数学中考试题分类大全应用题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

中考应用题精选(含答案)

中考应用题精选(含答案)

中考综合应用题精选(含答案)1.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?2.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.3.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?4.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B 两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.6.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?7.某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)当天销量(件)(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.8.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?10.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?11.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.12.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b=;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.13.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?14.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?15.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.16.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?17.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?中考综合应用题精选一.解答题(共19小题)1.(2014•连云港)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.2.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.3.(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.4.(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.5.(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.(2013•许昌二模)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?【解答】解:(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.∴甲种商品的进价为:20元,乙种商品的进价为:30元.(2)设经销甲、乙两种商品获得的总利润为W,甲种商品每件的利润为(30﹣m﹣20)元,销售数量为(60+10m),乙种商品每件的利润为(50﹣m﹣30)元,销售数量为(40+10m),则W=(10﹣m)(60+10m)+(20﹣m)(40+10m)=﹣20m2+200m+1400=﹣20(m﹣5)2+1900∵﹣20<0,∴当m定为5元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元.7.(2014秋•硚口区期中)某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)40+x90当天销量(件)200﹣2x200﹣2x(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.【解答】解:(1)由题意,得当1≤x≤49时,当天的售价为:(40+x)元,当天的销量为:(20﹣2x)件.当50≤x≤90时,当天的售价为:90元,当天的销量为:(20﹣2x)件.故答案为:40+x,20﹣2x,90,20﹣2x;(2)由题意,得当1≤x≤49时,y=(40+x﹣30)(200﹣2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200﹣2x)=﹣120x+12000.∴y=(3)由题意,得当1≤x≤49时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050∴a=﹣2<0,=6050元.∴x=45时,y最大当50≤x≤90时,y=﹣120x+12000.∴k=﹣120<0,∴当x=50时,y最大=6000元,∴销售商品第45天时,当天销售利润最大,最大利润是6050元;(4)由题意,得当﹣2x2+180x+2000≥4800时,∴(x﹣20)(x﹣70)≤0,∴或,∴20≤x≤70.∵x≤49,∴20≤x≤49,当﹣120x+12000≥4800时x≤60.∵x≥50,∴50≤x≤60,∴当天销售利润不低于4800元共有:49﹣20+1+60﹣50+1=41天答:当天销售利润不低于4800元共有41天.8.(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?【解答】解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000]=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000﹣x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y=50000,最大值综上所述,50000>48800∴购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?【解答】解:(1)设y2=kx+b,将点A(0,160)、B(150,10)代入,得:,解得:,∴y2=﹣x+160(0≤x≤150);(2)根据题意,当0≤x<80时,w=[﹣x+160﹣(﹣0.5x+100)]•x=﹣0.5x2+60x,当80≤x≤150时,w=[﹣x+160﹣(3x﹣180)]•x=﹣4x2+340x;(3)∵当x=70时,w=﹣0.5×702+60×70=1750>0,∴销售量为70kg时,销售该农产品是盈利的,盈利1750元.。

初中应用题大全及答案

初中应用题大全及答案

初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。

所以小明的爸爸实际支付了400元。

2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。

男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。

女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。

因此,需要选出2名男生和1名女生。

3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。

4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。

所以合格的零件数为100个 - 2个 = 98个。

5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。

5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。

原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。

6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。

初三年级数学应用题

初三年级数学应用题

初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。

现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。

解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。

已知速度v1 = 15公里/小时,时间t1 = 2/3小时。

根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。

现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。

将1/2小时转换为分钟,即1/2 × 60 = 30分钟。

所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。

题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。

现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。

解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。

每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。

现在,每件商品降价10元,新的售价为90元。

每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。

假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。

所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。

题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。

现在向容器中加入50升的纯水,求混合后的盐水浓度。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

山东数学中考分类汇编--有关函数的应用题

山东数学中考分类汇编--有关函数的应用题

有关函数的应用题1.(2022年东营)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?2.(2020济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?3.(2021)20.(8分)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?4.(2022)19. 某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B 两地,两种货车载重量及到A,B两地的运输成本如下表:(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?5.(2017年莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种6.(2018年莱芜)口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?7.(2019年莱芜)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?8.(2017临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。

假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500(B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。

则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。

【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一只股票某天跌停,之后两天时间又涨回到原价。

若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。

(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案
初三数学应用题大全及答案
1. 小珠旅游团里有男生9人,女生3人。

