2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷及试卷解析

合集下载

2017—2018学年八年级数学下期末试题

2017—2018学年八年级数学下期末试题

2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。

2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷及试卷解析

2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷及试卷解析

2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷一、选择题(本题共10小题,每题3分,共30分)1.(3分)下列二次根式中,是最简二次根式的为()A.B.C.D.2.(3分)下列根式中,与为同类二次根式的是()A.B.C.D.3.(3分)下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3 4.(3分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元5.(3分)用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2=B.(x+)2=C.(x﹣)2=0D.(x﹣)2=6.(3分)用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为()A.x(28﹣x)=25B.2x(14﹣x)=25C.x(14﹣x)=25D.7.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.8.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm9.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°10.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)11.(3分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”)12.(3分)方程2(x﹣5)2=(x﹣5)的根是.13.(3分)若实数x,y满足,则xy的值是.14.(3分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是.15.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.16.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三、(本题共2小题,每小题7分,满分14分)17.(7分)计算:.18.(7分)解方程:x2﹣6x﹣4=0.四、(本题共2小题,每小题8分,满分16分)19.(8分)已知关于x的一元二次方程x2﹣3x+k=0方程有两实根x1和x2.(1)求实数k的取值范围;(2)当x1和x2是一个矩形两邻边的长且矩形的对角线长为,求k的值.20.(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.五、解答题(共1小题,满分10分)21.(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x <15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=,b=.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.六、(本题满分12分)22.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.七、附加题(本题5分,记入总分,但分不超过100分)23.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每题3分,共30分)1.(3分)下列二次根式中,是最简二次根式的为()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)下列根式中,与为同类二次根式的是()A.B.C.D.【分析】把化为最简二次根式,然后根据被开方数相同的二次根式叫做同类二次根式解答.【解答】解:=3,所以,与为同类二次根式的是.故选:A.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.(3分)下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选:A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.4.(3分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元【分析】根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【解答】解:售价应定为:≈6.8(元);故选:B.【点评】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.5.(3分)用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2=B.(x+)2=C.(x﹣)2=0D.(x﹣)2=【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.故选:D.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.(3分)用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为()A.x(28﹣x)=25B.2x(14﹣x)=25C.x(14﹣x)=25D.【分析】由它的一边长为x,表示出另一边长,根据矩形的面积公式列出方程即可得.【解答】解:设它的一边长为x米,则另一边长为=14﹣x(米),根据题意,得:x(14﹣x)=25,故选:C.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.7.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k<0,b<0,即kb>0,故B不正确;C.k>0,b<0,即kb<0,故C正确;D.k<0,b=0,即kb=0,故D不正确;故选:C.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.8.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.9.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.10.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S=S△OGD④四边形AEFG是菱形()△AGDA.1个B.2个C.3个D.4个【分析】①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.=S△FDG≠S ③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD故③错误.△OGD【解答】解:①由四边形ABCD是正方形和折叠性知,∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,故①正确,②由四边形ABCD是正方形和折叠性得出,∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,∵∠ABF=45°,∴∠ABF=∠DFG,∴AB∥GF,又∵∠BAC=∠BEF=45°,∴EF∥AC,∴四边形AEFG是平行四边形,∴四边形AEFG是菱形.∵在Rt△GFO中,GF=OG,在Rt△BFE中,BE=EF=GF,∴BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性知,AD=FD,AG=FG,DG=DG,在△ADG和△FDG中,,∴△ADG≌△FDG(SSS),∴S△AGD=S△FDG≠S△OGD故③错误.正确的有①②④,故选:C.【点评】本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.二、填空题(共6小题,每小题3分,共18分)11.(3分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是丙(填“甲”或“乙”或“丙”)【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵S甲2=0.53,S乙2=0.51,S丙2=0.43,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.(3分)方程2(x﹣5)2=(x﹣5)的根是x1=5,x2=5.5.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:2(x﹣5)2﹣(x﹣5)=0,(x﹣5)[2(x﹣5)﹣1]=0,x﹣5=0,2(x﹣5)﹣1=0,x1=5,x2=5.5,故答案为:x1=5,x2=5.5.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.13.(3分)若实数x,y满足,则xy的值是﹣2.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,∴xy=﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是a<1且a≠0.【分析】由关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,即可得判别式△>0,继而可求得a的范围.【解答】解:∵关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1,∵方程ax2+2x+1=0是一元二次方程,∴a≠0,∴a的范围是:a<1且a≠0.故答案为:a<1且a≠0.【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.15.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.16.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.【分析】根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.三、(本题共2小题,每小题7分,满分14分)17.(7分)计算:.【分析】根据平方差公式、二次根式的化简、负整数指数幂的法则计算.【解答】解:原式=3﹣1﹣4+2=0.【点评】本题考查了二次根式的混合运算、负整数指数幂,解题的关键是掌握有关法则,以及公式的使用.18.(7分)解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.四、(本题共2小题,每小题8分,满分16分)19.(8分)已知关于x的一元二次方程x2﹣3x+k=0方程有两实根x1和x2.(1)求实数k的取值范围;(2)当x1和x2是一个矩形两邻边的长且矩形的对角线长为,求k的值.【分析】(1)利用一元二次方程根的判别式即可得到关于k的不等式,从而求解;(2)根据根与系数的关系,以及+=(x1+x2)2﹣2x1•x2=5,即9﹣2k=5即可求解.【解答】解:(1)∵方程有两个实数根.∴△=(﹣3)2﹣4k≥0,即9﹣4k≥0.解得k≤;(2)由根与系数的关系可知:x1+x2=3,x1•x2=k.∵+=(x1+x2)2﹣2x1•x2=5,∴9﹣2k=5,∴k=2.【点评】本题考查了一元二次方程根的情况与判别式△的关系和一元二次方程根与系数的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根;(4)x1+x2=;(5)x1x2=.20.(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.五、解答题(共1小题,满分10分)21.(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=10,b=60.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.【分析】(1)根据百分比=,计算即可;(2)根据中位数、众数的定义计算即可;(3)根据中位数确定奖励标准即可;【解答】解:(1)总人数=6×1+2×3+3×3+4+5=30人,a%==10%,b=100﹣10﹣6.7﹣23.3=60,故答案为10,60.(2)中位数为21、众数为20.(3)奖励标准应定为21万元,理由:如果要使得营业员的半数左右能获奖,应该以这些员工的月销售额的中位数为标准.【点评】本题考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、(本题满分12分)22.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.七、附加题(本题5分,记入总分,但分不超过100分)23.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线的综合应用,运用分类讨论以及数形结合思想是解答此题的关键.。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

