江西省 专升本 高等数学(一) 模拟试卷及答案31

合集下载

高等数学 专升本考试 模拟题及答案

高等数学 专升本考试 模拟题及答案

高等数学(专升本)-学习指南一、选择题1.函数2222ln 24z xyxy 的定义域为【D 】A .222xyB .224x yC .222x yD .2224xy解:z 的定义域为:420402222222yxyxy x ,故而选D 。

2.设)(x f 在0x x 处间断,则有【D 】A .)(x f 在0x x 处一定没有意义;B .)0()0(0xf x f ; (即)(lim )(lim 0x f x f x x xx );C .)(lim 0x f x x 不存在,或)(lim 0x f xx ;D .若)(x f 在0x x 处有定义,则0x x时,)()(0x f x f 不是无穷小3.极限2222123lim n n nnnn【B 】A .14B .12C .1 D. 0解:有题意,设通项为:222212112121122n Sn nnnn nnn n n原极限等价于:22212111lim lim222nnn nnnn4.设2tan y x ,则dy【A 】A .22tan sec x xdxB .22sin cos x xdx C .22sec tan x xdx D.22cos sin x xdx解:对原式关于x 求导,并用导数乘以dx 项即可,注意三角函数求导规则。

22'tan tan 2tan 2tan sec y x d x xdxx x 所以,22tan sec dy x x dx,即22tan sec dyx xdx5.函数2(2)yx 在区间[0,4]上极小值是【D 】A .-1B .1 C.2D .0解:对y 关于x 求一阶导,并令其为0,得到220x ;解得x 有驻点:x=2,代入原方程验证0为其极小值点。

6.对于函数,f x y 的每一个驻点00,x y ,令00,xx A f x y ,00,xy B f x y ,00,yy Cf x y ,若20ACB,则函数【C 】A .有极大值B .有极小值C .没有极值D .不定7.多元函数,f x y 在点00,x y 处关于y 的偏导数00,y f x y 【C 】A .000,,limx f x x y f x y xB.000,,limx f x x y y f x y xC .00000,,limy f x y y f x y yD.0000,,limy f x x y yf x y y8.向量a 与向量b 平行,则条件:其向量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件9.向量a 、b 垂直,则条件:向量a 、b 的数量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件10.已知向量a 、b 、c 两两相互垂直,且1a ,2b ,3c ,求a b a b【C 】A .1 B.2 C .4 D.8解:因为向量a 与b 垂直,所以sin ,1a b ,故而有:22sin ,22114a a ba ba a -a b+b a -b b b ab a b 11.下列函数中,不是基本初等函数的是【B 】A .1xyeB .2ln yxC .sin cos x yxD .35yx解:因为2ln x y 是由u yln ,2x u复合组成的,所以它不是基本初等函数。

