to composition of functions (Cottrill, 1999); and the relations between the graph of a function and properties of its first and second derivatives (Baker, et. al., submitted). In each of these studies, the understanding of schemas as described above was not adequate to provide a satisfactory explanation of the data and the introduction of the triad helped to elaborate a deeper understanding of schemas and provide better explanations of the data.The triad mechanism consists in three stages, referred to as Intra, Inter, and Trans, in the development of the connections an individual can make between particular constructs within the schema, as well as the coherence of these connections. The Intra stage of schema development is characterized by a focus on individual actions, processes, and objects in isolation from other cognitive items of a similar nature. For example, in the function concept, an individual at the Intra level, would tend to focus on a single function and the various activities that he or she could perform with it. TheInter stage is characterized by the construction of relationships and transformations among these cognitive entities. At this stage, an individual may begin to group items together and even call them by the same name. In the case of functions, the individual might think about adding functions, composing them, etc. and even begin to think of all of these individual operations as instances of the same sort of activity: transformation of functions. Finally, at the Trans stage the individual constructs an implicit or explicit underlying structure through which the relationships developed in the Inter stage are understood and which gives the schema a coherence by which the individual can decide what is in the scope of the schema and what is not. For example, an individual at the Trans stage for the function concept could construct various systems of transformations of functions such as rings of functions, infinite dimensional vector spaces of functions, together with the operations included in such mathematical structures.Applying the APOS TheoryIncluded with this paper is an annotated bibliography of research related to APOS Theory, its ongoing development and its use in specific research studies. This research concerns mathematical concepts such as: functions; various topics in abstract algebra including binary operations, groups, subgroups, cosets, normality and quotient groups; topics in discrete mathematics such as mathematical induction, permutations, symmetries, existential and universal quantifiers; topics in calculus including limits, the chain rule, graphical understanding of the derivative and infinite sequences of numbers; topics in statistics such as mean, standard deviation and the central limit theorem; elementary number theory topics such as place value in base n numbers, divisibility, multiples and conversion of numbers from one base to another; and fractions. In most of this work, the context for the studies are collegiate level mathematics topics and undergraduate students. In the case of the number theory studies, the researchers examine the understanding of pre-college mathematics concepts by college students preparing to be teachers. Finally, some studies such as that of fractions, show that the APOS Theory, developed for “advanced” mathematical thinking, is also a useful tool in studying students’understanding of more basic mathematical concepts.The totality of this body of work, much of it done by RUMEC members involved in developing the theory, but an increasing amount done by individual researchers having no connection with RUMEC or the construction of the theory, suggests that APOS Theory is a tool that can be used objectively to explain student difficulties with a broad range of mathematical concepts and to suggest ways that students can learn these concepts. APOS Theory can point us towards pedagogical strategies that lead to marked improvement in student learning of complex or abstract mathematical concepts and students’ use of these concepts to prove theorems, provide examples, and solve problems. Data supporting this assertion can be found in the papers listed in the bibliography.Using the APOS Theory to develop a community of researchersAt this stage in the development of research in undergraduate mathematics education, there is neither a sufficiently large number of researchers nor enough graduate school programs to train new researchers. Other approaches, such as experienced and novice researchers working together in teams on specific research problems, need to be employed at least on a temporary basis. RUMEC is one example of a research community that has utilized this approach in training new researchers.In addition, a specific theory can be used to unify and focus the work of such groups. The initial group of researchers in RUMEC, about 30 total, made a decision to focus their research work around the APOS Theory. This was not for the purpose of establishing dogma or creating a closed research community, but rather it was a decision based on current interests and needs of the group of researchers.RUMEC was formed by a combination of established and beginning researchers in mathematics education. Thus one important role of RUMEC was the mentoring of these new researchers. Having a single theoretical perspective in which the work of RUMEC was initially grounded was beneficial for those just beginning in this area. At the meetings of RUMEC, discussions could focus not only on the details of the individual projects as they developed, but also on the general theory underlying all of the work. In addition, the group’s general interest in this theory and frequent discussions about it in the context of active research projects has led to growth in the theory itself. This was the case, for example, in the development of the triad as a tool for understanding schemas.As the work of this group matures, individuals are beginning to use other theoretical perspectives and other modes of doing research.SummaryIn this paper, we have mentioned six ways in which a theory can contribute to research and we suggest that this list can be used as criteria for evaluating a theory. We have described how one such perspective, APOS Theory is being used, in an organized way, by members of RUMEC and others to conduct research and develop curriculum. We have shown how observing students’ success in making or not making mental constructions proposed by the theory and using such observations to analyze data can organize our thinking about learning mathematical concepts, provide explanations of student difficulties and predict success or failure in understanding a mathematical concept. There is a wide range of mathematical concepts to which APOS Theory can and has been applied and this theory is used as a language for communication of ideas about learning. We have also seen how the theory is grounded in data, and has been