安徽省合肥市2017-2018学年度八年级(下)期末模拟数学试题(一)及答案

安徽省合肥市2017-2018学年度八年级(下)期末模拟数学试题(一)及答案

安徽省合肥市2017-2018学年度第2学期期末模拟测试卷(一)八年级数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给题号 1 2 3 4 5 6 7 8 9 10 答案1.下列各式是最简二次根式的是()A.12B.15C.5.0D.352.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.1,2,3B.6,8,10 C.7,24,25 D.3,2,53.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接E D.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m第3题图第5题图第8题图4.甲、乙、丙、丁四位选手各10次射击的平均成绩都是92环,其中甲的成绩的方差为0.015,乙的成绩的方差为0.035,丙的成绩的方差为0.025,丁的成绩的方差为0.027,由此可知()A.甲的成绩最稳定B.乙的成绩最稳定C.丙的成绩最稳定D.丁的成绩最稳定5.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=5,则图中阴影部分的面积为()A.6 B.425C.225D.256.已知不等式ax+b<0的解集是x<-2,下列图象有可能是直线y=ax+b的是()A.B.C.D.7.对于实数a,b,我们定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min{2,-1}=-1. 若关于x的函数为y=min{2x-1,-x+3},则该函数的最大值是()A.32B.1 C.34D.358.如图,在△ABC中,CD⊥AB于点D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.89.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于21AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于()A.2 B.310C.815D.215第9题图第10题图10.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B-E-D 的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D得分评卷人二、填空题(每题5分,共20分)得分评卷人11.若代数式2xx有意义,则x 的取值范围是.12.如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是.第12题图第13题图13.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为.14.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.得分评卷人三、解答题(共90分)15.(8分)计算:(20183+20182)(3-2)16.(8分)已知x=5-1,y=5+1,求代数式x2+xy+y2的值.17.(8分)如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?18.(8分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.(1)求证:四边形ADCE是矩形.(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.19.(10分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元检测期末考试小张70 90 80小王60 75(1(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?20.(10分)矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA .(1)求证:四边形AFCE 是菱形;(2)若AB =8,BC =4,求菱形AFCE 的面积.21.(12分)如图,已知直线y =kx +b 经过点A (5, 0),B (1, 4)。

2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)

2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)

2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。

安徽省合肥市2017-2018学年度第2学期八年级数学 期末调研测试卷 (Word版附答案)

安徽省合肥市2017-2018学年度第2学期八年级数学 期末调研测试卷 (Word版附答案)

安徽省合肥市2017-2018学年度第2学期期末调研测试卷八年级数学试题完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题1.下列式子中,属于最简二次根式的是( )A .12B .32C .3.0D .72.在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是( ) A .94,94 B .94,95 C .93,95 D .93,96 3.下列计算正确的是( )A .2+3=5B .43-33=1C .32×22=62D .18÷3=34.若一次函数y=(k -1)x +3的图象经过第一、二、四象限,则k 的取值范围是( ) A .k >0 B .k <0 C .k >1 D .k <15.若△ABC 三边长a ,b ,c 满足32-+b a + |b -a -2| + (c -8)2=0,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 6.计算 (2+1)2018×(2−1)2017的结果是( ) A .1 B .−1 C .2+1 D .2−17.如图,△ABC 中,AD 平分∠BAC ,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,若AF=6,则四边形AEDF 的周长是( ) A .24 B .28 C .32 D .36 8.若菱形ABCD 的周长为16,面积为8,则∠ABC 的度数为( )A .30°B .150°C .30°或150°D .30°或120° 9.如图,矩形ABCD 中,AB=4,BC=3,动点E 从B 点出发,沿B-C-D-A 运动至A 点停止,设运动的路程为x ,△ABE 的面积为y ,则y 与x 的函数关系用图象表示正确的是( )A B C D 10.甲、乙两班举行电脑汉子输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:① 甲、乙两班学生平均成绩相同; ② 乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150为优秀); ③ 甲班成绩的波动比乙班大,上述结论正确的是( ) A .①②③ B .①② C .①③ D .②③二、填空题(每题5分,共20分)11.当x=2018-1时,代数式x 2+2x+2的值是 .12.李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是 环. 13.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的四边形,则原直角三角形纸片的斜边长是 .14.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合. 展开后,折痕DE 分别交AB 、AC 于点E ,G ,连接GF. 下列结论:①∠AGD =112.5°;②S △AGD =S △FGD ;③四边形AEFG 是菱形;④BE =2OG. 其中正确结论的序号是 .三、解答题(共90分)15.(8分)计算:(3+1)(3-1)+24-(21)016.(8分)在同一平面直角坐标系内画一次函数y 1=-x+4和y 2=2x -5的图象,根据图象求:(1)方程-x+4=2x -5的解;(2)当x 取何值时,y 1>y 2?当x 取何值时,y 1>0且y 2<0?17.(8分)如图,将矩形ABCD 纸片沿直线AE 折叠,顶点D 恰好落在边BC 上的点F 处,已知AB=8 cm ,AD=10 cm ,求CE 的长.18.(8分)如图,直角坐标系中的网格由单位正方形构成.△ABC 中,A 点坐标为(2,3)、B (-2,0)、C (0,-1).(1)AB 的长为 ,∠ACB 的度数为 ; (2)若以A 、B 、C 及点D 为顶点的四边形为平行四边形,请写出D 点的坐标 ,并在图中画出平行四边形.19.(10分)2016年我县某校有若干名学生参加了七年级数学期末测试,学校随机抽取了考生总数的10%的学生数学成绩,现将他们的成绩分成:A (96分~120分)、B (84分~95分)、C (72分~83分)、D (72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:(1)在所抽取的考生中,若D 级只有3人:①请估算该校所有考生中,约有多少人数学成绩是D 级?②考生数学成绩的中位数落在等级中;(2)有一位同学在计算所抽取的考生数学成绩的平均数时,其方法是:x =4308090105+++=76.25,问这位同学的计算正确吗?若不正确,请你帮他计算正确的平均数.20.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.21.(12分)(10分)我县某商场计划购进甲、乙两种商品共80件,这两种商品的进价、售价如表所示:设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式.(2)该商场计划最多投入1500元用于购进这两种商品共80件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?22.(12分)如图,在平面直角坐标系xOy中,一次函数y=-x+n的图象与正比例函数y=2x的图象交于点A(m,4).(1)求m、n的值;(2)设一次函数y=-x+n的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数y=-x+n的值小于函数y=2x的值的自变量x的取值范围.23.(14分)如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.(1)求BF和DE的长;(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.安徽省合肥市2017-2018学年度第2学期期末调研测试卷八年级数学试题 参考答案完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。