2023年成人高考专升本高等数学(一)试题及答案详解

2023年成人高考专升本高等数学(一)试题及答案详解

2023年成人高等学校招生全国统一考试专升本高等数学(一)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第I卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→0时,5x-si n5x是x的【】A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量2.设y=√2x+1,则y'=【】A.B.C.D.3.设y=e*,则d y=】【A.er d x B.-e^d x C.e'd x D.一e'd x~4.设函数在x =0处连续,则b=【】A.2C.0B.1D.—15.【】A.s i nx+CB.—s i n x+CC.c o s x+CD.—c o s x+C6.【】A.2B.1C.D.0【】7.设,则D.A.C.8.幂级数【】的收敛域是D.[-1,1]B.(-1,1)C.(-1,1)A.(-1,1)【】在平面3x-2y+z-7=0上,则k=9.已知直线A.0B.1C.2D.3【】10.微分方程y"+y=e²r的一个特解是A.B.C.D.第Ⅱ卷(非选择题,共110分)(t为参数),二、填空题(11~20小题,每小题4分,共40分)贝12.设13.设y=x+e²,则y”=14.设y=x+s i n x,则y'=15.16.17.设z=e²,则d z=18.过点(0,1,1)且与直线垂直的平面方程为19.设区域D=((x,y)|O≤x≤2,-l≤y≤1},则20.微分方程xy'+y=0满足初始条件y(1)=1的解为y=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)计算22.(本题满分8分)计23.(本题满分8分)求微分方程的通解.25.(本题满分8分)求函数f(x)=x²e*的单调区间和极值.26.(本题满分10分)设D是由曲线y=1-x²(x≥0),x=0,y=0所围成的平面图形.(1)求D的面积S;(2)求D绕x轴旋转一周所得旋转体的体积V.,其中D是由曲线y=√1-x²,y=x,y=-x所围成的闭区域.计28.(本题满分10分)已知函数f(x)连续,且满参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了高阶无穷小量的知识点.【应试指导】,故5x-sin5x是x的高阶无穷小量.2.【答案】D【考情点拨】本题考查了复合函数求导的知识点.【应试指导】3.【答案】B【考情点拨】本题考查了微分的知识点.【应试指导】dy=(e*)'dx=-e*dx,4.【答案】B【考情点拨】本题考查了分段函数连续性的知识点.【应试指导】因f(x)在x=0处连续,则有b=1.5.【答案】D【考情点拨】本题考查了不定积分的知识点.【应试指导】6.【答案】C【考情点拨】本题考查了洛必达法则的知识点.【应试指导】7.【答案】B【考情点拨】本题考查了偏导数的知识点.【应试指导】8.【答案】D【考情点拨】本题考查了幂级数收敛域的知识点.【应试指导】收敛半径,所以幂级数的收敛区间为(-1,1).当x=-1时,级数为收敛的p级数.故该级数的收敛为收敛的交错级数;当x=1时,级数域为[-1,1].9.【答案】C【考情点拨】本题考查了直线与平面的位置关系的知识点.【应试指导】由题可知直线的方向向量s=(k,1,-4),平面的法向量n=(3,-2,1).由于s上n,因此有3k-2-4=0,故k=2.10.【答案】A【考情点拨】本题考查了二阶常系数线性非齐次微分方程特解的知识点.【应试指导】可验证,四个选项中只有A项满足微分方程,故其特解为.二、填空题11.【答案】e²【考情点拨】本题考查了两个重要极限的知识点.【应试指导】12.【答案】3【考情点拨】本题考查了参数方程求导的知识点.【应试指导】13.【答案】e'【考情点拨】本题考查了高阶导数的知识点.【应试指导】y'=1+e²,故y”=e².14.【答案】1+c o s x【考情点拨】本题考查了导数的运算的知识点.【应试指导】y'=(x+sinx)'=1+cosx.15.【答案】【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】16.【答案】【考情点拨】本题考查了反常积分的计算的知识点.【应试指导】17.【答案】e²>(y d x+x d y)【考情点拨】本题考查了全微分的知识点.【应试指导】dz= de^>=e²d(x y)=e*(y dx+xdy).18.【答案】x+2y+z-3=0【考情点拨】本题考查了平面点法式方程的知识点.【应试指导】由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.19.【答案】4【考情点拨】本题考查了二重积分的知识点.【应试指导】20.【答案】【考情点拨】本题考查了一阶线性齐次微分方程的知识点.【应试指导】由xy+y=0得,通解为,将y(1)=1代入通解,得C=1,故所求的解为三、解答题21.=1.22.23.由题可知24.25.f(x)的定义域为(-α,+o),f'(x)=2xe+-x2e+=e*(-x2+2x),令f'(x)=0,得xj=0,x2=2.列表如下:20(0,2)(2,+o)x(-α,0)y0+0极小值极大值y由表可知,函数的单调增区间为(0,2);单调减区间为(一~,0),(2,+o).极大值为f(2)=4e2,极小值为f(0)= 0.;27.积分区域用极坐标可表示为28.由两边同时求导得(1+x2)f(x)= sinx+xcosx,所以。