used as a vehicle for building a community of researchers. Yet its use is not restricted to members of that community. Finally, we provide an annotated bibliography which presents further details about this theory and its use in research in undergraduate mathematics education.An Annotated Bibliography of workswhich develop or utilize APOS TheoryI. Arnon. Teaching fractions in elementary school using the software “Fractions as Equivalence Classes” of the Centre for Educational Technology, The Ninth Annual Conference for Computers in Education, The Israeli Organization for Computers in Education, Book of Abstracts, Tel-Aviv, Israel, p. 48, 1992. (In Hebrew).I. Arnon, R. Nirenburg and M. Sukenik. Teaching decimal numbers using concrete objects, The Second Conference of the Association for the Advancement of the Mathematical Education in Israel, Book of Abstracts, Jerusalem, Israel, p. 19, 1995. (In Hebrew).I. Arnon. Refining the use of concrete objects for teaching mathematics to children at the age of concrete operations, The Third Conference of the Association for the Advancement of the Mathematical Education in Israel, Book of Abstracts, Jerusalem, Israel, p. 69, 1996. (In Hebrew).I. Arnon. In the mind’s eye: How children develop mathematical concepts – extending Piaget's theory. Doctoral dissertation, School of Education, Haifa University, 1998a.I. Arnon. Similar stages in the developments of the concept of rational number and the concept of decimal number, and possible relations between their developments, The Fifth Conference of the Association for the Advancement of the Mathematical Education in Israel, Book of Abstracts. Be’er-Tuvia, Israel, p. 42, 1998b. (In Hebrew).The studies by Arnon and her colleagues listed above deal with the development ofmathematical concepts by elementary school children. Having created a framework thatcombines APOS theory, Nesher’s theory on Learning Systems, and Yerushalmy’s ideas ofmulti-representation, she investigates the introduction of mathematical concepts as concreteactions versus their introduction as concrete objects. She establishes developmental paths for certain fraction-concepts. She finds that students to whom the fractions were introduced asconcrete actions progressed better along these paths than students to whom the fractions were introduced as concrete objects. In addition, the findings establish the following stage in thedevelopment of concrete actions into abstract objects: after abandoning the concrete materials, and before achieving abstract levels, children perform the concrete actions in their imagination.This corresponds to the interiorization of APOS theory.M. Artigue, Enseñanza y aprendizaje del análisis elemental: ¿qué se puede aprender de las investigaciones didácticas y los cambios curriculares? Revista Latinoamericana de Investigación en Matiemática Educativa, 1, 1, 40-55, 1998.In the first part of this paper, the author discusses a number of student difficulties and tries toexplain them using various theories of learning including APOS Theory. Students’unwillingness to accept that 0.999… is equal to 1 is explained, for example, by interpreting the former as a process, the latter as an object so that the two cannot be seen as equal until thestudent is able to encapsulate the process which is a general difficulty. In the second part of the paper, the author discusses the measures that have been taken in France during the 20thCentury to overcome these difficulties.M. Asiala, A. Brown, D. DeVries, E. Dubinsky, D. Mathews and K. Thomas. A framework for research and curriculum development in undergraduate mathematics education, Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education, 6, 1-32, 1996.The authors detail a research framework with three components and give examples of itsapplication. The framework utilizes qualitative methods for research and is based on a veryspecific theoretical perspective that was developed through attempts to understand the ideas of Piaget concerning reflective abstraction and reconstruct them in the context of college levelmathematics. For the first component, the theoretical analysis, the authors present the APOStheory. For the second component, the authors describe specific instructional treatments,including the ACE teaching cycle (activities, class discussion, and exercises), cooperativelearning, and the use of the programming language ISETL. The final component consists ofdata collection and analysis.M. Asiala, A. Brown, J. Kleiman and D. Mathews. The development of students’ understanding of permutations and symmetries, International Journal of Computers for Mathematical Learning, 3, 13-43, 1998.The authors examine how abstract algebra students might come to understand permutations of a finite set and symmetries of a regular polygon. They give initial theoretical analyses of what it could mean to understand permutations and symmetries, expressed in terms of APOS. Theydescribe an instructional approach designed to help foster the formation of mental constructions postulated by the theoretical analysis, and discuss the results of interviews and performance on examinations. These results suggest that the pedagogical approach was reasonably effective in helping students develop strong conceptions of permutations and symmetries. Based on thedata collected as part of this study, the authors propose revised epistemological analyses ofpermutations and symmetries and give pedagogical suggestions.M. Asiala, J. Cottrill, E. Dubinsky and K. Schwingendorf. The development of student’s graphical understanding of the derivative, Journal of Mathematical Behavior, 16(4), 399-431, 1997.In this study the authors explore calculus students’ graphical understanding of a function and its derivative. An initial theoretical analysis of the cognitive constructions that might be necessary for this understanding is given in terms of APOS. An instructional treatment designed to help foster the formation of these mental constructions is described, and results of interviews,conducted after the implementation of the instructional treatment, are discussed. Based on the data collected as part of this study, a revised epistemological analysis for the graphicalunderstanding of the derivative is proposed. Comparative data also suggest that students who had the instructional treatment based on the theoretical analysis may have more success indeveloping a graphical understanding of a function and its derivative than students fromtraditional courses.M. Asiala, E. Dubinsky, D. Mathews, S. Morics and A. Oktac. Student understanding of cosets, normality and quotient groups, Journal of Mathematical Behavior,16(3), 241-309, 1997.Using an initial epistemological analysis from Dubinsky, Dautermann, Leron and Zazkis(1994), the authors determine the extent to which the APOS perspective explains students’mental constructions of the concepts of cosets, normality and quotient groups, evaluate the。