合肥市2017-2018学年度八年级下期末模拟测试卷(三)附答案-(数学)

合肥市2017-2018学年度八年级下期末模拟测试卷(三)附答案-(数学)

安徽省合肥市2017-2018学年度第2学期期末模拟测试卷(三)八年级数学试题完成时间:120分钟 满分:150分姓名 成绩 一、选择题(本大题10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列式子属于最简二次根式的是( ) A .31B .12+mC .3a (a >0)D .8 2.为了参加中学生篮球运动会,一支篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米) 40 40.5 41 41.5 42 购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( )A .40.5;41B .41;41C .40.5;40.5D .41;40.53.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥23B .x ≤3C .x ≤23D .x ≥3第3题图 第4题图 第6题图4.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=7,EF=3,则BC 长为( )A .9B .10C .11D .12 5.已知 4<a <7,()24-a +()27-a 化简后为( )A .3B . -3C .2a -11D . 11-2a6.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =13S 矩形ABCD,则点P到A 、B 两点距离之和PA+PB 的最小值为( )A .29B .34C .52D .417.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .23B .3C .1D .34第7题图 第9题图 第10题图8.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a 件,则每件3元,超过a 件,超过部分每件b 元,如图是一名工人一天获得薪金y (元)与其生产的件数x (件)之间的函数关系式,则下列结论错误的是( )A .a=20B .b=4C .若工人甲一天获得薪金180元,则他共生产50件D .若工人乙一天生产m (件),则他获得薪金4m 元9.如图,正方形ABCD 的对角线上的两个动点M 、N ,满足AB=2MN ,点P 是BC 的中点,连接AN 、PM ,若AB=6,则当AN+PM 的最小值时,线段AN 的长度为( ) A .4 B .25 C .6 D .3510.如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,则△APC 的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是( )得 分 评卷人二、填空题(每题5分,共20分)11.若2+x +( x -y+3)2=0,则(x+y)2018= .得 分 评卷人12.如图,一只蚂蚁沿着棱长为2的正方体表面从点A 出发,经过3个面爬到点B ,如果它运动的路径是最短的,那么最短路径长为 . 13.在函数y=21--x x 中,自变量x 的取值范围是 . 14.如图,在Rt △ABC 中,∠BAC=90°,AB=6,AC=8,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值是 . 得 分 评卷人三、解答题(共90分)15.(8分)计算:(5+2)(5+2)-24-|6-3|16.(8分)在如图所示的平面直角坐标系内画一次函数y 1=-x +4和y 2=2x -5的图象,根据图象写出: (1)方程-x +4=2x -5的解;(2)当x 取何值时,y 1>y 2?当x 取何值时,y 1>0且y 2<0?17.(8分)在△ABC 中,AH ⊥BC 于H ,D 、E 、F 分别是BC 、CA 、AB 的中点. 求证:DE=HF .18.(8分)如图,某中学有一块四边形的空地ABCD ,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?19.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生 人,并将条形图补充完整; (2)捐款金额的众数是 ,中位数是 ;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?20.(10分)如图,四边形ABCD 是正方形,点G 是BC 上一点,DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F. (1)求证:AE=BF ; (2)当∠BAG=30°,且AB=2时,求EF -FG 的值.21.(12分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.22.(12分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.23.(14分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.安徽省合肥市2017-2018学年度第2学期期末模拟测试卷(三)八年级数学试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.505.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2. 5 B.3,4,5 C.5,12,13 D.20,30,406.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.97.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.510.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1y2(选择“>”、“<”、=”填空).13.(3分)一直角三角形两条边长分别是12和5,则第三边长为.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)17.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>【解答】解:根据题意得:2x﹣3≥0,解得x≥.故选:A.2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、满足最简二次根式的定义,是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式,故选:B.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.50【解答】解:这组数据中105出现的次数最多,则众数为105.故选:A.5.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选:D.6.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.9【解答】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差S12= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,现在的方差S22= [(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x n﹣5﹣+5)2]= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,所以方差不变.故选:C.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>3【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.8.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S【解答】解:∵=(173+175+175+175+177)÷5=175(cm),=(170+171+175+179+180)÷5=175(cm),∴=,∵S2甲= [(173﹣175)2+3×(175﹣175)2+(175﹣177)2]=1.6,S2乙= [(170﹣175)2+(171﹣175)2+(175﹣175)2+(179﹣175)2+(180﹣175)2]=16.4,∴S2甲<S2乙,故选:B.9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.5【解答】解:连接AP,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠BAC=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1>y2(选择“>”、“<”、=”填空).【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.13.(3分)一直角三角形两条边长分别是12和5,则第三边长为13或.【解答】解:①12和5均为直角边,则第三边为=13.②12为斜边,5为直角边,则第三边为=.故答案为:13或.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)【解答】(1)解:(+3﹣2)×2=(+)×2=6+6.(2)解:(﹣1)2+(+2)2﹣2(﹣1)(+2)=[(﹣1)﹣(+2)]2=917.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是75g;乙厂抽取质量的众数是75g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)甲厂处在中间位置的数为第8个,为75克,故甲厂质量中位数为75克;乙厂75克出现了6次,故乙厂众数为75克.故答案为75,75.(2)根据=×[(73﹣75)2×2+(74﹣75)2×4+(75﹣75)2×4+(76﹣75)2×3+(77﹣75)2×1+(78﹣75)2×1)]≈1.87.∵>,∴快餐公司应选购甲加工厂的鸡腿.19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.【解答】解:∵直线y=ax﹣1经过点(4,3),∴4a﹣1=3,解得a=1,此直线解析式为y=x﹣1.∵直线y=﹣0.5x+b交y轴于点B(0,1),∴b=1,此直线解析式为y=﹣0.5x+1,∴,解得,∴点C(,),∴△ABC的面积=×(|1|+|﹣1|)×||=20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.【解答】证明:(1)∵AF⊥BE∴∠EAF+∠AEB=90°又∵正方形ABCD,∴∠ABE+∠AEB=90°,∴∠EAF=∠ABE,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴BE=AF,即AF=BE;(2)MP与NQ相等,理由:作AF∥PM,BE∥NQ,∵正方形ABCD,∴AM∥FP,BN∥EQ,∴四边形AMPF和四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,又∵MP⊥QN,∴BE⊥AF,∵(1)结论知AF=BE,∴MP=NQ.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,w随x的增大而减少,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;。