专升本高等数学一(一元函数微分学)模拟试卷3

专升本高等数学一(一元函数微分学)模拟试卷3

专升本高等数学一(一元函数微分学)模拟试卷3(总分:54.00,做题时间:90分钟)一、选择题(总题数:10,分数:20.00)1.设函数f(x)在x=0,则(分数:2.00)A.f(0)=0且f -' (0)存在B.f(0)=1且f -' (0)存在C.f(0)=0且f +' (0)存在√D.f(0)=1且f +' (0)存在解析:解析:因为f(x)在x=0处连续,且=1,所以f(0)=0.从而有+' (0),故选C.2.设f(x)=e 2 + ,则f '(分数:2.00)A.B. √C.D.解析:解析:f ' (x)=(e 2 ) '3.设函数f(x)=xsinx,则f '(分数:2.00)B.1 √D.2π解析:解析:因为f ' (x)=sinx+xcosx,所以.4.函数x=0处 ( )(分数:2.00)A.连续且可导B.连续且不可导√C.不连续D.不仅可导,导数也连续解析:解析:因为=0=f(0),所以函数在x=0处连续;所以函数在x=0处不可导.5.设y=x 2 +2x一1(x>0),则其反函数x=φ(y)在y=2处导数是(分数:2.00)A. √B.C.D.解析:解析:y=x 2 +2x一1(x>0),y ' =2x+2,y=2时,x=1或x=一3(舍),y ' (1)=4,所以x=φ(y)在y=2处的导数为φ',故选A.6.已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x) ( )(分数:2.00)A.不可导B.可导且f(0)≠0C.取得极大值D.取得极小值√解析:解析:因为>0,由极限的保号性知,存在x=00,因此在该邻域内有f(x)>f(0),所以f(x)在x=0处取极小值,故选D.7.函数y=e x +arctanx在区间[一1,1]上 ( )(分数:2.00)A.单调减少B.单调增加√C.无最大值D.无最小值解析:解析:因y ' =e x0处处成立,于是函数在(-∞,+∞)内都是单调增加的,故在[一1,1]上单调增加,在区间端点处取得最值.8.设函数f(x)满足关系式f '' (x)+[f ' (x)] 2 =x,且f ' (0)=0,则 ( )(分数:2.00)A.f(0)是f(x)的极大值B.f(0)是f(x)的极小值C.点(0,f(0))是曲线y=f(x)的拐点√D.f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点解析:解析:由f ' (0)=0及f '' (x)+[f ' (x)] 2 =x知f '' (0)=0且f '' (x)=x一[f ' (x)] 2,又x,f' (x)可导,所以f '' (x)可导,于是f ''' (x)=1—2f ' (x)f '' (x),f ''' (0)=1>0,而f ''',故f '' (x)在x=0左、右两侧异号,故选C.9.设f(x)在[0,a]上二次可微,且xf ' (x)一f(x)<0,则(0,a)内是 ( )(分数:2.00)A.单调减少√B.单调增加C.有增有减D.不增不减(0,a)内单调减少.10.点(0,1)是曲线y=ax 3 +bx 2 +c的拐点,则有 ( )(分数:2.00)A.a=1,b=一3,c=1B.a≠0,b=0,c=1 √C.a=1,b=0,c为任意D.a、b为任意,c=1解析:解析:(0,1)在曲线上,所以c=1,y ' =3ax 2 +2bx ,y '' =6ax+2b ,(0,1)为拐点,所以y ''(0)=0,得a≠0,b=0,故选B .二、填空题(总题数:5,分数:10.00)11.设f '(x)=g(x),则2x)]= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:g(sin 2x)sin2x )解析:解析:2 x)]=f ' (sin 2 x).(sin 2 x) ' =2sinxcosxf ' (sin 2 x)=sin2xg(sin 2x).12.设y=(3x+1) 27,则y (27)= 1. (分数:2.00)填空项1:__________________ (正确答案:正确答案:3 27.27!)解析:解析:对于形如y=(ax+b) n的函数,其k 阶导为y (k)k (ax+b) n -k,对于此题n=k=27,a=3,b=1,所以y (27)=27!.3 27 . 13.若f '(x 0 )=1,f(x 0 )=0,则= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:一1)解析:解析:-f '(x 0 )=-1.14.函数F(x)=∫ 1 x(2->0)的单调递减区间是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:0<x <[*])解析:解析:由F(x)=∫ 1 x(2一 )dt(x >0),则F '(x)=2一. 令F '(x)=0,得时,F '(x)<0,F(x)单调递减.15.设点(x 0 ,f(x 0 ))是曲线y=f(x)的拐点,且f ''(x 0 )≠0,则f ''(x 0 )必定 1. (分数:2.00)填空项1:__________________ (正确答案:正确答案:不存在) 解析:解析:拐点是二阶导数为0的点或是二阶导数不存在的点.三、解答题(总题数:11,分数:24.00)16.当h→0,f(x 0 +3h)一f(x 0 )+2h 是h 的高阶无穷小量,求f '(x 0 ). (分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:因为h→0,f(x 0 +3h)-f(x 0 )+2h 是h 的高阶无穷小量,即 所以,3f '(x)+2=0,即f '(x 0.)解析:17.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:则根据点斜式求得切线方程为y=a+[x 一a[一1)]=x +2a .)解析:18.设f(x)在x=1处有连续导数,且f ' (1)=2,求(分数:2.00)__________________________________________________________________________________________正确答案:()解析:19.设y=y(x)由所确定,求(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:,由隐函数求导)解析:20.计算lnl.01的近似值.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由微分定义可知f(x+△x)=f(x)+f '(x)△x,令f(x)=lnx,则ln1.01=f(1.01)=f(1)+f ' (1).0.01=0+1.0.01=0.01.)解析:给定曲线 4.00)(1).求曲线在横坐标为x 0的点处的切线方程;(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:由y ' = 可知曲线y= 在横坐标为x 0的点处的切线方程为) 解析:(2).求曲线的切线被两坐标轴所截线段的最短长度.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由切线方程y一(x—x 0 )分别令y=0,x=0可求得该切线在x轴,y轴上的截距分别为设该切线被两坐标轴所截线段长度为L,则L 2=X 2+Y 2= .令=0,得驻点x 0 = .由此可知,L 2在x 0 = 处取得极小值,即最小值,)解析:21.设f(x)在[a,b]上可导,且f(a)=f(b)=0,证明:至少存在ξ∈(a,b),使f(ξ)+f ' (ξ)=0.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:因[e x f(x)] ' =e x f(x)+e x f ' (x)=e x [f(x)+f ' (x)],故设F(x)=e x f(x),显然F(x)在[a,b]上连续且可导,F(a)=F(b)=0.由罗尔定理,至少存在ξ∈(a,b),使F ' (ξ)=0.即e ξ [F(ξ)+f ' (ξ)]=0,e ξ>0,则f(ξ)+f ' (ξ)=0.)解析:22.设f(x)在[0,c]上有定义,f ' (x)存在且单调减少,f(0)=0,证明对于0≤a≤b≤a+b≤c,恒有f(a+b)≤f(a)+f(b).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:在[0,a]上用拉格朗日中值定理得 f(a)一f(0)=f ' (ξ)(a一0),(0<ξ<a) 即有f(a)=af '(ξ),(0<ξ<a) 再对f(x)在[b,a+b]上应用拉格朗日中值定理得f(b+a)=f(b)+f '(η)a,(b<η<a+b) 因为f '(x)单调减少,且ξ<a≤b<η,则有f '(ξ)>f '(η),而a≥0,故af '(ξ)≥af ' (η),于是f(a+b)≤f(b)+af ' (ξ)=f(b)+f(a).)解析:23.证明:当0<x sinx+tanx>2x.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:设f(x)=sinx+tanx一2x,f ' (x)=cosx+sec 2 x一2, f '' (x)=一sinx+2sec 2xtanx=sinx(2sec 3 x一1)>0,x∈(0,),因此f ' (x)单调增加,故f ' (x)>f ' (0)=0,因此f(x)单调增加,故f(x)>f(0)=0,即sinx+tanx>2x,x∈(0,).)解析:24.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,,证明至少存在一个ξ∈(0,1),使f ' (ξ)=1.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:令F(x)=f(x)一x,则有F(0)=f(0)一0=0,F(1)=f(1)一1=一1<0,>0.又F(x)在[ ,1]上连续,故由零点定理知,存在η∈( ,1),使F(η)=0,在[0,η]上利用罗尔定理知,至少存在ξ∈(0,η(0,1),使F ' (ξ)=0,f ' (ξ)=1.)解析:25.设一物体下端为直圆柱,上端为半球形,如果此物体的体积为V,问这物体的尺寸各是多少时,才能使其表面积最小?(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:设底面半径为r,圆柱高为h,则V=πr 2h+ πr 3,S=3πr 2+2πrh,经验证其为极小值点,在此问题中也为最小值点,r代入h中解得h= ,所以底面半径和直圆柱的高均为时,S有最小值.)解析:。

