细胞衰老 β-半乳糖苷酶-1
细胞15.细胞衰老与细胞程序性死亡知识考点
细胞15.细胞衰老与细胞程序性死亡知识考点●cell senescence 细胞衰老●定义:除了生殖干细胞,绝大多数正常细胞在经历有限次数的分裂后会进入“衰老”状态,不在具有增殖能力,细胞的形态结构和代谢活动也发生显著改变●Hayflick limit, Hayflick界限定义:原代培养细胞在进入增殖停滞状态前的有限倍增次数●特征●形态结构:大而扁平,细胞质膜的流动性降低,细胞骨架结构改变,细胞黏附性增强,细胞内溶酶体体积增大,内部含有大量未分解的脂质成分●分子特征●细胞不可逆地停止分裂,即使添加生长因子也无济于事●若干细胞周期的负调节因子表达上调或活性增强●衰老相关的β-半乳糖苷酶活化衰老细胞中pH 6.0条件下即表现出活性将细胞固定后,用pH 6.0的β-半乳糖苷酶底物溶液进行染色,能明显区分年轻和年老的培养细胞●衰老细胞端粒长度明显减少●出现衰老相关异染色质集中现象●产生一系列衰老特征性分泌物●分子机制●replicative senescence, RS 复制衰老●end replication problem 末端复制问题DNA聚合酶不能从头合成子链,复制母链3’端时,子链5’端与之配对的RNA引物被切除后会产生末端缺失,导致子链5’末端随着细胞分裂次数的增加而逐渐缩短●端粒的缩短●telomerase 端粒酶定义:以自身含有的RNA为模板,反转录出端粒DNA,从而避免端粒的缩短●p53信号通路引发细胞衰老●端粒的缩短导致细胞内DNA修复体系p53的活化,p53继而诱导p21的表达,p21使得CDK失去活性,从而阻止Rb蛋白的磷酸化,Rb不能与E2F分离,E2F处于持续失活状态,不能正常起始G_1/S检查点若干关键因子的转录,细胞周期停滞导致细胞衰老●另一条通路中,氧化损伤等因素可以通过诱导p16的表达导致细胞衰老●stress-induced premature senescence, SIPS 胁迫诱导的早熟性衰老定义:一些刺激因素(超量的过氧化物、原癌基因的非正常活化、非端粒的DNA损伤)能够缩短细胞的复制寿命,使细胞提前进入衰老状态●细胞衰老与个体衰老的关系●个体衰老在分子及细胞水平的标志●基因和蛋白质水平●基因组DNA损伤明显积累●染色体端粒长度明显缩短●表观遗传修饰(DNA及组蛋白某些位点甲基化或乙酰化修饰发生改变、染色质高级结构变化)引起基因表达异常●协助蛋白质折叠的体系以及降解非正常折叠蛋白质的体系发生障碍●细胞水平●失去增殖能力和功能减退的细胞累积●细胞组织器官生存微环境恶化●干细胞减弱甚至丧失组织更新能力●细胞通信的失调●线粒体功能障碍●细胞衰老与个体衰老的间接关联●组织干细胞衰老导致细胞再生受阻,器官机能下降,进而影响全身各系统之间的协调配合为什么组织干细胞会衰老?除了生殖干细胞外,多数单能和多能干细胞如表皮、骨髓和神经干细胞具有一定活性的端粒酶,但活性不足以完全弥补细胞复制过程中端粒的缩短,它们的增殖能力随着个体生命进程而下降。
细胞衰老与相关基因的关系
细胞衰老与相关基因的关系摘要】衰老是细胞的重要生命现象之一,主要受遗传与环境两个反面的影响,对细胞衰老相关基因的研究,可了解细胞衰老的分子机制,可揭示细胞衰老相关基因间相互作用及在衰老过程中的调节、损伤、应激、修复等内在联系,为老年病,细胞癌变、器官移植等提供了新的研究途径。
【关键词】细胞损伤促衰老因子自由基近年来,国内外对细胞衰老相关基因的研究非常活跃。
研究多以线虫、酵母、果蝇、小鼠为模型。
目前已发现有数十种促衰老因子(DAF)与之有关,改变某些基因的活性可使寿命延长或促进衰老发生,本文综述了衰老相关基因的分布、定位、分子生物学表达调控及临床应用。
1969年Haffman报道了一种存在于人类红细胞基质提取物夜相中的物质,它能控制抗体包被的绵羊红细胞的补体介导的溶血;Nichoson-weller[1]等通过丁醇提取,采用连续色谱法,从豚鼠和人类红细胞基质中纯化一种固有的膜糖蛋白,在纯化过程中监测到它能加速C3转化酶的衰老,从而命名为DAF。
1、DAF的分布与定位DAF广泛分布于外周血细胞[2],包括红细胞、粒细胞、TB淋巴细胞、单核细胞、骨髓单核细胞和红细胞系统的祖细胞上。
在动物模型证实可存在于心脏的脉管系统,肾脏、肝脏的各种器官中,表达在正常人的结肠、直肠粘膜及膀胱、子宫、胸膜等上皮细胞的表面,但自然杀伤细胞(NK)上没有DAF,不同细胞中DA F个数也不相同。
衰老基因可分布于多条染色体,如Newbold[3]将3号染色体上的衰老基因定位于3p2111~21113,可抑制端粒酶活性,Uejima[4]等将2号染色体上的衰老基因定位于2q37,不影响端粒酶活性,这也表明衰老存在多种调控途径。
2、细胞衰老的机理细胞衰老的研究有多种学说,20世纪60年代中期英国学者Harman首先提出的自由基学说是具有代表性的衰老学说之一。
目前影响力较大的是氧化-损伤学说[5],即代谢产生的氧化产物导致分子损伤,由于氧化产物不断积累,最终细胞衰老和死亡,自由基的种类繁多,其中以活性氧簇自由基(ROS)最为重要。
衰老相关β-半乳糖苷酶染色
衰老相关β-半乳糖苷酶染色细胞衰老β-半乳糖苷酶染色试剂盒产品编号产品名称规格BL133A细胞衰老β-半乳糖苷酶染色试剂盒100 T产品简介:细胞衰老时,SA-β-Gal (senescence-associated β-galactosidase)活性水平会上调,此时本试剂盒可以对衰老的细胞或组织进行染色检测。
正常细胞经过有限次数的分裂后停止分裂,出现不可逆的生长停滞,此时细胞仍然是存活的,但是细胞形态和生理代谢活性发生明显变化,通常表现为细胞体积变大,与衰老相关的β-半乳糖苷酶为活化状态。
β-半乳糖苷酶是细胞溶酶体内的水解酶,通常在pH 4.0时表现活性,但在衰老细胞内该酶在pH 6.0条件下表现活性。
本试剂盒即是基于此现象及原理,以X-Gal为底物,衰老细胞特异性β-半乳糖苷酶催化该底物生成蓝色产物,表现为细胞胞质有蓝色沉积物,在光学显微镜下即可很容易观察到变成蓝色的表达β-半乳糖苷酶的细胞或组织。
本试剂盒可以用于培养细胞的衰老检测,也可以用于组织切片的衰老检测。
本试剂盒仅染色衰老细胞,对衰老前的细胞(presenescent cells)、静止期细胞(quiescent cells)、永生细胞(immortal cells)或肿瘤细胞等不会染色。
产品组成:组分名称规格BL133A-1β-半乳糖苷酶染色固定液100 mLBL133A-2β-半乳糖苷酶染色液A100 mLBL133A-3β-半乳糖苷酶染色液B 1.2 mLBL133A-4DMF(二甲基甲酰胺) 5 mlBL133A-5X-Gal(粉末)100 mg使用方法:见说明书注意事项:1、X-Gal粉末配制成溶液后,分装成小份-20℃保存,3个月内有效,X-Gal溶液需室温完全解冻混匀后再使用。
2、β-半乳糖苷酶染色液A和B需提前恢复至室温后再使用,配制好的染色工作液需充分混匀无沉淀方可使用。
3、衰老细胞β-半乳糖苷酶染色反应依赖于特定的pH条件,不能在CO2培养箱中进行孵育显色,否则会影响染色工作液的pH,导致染色失败。
β-半乳糖苷酶染色(组织染色)
β-半乳糖苷酶染色(组织)检测原理:一般认为绝大多数正常细胞仅有有限的分裂能力,在不能分裂后就进入衰老(senescence)状态。
此时细胞仍然是存活的,但细胞的基因和蛋白的表达谱发生了很大改变。
衰老的细胞不能在一些常规的刺激下再诱导细胞分裂,并且衰老细胞的细胞周期分布也比较特殊,不同于一些损伤诱导的细胞休眠,也不同于细胞生长接触抑制的情况。
衰老细胞通常体积变大,并表达在pH6.0时有高酶活性的β-半乳糖苷酶(β-galactosidase)。
细胞衰老也被认为是生物体抑制肿瘤的一种方式,同时也是生物体老化(aging)的一种潜在原因。
由此以X-Gal为底物,在衰老特异性的β-半乳糖苷酶催化下会生成深蓝色产物。
从而在光学显微镜下很容易观察到变成蓝色的表达β-半乳糖苷酶的细胞。
操作步骤:(1)将石蜡组织切片置于65°C恒温箱,烤片1h左右。
(2)脱蜡:二甲苯I 10min→二甲苯II 10min →梯度酒精(由高到低)各5min。
(3)1×PBS 洗涤3次,每次 5min。
注:对于冷冻切片直接按照以下步骤进行。
(4)加入适当体积的β-半乳糖苷酶染色固定液,以充分盖住组织为宜,室温固定不少于 15min。
(5)1×PBS 洗涤3次,每次 5min。
(6)加入适当量的染色工作液。
(7)37℃孵育过夜,最好把整个切片浸泡在染色工作液中。
注:37℃孵育不能在二氧化碳培养箱中进行。
(8)1×PBS 洗涤3次,每次 5min。
(9)脱水:梯度酒精(由低到高)各5min → 二甲苯I 10min→ 二甲苯 II 10min。
(10)加上封片液封片后4℃可以保存较长时间。
(11)普通光学显微镜下观察。
光学显微镜下很容易观察到变成蓝色的表达β-半乳糖苷酶的细胞。
注:所用试剂按照β-半乳糖苷酶染色试剂盒说明配制。
β-半乳糖苷酶染色试剂盒市面上有很多种,但检测方法几近相同,具体还是要参照相应的试剂说明书来操作。
β-半乳糖苷酶(β-Galactosidase, β-GAL)试剂盒说明书
货号:MS2615 规格:100管/48样β-半乳糖苷酶(β-Galactosidase, β-GAL)试剂盒说明书微量法正式测定前务必取2-3个预期差异较大的样本做预测定测定意义:β-GAL(EC 3.2.1.23)广泛存在于动物、植物、微生物和培养细胞中,能够催化β半乳糖苷化合物中β半乳糖苷键水解,此外还具有转半乳糖苷的作用。
β-GAL不仅可为植物的快速生长释放储存的能量,还能在正常的多糖代谢、细胞壁组分代谢以及衰老时细胞壁降解过程中催化多糖、糖蛋白以及半乳糖脂末端半乳糖残基的水解,释放自由的半乳糖。
测定原理:β-GAL分解对-硝基苯-β-D-吡喃半乳糖苷生成对-硝基苯酚,后者在400nm有最大吸收峰,通过测定吸光值升高速率来计算β-GAL活性。
自备实验用品及仪器:可见分光光度计/酶标仪、台式离心机、水浴锅、可调式移液器、微量石英比色皿/96孔板、研钵、冰和蒸馏水。
试剂组成和配制:提取液:液体100mL×1瓶,4℃保存。
试剂一:粉剂×1瓶,-20℃保存;临用前加入2.5mL蒸馏水,充分溶解备用;用不完的试剂仍-20℃保存。
试剂二:液体4mL×1瓶,4℃保存。
试剂三:液体13mL×1瓶,4℃保存。
粗酶液提取:1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104个):提取液体积(mL)为500~1000:1的比例(建议500万细菌或细胞加入1mL提取液),超声波破碎细菌或细胞(冰浴,功率20%或200W,超声3s,间隔10s,重复30次);15000g 4℃离心10min,取上清,置冰上待测。
2、组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL提取液),进行冰浴匀浆。
15000g 4℃离心10min,取上清,置冰上待测。
3、培养液等液体样本:直接检测测定步骤:1、分光光度计或酶标仪预热30min以上,调节波长至400nm,蒸馏水调零。
衰老
1998年,Wright(Science,1998)
将人的端粒酶反转录酶亚基(hTRT) 基因通过转染,引入正常的人二倍
体细胞,发现表达端粒酶的转染细
胞,其端粒长度明显增加,分裂旺 盛,作为细胞衰老指标的β-半乳糖
苷酶活性则明显降低,与对照细胞
形成极鲜明的反差。 此外,表达端粒酶的细胞寿命比正 常细胞至少长20代,且其核型正常。
体细胞突变理论(wear and tear theory):
衰老是构成机体的生物大分子损伤累积,尤其是DNA分子的损 伤,导致其功能缺陷。
Determined genetically
Interacting epigenetically
Metabolic capacity
Stress response
3.
4.
生命周期短(平均寿命仅20天) 。
体细胞少,易于追踪。
线虫(clock,clk-)突变体: clk- / clk- ) 生活过程的时间延长:发育、细胞周期、成体的节律性行为 生命期延长! Clk基因作用于染色体的沉默区? Puca 等(2001) 跟踪观察137 组年龄91~109 岁的长寿同胞 ( siblings) , 308 名长寿老人,发现他们的4 号染色体D4S1564
这些多肽均是呼吸链复
合物亚单位的组成部分。
缺乏组蛋白的保护,缺乏校正DNA损伤的修复酶。 氧化压力为环境因素的原始应力,首先作用于线粒体DNA, 导致线粒体DNA (mtDNA) 的突变。 正常人心脏,随年龄增加可发生358型mtDNA的缺失,野生型 mtDNA下降至总mtDNA的11%。 骨骼肌细胞中,老年个体比青年个体mtDNA重排发生的数目和 种类明显增高。
端粒DNA序列由特殊的富含GT区的简单串联重复
细胞衰老检查的实验技术及原理(一)
细胞衰老检查的实验技术及原理(一)关键词:细胞色素成纤维细胞酶磷酸试剂标准物质北京标准物质网衰老细胞的形态变化主要表现为形状变大、变平、胞核增大、核膜内陷、染色质固缩、胞内溶酶体变多等。
衰老细胞中细胞器数量尤其是线粒体数量减少,胞质内有色素堆积和空泡形成,最终导致细胞死亡。
总体来说衰老细胞的各种结构呈退行性变化。
根据其特征,目前常用于检测衰老的方法如下:一、β-半乳糖苷酶活性1995年,Dimiri等发现体外培养二倍体成纤维细胞在培养基pH值为6时,其β-半乳糖苷酶染色的阳性率随代龄增加而逐渐上调,他们把这种中性β-半乳糖苷酶定义为SA-β-gal,即衰老相关的β-半乳糖苷酶。
衰老细胞或组织产生的β-半乳糖苷酶可以催化底物X—Gal,生成深蓝色产物,从而在光学显微镜下很容易观察到(图5-5-1)。
在人体表皮角质层细胞中,也可以发现SA-β-gal 随年龄的增加而增加。
并且,SA-β-gal不依赖于DNA复制,可以区分衰老细胞与静止期的细胞。
SA-β-gal是一种体内体外都适用的检测衰老的生物标记物。
由于检测SA-β-gal的方法简单易行,其在检测衰老细胞方面有很广泛的应用,目前已经有2400多篇论文应用了这种方法。
二、端粒长度的检查端粒是位于真核细胞染色体末端顶部的核蛋白结构,由高度保守的TTAGGG 重复序列组成,其存在可以保护染色体末端,是维持染色体稳定的重要因素。