2017—2018学年度第二学期期末考试初二数学试题及答案

2017—2018学年度第二学期期末考试初二数学试题及答案

2017—2018学年度第二学期期末考试初二数学试题题目一二三总分评卷人得分一、选择题(每小题3分,共30分)1.下列调查中,适合用普查方式的是()A.调査绥化市市民的吸烟情况B.调查绥化市电视台某节目的收视率C.调查绥化市市民家庭日常生活支出情况D.调査绥化市某校某班学生对“文明佛山”的知晓率2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三角形三个顶点的坐标分别是()A.(1,7)、(-2,2)、(3,4)B.(1,7)、(2,2)、(3,4)C.(1,7)、(2,-2)、(3,3)D.(1,7)、(2,2) 、( 3,4)3.已知直线a外有一点P,则点P到直线a的距离是()A.点P到直线的垂线的长度B.点P到直线的垂线段C.点P到直线的垂线段的长度D.点P到直线的垂线4.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:1,则∠AOF的度数是()A.130°B.125°C.140°D.135°5.已知关于x的不等式(1-a)x>3的解集为x<31a-,则a的取值范围是()A.a>0 B.a<0 C.a<1 D.a>16.如果点P(5,y)在第四象限,那么y的取值范围是()A.y>0 B.y<0 C.y≤0D.y=07.下列说法正确的是()A.2π是分数B.2π是无理数C.如果a为实数,那么2a为正数D.如果a为实数,那么-a为负数7.若点A(a,4)和点B(3,b)关于y轴对称,则a,b的值分别是()A.3,4 B.2,-4 C.-3,4 D.-3,-49.有40个数据,共分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.20 B.0.30 C.0.25 D.0.1510.已知4520430X Y ZX Y Z-+=⎧⎨+-=⎩(xyx≠0),则x:y:x的值是()A.2:1:3 B.1:2:3 C.3:2:1 D.不能确定二、填空题: (每题3分,共33分)11.如果点P(a+6,a-3)在x轴上,那么其坐标是。

2017-2018年八年级下期末数学试卷有答案

2017-2018年八年级下期末数学试卷有答案

2017-2018学年度八年级第二学期期末试卷(试卷满分120分,答题时间90分钟)一、精心选一选:(每小题2分,共24分)在下列各题的四个备选答案中,只有一个是正确的,请把正确答案的代号写在题后的括号内。