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.极限等于( )A.eB.ebC.eabD.eab+b正确答案:C解析:由于,故选C。

知识模块:极限和连续2.在空间直角坐标系中,方程x2-4(y-1)2=0表示( )A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面正确答案:A解析:由于所给曲面方程x2-4(y-1)2=0中不含z,可知所给曲面为柱面,但是由于所给方程可化为x2=4(y-1)2,进而可以化为x=2(y-1)与-z=2(y-1),即x-2y+2=0,x+2y-2=0,为两个平面,故选A。

知识模块:空间解析几何3.级数是( )A.绝对收敛B.条件收敛C.发散D.收敛性不能判定正确答案:A解析:依前述判定级数绝对收敛与条件收敛的一般原则,常常先判定的收敛性,由于的p级数,知其为收敛级数,因此所给级数绝对收敛,故选A。

知识模块:无穷级数填空题4.若函数在x=0处连续,则a=________。

正确答案:-2解析:由于(无穷小量乘有界变量),而f(0)=a+2,由于f(x)在x=0处连续,应有a+2=0,即a=-2。

知识模块:极限和连续5.若f’(x0)=1,f(x0)=0,则=________。

正确答案:-1解析:由于f’(x0)存在,且f(x0)=0,由导数的定义有知识模块:一元函数微分学6.设y=xe+ex+lnx+ee,则y’=________。

正确答案:y’=ee-1+ex+解析:由导数的基本公式及四则运算规则,有y’=ee-1+ex+。

知识模块:一元函数微分学7.曲线y=ex+x上点(0,1)处的切线方程为________。

正确答案:由曲线y=f(x)在其上点(x0,f(x0))的切线公式y-f(x0)=f’(x0)(x-x0),可知y-1=2(x-0),即所求切线方程为y=2x+1。

解析:注意点(0,1)在曲线y=ex+x上,又y’=ex+1,因此y’|x=0=2。

江西省 专升本 高等数学(一) 模拟试卷及答案40

江西省 专升本 高等数学(一) 模拟试卷及答案40
4、C
[考点]本题考查了换元积分法的知识点.
[解析]
5、C
[考点]本题考查了直线方程的知识点.
[解析]两平面的交线方向
即为所求直线的方向,所以所求直线方程为
6、C
[考点]本题考查了二元函数的全微分的知识点.
[解析]
注:另解如下,由一阶微分形式不变性得
7、C
[考点]本题考查了二重积分的性质的知识点.
[解析]因积分区域D是以点(2,1)为圆心的一单位圆,且它位于直线x+y=1的上方,即在D内恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
答案:
第Ⅰ卷(选择题)
一、选择题
1、C
[考点]本题考查了利用 求极限的知识点.
[解析]
2、C
[考点]本题考查了一元函数的一阶导数的知识点.
[解析] y=x2+1,
3、D
[考点]本题考查了函数的单调区间的知识点.
[解析] y=ex+e-x,则y′=ex-e-x,当x>0时,y′>0.所以y在区间[0,+∞)上单调递增.
14、设函数f(x)有连续的二阶导数且f(0)=0,f′(0)=1,f″(0)=-2,则
15、求
16、
17、
18、设 ,将此积分化为极坐标系下的积分,此时I=______.
19、若幂级数 的收敛半径为R,则幂级数 的收敛半径为______.
20、方程cosxsinydx+sinxcosydy=0的通解为______.
A.y=C1e-x+C2e3x+y* B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y* D.y=C1ex+C2e-3x+y*