鉴于端粒的特殊结构,端粒的长度会随着每次细胞的分裂而缩短,因此,端粒长度是衰老的一个重要生物标志。
这里我们主要讨论端粒限制性片段(TRF)分析及荧光原位杂交(FISH)法。
端粒限制性片段分析:TRF分析也称作端粒的Southern印迹法,是应用针对端粒重复序列的探针来检测限制性酶切后所保留的端粒的方法。
限制性酶会将基因组DNA消化为短的片段,留下大量完好的端粒,即所谓的端粒限制性片段。
以凝胶电泳分离基因组片段,通过放射性探针(CCCTAA)。
衰老可导致间充质干细胞氧化损伤修复能力降低
f 2 0 1 2 1 0 0 9 o o 9 , M w J s )
: 0 协 1 2 - D 1 0 1 _ - 0 ] g
Agi ng r e du ces oxi da t i ve dam a ge r ep ai r abi l i t y of mes ench ym al s t em cel l s
中国组织工程研 宄
谚 仃 誊 7 0
2 01 3—0 3—0 5出版
Chi n e s e J o u r n a l o fT i s s ue En g i n e e r i ng Re s ea r c h Ma r c h 5 2 01 3 V o L 1 7 No. 1 O
摘 要 背景 :DN A损 伤及 损伤 后 的应答 异 常会 导致 基因 组不稳 定 ,基 因组 不稳 定是 肿瘤 形成 的重 要 因素之 一 。
通 讯作 者 :杨 劲 ,博 士 生 导 师 ,教授 ,解放 军第 三 军 医 大学基 础 部 细胞 生物 学教 研室 ,重庆 市
40 0 0 38
衰老可导致间充质干细胞氧化损伤修复能力降低术 ★
张 岳, 余 瑾 ,张 艺 ,石家 仲 ,黄亚 琴 ,杨 劲
解放 军第 三军 医 大学基础 医学部 细胞 生物 学教研 室,重 庆 市 4 0 0 0 3 8
文 章亮 点 :
1 实验 以培 养 2 O代 以前 , 衰 老相 关 p 一 半乳糖 苷酶 阳 性率 < 1 O %的间 充质 干细 胞作 为年轻 间充质 干细 胞 ; 培养 4 O代 以后 ,衰老 相关 D 一 半乳 糖 苷酶 阳性 率> 7 0 %的间剂 , 比较 培养衰 老干细胞 与年 轻干细胞 对氧化 损伤 的敏感程度 及 D N A损伤 的修复 能力 。
免疫细胞衰老8个机制
免疫细胞衰老8个机制机体衰老是由身体的大多数细胞、组织或器官的逐渐老化引起的,免疫系统也不例外。
免疫系统的失调和恶化,即所谓的“免疫衰老”,使老年人对新病原体感染、自身免疫以及慢性非免疫性疾病(包括心血管和神经退行性疾病、癌症和2型糖尿病)抵抗力减弱。
T细胞和B细胞衰老表型免疫细胞衰老机制随着步入老年,人体对感染、恶性肿瘤和疫苗接种的免疫反应受损,并伴随着慢性低度炎症,一起称为免疫衰老。
免疫衰老的分子和细胞机制,大多是未知的。
1. 细胞周期应激源诱导的下游信号,最终汇聚到p53/p21CIP和/或p16INK4a/pRB通路,直接作用于周期蛋白依赖的激酶,来抑制细胞周期。
DNA损伤以p53依赖的方式上调p21CIP水平,而p38-MAPK 介导的线粒体ROS水平的增加刺激p16INK4a的表达。
2. 端粒损耗端粒是线性染色体末端的特殊结构,在哺乳动物细胞中,它由典型的端粒DNA重复序列(TTAGGG)和相关蛋白组成。
在DNA复制过程中,复制机制不能完全复制端粒DNA,导致每次端粒缩短,称为“末端复制问题”。
一旦端粒DNA缩短到一个阈值以下,它可能会导致DNA断裂和复制性衰老。
因此,端粒缩短是导致端粒功能障碍的一个原因。
Viruses 2017, 9, 289在免疫系统中,淋巴细胞和粒细胞的平均端粒长度均随着衰老而减少,淋巴细胞的端粒缩短更明显。
同亚型的人CD8 T淋巴细胞的端粒长度也有所不同。
初始细胞通常比高分化细胞端粒更长,从而导致更高的增殖潜力。
端粒酶是一种维持端粒长度的逆转录酶。
因为高端粒酶活性,所以永生细胞系、生殖细胞、干细胞或胎儿发育早期的细胞,可逃避端粒功能障碍引起的复制衰老。
而在静息淋巴细胞中,端粒酶活性通常较低,但丝裂原刺激可以瞬时上调端粒酶活性。
一项研究表明,随着年龄的增长,静止的T细胞和B细胞的端粒酶活性下降。
3. 衰老分泌表型因子衰老相关的分泌表型(Senescence-associated secretory phenotype,SASP)是衰老细胞的另一个典型特征。
β 半乳糖苷酶染色试剂盒说明书
细胞衰老β-半乳糖苷酶染色试剂盒产品简介:细胞衰老β-半乳糖苷酶染色试剂盒(Senescence β-Galactosidase Staining Kit)是一种基于衰老时SA-β-Gal (senescence-associated β-galactosidase)活性水平上调而对衰老细胞或组织进行染色检测的试剂盒。
在普通的光学显微镜下就可以观测到细胞或组织的衰老情况。
本试剂盒可以用于培养细胞的衰老检测,也可以用于组织切片的衰老检测。
绝大多数正常细胞被认为仅有有限的分裂能力,在不能分裂后就进入衰老(senescence)状态。
此时细胞仍然是存活的,但细胞的基因和蛋白的表达谱发生了很大改变。
衰老(senescence)的细胞不能在一些常规的刺激下再诱导细胞分裂,并且衰老细胞的细胞周期分布也比较特殊,不同于一些损伤诱导的细胞休眠,也不同于细胞生长接触抑制的情况。
衰老细胞细胞通常体积变大,表达pH 6.0时有高酶活性的β-半乳糖苷酶。
细胞衰老也被认为是生物体抑制肿瘤的一种方式,同时也是生物体老化(aging)的一种潜在原因。
碧云天生产的细胞衰老β-半乳糖苷酶染色试剂盒,以X-Gal为底物,在衰老特异性的β-半乳糖苷酶催化下会生成深蓝色产物。
从而在光学显微镜下很容易观察到变成蓝色的表达β-半乳糖苷酶的细胞或组织。
本试剂盒仅染色衰老细胞,不会染色衰老前的细胞(presenescent cells)、静止期细胞(quiescent cells)、永生细胞(immortal cells)或肿瘤细胞。
如果使用6孔板检测,足够测定100个样品;使用24孔板测定,足够测定400个样品;使用96孔板测定,足够测定1000个样品。
对于组织切片或组织块,可以检测的样品数量视样品的大小而定。
对于普通的切片也至少足够检测100个样品。
保存条件:-20℃保存,一年有效。
其中X-Gal溶液需避光保存。
注意事项:β-半乳糖苷酶染色固定液有一定的腐蚀性和毒性,操作时请注意防护。
细胞衰老特异性β-半乳糖苷酶检测试剂盒产品说明书(中文版)
细胞衰老特异性β-半乳糖苷酶检测试剂盒产品说明书(中文版)主要用途细胞衰老特异性β-半乳糖苷酶检测试剂是一种旨在以X-Gal为底物,通过细胞内β-半乳糖苷酶在酸性条件下稳定表达,催化生成深蓝色的沉积产物,从而在光学显微镜下观察到蓝色表达的细胞作为细胞复制性衰老(replicative senescence)的分子特征来识别和探测衰老细胞的权威而经典的技术方法。
该技术由大师级科学家精心研制、成功实验证明的。
广泛应用于细胞生物学研究。
其适用于各种人体和动物细胞或活体内(in vivo)检测。
产品即到即用,性能稳定,参数优化,着色敏感,堪称国际上同类产品最佳。
技术背景细胞复制性衰老是细胞控制其生长潜能的保障机制。
衰老细胞停滞在细胞周期的G1期,表现出细胞扁平、胀大、颗粒增多的形态特征,尤其在酸性条件下,细胞内β-半乳糖苷酶活性增加,而成为细胞衰老的生物学标记。
产品内容清理液(Reagent A)毫升固定液(Reagent B)毫升酸性液(Reagent C)毫升稀释液(Reagent D)毫升染色液(Reagent E)毫升产品说明书 1份保存方式保存染色液(Reagent E)在-20℃冰箱里;其余的保存在4℃冰箱里;稀释液(Reagent D)和染色液(Reagent E)用铝箔封裹,避免光照;有效保证6月用户自备2毫升离心管:用于配制染色工作液15毫升锥形离心管:用于配制染色工作液恒温培养箱:用于染色孵育光学显微镜:用于观察染色后的细胞实验步骤操作一、25cm2细胞培养瓶染色实验开始前,将试剂盒里的染色液(Reagent E)从-20℃的冰箱里取出,放进冰槽里等待溶化。
然后移取xx毫升稀释液(Reagent D)到2毫升离心管,加入xx微升染色液(Reagent E),混匀后,放进37℃恒温水槽里预热,标记为染色工作液。
然后进行下列操作:1.小心抽去25cm2细胞培养瓶里的培养液2.小心加入xx毫升清理液(Reagent A),清洗生长中的细胞表面3.小心抽去清理液4.小心加入xx毫升固定液(Reagent B),覆盖整个生长表面5.在室温下孵育5分钟6.小心抽去固定液7.小心加入xx毫升酸性液(Reagent C),清洗细胞表面8.小心抽去酸性液9.重复实验步骤7和8一次10.小心加入xx毫升染色工作液,覆盖整个细胞表面11.放进37℃培养箱,孵育3小时至16小时,或细胞呈现蓝色(注意:避免液体蒸发)12.在光学显微镜下观察和计数:表达衰老特异性β- 半乳糖苷酶的细胞为阳性细胞,呈现蓝色。
细胞衰老检测指标及衰老模型研究进展
细胞衰老(cellular senescence,CS)是细胞增殖、分化能力和生理功能逐渐发生衰退的变化过程[1~2]。
细胞衰老研究是衰老机制、抗衰老、抗癌[3]研究的重要内容之一,而构建细胞的衰老模型是研究细胞衰老必不可少的步骤。
根据诱发因素的不同,细胞衰老可以划分成应激诱导早衰(stress-inducedpremature senescence,SIPS)、复制性衰老(replicative senescence,RS)[4~5]、癌基因诱导衰老(oncogene-in-duced senescence,OIS)。
衰老指标对于验证所制备模型成功与否十分重要,指标的选择也同样重要。
目前,不同文献中使用的衰老细胞模型和检测指标都不尽相同。
不同情况下如何选用合适的模型和检测指标尚无统一标准。
本文讨论和分析了现有的一些细胞衰老模型的建立方法,列举了常用的细胞衰老检测指标并总结了其选择方法,以便为相关的研究提供参考。
1检测指标细胞衰老的特征包括细胞形态变化、细胞周期阻滞、氧化应激水平和染色质的改变。
由于没有单一的性状可以独自定义细胞衰老,所以体外衰老表型的确定往往需要多个特征同时验证,有文献建议至少验证3个不同的特征[6]。
具体的检测指标有基于这些特征的通用指标,如:衰老相关的β-半乳糖苷酶(senescence-associated beta-galac-tosidase,SA-β-Gal)活性升高、细胞形态改变、衰老相关蛋白质累积、细胞周期分布改变、DNA 损伤灶产生[7]、衰老相关的分泌表型(senescence-as-sociated secretory phenotype,SASP)[1,8]等;也有基于DOI:10.16605/ki.1007-7847.2021.03.0138细胞衰老检测指标及衰老模型研究进展张凌云,刘缨*(北京中医药大学生命科学学院,中国北京102488)摘要:细胞衰老被认为是一种细胞生长周期停滞状态,它不可逆转。
细胞衰老与抗衰老药物senolytics的研究进展细胞衰老; p16; p53;senolytics
1961年, HAYFLICK和MOORHEAD[1]在培养人胚胎原代成纤维细胞时意外发现, 细胞在分裂约50 代后进入了增殖停滞的状态; 后来研究者在培养其他原代细胞时也观察到了类似的现象, 并将其命名为复制性细胞衰老(replicative senescence)。
几十年后, HARLEY等[2]才证实这种复制性衰老是由于细胞在复制过程中出现了失误: 即DNA聚合酶在细胞分裂过程中不能完全合成滞后链, 致使染色体末端保护其结构稳定的端粒受损。
端粒的长度随着细胞的复制逐渐缩短, 直至染色体末端完全裸露, 最终导致DNA损伤及细胞衰老的发生。
研究者根据这一特性, 设计了在细胞内稳定表达编码端粒酶的hTert基因以阻止端粒在细胞复制过程中的消耗, 最终成功地在体外构建了永生化的原代细胞系[3]。
尽管体内衰老的细胞维持代谢活性, 但其增殖能力的丧失是机体在细胞水平上老化的表现, 因此也被称为生理性衰老。
然而, 除了端粒缩短导致的生理性衰老, 学者们发现外界还存在其他刺激能够导致细胞衰老的发生, 并将其统称为病理性细胞衰老或过早衰老(premature senescence)。
这种刺激主要分为两大类: 一类是由于体外细胞培养过程中细胞生长环境(例如氧浓度和营养物质含量等)的改变导致的衰老, 此类应激导致的细胞衰老可以通过改善培养条件使细胞重新进入到周期循环中[4]; 另一类主要包括癌基因激活(如ras、raf、myc等)、活性氧(reactive oxygen species, ROS)积聚、热应激以及DNA损伤等, 这些刺激促使细胞进入了不可逆的周期抑制状态[5]。
研究表明, 这些刺激主要通过诱导DNA损伤、激活p38 激酶(p38MAPK)通路、NF-κB途径或激活细胞周期抑制因子引发周期抑制, 促使细胞永久性脱离周期循环, 最终诱发体内或体外的过早衰老。
1 细胞衰老的主要特征细胞衰老的主要特征之一是稳定的增殖抑制, 目前细胞周期抑制是体内或者体外鉴定细胞衰老的重要辅助手段[6]。
【文献翻译】Hallmarks of Cancer:The Next Generation/肿瘤的新十大特征
Hallmarks of Cancer: The Next Generation摘要肿瘤的标志包括在人类肿瘤多步发展过程中所获得的6种生物学功能。
这些标志构成了一种系统化的规律,使得肿瘤疾病的复杂性变得合理化,它们包括:1.持续增殖的信号2.逃避生长抑制因子3.抵抗细胞死亡4.使其能够无限复制5.诱导血管生成6.激活肿瘤侵袭性和转移性。
在这些标志下隐藏着的是基因的不稳定性,基因的不稳定性造成了基因多样性并加快了它们的习得性和炎症表现,这种不稳定性也培养出多种标志功能。
在过去的十年里,概念上的进步在于:在这个名单里增加了两种新兴的的具有潜在普遍性的特征——能量代谢的重新编程和逃避免疫破坏。
除了癌细胞以外,肿瘤还表现出另一种复杂的维度:他们控制一群被招募的、表面看上去正常的细胞,通过建立一个“肿瘤微环境”来有利于这些标志特性的获得。
认识这些概念上的广泛适用性会日益影响人类肿瘤治疗新方法的发展过程。