1、下列计算正确的是( )A. BC. D.3+2、小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误..的是( ) A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米3、如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A 、(2,0)B 、1,0) C 、1,0) D 、)4、某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名) A. 130m 3 B. 135m 3 C. 6.5m 3 D. 260m 36、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米7、为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择( )A.九(1)班B. 九(2)班C. 九(3)班D. 九(4)班 8、根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )StA OStB OStCOStOD AC BPx -2 0 1 y3pA 9、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B.3.5C.2.5D.2.810、如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x <ax+4的解集为( )A .23<xB . x <3C .23>xD . x >311、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )A .2B .4C .4D .812、如图,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,S 与t 的大致图象是( )二、细心填一填:(每小题3分,共24分)13、请写出一个图形经过一、三象限的正比例函数的解析式 . 14、一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .15、张老师想对同学们的打字能力进行测试,他将全班同学分成5组.经统计,这5个小组平均每分钟打字的个数如下:100,80,x ,90,90.已知这组数据的众数与平均数相等,那么这组数据的中位数是 .ADO16、在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:则这10个小组植树株数的方差是____________. 17、如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是___________18、若整数x 满足|x|≤3,则使为整数的x 的值是(只需填一个).19、如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .20、如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(﹣2,0),(﹣1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ′B ′C ′(A 和A ′,B 和B ′,C 和C ′分别是对应顶点),直线y=x+b 经过点A ,C ′,则点C ′的坐标是 .三、耐心解一解(本大题共72分)21、计算:(第1、2小题每小题5分,第3小题8分共18分)(1)(2)(﹣)﹣﹣|﹣3|(3)29x y -+|x -y -3|互为相反数,则x +y 的值为多少?植树株数(株)5 6 7 小组个数 3 4 322、(10分.)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:△ADC △ECD;(2)若BD=CD,求证四边形ADCE是矩形.23、(12分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与x(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?24.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?盏,这两种台灯的进价、售价如表所示:(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?26、(12分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.2017~2018学年度八年级第二学期期中试卷答案一、精心选一选:1、C .2、B3、C.4、A.5、C6、B .7、C .8、A9、C. 10、A 11、B 12、C 二、细心填一填:13、y=x (答案不唯一).14、m >﹣2.15、90. 16、0.6 17、AE=cm ,18、﹣2或3 19、y=﹣2x ﹣2 20、(1,3)三、耐心解一解(本大题共72分)21、(1)(2)﹣6.(3)因为|x -y -3|,|x -y -3|=0 所以⎩⎨⎧=--=+-03092y x y x 所以⎩⎨⎧==1215y x ,所以27=+y x .22、证明:(1)∵△ABC 是等腰三角形 ∴∠B=∠ACB. AB=AC 又四边形ABDE 是平行四边形 ∴∠B=∠EDC AB=DE ∴∠ACB=∠EDC, AC=DE.DC=DC ∴△ADC ≅△ECD ; (2)∵AB=AC,BD=CD. ∴AD ⊥BC. ∴∠ADC=90°∵四边形ABDE 是平行四边形 ∴AE 平行且等于BD 即AE 平行且等于DC.∴四边形ADCE 是平行四边形. ∴四边形ADCE 是矩形.23、解(1)设y kx b =+,根据题意得 301.590k b k b +=⎧⎨+=⎩,解得60180k b =-⎧⎨=⎩60180(1.53).y x x =-+≤≤ (2)当2x =时,60218060y =-⨯+= ∴骑摩托车的速度为60230÷=(千米/时)÷=(小时)∴乙从A地到B地用时为9030324、补全表格如下:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7 7 4 0乙7 7.5 5.4 1甲、乙射击成绩折线图(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出;(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第5次射击比第四次射击少命中1环,且命中1次10环,而甲第2次比第1次、第4次比第3次,第5次比第4次命中环数都低,且命中10环的次数为0次,即随着比赛的进行,乙的射击成绩越来越好.25、解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(75﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.∴,∴直线MN的解析式为y=﹣x+6;x+6∴设P(a,﹣a+6)1②当PC=BC时,a2+(﹣a+6﹣6)2=64,,则,)(,(﹣,则﹣,∴(,﹣综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,。

安徽省合肥市2017-2018学年度八年级下期末模拟测试卷(三)附答案

安徽省合肥市2017-2018学年度八年级下期末模拟测试卷(三)附答案

安徽省合肥市2017-2018学年度第2学期期末模拟测试卷(三)八年级数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给题号 1 2 3 4 5 6 7 8 9 10答案1.下列式子属于最简二次根式的是()A.31B.12+m C.3a(a>0) D.82.为了参加中学生篮球运动会,一支篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)40 40.5 41 41.5 42购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为()A.40.5;41 B.41;41 C.40.5;40.5 D.41;40.53.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥23B.x≤3 C.x≤23D.x≥3第3题图第4题图第6题图4.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC长为()A.9 B.10 C.11 D.125.已知 4<a<7,()24-a+()27-a化简后为()A.3 B . -3 C.2a-11 D . 11-2a6.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A.29B.34C.52D.417.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.23B.3 C.1 D.34第7题图第9题图第10题图8.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A.a=20 B.b=4C.若工人甲一天获得薪金180元,则他共生产50件D.若工人乙一天生产m(件),则他获得薪金4m元9.如图,正方形ABCD的对角线上的两个动点M、N,满足AB=2MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4 B.25C.6 D.3510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()得分评卷人二、填空题(每题5分,共20分)得分评卷人11.若2+x +( x -y+3)2=0,则(x+y)2018= .12.如图,一只蚂蚁沿着棱长为2的正方体表面从点A 出发,经过3个面爬到点B ,如果它运动的路径是最短的,那么最短路径长为 . 13.在函数y=21--x x 中,自变量x 的取值范围是 . 14.如图,在Rt △ABC 中,∠BAC=90°,AB=6,AC=8,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值是 .三、解答题(共90分)15.(8分)计算:(5+2)(5+2)-24-|6-3|16.(8分)在如图所示的平面直角坐标系内画一次函数y 1=-x +4和y 2=2x -5的图象,根据图象写出: (1)方程-x +4=2x -5的解;(2)当x 取何值时,y 1>y 2?当x 取何值时,y 1>0且y 2<0?17.(8分)在△ABC 中,AH ⊥BC 于H ,D 、E 、F 分别是BC 、CA 、AB 的中点. 求证:DE=HF .18.(8分)如图,某中学有一块四边形的空地ABCD ,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?19.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生 人,并将条形图补充完整; (2)捐款金额的众数是,中位数是 ;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?20.(10分)如图,四边形ABCD是正方形,点G是BC 上一点,DE⊥AG 于点E ,BF ∥DE 且交AG 于点F. (1)求证:AE=BF ;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.21.(12分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.22.(12分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.23.(14分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.安徽省合肥市2017-2018学年度第2学期期末模拟测试卷(三)八年级数学试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