专升本高等数学一(函数、极限与连续)模拟试卷3(题后含答案及解析)

专升本高等数学一(函数、极限与连续)模拟试卷3(题后含答案及解析)

专升本高等数学一(函数、极限与连续)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数f(x)=的定义域是( )A.一4≤x≤3B.一4≤x≤0C.0<x≤3D.一4<x<3正确答案:A解析:由题意知定义域为两段函数定义域的并集,即[一4,3],故选A.知识模块:函数、极限与连续2.函数y=sinx+的最小正周期是( )A.2πB.πC.D.正确答案:A解析:y=sinx+=2π,故选A.知识模块:函数、极限与连续3.若= ( )A.kB.2kC.∞D.不存在正确答案:A解析:因为数列{a2n}为数列{an}的一个子列,故=k.知识模块:函数、极限与连续4.下列极限中正确的是( )A.B.C.D.正确答案:D解析:因为第二重要极限的结构形式为=e,式中“□”可以是自变量x,也可以是x的函数,而□→0,表示当x→x0(x→∞)时,必有□→0,即□是当x→x0(x→∞)时为无穷小量且小括号内用“+”相连时上式=e成立,所以A、B、C不正确,故选D.知识模块:函数、极限与连续5.当x→0时,下列变量中为无穷小的是( )A.lg|x|B.sinC.cotxD.一1正确答案:D解析:x→0时,lg|x|→一∞,sin无极限,cotx→∞,一1→0,故选D.知识模块:函数、极限与连续6.= ( )A.1B.0C.2D.正确答案:C解析:(x+1)=2.知识模块:函数、极限与连续7.若f(x)与g(x)在x→x0时都是无穷大,则下列极限正确的是( )A.B.C.D.正确答案:D解析:无穷大量乘以一个常数还是无穷大量,故选D,举反例,如令f(x)=,g(x)=,x0=0,此时A、B、C项均不成立,但若f(x)=g(x)=,x0=0,此时A、B、C项又都成立,所以A,B,C项不能确定.知识模块:函数、极限与连续8.函数f(x)=在x=1处间断是由于( )A.B.C.D.正确答案:D解析:=1,f(1)=2,故不连续的原因是.知识模块:函数、极限与连续9.下列区间中,使方程x4一x一1=0至少有一个根的区间是( ) A.(1,2)B.(2,3)C.(,1)D.(0,)正确答案:A解析:令f(x)=x4一x一1,f(0)=-1<0,<0,f(1)=一1<0,f(2)=13>0,f(3)=77>0,在4个区间中,只有f(1)f(2)<0,由函数的连续的零点定理可知,至少存在一点ξ∈(1,2),使得f(ξ)=0,即方程x4一x-1=0至少有一个根.知识模块:函数、极限与连续填空题10.函数f(x)=的定义域是_________.正确答案:(一∞,一1)∪(一1,+∞)解析:sinμ的定义域为(一∞,+∞),但中1+x≠0,即x≠一1,故函数f(x)=的定义域为(一∞,一1)∪(一1,+∞).知识模块:函数、极限与连续11.函数f(x)=ln(x+)是_________函数,因而其图形关于_________对称.正确答案:奇,原点解析:f(x)==-ln(x+)=一f(x),所以f(x)为奇函数,其图形关于原点对称.知识模块:函数、极限与连续12.若函数f(x)的反函数图像过点(1,5),则函数y=f(x)的图像必过点_________.正确答案:(5,1)解析:因为原函数和反函数图像关于y=x对称,所以原函数过(1,5),则反函数过点(5,1).知识模块:函数、极限与连续13.=________.正确答案:0解析:x→0+,arctan=0.知识模块:函数、极限与连续14.若(cosx一b)=5,则a=________,b=________.正确答案:1,一4解析:由(ex一a)=0,即a=1.又有(cosx一b)=1—b=5,故b=一4.知识模块:函数、极限与连续15.若f(x)=在x=0处连续,则a=________.正确答案:0解析:=0.又f(0)=a,则若f(x)在x=0连续,应有a=0.知识模块:函数、极限与连续16.设f(x)=有无穷间断点x=0和可去间断点x=1,则a=________.正确答案:1解析:知识模块:函数、极限与连续解答题17.计算.正确答案:.涉及知识点:函数、极限与连续18.求.正确答案:型,使用洛必达法则.=0.涉及知识点:函数、极限与连续19.求极限.正确答案:.涉及知识点:函数、极限与连续20.求极限(sinx+cosx).正确答案:涉及知识点:函数、极限与连续21.求极限.正确答案:此极限为型,所以涉及知识点:函数、极限与连续22.求极限.正确答案:这是“1∞”型未定式.涉及知识点:函数、极限与连续23.求极限.正确答案:原式=.涉及知识点:函数、极限与连续24.设f(x)=,求f(x)的间断点.正确答案:由题意知,使f(x)不成立的x值,均为f(x)的间断点,故sin(x 一3)=0或x一3=0时f(x)无意义,则间断点为x一3=kπ(k=0,±1,±2,…).即x=3+kπ(k=0,±1,±2…).涉及知识点:函数、极限与连续25.证明方程4x=2x在区间(0,)内至少有一个实根.正确答案:令f(x)=4x一2x,f(0)=一1<0,>0,由连续函数的零点定理可知至少存在一点C∈(0,)使得f(c)=0,即方程4x=2x在(0,)内至少有一个根.涉及知识点:函数、极限与连续。