简介为了了解肿瘤疾病的显著差异性,我们提出了6种癌症的标志,并将它们组织在一起形成系统性的规律,从而提供了一种符合逻辑的框架结构。
在我们的讨论中隐含着这样的一个信息:随着正常细胞逐渐发展为癌症状态,它们会逐渐获得这一系列标志功能。
初期的癌症细胞会需要获得这些特征,从而使其致癌甚至最终恶性,人类肿瘤病例特征的多级发展正是通过这一需求而表现地合理化。
我们注意到,作为一个辅助命题,肿瘤不仅仅是大量孤立增殖的癌细胞,正相反,他们是彼此之间相互参与异型性作用的由多个不同类型细胞所构成的复合组织。
我们描述出这些被招募的正常细胞(它们形成了肿瘤相关基因)在肿瘤发生过程中是积极的参与者而不只是消极的旁观者;如此一来,这些间质细胞有助于某些标志功能的发展和表现。
在随后的十年里,这一概念被固化并延伸,揭示出:肿瘤的生物学不再可以被仅仅理解为“列举肿瘤细胞的特征”,相反,必须通盘考虑“肿瘤微环境”为肿瘤的发生所做出的贡献。
在此后发表的癌症研究显著进展的过程中,新的观察研究被提供出来,得以阐明和修正这些标志功能的原始构想。
不同类型标本的衰老相关β-半乳糖苷酶染色方法
β-半乳糖苷酶(β-Galactosidase)是一种常见的酶,它在细胞和组织的老化过程中起着重要作用。
研究β-半乳糖苷酶在不同类型标本的衰老过程中的表达和活性对于理解衰老的机制具有重要意义。
在实验室研究中,需要使用染色方法来检测β-半乳糖苷酶的活性和表达情况。
本文将介绍几种常用的β-半乳糖苷酶染色方法,并比较它们在不同类型标本的应用效果。
一、X-gal染色法X-gal(5-溴化-4-氯-3-吲哚乙酸甲酯)是一种常用的β-半乳糖苷酶底物,可以被β-半乳糖苷酶水解成产生蓝色沉淀物。
X-gal染色方法简单、快速,被广泛应用于细胞和组织的β-半乳糖苷酶活性检测。
然而,X-gal染色对于一些类型的标本,如皮肤和硬组织,染色效果不佳,可能出现背景染色。
二、ONPG染色法ONPG(2-硝基苯基-β-D-半乳糖苷)也是一种常用的β-半乳糖苷酶底物,它与β-半乳糖苷酶发生反应生成黄色产物。
相比于X-gal染色,ONPG染色对于硬组织和皮肤等类型标本的染色效果更好,且背景染色较少。
然而,ONPG染色方法需要较长的反应时间,且操作相对复杂。
三、Elderly染色法Elderly染色法是一种相对较新的β-半乳糖苷酶染色方法,它以Elderly底物与β-半乳糖苷酶发生反应产生紫色产物。
Elderly染色方法在对皮肤和硬组织等类型标本的染色效果较好,且背景染色较少。
Elderly染色法还可以在镜下观察β-半乳糖苷酶活性的分布情况,对于研究β-半乳糖苷酶与细胞老化的关系具有重要意义。
不同类型标本的衰老相关β-半乳糖苷酶染色方法各有优劣。
研究者在选择染色方法时需要根据标本类型和研究需求进行选择,以获得准确的实验结果。
随着科学技术的不断进步,相信在未来会有更多更高效的β-半乳糖苷酶染色方法出现,为衰老研究提供更多的可能性。
β-Galactosidase (β-Galactosidase) is amon enzyme that plays an important role in the aging process of cells and tissues. Therefore, studying the expression and activity of β-Galactosidase in the aging process of different types of specimens is of great significance for understanding the mechanism of aging. In laboratory studies, staining methods are required to detect the activity and expression of β-Galactosidase. This article will in troduce severalmonly used β-Galactosidase staining methods andpare their application effects in different types of specimens.I. X-gal StainingX-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) is amonly used substrate for β-Galactosidase, which can behydrolyzed by β-Galactosidase to produce a blue precipitate. X-gal staining method is simple and quick, and is widely used for the detection of β-Galactosidase activity in cells and tissues. However, X-gal staining may not be effective for some types of specimens, such as skin and hard tissues, and background staining may occur.II. ONPG StainingONPG (o-Nitrophenyl-β-D-galactopyranoside) is also amonly used substrate for β-Galactosidase, which reacts with β-Galactosidase to produce a yellow product. Compared to X-gal staining, ONPG staining has better staining effects on hard tissues and skin specimens, with less background staining. However, ONPG staining method requires a longer reaction time and is relatively moreplex to perform.III. Elderly StainingElderly staining is a relatively new β-Galactosidase staining method, which uses Elderly substrate to react with β-Galactosidase to produce a purple product. Elderly staining method has good staining effects on skin and hard tissue specimens, with less background staining. In addition, Elderly staining method allows for the observation of the distribution ofβ-Galactosidase activity under the microscope, which is of great significance for studying the relationship between β-Galactosidase and cell aging.In summary, there are advantages and disadvantages to the different β-Galactosidase staining methods for aging-related specimens. Researchers should choose a staining method based on the specimen type and research requirements to obtain accurate experimental results. With the continuous advancement of scientific technology, it is believed that more efficient β-Galactosidase staining methods will emerge in the future, providing more possibilities for aging research.Expanding on the current information, further detail on the significance of β-Galactosidase in the aging process and the potential implications of studying its activity in different tissues can be provided.β-Galactosidase is an enzyme that is involved in the breakdown of lactose, which is a sugar found in milk and dairy products. In addition to its role in lactose metabolism, β-Galactosidase has been implicated in the aging process of cells and tissues. As we age, the activity of β-Galactosidase may change, leading toalterations in cellular function and contributing to the aging phenotype.Studying the expression and activity of β-Galactosidase in different tissues can provide valuable insights into the mechanisms underlying aging. For example, in skin tissue, changes in β-Galactosidase activity may be associated with the breakdown of extracellular matrixponents, leading to decreased skin elasticity and wrinkle formation. In muscle tissue, alterations in β-Galactosidase activity may impact the turnover of cellularponents, affecting muscle function and strength.Furthermore, β-Galactosidase activity has been linked to cellular senescence, a state of irreversible cell cycle arrest that is associated with aging. By examining the distribution and activity of β-Galactosidase in senescent cells, researchers can gain a better understanding of the molecular pathways involved in the aging process. This information may have implications for the development of novel therapies aimed at mitigating age-related changes in tissues and organs.In addition to its role in aging, β-Galactosidase has been studied in the context of various diseases, including lysosomal storagedisorders and cancer. Understanding how β-Galactosidase activity is altered in these pathological conditions can provide important insights for the development of targeted therapies.Overall, the study of β-Galactosidase in the context of aging and disease holds promise for uncovering novel mechanisms underlying tissue dysfunction and age-related pathologies. By leveraging the different staining methods available, researchers can gain aprehensive understanding of β-Galactosidase activity in various tissues, paving the way for the development of interventions to improve healthspan and quality of life in aging populations.。
β-半乳糖苷酶染色试剂盒说明书
细胞衰老β-半乳糖苷酶染色试剂盒产品简介:细胞衰老β-半乳糖苷酶染色试剂盒(Senescence β-Galactosidase Staining Kit)是一种基于衰老时SA-β-Gal (senescence-associated β-galactosidase)活性水平上调而对衰老细胞或组织进行染色检测的试剂盒。