2017-2018学年八年级(下)期末数学试卷含答案解析

2017-2018学年八年级(下)期末数学试卷含答案解析

2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。

合肥市包河区2017-2018八年级下册期末考试

合肥市包河区2017-2018八年级下册期末考试

合肥市包河区2017-2018学年八年级(下)期末数学考试试卷(时间100min;满分100分)一、选择题(本题共10小题,每小题3分,共30分)1. 下列二次根式中,最简二次根式的是()A B C D2.)A B C D3. 下列四组线段中,可以构成直角三角形的是()A. 1.5,2,2.5B. 4,5,6C. 2,3,4D. 1 34. 甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种7千克,乙种10千克,丙种3千克放在一起,则售价应定为每千克()A. 6.7元B. 6.8元C. 7.5元D. 8.6元5.用配方法解方程x2-23x-1=0时,应将其变形为()A. (x-13)2=89B. (x+13)2=199C. (x-23)2=0D. (x-13)2=1096. 用长为28米的铝材制作一个矩形窗框,使它的面积为25平方米,若设它的一边长为x米,根据题意列出关于x的方程为()A. x(28-x)=25B. 2x(14-x)=25C. x(14-x)=25D. x(14-x)2=257.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图像可能是()A. B. C. D.8.如图,长为8cm的橡皮筋放置在x轴上,固定两端为A和B,然后把中点C向上拉升3cm至D点,则橡皮筋拉长了()第8题图A. 2cmB. 3cmC. 4cmD. 5cm9.如图,将沿对角线AC折叠,使点B落在B/处,若,则ÐB为()A. B. C. D.第9题图第10题图10.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于点E、G,连接GF,下列结论,正确的是()①②BE=2OG③S D AGD=S D OGD④四边形AEFG是菱形A.1个B.2个C.3个D. 4个二、填空题(共6小题,每小题3分,共18分)11. 甲、乙、丙进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是2S甲=0.53,2S乙=0.51,2S=0.43,则三人中成绩最稳定的是(填“甲”、“乙”或“丙”).丙12. 方程2(x-5)2=(x-5)的根是 .13. 若方程x、y(y2=0,则xy的值是 .14. 如果一元二次方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是 .15.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE^BC,垂足为点E,则OE = .第15题图第16题图16.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 .三、(本题共2小题,每小题7分,满分14分)17. 计算:)11112-⎛⎫⎪⎝⎭.18. 解方程:2640x x --=四、(本题共2小题,每小题8分,满分16分)19. 已知关于x 的一元二次方程230x x k -+=,方程有两实根1x 和2x . (1)求实数k 的取值范围;(2)当1x 和2x ,求k 的值;20. 如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分DAB ∠和CBA ∠. (1)求APB ∠的度数(2)如果5,8AD cm AP cm ==,求APB ∆的周长.五、(本题满分10分)21.某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x (单位:万元),商场规定:当15x <时为不称职,当1520x ≤<时,为基本称职,当2025x ≤<为称职,当25x ≥时为优秀,则“不称职”和“基本称职”共有 ,扇形统计图中的a = ,b = .(2)所有营业员月销售额的中位数和众数分别是多少;(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡达到或超过这个标准的营业员将受到奖励,如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由。

【全国市级联考】安徽省合肥市2017-2018学年度八年级下学期期末模拟测试数学试卷(三)

【全国市级联考】安徽省合肥市2017-2018学年度八年级下学期期末模拟测试数学试卷(三)
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵ AP×BC= AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC= =10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
尺码(厘米)
4040.541来自41.542购买量(双)
1
2
3
2
2
则这10双运动鞋尺码的众数和中位数分别为()
A.40.5;41B.41;41C.40.5;40.5D.41;40.5
3.如图,函数 和 的图象相交于点 ,则不等式 的解集为()
A. B. C. D.
4.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC的长为( )
【详解】
∵函数y=2x的图象过点A(m,3),
∴将点A(m,3)代入y=2x得,2m=3,
解得,m= ,
∴点A的坐标为( ,3),
∴由图可知,不等式2x⩾ax+4的解集为 .
故选:B.
【点睛】
本题考查一次函数,熟练掌握计算法则是解题关键.
4.C
【解析】
分析:先证明AB=AF=7,DC=DE,再根据EF=AF+DE﹣AD求出AD,即可得出答案.
【详解】
要使 在实数范围内有意义,
必须
所以x≥1且 ,
故答案为:x≥1且 .
【点睛】
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.

包河八下期末数学试卷答案

包河八下期末数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001……答案:C2. 已知a=3,b=-2,那么a² + b²的值是()A. 7B. 5C. 9D. 13答案:D3. 下列方程中,解为整数的是()A. x² - 4x + 3 = 0B. x² - 5x + 6 = 0C. x² - 6x + 9 = 0D. x² - 7x + 10 = 0答案:C4. 下列图形中,具有对称轴的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形答案:D5. 在直角坐标系中,点P(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)答案:A6. 已知函数f(x) = 2x + 3,那么f(-1)的值是()A. 1B. 3C. 5D. 7答案:C7. 下列各式中,正确的是()A. 5√2 > 3√3B. 5√2 < 3√3C. 5√2 = 3√3D. 无法比较答案:B8. 已知三角形ABC中,∠A= 60°,∠B = 45°,那么∠C的度数是()A. 75°B. 120°C. 135°D. 150°答案:B9. 下列数列中,第10项是5的是()A. 1, 3, 5, 7, 9, ...B. 2, 4, 6, 8, 10, ...C. 1, 4, 9, 16, 25, ...D. 3, 6, 9, 12, 15, ...答案:A10. 下列各式中,错误的是()A. a² + b² ≥ 2abB. a² - b² = (a + b)(a - b)C. a³ - b³ = (a - b)(a² + ab + b²)D. a³ + b³ = (a + b)(a² - ab + b²)答案:A二、填空题(每题5分,共25分)11. 若a² = 16,则a的值为_________。