他们分为三个组,每组男生
和女生的比例相同,每组人数为4人。

请问小珠团里有几组?
答案:小珠团里有3组。

2. 一班有20名学生,其中10名男生,10名女生,两人两人一组,每
个组一个男生一个女生,每组都不一样,写出所有可能的组合方式。

答案:男生女生组合方式为:1男1女,2男2女,3男3女,4男4女,5男5女,6男6女,7男7女,8男8女,9男9女,10男10女。

3. 一条条形码共有32位,每8位作为一组,每组有多少个?
答案:一条条形码共有32位,每8位作为一组,则一共有4组。

4. 一家餐馆有4桌正在用餐,每桌客人人数相同,共有28人,请问每桌客人数有多少?
答案:每桌客人数有7人。

5. 有3把锁,组合为ABC,其中A、B、C代表3种颜色,则有多少种组合方式?
答案:有6种组合方式,分别为:ABC、ACB、BAC、BCA、CAB、CBA。

2022年中考数学题分类汇编——二次函数应用题(二)含答案

2022年中考数学题分类汇编——二次函数应用题(二)含答案

2022年年年年年年年年年年——年年年年年年年年年年1.(2022·辽宁省铁岭市)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?2.(2022·山东省临沂市)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距x2+bx+c.离x(m)具备二次函数关系,其解析式为y=−160(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离ℎ最大,最大值是多少?3. (2022·辽宁省)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系. (1)求y 与x 之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?4. (2022·内蒙古自治区包头市)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y(单位:千克)与x 之间的函数关系式为y ={12x,0≤x ≤10−20x +320,10<x ≤16,草莓价格m(单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x ≤12时,草莓价格m 与x 之间的函数关系式; (3)试比较第8天与第10天的销售金额哪天多?5.(2022·广西壮族自治区南宁市)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.6.(2022·广西壮族自治区贺州市)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?7.(2022·江苏省无锡市)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?8.(2022·河南省)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x−ℎ)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.参考答案1.解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0), 由表中数据得:{20x +b =6622x +b =60,解得:{k =−3b =126,∴y 与x 之间的函数关系式为y =−3x +126;(2)设批发商每日销售这批山野菜所获得的利润为w 元,由题意得:w =(x −18)y =(x −18)(−3x +126)=−3x 2+180x −2268=−3(x −30)2+432,∵市场监督部门规定其售价每千克不高于28元, ∴18≤x ≤28, ∵−3<0,∴当x <30时,w 随x 的增大而增大, ∴当x =28时,w 最大,最大值为420,∴当每千克山野菜的售价定为28元时,批发商每日销售这批山野菜所获得的利润最大,最大利润为420元. 2.解:(1)作BE ⊥y 轴于点E , ∵OA =65m ,着陆坡AC 的坡角为30°,AB =100m ,∴点A 的坐标为(0,65),AE =50m ,BE =50√3m , ∴OE =OA −AE =65−50=15(m), ∴点B 的坐标为(50√3,15),∵点A(0,65),点B(50√3,15)在二次函数y =−160x 2+bx +c 的图象上,∴{c=65−160×(50√3)2+50√3b+c=15,解得{b=√32c=65,即b的值是√32,c的值是65;(2)①设x关于t的函数解析式是x=kt+m,因为点(0,0),(5,50√3)在该函数图象上,∴{m=05k+m=50√3,解得{k=10√3m=0,即x关于t的函数解析式是x=10√3t;②设直线AB的解析式为y=px+q,∵点A(0,65),点B(50√3,15)在该直线上,∴{q=6550√3p+q=15,解得{p=−√33q=65,即直线AB的解析式为y=−√33x+65,则ℎ=(−160x2+√32x+65)−(−√33x+65)=−160x2+5√36x,∴当x=−5√362×(−160)=25√3时,ℎ取得最值,此时ℎ=1254,∵25√3<50√3,∴x=25√3时,ℎ取得最值,符合题意,将x=25√3代入x=10√3t,得:25√3=10√3t,解得t=2.5,即当t为2.5时,运动员离着陆坡的竖直距离ℎ最大,最大值是1254m.3.解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0), 由所给函数图象可知:{14k +b =22016k +b =180,解得:{k =−20b =500,故y 与x 的函数关系式为y =−20x +500; (2)∵y =−20x +500,∴w =(x −13)y =(x −13)(−20x +500) =−20x 2+760x −6500 =−20(x −19)2+720, ∵−20<0,∴当x <19时,w 随x 的增大而增大, ∵13≤x ≤18,∴当x =18时,w 有最大值,最大值为700, ∴售价定为18元/件时,每天最大利润为700元. 4.解:(1)∵当10≤x ≤16时,y =−20x +320, ∴当x =14时,y =−20×14+320=40(千克), ∴第14天小颖家草莓的日销售量是40千克.(2)当4≤x ≤12时,设草莓价格m 与x 之间的函数关系式为m =kx +b , ∵点(4,24),(12,16)在m =kx +b 的图象上, ∴{4k +b =2412k +b =16, 解得:{k =−1b =28,∴函数解析式为m =−x +28. (3)当0≤x ≤10时,y =12x , ∴当x =8时,y =12×8=96, 当x =10时,y =12×10=120; 当4≤x ≤12时,m =−x +28, ∴当x =8时,m =−8+28=20, 当x =10时,m =−10+28=18∴第8天的销售金额为:96×20=1920(元),第10天的销售金额为:120×18=2160(元), ∵2160>1920, ∴第10天的销售金额多.5.解:(1)设函数解析式为y =kx +b ,由题意得: {60k +b =20080k +b =100, 解得:{k =−5b =500,∴y =−5x +500,当y =0时,−5x +500=0, ∴x =100,∴y 与x 之间的函数关系式为y =−5x +500(50<x <100); (2)设销售利润为w 元,w =(x −50)(−5x +500)=−5x 2+750x −25000=−5(x −75)2+3125, ∵抛物线开口向下, ∴50<x <100,∴当x =75时,w 有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元. 6.解:(1)根据题意,得y =200−12×4(x −48) =−2x +296,∴y 与x 之间的函数关系式:y =−2x +296; (2)根据题意,得W =(x −34)(−2x +296) =−2(x −91)2+6498, ∵a =−2<0,∴抛物线开口向下,W 有最大值, 当x =91时,W 最大值=6498,答:每套售价定为:91元时,每天销售套件所获利润最大,最大利润是6498元. 7.解:(1)根据题意知:较大矩形的宽为2xm ,长为24−x−2x3=(8−x) m ,∴(x +2x)×(8−x)=36, 解得x =2或x =6,经检验,x =6时,3x =18>10不符合题意,舍去,∴x =6,答:此时x 的值为2m ;(2)设矩形养殖场的总面积是ym 2,∵墙的长度为10,∴0<x ≤103,根据题意得:y =(x +2x)×(8−x)=−3x 2+24x =−3(x −4)2+48, ∵−3<0,∴当x =103时,y 取最大值,最大值为−3×(103−4)2+48=1403(m 2), 答:当x =103时,矩形养殖场的总面积最大,最大值为1403m 2.8.解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y =a(x −5)2+3.2,将(0,0.7)代入得: 0.7=25a +3.2,解得a =−110,∴y =−110(x −5)2+3.2=−110x 2+x +710,答:抛物线的表达式为y =−110x 2+x +710;(2)当y =1.6时,−110x 2+x +710=1.6,解得x =1或x =9,∴她与爸爸的水平距离为3−1=2(m)或9−3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m .。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