在普通的光学显微镜下就可以观测到细胞或组织的衰老情况。
本试剂盒可以用于培养细胞的衰老检测,也可以用于组织切片的衰老检测。
绝大多数正常细胞被认为仅有有限的分裂能力,在不能分裂后就进入衰老(senescence)状态。
此时细胞仍然是存活的,但细胞的基因和蛋白的表达谱发生了很大改变。
衰老(senescence)的细胞不能在一些常规的刺激下再诱导细胞分裂,并且衰老细胞的细胞周期分布也比较特殊,不同于一些损伤诱导的细胞休眠,也不同于细胞生长接触抑制的情况。
衰老细胞细胞通常体积变大,表达pH 6.0时有高酶活性的β-半乳糖苷酶。
细胞衰老也被认为是生物体抑制肿瘤的一种方式,同时也是生物体老化(aging)的一种潜在原因。
碧云天生产的细胞衰老β-半乳糖苷酶染色试剂盒,以X-Gal为底物,在衰老特异性的β-半乳糖苷酶催化下会生成深蓝色产物。
从而在光学显微镜下很容易观察到变成蓝色的表达β-半乳糖苷酶的细胞或组织。
本试剂盒仅染色衰老细胞,不会染色衰老前的细胞(presenescent cells)、静止期细胞(quiescent cells)、永生细胞(immortal cells)或肿瘤细胞。
如果使用6孔板检测,足够测定100个样品;使用24孔板测定,足够测定400个样品;使用96孔板测定,足够测定1000个样品。
对于组织切片或组织块,可以检测的样品数量视样品的大小而定。
对于普通的切片也至少足够检测100个样品。
保存条件:-20℃保存,一年有效。
其中X-Gal溶液需避光保存。
注意事项:β-半乳糖苷酶染色固定液有一定的腐蚀性和毒性,操作时请注意防护。
骨关节炎软骨中衰老相关β-半乳糖苷酶和c-Fos蛋白的表达
骨关节炎软骨中衰老相关β-半乳糖苷酶和c-Fos蛋白的表达李良军;雷光华;涂敏;程超;陈霞光;高曙光;曾凯斌【摘要】背景:文献在对软骨细胞衰老的研究中,常以衰老相关β-半乳糖苷酶的表达作为其细胞老化的一个指标,而c-Fos在骨关节炎软骨中表达情况罕见报道.目的:观察β-半乳糖苷酶、c-Fos蛋白在正常关节软骨和骨关节炎不同退变程度关节软骨中表达水平的差异.方法:选取正常关节软骨标本10个,骨关节炎软骨标本26个,根据大体观察凿取正常和骨关节炎不同退变严重程度软骨块50个,再根据关节软骨改良Mankin病理评分法分为正常关节软骨组、轻度退变组、中度退变组、重度退变组.采用免疫组织化学SABC法,计算各组标本中软骨细胞β-半乳糖苷酶、c-Fos蛋白染色阳性细胞率,比较各组中二者阳性细胞率的差异性并分析其与关节软骨不同退变程度之间的相关性.结果与结论:随着衰老软骨细胞阳性率逐渐增加,软骨退变程度逐渐加重,提示软骨细胞衰老与骨关节炎病程进展有关,软骨细胞衰老是骨关节炎可能的发病机制之一.c-Fos蛋白与骨关节炎软骨退变严重程度和软骨细胞衰老均无直接相关性,但可能在软骨退变早中期促进软骨细胞代偿性分裂增殖活跃.%BACKGROUND :The expression of enescence-associated β-galactosidase (SA-β-gal) serves as a marker of cell senescence,while the expression of c-Fos in cartilage of osteoarthritis is rare.OBJECTIVE:To study expression differences of SA-β-gal and c-Fos protein in normal and impaired cartilage of osteoarthritis.METHODS: Ten normal cartilages and 26 cartilage of osteoarthritis were selected. On the basis of improved Mankin pathological score, 50 cartilage specimens to divide into normal, mild impaired, medium impaired and severe impaired groups. The expression of SA-β-gal and c-Fos protein in the cartilage specimens weredetected by SABC method. The difference and correlation between the percentage of the positive chondrocytes and the different impaired cartilage were analyzed.RESULTS AND CONCLUSION:The cartilage degeneration aggravated with increasing of SA-beta-gal positive chondrocytes,suggesting that chondrocyte senescence has contacted with osteoarthritis. The expression of c-Fos protein shows no direct correlation with the severity of osteoarthritis and chondrocyte senescence. The findings demonstrated that chondrocyte senescence may be one of pathogenesis of osteoarthritis, which promotes compensate for cell division in the early and medium stage of osteoarthritis.【期刊名称】《中国组织工程研究》【年(卷),期】2011(015)002【总页数】5页(P196-200)【关键词】骨关节炎;软骨细胞;衰老相关β-半乳糖苷酶;c-Fos蛋白;原癌基因c-fos 【作者】李良军;雷光华;涂敏;程超;陈霞光;高曙光;曾凯斌【作者单位】长沙市中心医院骨科,湖南省长沙市,410004;中南大学湘雅医院骨科,中南大学骨科研究所,湖南省长沙市,410008;中南大学湘雅医院骨科,中南大学骨科研究所,湖南省长沙市,410008;中南大学湘雅医院骨科,中南大学骨科研究所,湖南省长沙市,410008;中南大学湘雅医院骨科,中南大学骨科研究所,湖南省长沙市,410008;中南大学湘雅医院骨科,中南大学骨科研究所,湖南省长沙市,410008;中南大学湘雅医院骨科,中南大学骨科研究所,湖南省长沙市,410008【正文语种】中文【中图分类】R3180 引言骨关节炎是一种退行性疾病,其发病率随年龄的增加而增加。
β-半乳糖苷酶
β-半乳糖苷酶
β-半乳糖苷酶介绍:
GAL是细胞溶酶体中的水解酶,在肾近曲小管上皮细胞中含量较高。
尿中GAL活性可反映肾实质,特别是肾小管的早期损伤,与尿中N-乙酰-β-D-氨基葡萄糖苷酶(NAG)一同测定作尿酶谱分析,有助于病程观察和预后评价。
在遗传学领域中对人类β-半乳糖苷酶缺陷病的诊断(包括产前诊断)和基础研究也是重要的指征。
β-半乳糖苷酶正常值:
血清0.2~0.4U/L尿中GAL排出率,参考范围2.5~14.3IU/gCr。
β-半乳糖苷酶临床意义:
尿中GAL和NAG同属细胞溶酶体酶,主要来源于肾小管上皮细胞,因而对肾小管损伤和后天性疾患有较敏感的反应,在肾实质损伤的不同阶段,GAL和NAG的排出率曲线有一定差异,二者用于酶谱分析,会有助于临床诊断及预后的评价。
β-半乳糖苷酶注意事项:
(1)本方法线性范围可达220IU/L。
(2)缓冲液pH对消光系数有明显影响,对pH要求准确校正到规定值。
(3)其余可参阅“N-乙酰-β-D-氨基葡萄糖苷酶”部分。
(4)在遗传学领域的应用可参阅有关专著及文献。
β-半乳糖苷酶检查过程:
暂无相关信息。
几种常见细胞衰老检测指标的比较
几种常见细胞衰老检测指标的比较张译元;肖芳【期刊名称】《中国药理学与毒理学杂志》【年(卷),期】2017(31)4【摘要】细胞衰老是一种不可逆的生长停滞现象,可由各种不同的细胞应激触发.目前,在细胞衰老研究中涉及的检测指标包括衰老相关的β-半乳糖苷酶、端粒和端粒酶、衰老相关的异染色质灶、衰老相关的分泌表型、活性氧簇以及肿瘤抑制基因p53和p16等.这些检测指标在衰老研究中被广泛应用,各具特点,同时优缺点并存.本文综述几种常见的细胞衰老检测指标,并对其准确性、可信性、特异性和适用范围等方面进行比较.%Cell senescence is a state of irreversible growth arrest, which can be triggered by a variety of different cellular stress. Currently, the detection indexes involved in the study of cell senes?cence include senescence-associated β-galactosidase, telomeres and telomerase, senescence-associ?ated heterochromatin foci, senescence-associated secretory phenotype, reactive oxygen species, and tumor suppressor genes p53 and p16. These indexes are widely used in the study of cell senescence, each with its own characteristics or advantages. This review summarizes several common cell senes?cence indexes and compares their accuracy, credibility, specificity, and potential applications.【总页数】6页(P352-357)【作者】张译元;肖芳【作者单位】中南大学湘雅公共卫生学院卫生毒理学系,湖南长沙 410078;中南大学湘雅公共卫生学院卫生毒理学系,湖南长沙 410078【正文语种】中文【中图分类】R965.1【相关文献】1.几种无创性心功能检测指标的评价 [J], 祝家庆;黄荫薇;王文茂2.几种蛋白质营养检测指标的临床应用价值比较 [J], 王卫平3.几种生化检测指标联合检测在急性胰腺炎中的临床意义 [J], 李涛4.常见几种"黄花梨"木材构造特征比较 [J], 陆珍先;吴柳月;何焕坤;熊涛5.几种检测指标在早期诊断儿童铁缺乏中的比较分析 [J], 陈卫文因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Genistein protects against UVB-induced senescence-like characteristics in human dermalfibroblast by p66Shc down-regulationYi Na Wang a,1,Wei Wu b,1,Hong Chao Chen a,Hong Fang a,*a Department of Dermatology,1st Affiliated Hospital,Zhejiang University School of Medicine,79#Qing Chun Road,Hangzhou310003,Chinab State Key Laboratory for Diagnosis and Treatment of Infectious Disease,First Affiliated Hospital,College of Medicine,Zhejiang University,Hangzhou310003,China1.IntroductionIt has been noticed that the appearance of facial wrinkling in theAsian population is delayed for about10years when compared tothe Caucasian population.The pattern and degree of facialwrinkling is different as well.There are many factors contributingto this difference,such as lifestyle,genetic background,andnutrition.The Asian diet is well known for being rich in soy or soy-containing products and the estrogen-like compounds in soyprotein,along with their antioxidant activities,are regarded aspotential weapons against the aging process.Isoflavones,a group of polyphenolic compounds found in andisolated from a number of plants,with soybeans and soy productslike tofu and textured vegetable protein being the primary foodsource,have attracted a great deal of interest,especially forpossible properties in the prevention and treatment of cancer