江西省专升本高等数学(一)模拟试卷及答案33

江西省专升本高等数学(一)模拟试卷及答案33

江西省专升本高等数学(一)模拟试卷及答案33专升本高等数学(一)模拟133一、选择题1、2、设有直线,则该直线必定______A.过原点且垂直于x轴B.过原点且平行于x轴C.不过原点,但垂直于x轴D.不过原点,且不平行于x轴3、设函数f(x)=e-x2,则f'(x)等于A.-2e-x2 B.-2xe-x2C.2e-x2 D.2xe-x24、设函数在x=0处连续,则a等于______ A.-1 B.1 C.2 D.35、设,则f(x,y)=( )6、设z=x2+y2-2x+4y+5,( )A.2x-2 B.2y+4C.2x+2y+2 D.2y+4+x2-2x7、函数在x=0处______A.连续且可导 B.连续且不可导C.不连续 D.不仅可导,导数也连续8、级数是______A.绝对收敛 B.条件收敛C.发散 D.收敛性不能判定9、设有直线当直线l1与l2平行时,λ=( )10、设D={(x,y)|x2+y2≤a2,a>0,y≥0},在极坐标系中二重积分可以表示为______。

二、填空题11、12、=______.13、=______.14、微分方程y"=y的通解为______.15、函数的定义域为______.16、微分方程y'=e x-y满足初始条件y|x=0=0的特解是______。

17、18、设,则du=______.19、20、设f(2)=1,,则______.三、解答题21、求方程的通解.22、求.23、计算,其中D是抛物线y=x2,y=4x2及直线y=1所围成的区域.24、25、将f(x)=e-2x展开为x的幂级数.26、求幂级数的收敛区间.将下列积分化为极坐标形式27、28、答案:一、选择题1、A2、A3、B4、D5、C[解析] ,令x+y=u,x-y=u,则有.故选C.6、B[解析] z=x2+y2-2x+4y+5,,故选B.7、B本题考查了函数在一点处的连续性和可导性的知识点.因为f(0),所以函数在x=0处连续;又因不存在,所以函数在x=0处不可导.8、A9、C[解析] 本题考查的知识点为直线问的关系.直线其方向向量s1={1,2,λ},s2={2,4,-1).l1∥l2,则故选C.10、A二、填空题11、2xsinx2[解析] 本题考查的知识点为可变上限积分的求导.12、[解析] 本题考查的知识点为定积分的换元积分法.解法1 设,则x=2t,dx=2dt.当x=0时,t=0;当x=π时,.因此。