中考数学应用题分类及参考答案(精编)

中考数学应用题分类及参考答案(精编)

中考数学应用题分类及参考答案(精编)一、方程应用1.为加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.求月平均增长率.2.一带一路给沿线地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,甲志愿者计划完成此项工作的天数?二、一次函数应用4.低碳生活绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为_________;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?三、二次函数应用5.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、解直角三角形应用6.灯塔是港口城市的标志性建筑之一,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,求灯塔的高度AD(结果精确到1m,参考数据:√ 2≈1.41,√ 3≈1.73)7.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:√ 3,且点A,B,C,D,E 在同一平面内,求小明同学测得古塔AB的高度.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,求甲楼的高度.五、方程与不等式应用9.某市为创建文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?六、方程与函数应用10.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?七、一次函数与二次函数应用11.某汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:(1)观察表格,辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:请求出公司的最大月收益是多少元.八、解直角三角形与方程应用12.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC 的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.九、解直角三角形与圆应用13.如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac ,sinB=bc,可得asinA=bsinB=csinC=2R,即asinA=bsinB=csinC=2R(规定sin90°=1).(1)探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA ( )bsinB( )csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.(2)初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.(3)综合应用:如图3,在某次数学活动中,小玲同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度.(结果保留小数点后一位,参考数据:√3≈1.732,sin15°=√6−√24)十、方程、不等式与函数应用14.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲,乙两种切割方式,如图2.切割,拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20-12a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.参考答案1.解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990. 2.解:设每件产品的实际定价是x 元,则原定价为(x+40)元.5000x+40=4000x,解得x =160 ,经检验x =160是原方程的解.3.解:设甲志愿者计划完成此项工作需x 天,故甲的工效都为:1x ,由于甲、乙两人工效相同,则乙的工效为1x ,甲前两个工作日完成了1x ×2,剩余的工作量甲完成了1x (x −2−3),乙在甲工作两个工作日后完成了1x (x −2−3),则2x +2(x−2−3)x=1,解得x=8,经检验,x=8是原方程的解.4.解析:(1)在OA 段,速度=100.5 =20km/h(2)当1.5≤x ≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,y=20x ﹣20,当x=2.5时,解得y=30,乙地离小红家30千米.5(1)证明:∵矩形MEFN 与矩形EBCF 面积相等 ∴ME =BE,AM =GH∵四块矩形花圃的面积相等,即S 矩形AMND =2S 矩形MEFN ∴AM =2ME ∴AE =3BE (2)∵篱笆总长为100m∴2AB+GH+3BC =100即2AB+12AB+3BC=100 ∴AB=40-65 BC 设BC 的长度为xm,矩形区域ABCD 的面积为ym 2则y=BC ·AB=x(40- 65x)=−65x 2+40x ∵x>0,40- 65x>0 ∴0<x<1003∴ y=−65x 2+40x(0<x<1003)6.36m7.(20+10√ 3)m 8.(36﹣10√ 3)m9(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x−3601.6x =4解得x=33.75,经检验x=33.75是原分式方程的解,1.6x=1.6×33.75=54(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a)≥360,解得a ≥72,则至少每年平均增加72万平方米. 10(1)y =10x+100(2)由题意得(10x+100)×(55﹣x ﹣35)=1760,整理得x 2﹣10x ﹣24=0,x 1=12,x 2=﹣2(舍去),55﹣x =43,这种消毒液每桶实际售价43元.11(1)设解析式y=kx+b,由题意得{3000k +b =1003200k +b =96,解得{k =−150b =160 ∴y 与x 间的函数关系是y =−150x +160(2)填表如下:(3)W =(−50x +160)(x −150)−(x −3000) =(−150x 2+163x −24000)−(x −3000) =−150x 2+162x −21000=−150(x −4050)2+307050当x=4050时,W 最大=307050,所以,当每辆车的月租金为4050元时,公司获得最大月收益307050元.12(1)过B 作BF ∥AD,过D 过AF ⊥AD,两直线交于F,过B 作BE 垂直地面交地面于E,如图:根据题知∠ABF =∠DAB =30°,AF =12AB =135m,BE:CE =1:2.4 设BE 长t 米,则CE 长2.4t 米. ∵BE 2+CE 2=BC2∴t 2+(2.4t)2=2602,解得t =100m(负值舍去),h =AF+BE =235m(2)设甲种设备每小时的造雪量是xm 3,则乙种设备每小时的造雪量是(x+35)m 3,根据题意得150x=500x+35,解得x =15,经检验,x =15是原方程的解,也符合题意,x+35=50.答:甲种设备每小时的造雪量是15m 3,则乙种设备每小时的造雪量是50m 3. 13(1)探究活动:a sinA = b sinB = csinC理由:如图2,过点C 作直径CD 交⊙O 于点D,连接BD. ∴∠A=∠D,∠DBC=90°∴sinA=sinD,sinD=a 2R ∴asinA = aa 2R=2R同理可证:b sinB =2R,c sinC =2R ∴a sinA = b sinB = csinC =2R (2)初步应用:∵asinA = bsinB =2R ∴8sin60° = bsin45° ∴b=8sin45°sin60°=8√63(3)综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100 ∴∠ACB =30°设古塔高DC=x,则BC=√2x ,AB sin∠ACB =BCsinA ,100sin30°=√2xsin15°,x=50(√3-1=36.6,古塔CD=36.6m.14(1)要制作200个A,B 两种规格的顶部无盖木盒,制作A 种木盒x 个,故制作B 种木盒(200-x)个;有200张规格为40cm ×40cm 的木板材,使用甲种方式切割的木板材y 张, 故使用乙种方式切割的木板材(200-y)张.(2)使用甲种方式切割的木板材y 张,则可切割出4y 个长、宽均为20cm 的木板,使用乙种方式切割的木板材(200-y)张,则可切割出8(200-y)个长为10cm,宽为20cm 的木板; 设制作A 种木盒x 个,则需要长、宽均为20cm 的木板5x 个,制作B 种木盒(200-x)个,则需要长、宽均为20cm 的木板(200-x)个,需要长为10cm 、宽为20cm 的木板4(200-x)个; 故{4y =5x +(200−x)8(200−y)=4(200−x),解得{x =100y =150 故制作A 种木盒100个,制作B 种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张.(3)用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,总成本为150×5+8×50=1150(元)两种木盒的销售单价均不能低于7元,不超过18元,所以{7≤a ≤187≤20−12a ≤18,解得{7≤a ≤184≤a ≤26,a 的取值范围为7≤a ≤18. 设利润为W,则W=100a+100(20-12a)-1150整理得W=850+50a,当a=18时,W 有最大值,最大值为850+50×18=1750,此时B 种木盒的销售单价定为20-12×18=11(元)即A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.。