andchronic disease including cardiovascular diseases and diabetesmellitus[1,2].Recent studies further suggested that isoflavonesmight act as a photoprotection and inhibit the initiation andpromotion of skin carcinomas[3].One of the main isoflavones is genistein.Genistein has beenreported to modulate molecular functions mainly by acting as atyrosine kinase inhibitor[4].Also genistein has anti-oxidation andanti-angiogenesis effects as well as estrogenic activities[5].Previousevidences have suggested that genistein down-regulates UVB-induced signal transduction cascades in carcinogenesis and confersphoto-protective effect in SKH-1murine skin and in humanreconstituted skin[6,7].Recent studies revealed that genisteinprevent UV-induced photoaging and photodamage in humanskin[8].However,although studies have been reported on theJournal of Dermatological Science58(2010)19–27A R T I C L E I N F OArticle history:Received4July2009Received in revised form9February2010Accepted10February2010Keywords:GenisteinPhotoagingUVBp66ShcFKHRL1A B S T R A C TBackground:Genistein,as an active compound of dietary antioxidants,has shown considerable promiseas an effective agent against aging process.However,the effect of genistein on skin photoaging and theassociated mechanism remain unclear.Objective:To delineate the effect of genistein on UVB-induced senescence in human dermalfibroblasts(HDFs)with emphasis on the mechanism of oxidative pathway regulated by p66Shc involved in the events.Methods:HDFs were induced to premature senescence by repetitive subcytotoxic doses of UVBirradiation.Cellular apoptosis and DNA cell cycle were analyzed usingflow cytometry.Intracellularlevels of superoxide dismutase(SOD)and malondialdehyde(MDA)were detected by ELISA.Mutationlevels of two large deletions of mitochondrial DNA,4977bp and3895bp deletion,were determined byquantitative PCR.Western blot was applied to detect the expression and activation of p66Shc(the66-kilodalton isoform of the growth factor adapter Shc)and FKHRL1(a forkhead protein that is intimatelylinked with intracellular oxidation).Results:Strong activity of senescence-associated beta-galactosidase(SA-b-gal),high percent of cellapoptosis as well as cell cycle arrest in G0/G1phase,and increased intracellular oxidative stress wereobserved in HDFs irradiated by UVB.Genistein exerted dramatically protective effects on HDFs in a dose-dependent manner.Elevated copy numbers of large deletions in mitochondrial DNA were also inhibitedby genistein.Down-regulation of total and phosphorylated p66Shc on Ser36,as well as FKHRL1and itsphosphorylation on Thr32,were observed after genistein treatment.Conclusion:The results indicate that genistein protects UVB-induced senescence-like characteristics inHDFs via maintenance of antioxidant enzyme activities and modulation of mitochondrial oxidativestress through down-regulation of a p66Shc-dependent signaling pathway,which may provide potentialprevention against skin aging and even photoaging.ß2010Japanese Society for Investigative Dermatology.Published by Elsevier Ireland Ltd.All rightsreserved.*Corresponding author.Tel.:+8657187236340;fax:+8657187236385.E-mail addresses:hongfangzy@,tango654321@(H.Fang).1These authors contributed equally to this work.Contents lists available at ScienceDirectJournal of Dermatological Sciencej o u r n a l h o m e p a g e:w ww.e l s e v i e r.c o m/j d s0923-1811/$36.00ß2010Japanese Society for Investigative Dermatology.Published by Elsevier Ireland Ltd.All rights reserved.doi:10.1016/j.jdermsci.2010.02.002photo-protective effect of genestein on skin tissue,little has been reported about its effects on aging process of skin cells.Here we report the supplementation of genistein,an active isoflavone,in inhibiting UVB-induced cellular senescence-like characteristics of human dermalfibroblasts(HDFs)and the possible mechanisms involved in the activity.2.Materials and methods2.1.Main reagentsPrimary human dermalfibroblast(HDFs)was obtained from Biotek Biotechnology Co.(Beijing,China).Genistein was obtained from Sigma Chemical Co.(St.Louis,MO,USA).The annexin V-FITC apoptosis detection kit was from Beckman Coulter Inc.(Beckman Coulter,Fullerton,CA,USA).Primary antibodies and phosphory-lated antibodies to shcA,FKHRL1and secondary antibodies were purchased from Upstate Biotechnology,Inc.(USA).Cytochemical staining kit of SA-b-gal and MTT assay kit was obtained from Beyotime Biotechnology(Haimen,China)and ELISA kit for detection of intracellular SOD and MDA was from Nanjing Jiancheng Biology Science Company(Nanjing,China).2.2.Cell culture,genistein treatment and UVB irradiationHDFs were cultured in dulbecco’s modified eagle’s medium (DMEM,Invitrogen,UK)supplemented with10%heat-inactivated fetal bovine serum(FBS,Invitrogen,UK),penicillin(100U/ml),and streptomycin(100mg/l)at378C in a humidified atmosphere containing5%CO2.Genistein was dissolved in dimethyl sulfoxide (DMSO)and used for the treatment of cells.50–60%confluent cells were treated with different concentrations of genistein,whereas DMSO treated cells served as control.After24h of genistein treatment,cells were subcultured at half confluence(1Â104cells/ cm2)in DMEM+1%FBS.They were washed once with phosphate-buffered saline(PBS)and exposed to UVB radiation with the lids removed,in a thin layer of PBS using one Philips TL20W/01lamps (Philips,Netherlands)emitting UVB peaking at311nm,which were placed30cm above the petri dishes.The emitted radiation was checked using a UVR radiometer with a UVB sensor(Bioblock Scientific,Belgium).After irradiation,PBS was replaced by DMEM+1%FBS.The radiation stress was performed three times a day and the accumulative dose for UVB exposure was250mJ/ cm2.Control cells were kept in the same culture conditions without UVB exposure.2.3.Cell viability assay(MTT dye assay)Proliferation of cells was determined by the3-[4,5-dimethylthylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT) method.Briefly,approximately10,000HDFs were plated in each well of96-well plates.After overnight incubation,the cells were treated with genistein(0–160m g/ml)for12h,24h,36h and48h.At the various times following genistein treatment,the medium was removed and MTT(20m l of5mg/ml)was added to each well and incubated at378C for4h.The plates were spun,and the purple colored precipitates of formazan were dissolved in150m l of DMSO. Absorbance was measured at490nm using an ELISA plate reader.The reduction in viability of in genistein-treated HDFs was expressed as a percentage compared to non-genistein(DMSO)treated cells and control cells were considered to be100%viable.2.4.Cytochemical stainingSenescence-associated beta-galactosidase(SA-b-gal)activity was determined at24h later after UVB irradiation as described by Dimri et al.