江西省 专升本 高等数学(一) 模拟试卷及答案44

江西省 专升本 高等数学(一) 模拟试卷及答案44

专升本高等数学(一)模拟144第Ⅰ卷(选择题)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1、极限等于______A.2B.1C.D.02、设,则f′(x)=______A.B.C.D.3、极限等于______A.0 B.1 C.2 D.+∞4、设函数f(x)在[0,1]上连续,在(0,1)内可导,且f′(x)<0,则下列结论成立的是______ A.f(0)<0 B.f(1)>0C.f(1)>f(0) D.f(1)<f(0)5、曲线y=x3(x-4)的拐点个数为______A.1个 B.2个 C.3个 D.0个6、设F(x)是f(x)的一个原函数,则∫cosxf(sinx)dx等于______A.F(cosx)+C B.F(sinx)+CC.-F(cosx)+C D.-F(sinx)+C7、下列积分中,值为零的是______A.B.C.D.8、直线A.过原点且与y轴垂直 B.不过原点但与y轴垂直C.过原点且与y轴平行 D.不过原点但与y轴平行9、设函数,则f y(1,0)等于______ A.0 B.1 C.2 D.不存在10、下列级数中,绝对收敛的是______A.B.C.D.第Ⅱ卷(非选择题)二、填空题11、设若f(x)在x=1处连续,则a=______.12、13、,求dy=______.14、15、y=y(x)是由方程xy=e y-x确定的函数,则dy=______.16、17、18、若D是中心在原点、半径为a的圆形区域,则19、幂级数的收敛区间为______.20、方程y″+y′+y=2xe-x的特解可设为y*=______.三、解答题21、设函数,求y′.22、如果,求f(x).23、设f(x)的一个原函数为,求∫xf′(x)dx.24、25、求方程的通解.26、计算,其中D是由y=x和y2=x围成.27、设2sin(x+2y-3z)=x+2y-3z,确定了函数z=f(x,y),求.28、讨论曲线的单调性、极值、凸凹性、拐点.答案:第Ⅰ卷(选择题)一、选择题1、D[考点] 本题考查了函数的极限的知识点.[解析] 因x→∞时,;而sin2x是有界函数;所以由无穷小的性质知,注:该题不是重要极限的类型.2、B[考点] 本题考查了一元函数的一阶导数的知识点.[解析]注:因e2是常数,所以(e2)′=0.3、D[考点] 本题考查了洛必达法则的知识点.。

江西专升本高等数学模拟试题(一)

江西专升本高等数学模拟试题(一)

江西省专升本高数模拟试题(一)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)1,0)(()1,0()()1,1)(()1,1)(()(,.1D C B A e x y x l x ---=则切点的坐标为相切轴平行且与曲线与设直线偶函数为为奇函数偶函数为为奇函数上在则上可导的奇函数为上可导的偶函数为设)()()()()()()()()()()()()(),(,),()(,),()(.2x g x f D x g x f C x g x f B x g x f A x g x f ''''+''+∞-∞+∞-∞+∞-∞同阶但不等价无穷小量等价无穷小量低阶无穷小量高阶无穷小量的是时当)()()()()()21ln(,0.32D C B A x x x x -+→]1,)((]2,1[)(),1)[(]1,0[)()(.4-∞+∞=-D C B A xe y x 区间为的单调增加且图形为凸函数有两条水平渐近线只有一条铅直渐近线 只有一条水平渐近线 直渐近线 既有水平渐近线又有铅的图形函数)()()()()(11.5D C B A e e y x x +-= 既非必要又非充分条件充要条件充分条件必要条件处连续的在点处左连续是在点函数)()()()()()()(.600D C B A x x f x x f无法确定等于等于等于的值则存在极限处连续在设)(2)(1)(0)()()0(')0(,1)(lim ,0)(.70D C B A f f x x f x x f x +==→为反对称矩阵为对称矩阵都为反对称矩阵都为对称矩阵为对称矩阵为反对称矩阵则阶矩阵为设C B D C B C C B B C B A A A C A A B n A T T ,)(,)(,)(,)()(,,,.8-=+=ID IC IB A AB n I I B I A n T T T --+=-==ααααααα)()()(0)()(,,2,),21,0,,0,21(.9等于则矩阵阶单位为其中矩阵维行向量设Λ 10.设A ,B ,C 是三个随机事件,在下述各式中,不成立的是 ( ))()()()()()())(()()(C B C A C B A D BA B A AB B A C AB B A B B A B B A A -+-=-++=-+=-++=+-二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.____1)1('.14的特解是初值问题⎩⎨⎧==+y e y xy x .__________3)12()1(.151的收敛区间为幂级数的∑∞=--n nnn x .__________,.16|)0,1(22=∂∂∂=+yx zxez yx 则设二元函数 .__________,110111*********.17的秩为则矩阵A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=.__________|3|,21||,.181*=-=-A A A A 则且为四阶矩阵设.__________)(,4.0)(,4.0)(,,.19===B P A P B A P B A 则为相互独立的事件设.__________51,]1,1[.20的概率为过则该点到原点距离不超上任取一点在X -三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤..__________,.13.__________),,(,32lim .12.__________)(lim ,2008)41ln()(lim.11|023020==+==-+-==+=→→→x y x x x dx dyx y e xy e bab a b x a x x x f xxx x f 则的函数是确定设则为常数如果则已知)1(cos 1lim.210x x e x x-→--求极限.(6分)).(,)1()(.222x f x x x f x '++=求设(6分).1.232⎰-dx xx 求不积分.(6分)..240dx xe x ⎰∞+-求不积分.(7分).],0[)(,cos sin )(.25上最大值与最小值在求设πx f x x x x f +=.(7分).,,)(.26dz x y xf z u f 求可导设⎪⎭⎫⎝⎛=(7分)..,.2722的区域所包围为其中求二重积分x y x D dxdy x D=+⎰⎰(7分)分)并求出该面积夹平面图形的面积最大坐标轴所使过该点的切线与两个在此曲线上求一点设曲线方程8.(,,),0(.28≥=-x e y x.,01234123121112.29的值求设行列式a a a a =(8分))10(.,200021021,,42,3,.301分求矩阵是三阶单位矩阵其中且满足阶矩阵为已知A B E E B B A B A ⎪⎪⎪⎭⎫ ⎝⎛-=-=-31.两台车床加工同样零件,甲车床出废品的概率为,乙车床出废品的概率为,加工出来的零件放在一起,且知甲乙车床产量之比是3:2,现从中任取一件是合格品的概率为多少(8分)32.设连续型随机变量X 的概率密度为,其它⎩⎨⎧<<+=,010,)(x b ax x f 已知E (X )=31.试求:(1)常数a ,b 的值;(2)随机变量X 的方差;(3)概率P{X>}.(10分)。