数学中考实际应用题选择题

数学中考实际应用题选择题

数学中考实际应用题选择题1. 题目:小明家的果园里有苹果树和梨树,共有100棵树。

已知苹果树有30棵,那么梨树有多少棵?选项:A. 70棵 B. 80棵 C. 90棵 D. 100棵2. 题目:小华有20元钱,他想买一些水果。

苹果每千克10元,梨每千克8元。

如果他买2千克苹果和1千克梨,他还需要带多少钱?选项:A. 5元 B. 10元 C. 15元 D. 20元3. 题目:小明的妈妈买了一箱牛奶,共有24盒。

如果每盒牛奶需要3元,那么这箱牛奶一共多少钱?选项:A. 72元 B. 66元 C. 60元 D. 54元4. 题目:一辆公交车从A地出发,以每分钟60米的速度向B地行驶。

如果B地距离A地有2400米,那么公交车到达B地需要多少时间?选项:A. 40分钟 B. 30分钟 C. 20分钟 D. 10分钟5. 题目:一个长方形的长是8厘米,宽是5厘米。

求这个长方形的面积。

选项:A. 40平方厘米 B. 32平方厘米 C. 20平方厘米 D. 16平方厘米6. 题目:小华有一些糖果,如果他每天吃2颗,那么糖果可以吃6天。

如果他每天吃3颗,那么糖果可以吃几天?选项:A. 4天 B. 5天 C. 6天 D. 7天7. 题目:一个正方形的边长是10厘米,求这个正方形的对角线长度。

选项:A. 14厘米 B. 12厘米 C. 10厘米 D. 8厘米8. 题目:小王有一些铅笔,如果他每天用3支,那么铅笔可以用来12天。

如果他每天用5支,那么铅笔可以用来几天?选项:A. 8天 B. 6天 C. 4天 D. 3天9. 题目:一个圆的半径是5厘米,求这个圆的面积。

选项:A. 78.5平方厘米 B. 75平方厘米 C. 70平方厘米 D. 65平方厘米10. 题目:一辆自行车以每小时15公里的速度行驶,如果行驶了3小时,那么它一共行驶了多少公里?选项:A. 45公里 B. 30公里 C. 15公里 D. 20公里11. 题目:一个三角形的底是8厘米,高是5厘米。