2017-2018学年安徽省合肥市包河区八年级(下)期中数学试卷及试卷解析

2017-2018学年安徽省合肥市包河区八年级(下)期中数学试卷及试卷解析

2017-2018学年安徽省合肥市包河区八年级(下)期中数学试卷2.(3分)式子在实数范围内有意义,则x 的取值范围是( )A . x > 1B . x > 1C. x v 1D . x < 13.(3分)一个多边形每个外角都等于 36°则这个多边形是几边形( )A . 7B . 8C. 9D . 104. (3分)如图,图中的小正方形的边长为 〔,△ ABC 的三个顶点都在小正方形的顶点上,则△ ABC 的周长为( )A . 12+4 匚B . 16C. 7+7 二D . 5+11 匚 5.(3分)用公式法求一元二次方程的根时,首先要确定 a 、b 、c 的值.对于方程-4X 2+3=5X ,下列叙述正确的是( )A . a=- 4, b=5, c=3 B. a=- 4, b=- 5, c=3 C. a=4, b=5, c=3D . a=4, b=- 5, c= - 36. (3分)关于x 的一元二次方程(m - 2) x 2+2x= - 1有实数根,则m 的取值范一、选择题(每题3分,共30分) 1. (3分)下列运算中不正确的是( A. ( ~) 2=2B .=)C. _ = ± 2D . ~7=3围是()A. m<3 且m H2B. m v3C. m< 3D. m v 3 且m 工27. (3分)已知,如图长方形ABCD中,AB=3cm, AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则厶ABE的面积为()、填空题(每题4分,共20 分)11. (4分)方程x (x - 1) =x 的解为 _____12. ________________________________________________________ (4分)已知直角三角形的两边长为 3、4,则另一条边长是 ____________________ .C. 6cm 2D . 12cm 28. (3分)有四个三角形,分别满足下列条件: ①一个内角等于另外两个内角之和; ②三个内角之比为3; 4: 5; ③三边长分别为9,40,41 ; ④三边之比为8 15: 17.其中,能构成直角三角形的个数有()A . 1个B . 2个 C. 3个D . 4个9. (3分)在一次小型会议上,参加会议的代表每人握手一次,共握手 36次, 则参加这次会议的人数是( )A . 12 人B . 18 人C. 9 人D . 10 人10. (3分)如图,一系列等腰直角三角形(编号分别为①、②、③、④、 …)组 成了一个螺旋形,其中第1个三角形的直角边长为1,则第n 个等腰直角三角C. 2"1D . 2n13. (4分)实数a在数轴上的位置如图所示,贝U 心二-二:讥二-化简后14. _____________________________________________________________(4分)一个多边形的内角和是外角和的4倍,则此多边形的边数是__________ .15. (4分)如图,点A (0, 8),点B (4, 0),连接AB,点M , N分别是0A,AB的中点,在射线MN上有一动点巳若厶ABP是直角三角形,则点P的坐标是__________ .AB 、三、解答题(共50分)16. (5 分)计算:丁617. (5 分)解方程:(4x- 1)2-9=018. (6 分)如图,四边形ABCD中,AB=10, BC=13, CD=12 AD=5, AD丄CD, 求四边形ABCD的面积.19. (7分)已知:a=匚-1,求 ~' ; ^(2-亠)的值.a^l a-120. (7分)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根. (1)求k的取值范围;(2)若X1, X2是该方程的两个根,且(X1 - X2)2的值为12,求k的值.21. (10分)为了迎接五一”假期的客流高峰,万达茂”某品牌经销商发现某款新型运动服市场需求较大,该服装的进价为300元/件,每年支付员工工资和场地租金等其它费用总计40000元•经过市场调查发现如果销售单价为x元/ 件,则年销售量为(1000 - x)件.(1)用含x的代数式表示年获利金额w ;注:年获利=(销售单价-进价)X年销售量-其它费用(2)若经销商希望该服装一年的销售获利达60000元,且要使产品销售量较大,你认为销售单价应定为多少元?22. (10分)如图,已知一次函数y=-'x+5的图象交y轴于点A,交x轴于点B,6点P从点A开始沿y轴以每秒1个单位长度的速度向下移动,与此同时,点Q从点O开始沿x轴以每秒2个单位长度的速度向右移动.如果P、Q两点同时出发,当点Q运动到点B时,两点停止运动.设运动时间为t秒.(1)当t为何值时,PQ的长度等于5?(2)是否存在t的值,使得四边形APQB的面积等于11 ?若存在,请求出此时附加题:(本题5分,答对计入总分,但满分不超过100分)23. 在厶ABC中,/ A=30°, AB=20,点D在线段AB上,且AD=5,点P为射线AC边上一动点,则△ PBD周长的最小值是 ______ .20仃-2018学年安徽省合肥市包河区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1. (3分)下列运算中不正确的是()A. ("■)2=2B.」一=LC. _ = ±2D. ~7=3【分析】根据二次根式的性质逐一计算即可得出答案.【解答】解:A、(匚)2=2,正确;B、-,正确;C、~=2,错误;D、,-;-=3,正确;故选:C.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质.2. (3分)式子在实数范围内有意义,则x的取值范围是()A. x> 1B. x> 1C. x v 1D. x< 1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x- 1>0,解得x> 1.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.3. (3分)一个多边形每个外角都等于36°则这个多边形是几边形()A. 7B. 8C. 9D. 10【分析】多边形的外角和是360。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷一、选择题(本题共10小题,每题3分,共30分)1.(3分)下列二次根式中,是最简二次根式的为()A.B.C.D.2.(3分)下列根式中,与为同类二次根式的是()A.B.C.D.3.(3分)下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3 4.(3分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元5.(3分)用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2=B.(x+)2=C.(x﹣)2=0D.(x﹣)2=6.(3分)用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为()A.x(28﹣x)=25B.2x(14﹣x)=25C.x(14﹣x)=25D.7.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.8.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm9.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°10.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)11.(3分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”)12.(3分)方程2(x﹣5)2=(x﹣5)的根是.13.(3分)若实数x,y满足,则xy的值是.14.(3分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是.15.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.16.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三、(本题共2小题,每小题7分,满分14分)17.(7分)计算:.18.(7分)解方程:x2﹣6x﹣4=0.四、(本题共2小题,每小题8分,满分16分)19.(8分)已知关于x的一元二次方程x2﹣3x+k=0方程有两实根x1和x2.(1)求实数k的取值范围;(2)当x1和x2是一个矩形两邻边的长且矩形的对角线长为,求k的值.20.(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.五、解答题(共1小题,满分10分)21.(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x <15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=,b=.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.六、(本题满分12分)22.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.七、附加题(本题5分,记入总分,但分不超过100分)23.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.2017-2018学年安徽省合肥市包河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每题3分,共30分)1.