[9].Briefly,the cells were washed with PBS andfixed in 0.2%glutaraldehyde solutions for5min.After dilution with PBS, the cells were washed again with PBS and stained with X-gal solution for6–24h at378C.The population of SA-b-gal-positive cells was determined by counting400cells per dish and photographs were taken using a phase-contrast microscope at 100Âand400Âmagnification(Olympus,Japan).The proportions of cells positive for the SA-b-gal activity are given as percentage of the total number of cells counted in each dish.The results are expressed as mean of triplicatesÆSD.2.5.Flow cytometryA quantitative assessment of apoptosis and DNA cell cycle was made24h later after UVB exposure using the annexin V-FITC apoptosis detection kit as described by the manufacturer.Briefly, for apoptosis analysis,(0.5–1)Â106cells were resuspended at a concentration of1Â106cells/ml in ice-cold PBS for three times and suspended in100m l of binding buffer solution(0.1M Hepes/ NaOH pH7.4,1.4M NaCl,25mM CaCl2).Cells were then treated with5m l of annexin V-FITC and5m l of propidium iodide(PI)and placed in the dark at room temperature for15min.Fluorescence-activated cell sorting(FACS)analysis was done on a cytometer (Beckman Coulter,Fullerton,CA,USA).For DNA cell cycle analysis, about1Â106cells werefixed with ice-cold70%ethanol over night at48C.The cells were subsequently resuspended in PBS for three times and added with2ml of Coulter DNA-Prep reagent at room temperature for30min.Then cells were stained with PI(50m g/ml in PBS)for30min and data was acquired on a Beckman Coulter XL (Beckman Coulter,Fullerton,CA,USA).2.6.ELISA assayIntracellular activity of SOD and level of MDA were also detected by ELISA kit under the instruction of manufacturer.The intracellular activity of SOD and level of MDA were calculated directly from the rate of absorbance of the sample versus the average rate of the blank control using the provided ratio table, repeated at least three times for each sample.2.7.Quantitative real-time PCRQuantitative real-time PCR was performed on an ABI Prism 7700instrument(Applied Biosystems,Foster City,CA,USA)after extraction of genomic DNA from HDFs by total DNA extraction kit (Takara Bio,Otsu,Japan)according to the manufacturer’s instruc-tions.Mutation levels of two large deletions of mitochondrial DNA (mtDNA),4977bp deletion and3895bp deletion,were deter-mined by quantitative PCR by using specific primers:4977bp deletion(8469–13,446nt in mitochondrial DNA),50-ACTACGGT-CAATGCTCTG-30(sense primer)and50-GGAGGTTGAAGTGAGAGGT ATG-30(antisense primer),315bp;3895bp deletion(548–4443nt in mitochondrial DNA)50-GCTTCTGGCCACAGCACTTA-30(sense primer)and50-TAGCGCTGTGAT GAGTGTGC-30(antisense primer), 323bp.The presence of mitochondrial DNA was assessed by PCR amplification of a83bp conservative region of the mitochondrial DNA as an internal control by using the following primers:50-GATTTGGGTACCACCCAAGTATTG-30(sense primer)and50-AATATTCA TGGTGGCTGGCAGTA-30(antisense primer)[10].A BioEasy SYBR Green I PCR Kit(Bioer Technology,Hangzhou city, China)was used in this study.The PCR amplification cycles consisted of an initial denaturation at958C for3min;30cycles of denaturation at958C for30s,annealing at608C for30s,and extension at728C for30s;and afinal extension for10min at 728C.The dissociation curve for each amplification was analyzed to confirm that there were no non-specific PCR products.TheY.N.Wang et al./Journal of Dermatological Science58(2010)19–27 20comparative cycle threshold(Ct)method(2DÀCt)was established for the relative quantification of large deletions in mtDNA.2.8.Western blot analysisCells were harvested at24h following UVB treatment as described above,washed and lysed with lysis buffer.Protein concentration in the resulting lysate was determined using the Lowry assay[11].Appropriate amounts of protein(about40m g) were resolved by electrophoresis in12%Tris–glycine polyacryl-amide gels and transferred to nitrocellulose membranes.Mem-branes were blocked by5%bovine albumin serum in TBST(20mM Tris–HCl pH7.4,150mM NaCl,0.05%Tween20)and then incubated overnight with the appropriate primary antibody at 1:1000or1:200dilution(total or phosphorylated antibodies). They were next washed and incubated with the corresponding horseradish peroxidase conjugated secondary antibody at1:1000 dilution in TBST.Bound secondary antibody was detected using an enhanced chemiluminescence(ECL)system(Pierce Biotechnology Inc.,Rockford,IL,USA).Membranes were exposed to light-sensitive film.As a control,the corresponding b-actin levels were determined in the same cell lysates using the antibody for b-actin(Santa Cruz Biotechnology,Santa Cruz,CA,USA).2.9.Statistical analysisAll values are expressed as meansÆparisons between treatment groups were made by performing t-tests on data derived from triplicates.P values of<0.05were considered statistically significant.The results are representative of at least three indepen-dent experiments with reproducible results.3.Results3.1.Inhibitory effect of genistein and UVB irradiation on HDFs cell viabilityThe cytotoxic effect of genistein on HDFs cells was determined with varying concentrations of genistein and times(12–48h)by MTT assay.As shown in Fig.1A,no inhibitory effect of genisterin on HDFs cell viability was observed when concentration of genistein was lower than80m g/ml.The lowest concentration of genistein that exhibited an inhibitory effect on cell viability