中考数学试卷题目分类汇总

中考数学试卷题目分类汇总

一、选择题1. 数与代数- 实数的运算- 代数式的化简- 分式的运算- 根据方程求未知数- 解不等式及不等式组- 函数的性质与应用2. 几何与图形- 直线、射线、线段的概念及性质- 角的概念及性质- 平行线、相交线、垂直线的判定- 四边形、多边形的概念及性质- 圆的概念及性质- 三角形的概念及性质,如三角形全等、相似3. 统计与概率- 数据的收集、整理、描述- 平均数、中位数、众数的计算- 概率的基本概念及计算- 事件的相互关系及概率的运算二、填空题1. 数与代数- 实数的性质及运算- 代数式的化简及求值 - 分式的化简及运算- 根据方程求未知数- 解不等式及不等式组2. 几何与图形- 几何图形的性质及判定 - 几何图形的变换- 几何问题的解决方法 - 圆的相关计算3. 统计与概率- 数据的描述及分析- 概率的计算与应用三、解答题1. 数与代数- 复杂方程的求解- 函数问题及实际应用 - 代数问题的综合应用 - 函数与几何的结合问题2. 几何与图形- 几何图形的证明- 几何问题的解决方法 - 几何图形的应用- 几何问题的综合应用3. 统计与概率- 统计数据的分析及处理- 概率的计算与应用- 统计与概率的实际问题四、实验题1. 数与代数- 使用计算器进行计算- 利用计算机软件进行数据处理2. 几何与图形- 利用计算机软件绘制几何图形- 利用计算机软件进行几何问题的探究3. 统计与概率- 利用计算机软件进行数据分析- 利用计算机软件进行概率问题的探究五、应用题1. 数与代数- 生活、生产、科技等领域的实际问题 - 经济、金融、物理等领域的实际问题2. 几何与图形- 建筑设计、城市规划等领域的实际问题 - 物理实验、天文观测等领域的实际问题3. 统计与概率- 社会调查、市场分析等领域的实际问题- 医学研究、生物统计等领域的实际问题总结:中考数学试卷题目分类汇总涵盖了数与代数、几何与图形、统计与概率三个主要模块,旨在考查学生对数学知识的掌握程度、应用能力及创新思维。

中考数学应用题归类解析

中考数学应用题归类解析

中考数学应用题归类解析应用题源于生产、生活实践,是中考数学的常见题型.解题时,要求学生要熟悉其基本的生产、生活情景,善于积极地用数学观点和方法去解决实际问题.为了帮助九年级同学系统地复习这一题型,本文以2008年中考题为例,归纳其类型与解法,供参考. 一、方程型例1、(长沙市)“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?解:(1)设每条成衣生产线和童装生产线平均每天生产帐篷x 、y 顶,则⎩⎨⎧==⎩⎨⎧=+=+32y 41x 178y 3x 2105y 2x 解得答:略(2)由1000972)325414(3<=⨯+⨯知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产、改进技术等方面进一步挖掘生产潜力,或动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.二、不等式型例2、(青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A 、B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱? 解:(1)根据题意,得320x 55000)x 15(120x 6002x 15x ≤≤⎪⎩⎪⎨⎧≤-+-≥解得所以满足条件的x 为5或6。

中考数学专题复习应用题行程问题

中考数学专题复习应用题行程问题

中考数学专题复习应用题
行程问题
Prepared on 21 November 2021
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。

3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。

当他们第二次相遇时距离B地30千米。

问AB两地的距离是多少
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。

快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。

从开始走到第二次相遇,共用了6小时。

A、B两地相距多少千米
6.一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

2019-2021年3年中考真题数学分项汇编-专题20 应用题综合(函数、不等式、方程)-(解析版)

2019-2021年3年中考真题数学分项汇编-专题20 应用题综合(函数、不等式、方程)-(解析版)