(3分)下列二次根式中,是最简二次根式的为()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)下列根式中,与为同类二次根式的是()A.B.C.D.【分析】把化为最简二次根式,然后根据被开方数相同的二次根式叫做同类二次根式解答.【解答】解:=3,所以,与为同类二次根式的是.故选:A.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.(3分)下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选:A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.4.(3分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元【分析】根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【解答】解:售价应定为:≈6.8(元);故选:B.【点评】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.5.(3分)用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2=B.(x+)2=C.(x﹣)2=0D.(x﹣)2=【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.故选:D.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.(3分)用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为()A.x(28﹣x)=25B.2x(14﹣x)=25C.x(14﹣x)=25D.【分析】由它的一边长为x,表示出另一边长,根据矩形的面积公式列出方程即可得.【解答】解:设它的一边长为x米,则另一边长为=14﹣x(米),根据题意,得:x(14﹣x)=25,故选:C.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.7.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k<0,b<0,即kb>0,故B不正确;C.k>0,b<0,即kb<0,故C正确;D.k<0,b=0,即kb=0,故D不正确;故选:C.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.8.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.9.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.10.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S=S△OGD④四边形AEFG是菱形()△AGDA.1个B.2个C.3个D.4个【分析】①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.=S△FDG≠S ③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD故③错误.△OGD【解答】解:①由四边形ABCD是正方形和折叠性知,∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,故①正确,②由四边形ABCD是正方形和折叠性得出,∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,∵∠ABF=45°,∴∠ABF=∠DFG,∴AB∥GF,又∵∠BAC=∠BEF=45°,∴EF∥AC,∴四边形AEFG是平行四边形,∴四边形AEFG是菱形.∵在Rt△GFO中,GF=OG,在Rt△BFE中,BE=EF=GF,∴BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性知,AD=FD,AG=FG,DG=DG,在△ADG和△FDG中,,∴△ADG≌△FDG(SSS),∴S△AGD=S△FDG≠S△OGD故③错误.正确的有①②④,故选:C.【点评】本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.二、填空题(共6小题,每小题3分,共18分)11.(3分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是丙(填“甲”或“乙”或“丙”)【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵S甲2=0.53,S乙2=0.51,S丙2=0.43,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.(3分)方程2(x﹣5)2=(x﹣5)的根是x1=5,x2=5.5.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:2(x﹣5)2﹣(x﹣5)=0,(x﹣5)[2(x﹣5)﹣1]=0,x﹣5=0,2(x﹣5)﹣1=0,x1=5,x2=5.5,故答案为:x1=5,x2=5.5.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.13.(3分)若实数x,y满足,则xy的值是﹣2.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,∴xy=﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是a<1且a≠0.【分析】由关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,即可得判别式△>0,继而可求得a的范围.【解答】解:∵关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1,∵方程ax2+2x+1=0是一元二次方程,∴a≠0,∴a的范围是:a<1且a≠0.故答案为:a<1且a≠0.【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.15.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.16.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.【分析】根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.三、(本题共2小题,每小题7分,满分14分)17.(7分)计算:.【分析】根据平方差公式、二次根式的化简、负整数指数幂的法则计算.【解答】解:原式=3﹣1﹣4+2=0.【点评】本题考查了二次根式的混合运算、负整数指数幂,解题的关键是掌握有关法则,以及公式的使用.18.(7分)解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.四、(本题共2小题,每小题8分,满分16分)19.(8分)已知关于x的一元二次方程x2﹣3x+k=0方程有两实根x1和x2.(1)求实数k的取值范围;(2)当x1和x2是一个矩形两邻边的长且矩形的对角线长为,求k的值.【分析】(1)利用一元二次方程根的判别式即可得到关于k的不等式,从而求解;(2)根据根与系数的关系,以及+=(x1+x2)2﹣2x1•x2=5,即9﹣2k=5即可求解.【解答】解:(1)∵方程有两个实数根.∴△=(﹣3)2﹣4k≥0,即9﹣4k≥0.解得k≤;(2)由根与系数的关系可知:x1+x2=3,x1•x2=k.∵+=(x1+x2)2﹣2x1•x2=5,∴9﹣2k=5,∴k=2.【点评】本题考查了一元二次方程根的情况与判别式△的关系和一元二次方程根与系数的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根;(4)x1+x2=;(5)x1x2=.20.(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.五、解答题(共1小题,满分10分)21.(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=10,b=60.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.【分析】(1)根据百分比=,计算即可;(2)根据中位数、众数的定义计算即可;(3)根据中位数确定奖励标准即可;【解答】解:(1)总人数=6×1+2×3+3×3+4+5=30人,a%==10%,b=100﹣10﹣6.7﹣23.3=60,故答案为10,60.(2)中位数为21、众数为20.(3)奖励标准应定为21万元,理由:如果要使得营业员的半数左右能获奖,应该以这些员工的月销售额的中位数为标准.【点评】本题考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、(本题满分12分)22.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.七、附加题(本题5分,记入总分,但分不超过100分)23.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线的综合应用,运用分类讨论以及数形结合思想是解答此题的关键.。

相关文档
最新文档