was120m g/ml for36h.Based on these observations,we selected a maximum dose of80m g/ml and a time period of24h treatment for further mechanistic studies.We also examined the effect of UVB exposure on HDFs cell viability.There was a decrease in the viability of HDFs with increasing doses of UVB radiation(50–350mJ/cm2)(Fig.1B), and UVB at doses of300and350mJ/cm2significantly inhibited the cell viability.Therefore the subcytotoxic dose of UVB used throughout this study was250mJ/cm2.3.2.UVB-induced SA-b-gal activity is suppressed by genisteinAt present,the most commonly used method to detect senescent cells is a modified b-gal assay[9].Detectable b-gal at pH6was found to increase during replicative senescence of fibroblast cultures in vitro and in vivo and was absent in immortal cell cultures.This was termed senescence-associated beta-galactosidase or SA-b-gal.Our study revealed strong activity of SA-b-gal in UVB-irradiated HDFs,which,as one of the biomarkers of senescence,indicated that cells were induced to a senescence-like state by UVB exposure.The effect of genistein on SA-b-gal activity was also observed and genistein was found to effectively suppress the expression of SA-b-gal in a dose-dependent manner (Fig.2).3.3.UVB-induced apoptosis and cell cycle arrest is inhibited by genisteinWe next determined the effect of genistein on UVB-induced apoptosis by PI staining and the annexin V method usingflow cytometry.As shown in Fig.3A,UVB irradiation resulted in induction of apoptosis on HDFs,while genistein had an anti-apoptotic effect in a dose-dependant manner.It was observed that treatment of HDFs with40and80m g/ml of genistein for24h decreased the number of early apoptotic cells(LR)significantly when compared to18.1%in vehicle control(0m g/ml)group.The number of late apoptotic cells(UR)decreased from15.9%in0m g/ ml control group to3.8%(80m g/ml of genistein-treated cells).The total percent of apoptotic cells(UR+LR)decreased from34%in 0m g/ml control HDFs to8.5%with80m g/ml of genistein treatment for24h.Slow proliferation serves as a biochemical event during aging process,and it has been demonstrated that cells can be arrested in some certain phase of cell cycle[12].For these reasons, we next quantified the extent of cell cycle arrest byflow-cytometric analysis of genistein-treated cells labeled with PI and annexin V.As shown by PI staining and the annexin V method,weFig.1.Genistein shows little inhibitory effect on HDFs cell viability,while UVB irradiation induces decrease of HDFs cell viability in a dose-dependent manner.(A)Cell viability was not affected by genistein when concentration was lower than80m g/ml.Reduced cell viability of HDFs was observed with genistein treatment(120–160m g/ml) at36and48h(compared with0m g/ml control group,#p<0.05at36h,*p<0.05at48h).Viability of cells was determined by the MTT assay as described in materials and methods.(B)Dose-dependent effect of UVB irradiation on HDFs cell viability.Reduced cell viability was observed with UVB irradiation(50–350mJ/cm2),and UVB at doses of 300and350mJ/cm2significantly inhibited the cell viability(compared with0mJ/cm2group,*p<0.05).The data are presented as meansÆSD(n=8)and all experiments were done in triplicate.Y.N.Wang et al./Journal of Dermatological Science58(2010)19–2721found UVB irradiation caused cell cycle arrest,with most HDFs being arrested on G0/G1phase,and it might play a key role in aging process by initiating cell aging (Fig.3B).Fig.3B also shows that HDFs in G0/G1phase was diminished in quantity upon different doses of genistein (20m g/ml,40m g/ml,and 80m g/ml),indicating a dose-dependent inhibition in cell cycle arrest by genistein.Taken together,flow cytometry analysis indicated that treatment of HDFs cells with genistein resulted in a dose-dependent inhibitory effect of UVB-induced apoptosis and cell cycle arrest.3.4.Genistein has regulatory effect on decreased activity of intracellular SOD and increased level of MDA induced by UVB SOD,as a primary defense,could be a crucial enzyme in eliminating oxygen free radicals and reducing the oxidative stress,while MDA,a pro-oxidative product,was regarded as a marker for free radicals-induced lipid peroxidation [13,14].Therefore,de-creased activity of SOD and increased level of MDA were often used as an indication of oxidative damage.In this experiment,wealsoFig.2.UVB irradiation induces SA-b -gal expression in HDFs and protective effect of genistein on it.The expression of SA-b -gal was detected using cytochemical staining method as described in materials and methods,and cell in blue was considered as positive for SA-b -gal staining.Genistein treatment for 24h inhibits the activity of SA-b -gal in a dose-dependent manner in HDFs,and a significant inhibitory effect on SA-b -gal activity was observed at doses of 20,40and 80m g/ml (compared with 0m g/ml control group,*p <0.05).The data are presented as means ÆSD (n =8)and all experiments were done in triplicate.ND,not detectable.A representative staining image is shown from three independent experiments with identical results.Y.N.Wang et al./Journal of Dermatological Science 58(2010)19–2722examined the effect of genistein treatment on the intracellular activity of SOD and level of MDA in HDFs irradiated by UVB.As shown in Fig.4,even in the absence of UVB irradiation,genistein treatment induced the activity of SOD and inhibited the intracellular level of MDA in HDFs.Repeated exposure to subcytotoxic doses of UVB resulted in a significant decrease in intracellular activity of SOD and a concomitant increase in intracellular level of MDA,strongly suggesting an increased oxidative stress response of HDFs to UVB.However,genistein treatment of HDFs was found to have regulatory effects on the expression of intracellular SOD and MDA.Our data clearly show that genistein treatment caused an increase in intracellular SOD activity,and a significant decrease in MDA level at the highest dose (80m g/ml).Thus there was an overall shift in the ratio of anti-oxidative and pro-oxidative products following genistein treat-ment.3.5.UVB-induced mtDNA mutations