专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m ,温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =U R; ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式;(3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克.【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解;(3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案. 【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120b k b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=,∴1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∴R 1=2-m +240, 又∵1024030R U =-,∴024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏,∴当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克.【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键. 2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000,37;(2)33150元;(3)50150a <<【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,同(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为()25018001850y x a x =-+-+,得到对称轴,再根据两公司租出的汽车均为17辆,结合x 为整数可得关于a 的不等式180016.517.5100a -<<,即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:x =37或x =-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦,y 乙=35001850x -,当甲公司的利润大于乙公司时,0<x <37,y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦=25018001850x x -++,当x =1800502--⨯=18时,利润差最大,且为18050元; 当乙公司的利润大于甲公司时,37<x ≤50,y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦=25018001850x x --,∵对称轴为直线x =1800502--⨯=18, 当x =50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+,对称轴为直线x =1800100a -, ∵x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大, ∴180016.517.5100a -<<,解得:50150a <<. 【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x 为整数得到a 的不等式.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM 小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究: (实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x .纵轴表示箭尺读数y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)【答案】(1)见解析;(2)在同一直线上,解析式为66y x =+;(3)78()cm ;(4)当天晚上的22:00.【分析】(1)将各点在坐标系中直接描出即可;(2)观察发现,供水时间每增加2小时,箭尺读数增加12cm ,由此可判断它们在同以直线上,设直线解析式为y kx b =+,再代入两个点坐标即可求解;(3)当12x =时代入(2)中解析式即可求出箭尺的读数;(4)当90y =时代入(2)中解析式即可求出供水时间,再结合实验开始时间为8:00即可求解.【详解】解:(1)将表格中各点在直角坐标系中描出来如下图所示:(2)分析表格中数据发现,供水时间每增加2小时,箭尺读数增加12cm ,观察(1)中直角坐标系点的特点,发现它们位于同一直线上,设直线解析式为y kx b =+,代入点(0,6)和点(2,18),得到60182b k b =+⎧⎨=+⎩,解得66k b =⎧⎨=⎩,∴直线的表达式为:66y x =+;(3)当供水时间达到12小时时,即12x =时,代入66y x =+中,解得612678y cm ,∴此时箭尺的读数为78cm ;(4)当箭尺读数为90厘米时,即90y =时,代入66y x =+中,解得(906)614x (小时),∴经过14小时后箭尺读数为90厘米,∵实验记录的开始时间是上午8:00,∴箭尺读数为90厘米时对应的时间为8+14=22,即对应当天晚上的22:00.【点睛】本题考查待定系数法求一次函数的解析式、一次函数的实际应用问题,读懂题目,掌握一次函数的图形及性质是解决本题的关键.4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?【答案】(1)5;120;(2)66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩;(3)1h 或27h 31. 【分析】(1)由图象可知轿车从B 到A 所用时间为2h ,即可得出从A 到B 的时间,进而可得m 的值,根据速度=距离÷时间即可得轿车速度;(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,分1≤x <2.5;2.5≤x <3.5;3.5≤x <5三个时间段,分别利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车相遇前和相遇后相距12km 两种情况,分别列方程求出x 的值即可得答案.【详解】(1)由图象可知轿车从B 到A 所用时间为3-1=2h ,∴轿车从A 到B 的时间为2h ,∴m =3+2=5,∵A 、B 两地相距240km ,∴轿车速度=240÷2=120km/h ,故答案为:5;120(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,①设()1110(0 2.5)MN y k x b k x =+≠≤<∵图象过点(0,240)M 和点(2.5,75)N ∴1112402.575b k b =⎧⎨+=⎩解得:1124066b k =⎧⎨=-⎩, ∴66240(0 2.5)MN y x x =-+≤<②∵货车在2.5h~3.5h 时装载货物停留1h ,∴75(2.5 3.5)NG y x =≤<,③设()2220(3.55)GH y k x b k x =+≠≤≤,∵图象过点(3.5,75)G 和点(5,0)H ∴2222503.575k b k b +=⎧⎨+=⎩解得:2225050b k =⎧⎨=-⎩, ∴50250(3.55)GH y x x =-+≤≤,∴66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩. (3)设轿车出发xh 与货车相距12km ,则货车出发(x +1)h ,①当两车相遇前相距12km 时:66(1)24012012x x -++-=,解得:2731x =, ②当两车相遇后相距12km 时:[]12066(1)240x x --++=12,解得:x =1,答:轿车出发1h 或27h 31与货车相距12km . 【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+= 解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)【答案】(1)(2,0)A -,见解析,点P 会落在4T 的台阶上;(2)2(7)11y x =--+,其对称轴与台阶5T 有交点;(32-.【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点A 的坐标可以确定y 轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线C ,再根据函数的对称轴的值来判断是否与台阶5T 有交点; (3)抓住二次函数图象不变,是BDE 在左右平移,要求点B 横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解.