成人高考专升本高等数学(一)试题及答案

成人高考专升本高等数学(一)试题及答案

普通高校专升本《高等数学》试卷一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个小题,每一小题3分,共24分)1. 曲线 ⎪⎩⎪⎨⎧=++-=01e 2y t tt x y在 0=t 处的切线方程为 .2. 已知 )(x f 在 ),(∞+-∞ 内连续 , 1)0(=f , 设 ⎰=2sin d )()(x xt t f x F , 则)0(F '= . 3. 设 ∑ 为球面 2222a z y x =++ (0>a ) 的外侧 , 则⎰⎰∑++y x z x z y z y x d d d d d d 333 = . 4. 幂级数 ∑∞=-+-1)1(3)2(n n nn x n 的收敛域为 . 5. 已知 n 阶方阵 A 满足 022=++E A A , 其中 E 是 n 阶单位阵, k 为任意实数 , 则1)(--kE A= .6. 已知矩阵 A 相似于矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-100011211 , 则 =+*E A .7. 已知 6.0)(,2.0)(==B A P B P , 则 )|(B A P = . 8. 设 )(x f ξ 是随机变量 ξ 的概率密度函数 , 则随机变量ξη= 的概率密度函数)(y f η= .二.选择题. (本题共有8个小题,每一小题3分,共24分,每个小题给出的选项中,只有一项符合要求)1. ⎥⎦⎤⎢⎣⎡+++∞→n n n n n n πππsin 2sin sin 1limΛ= ( ). (A ) 2(B )21(C )2π(D )π2 2. 微分方程0d )2(d )2(=-+-y x y x y x 的通解为 ( ). (C 为任意常数) (A ) C y xy x =++22 (B ) C y xy x =+-22 (C ) C y xy x =+-2232 (D ) C y xy x =++22323. x x n x x x x nn d e !)1(!3!2!1121032⎰⎥⎦⎤⎢⎣⎡+-++-+-ΛΛ = ( ) .(A ) 1e - (B ) e(C ))1(e 313-(D )1e 3-4. 曲面 z y x =+22,422=+y x 与 xOy 面所围成的立体体积为 ( ).(A ) π2(B ) π4(C ) π6(D ) π85. 投篮比赛中,每位投手投篮三次, 至少投中一次则可获奖.某投手第一次投中的概率为 21; 若第一次未投中, 第二次投中的概率为107 ; 若第一, 第二次均未投中, 第三次投中的概率为 109 , 则该投手未获奖的概率为 ( ). (A ) 2001(B )2002(C )2003(D )20046. 设 k ααα,,,21Λ 是 k 个 m 维向量 , 则命题 “ k ααα,,,21Λ线性无关 ” 与命题 ( ) 不等价 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专升本高等数学(一)模拟131一、选择题
1、极限( )
A.-1 B.0 C.1 D.2
2、( )
3、函数y=ln(1+x2)的单调增加区间是______.
A.(-5,5) B.(-∞,0) C.(0,+∞) D.(-∞,+∞)
4、∫ln(2x)dx等于______
A.2xln(2x)-2x+c
B.2xln2+lnx+c
C.xln(2x)-x+c
D.
5、
6、二次积分( )
7、设在点x=1处连续,则a等于( ).
A.-1 B.0 C.1 D.2
8、
9、设函数y=f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),曲线f(x)在(a,b)内平行于x轴的切线______。

A.仅有一条 B.至少有一条
C.不存在 D.不一定存在
10、______
A.-e B.-e-1 C.e-1 D.e
二、填空题
11、
12、=______.
13、函数y=2x2的单调增加区间为______.
14、=______.
15、∫xe2x dx=______。

16、设f(x)为连续函数,则∫f2(x)df(x)=______.
17、级数的收敛半径是______。

18、设,则y'=______.
19、设y=x2·2x+,则y'=______.
20、设z=y2x,则=______.
三、解答题
21、
22、求函数y=xe x的极小值点与极小值。

23、求极限.
24、
25、已知,求y(n).
26、
27、设函数y=xsinx,求y'.
28、,其中D是由直线x=2,y=x及双曲线xy=1所围成的平面区域.
答案:
一、选择题
1、C
[解析] 解法一:
解法二:由洛必达法则可解.此形式满足型,
2、B。

相关文档
最新文档