【详解】解:(1)当0y =,24120x x -++=,解得:2,6x x =-=,A 在左侧,(2,0)A ∴-, 2412y x x =-++关于22b x a=-=对称,y ∴轴与OK 重合,如下图:由题意在坐标轴上标出相关信息,当7y =时,24127x x -++=,解得:1,5x x =-=,4.556<<,∴点P 会落在4T 的台阶上,坐标为(5,7)P ,(2)设将抛物线L ,向下平移5个单位,向右平移a 的单位后与抛物线C 重合,则抛物线C 的解析式为:2(2)11y x a =---+,由(1)知,抛物线C 过(5,7)P ,将(5,7)P 代入2(2)11y x a =---+,27(3)11a =--+,解得:5,1a a ==(舍去,因为是对称轴左边的部分过(5,7)P ), 抛物线C :2(7)11y x =--+,2(7)11y x =--+关于72b x a=-=,且677.5<<,∴其对称轴与台阶5T 有交点.(3)由题意知,当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点D 时,此时点B 的横坐标值最大;当0y =,2(7)110x --+=,解得:1277x x ==(取舍),故点B 的横坐标最大值为:8当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点B 时,此时点B 的横坐标值最小;当2y =,2(7)112x --+=,解得:1210,4x x ==(舍去),故点B 的横坐标最小值为:10,则点B 横坐标的最大值比最小值大:81022-.【点睛】本题综合性考查了二次函数的解析式的求法及图象的性质,图象平移,抛物线的对称轴,解题的关键是:熟练掌握二次函数解析式的求法及图象的性质,通过已知的函数求解平移后函数的解析式. 7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥. 【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c =-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解; (3)由抛物线2117C :1126y x x =-++可知坡顶坐标为 61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b 的取值范围. 【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得, 2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩, ∴抛物线2C 的函数解析式213482y x x =-++; (2)∵运动员与小山坡的竖直距离为1米, ∴221317(4)(1)182126x x x x -++--++=, 解得:14x =-(不合题意,舍去), 212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++, ∵抛物线22117161C :1=(7)1261212y x x x =-++--+,∴坡顶坐标为 61(7,)12, ∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时, ∴21617743812y b =-⨯++≥+,解得:3524b ≥. 【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y =14-x 2+2x (0≤x ≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m ≤8 【分析】(1)设二次函数的解析式为:y =a (x -8)x ,根据待定系数法,即可求解; (2)把:x =1,代入y =14-x 2+2x ,得到对应的y 值,进而即可得到结论; (3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A (8,0),B (4,4),设二次函数的解析式为:y =a (x -8)x ,把(4,4)代入上式,得:4=a ×(4-8)×4,解得:14a =-, ∴二次函数的解析式为:y =14-(x -8)x =14-x 2+2x (0≤x ≤8); (2)由题意得:x =0.4+1.2÷2=1,代入y =14-x 2+2x ,得y =14-×12+2×1=74>1.68, 答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x ≤8时,新函数表达式为:y =14x 2-2x , 当x <0或x >8时,新函数表达式为:y =-14x 2+2x , ∴新函数表达式为:2212(08)412(08)4x x x y x x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m +8,0),B '(m +4,-4),如图所示,根据图像可知:当m +4≥9且m ≤8时,即:5≤m ≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)【答案】(1)1090y x =-+;(2)4万元;(3)当销售价x 定为7元/件时,该月纯收入最大.【分析】(1)利用待定系数法即可得;(2)将8x =代入()20%10a x =-求出a 的值,代入y 与x 的函数关系式求出该月的销售量,再利用a 乘以该月的销售量即可得;(3)设该月纯收入为w 万元,先根据纯收入的计算公式求出w 与x 之间的函数关系式,再利用二次函数的性质求解即可得.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,将点(6,30),(7,20)代入得:630720k b k b +=⎧⎨+=⎩,解得1090k b =-⎧⎨=⎩,则y 与x 的函数关系式为1090y x =-+;(2)当8x =时,()20%1080.4a =⨯-=,1089010y =-⨯+=,则0.4104⨯=(万元), 答:政府该月应付给厂家补贴4万元;(3)设该月纯收入为w 万元,由题意得:(1090)6(1090)(20%1(1090)0)w x x x x x -=-+--++-+,整理得:28(5)(9)8(7)32w x x x =---=--+,由二次函数的性质可知,在69x ≤<内,当7x =时,w 取得最大值,最大值为32,答:当销售价x 定为7元/件时,该月纯收入最大.【点睛】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∵5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.【详解】(1)根据题意,设y 与x 之间的函数解析式为y=kx+b ,图象过(280,40),(290,39),∴2804029039k b k b +=⎧⎨+=⎩,解得:-0.168k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为y=-0.1x+68,∵每间房价不低于200元且不超过320元 ∴200x 320≤≤(2)设宾馆每天的利润为W 元,()()()2w=x-20y=x-20-0.1x+68=-0.1x +70x-1360, ∴()22w=-0.1x +70x-1360=-0.1x-350+10890 当x <350时,w 随x 的增大而增大,∵200x 320≤≤,∴当x=320时,W 最大=10800∴当房价定为320元时,宾馆利润最大,最大利润是10800元【点睛】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?【答案】(1)1122y x =-;(2)月销售量为8辆时,销售利润最大,最大利润是32万元 【分析】(1)观察表格中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,再代入数据求解即可;(2)根据已知条件“每月销售利润y =(每辆原售价-1y -进价)x ”,求出y 的表达式,然后再借助二次函数求出其最大利润即可.【详解】解:(1)由表中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,代入点(4,0)和点(5,0.5),得到040.55k b k b =+⎧⎨=+⎩,解得122k b ⎧=⎪⎨⎪=-⎩,故1y 与x 的关系式为1122y x =-; (2)由题意可知:降价后每月销售利润y =(每辆原售价-1y -进价)x , 即:211(22216)822y x x x x ,其中4x ≥, ∴y 是x 的二次函数,且开口向下,其对称轴为82b x a=-=, ∴当8x =时,y 有最大值为21888322万元, 答:月销售量为8辆时,销售利润最大,最大利润是32万元.【点睛】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【答案】(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为4200y x =+. (2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【点睛】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去 ∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.。

初三数学中考专题:实际应用题压轴题大全

初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。

初中数学试题归类及答案

初中数学试题归类及答案

初中数学试题归类及答案一、选择题1. 下列哪个选项是偶数?A. 3B. 5C. 8D. 11答案:C2. 一个数的相反数是-4,这个数是多少?A. 4B. -4C. 0D. 8答案:A3. 如果一个角是直角的一半,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:B4. 一个等腰三角形的底边长为6cm,高为4cm,那么它的周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm答案:C二、填空题5. 一个数的绝对值是5,这个数可能是________。

答案:±56. 一个数除以-2的结果是3,那么这个数是________。

答案:-67. 在一个直角三角形中,一个锐角是30°,另一个锐角是________。

答案:60°8. 如果一个长方形的长是10cm,宽是5cm,那么它的面积是________。

答案:50cm²三、解答题9. 计算下列表达式的值:(1) 3x - 2x + 5(2) (x + 2)(x - 2)答案:(1) x + 5(2) x² - 410. 已知一个圆的半径是7cm,求这个圆的面积。

答案:49π cm²11. 解方程:2x + 3 = 7答案:x = 212. 一个长方体的长、宽、高分别是8cm、6cm、5cm,求这个长方体的体积。

答案:240cm³四、应用题13. 一个班级有40名学生,男生人数是女生人数的1.5倍,问这个班级有多少名男生和女生?答案:男生24名,女生16名。

14. 一个工厂生产了一批零件,合格率为95%,如果这批零件总数为2000个,那么不合格的零件有多少个?答案:100个。

15. 一个农场有鸡和兔子共35只,腿的总数是94条,问农场里有多少只鸡和兔子?答案:鸡23只,兔子12只。

16. 一辆汽车以60公里/小时的速度行驶,问它行驶120公里需要多少时间?答案:2小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学中考试题分类大全应用题This manuscript was revised by the office on December 10, 2020.(2008年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。

求这个月的石油价格相对上个月的增长率。

20.(2008年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷河北周建杰分类(2008年泰州市)15.一种药品经过两次降价,药价从原来每盒60元降至现在的元,则平均每次降价的百分率是.(2008年泰州市)24.如图某堤坝的横截面是梯形ABCD,背水坡AD的坡度i (即tan)为1︰,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1︰,已知堤坝总长度为4000米.(1)求完成该工程需要多少土方(4分)(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方(5分)(2008年南京市)25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m第24题(第25题)蔬菜种植区域前侧空地(2008年遵义市)26.(12分)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.应用;(2)问主要考查一元一次不等式组的应用.以下是江西康海芯的分类:1. (2008年郴州市)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元辽宁省岳伟分类2008年桂林市1.某校在教学楼前铺设小广场地面,其图案设计如图。

所示,矩形地面的长50米,宽32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小矩形花坛,图中阴影处铺设广场地砖。

(1)求阴影部分的面积S(π取3)(2)某人承包铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划倍,结果提前4天完成了任务,问原计划每天铺多少平方米(2008年)2.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2008年·东莞市)(本题满分7分)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。

19.(08年宁夏回族自治区)牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少以下是辽宁省高希斌的分类1.(2008年湖北省咸宁市)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料3.(2008年湖北省荆州市)甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A.甲B.乙C.丙D. 乙或丙4.(2008年湖北省鞥仙桃市潜江市江汉油田)“五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180元的运动服,打折后他比按标价购买节省了元.10(2008乌鲁木齐).乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x,则根据题意可列方程为.17(2008乌鲁木齐).2008年5月12日14时28分在我国四川省汶川地区发生了里氏级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷以下是山东任梦送的分类(茂名)依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不Array必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是元.(茂名)2008年5月12日14时28分我国四川汶川发生了级大地震,地震发生后,我市某中学全体师生踊跃捐款,支援灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.已知甲班平均每人捐款金额是乙班平均每人捐款金额的倍,乙班比甲班多2人,那么这两个班各有多少人以下是江苏省赣榆县罗阳中学李金光分类:1.(2008年大连市)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x千米/时,可列方程为_________________________________.2.(2008年大连市)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.3.(2008年南昌市)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6间的和为50倍”.根据图文信息,请问哪位同学获胜21.(2008年义乌市)义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率(结果精确到%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆(假定每年新增汽车数量相同,结果精确到个位)22.(2008)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”A(元)和“辅助员工个人奖金”B(元)两种标准发放,其中,都是100的整数倍.800A B≥≥,并且A B注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.(2008年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。

求这个月的石油价格相对上个月的增长率。

解:设这个月的石油价格相对上个月的增长率为x。

根据题意得(1+x)(1-5%)=1+14%解得x=20% 答这个月的石油价格相对上个月的增长率为20%.点评:本题是一道增长率的应用题。

本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格。

设出未知数,分别表示出每一个数量,列出方程进行求解。

列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答。

(2008年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷21.(2008年义乌市)义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率(结果精确到%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆(假定每年新增汽车数量相同,结果精确到个位)22.(2008)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”A(元)和“辅助员工个人奖金”B(元)两种标准发放,其中A B,都是100的整数倍.800≥≥,并且A B注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.以下是江苏董耀波的分类(2008恩施自治州)手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元(2008襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级奥运福娃共有多少套以下是山西省王旭亮分类(2008年重庆市)为支持四川抗震救灾,重庆市A 、B 、C 三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D 、E 两县。

相关文档
最新文档