are down-regulated by genistein Mitochondrial processes –especially those involving free radical production,damage and propagation –are deeply implicated in the advance of aging [15].Previous work has provided support for the significance of mtDNA mutation during aging process.There is evidence to suggest that deletions in mtDNA accumulate with age,and the most common and also the most often-assayed mtDNA deletion mutation is 4,977bp deletion (also known as common deletion)[16,17].Furthermore,recent investigation revealed a possible link between another kind of large deletion,3895bp mtDNA deletion and UVR exposure [10].Therefore,we next determined the relative copy number of 4977bp deletion and 3895bp deletion in mtDNA using real-time quantitative PCR.Products from real-time PCR were confirmed by DNA gel electrophoresis (Fig.5A).As shown in Fig.5B,compara-Fig.3.Genistein treatment dose-dependently inhibits UVB-induced apoptosis and cell cycle arrest in HDFs.(A)Flow cytometry of genistein-treated HDFs using a double-staining method with FITC-conjugated annexin V and PI.The LR quadrant indicates the percentage of early apoptotic cells (annexin V-stained cells)and the UR quadrant the percentage of late apoptotic cells (annexin V +PI-stained cells).(B)Genistein treatment positively regulates cell cycle activity in HDFs.Cell cycle was analyzed by flow cytomety using DNA content analysis kit.A representative figure is shown from three independent experiments with identical results.Y.N.Wang et al./Journal of Dermatological Science 58(2010)19–2723Fig.4.Genistein treatment increases intracellular SOD activity and decreases MDA intracellular level in HDFs.Cells were treated with different concentrations of genistein for 24h as indicated.Intracellular levels of SOD as well as MDA in HDFs were analyzed by ELISA method as detailed in Section 2.Reduced SOD activity and increased MDA level were observed in HDFs with UVB exposure,while genistein treatment at concentrations of 20,40and 80m g/ml significantly up-regulates the intracellular activity of SOD (compared with 0m g/ml control group,*p <0.05).Genistein treatment at concentration of 80m g/ml was observed to down-regulate intracellular level of MDA (compared with 0m g/ml control group,#p <0.05).The data are presented as means ÆSD (n =8)and all experiments were done intriplicate.Fig.5.Quantitative polymerase chain reaction analysis revealed that genistein treatment decreases the relative copy number of common deletion (4977bp deletion)and 3895bp deletion of mtDNA in UVB-exposed HDFs.(A)Two large deletions of mtDNA were detected in HDFs after UVB irradiation using real-time PCR method and the products were electrophoresised in 2%agarose gel.(B)Genistein treatment in concentrations of 40and 80m g/ml significantly down-regulates the relative copy number of common deletion (compared with 0m g/ml control group,#p <0.05).Also genestein was found to down-regulate the relative copy number of 3895bp deletion of mtDNA at 80m g/ml (compared with 0m g/ml control group,*p <0.05).The data are presented as means ÆSD (n =8)and all experiments were done in triplicate.ND,not detectable.Y.N.Wang et al./Journal of Dermatological Science 58(2010)19–2724tively higher levels of 4977bp deletion and 3895bp deletion were found in UVB-induced HDFs,while 24h-treatment of genistein at dose of 80m g/ml led to remarkable down-regulations in the relative copy number of these two large deletions of mtDNA.3.6.p66Shc and FKHRL1is involved in anti-aging effect of genistein The 66-kilodalton isoform of the growth factor adapter Shc (p66Shc)has been shown to intimately associate with cellular stress,mitochondrial proapoptotic activity and cellular senes-cence,and it appears to regulate the transcription of antioxidant proteins that scavenge superoxide and hydrogen peroxide.Studies have also linked p66Shc in a signaling pathway that includes FKHRL1,another mammalian forkhead protein that tightly regulates the transcription of antioxidant genes such as MnSOD and catalase [18,19].Therefore,to further examine whether p66Shc and FKHRL1was involved in UVB-induced senescence of HDFs and mechanism underlying anti-aging effect of genistein,we analyzed the expression and activation pattern of p66Shc as well asFKHRL1protein by western blot.As shown in Fig.6,p66Shc and FKHRL1were significantly up-regulated by UVB irradiation,and genistein treatment of HDFs resulted in a dose-dependent decrease in their expression.The phosphorylation of p66Shc and FKHRL1were also down-regulated by different concentrations of genistein,which indicated genistein,as one of antioxidants,counteracts the UVB-induced oxidative stress at least in part by regulating the expression and activation of p66Shc and FKHRL1protein.4.DiscussionIn contrast to other tissues,the skin is subject to both chronological aging as well as environmental insult in the form of UVR,which triggers increased intracellular levels of reactive oxygen species (ROS)and other markers of oxidative stress (e.g.,8-oxo-guanosine,isoprostane,nitrotyrosine),and finally contributes to the aging process of the skin (photoaging).Although UVB is mostly absorbed in the epidermis and predominantly affects epidermal cells,about 10–30%of UVB can penetrate theepidermis,Fig.6.Genistein treatment reduces the expression of p66Shc and FKHRL1in UVB-exposed HDFs.Cells were treated with different concentrations of genistein for 24h as indicated.The expression of proteins in treated cells was analyzed by Western blotting as detailed in Section 2.(A)Representative blots are shown from three independent experiments with identical results.(B)Protein expression levels of p66Shc and FKHRL1were normalized to that of b -actin and are presented as the fold change compared to 0m g/ml control group.UVB irradiation induced increased expression of p66Shc and FKHRL1,while genistein treatment down-regulates the relative expressions of p66Shc and FKHRL1dose-dependently (compared with 0m g/ml control group,#p <0.05,*p <0.05).(C)Relative expression levels of phospho-Ser36-p66Shc/p66Shc and phospho-Thr32-FKHRL1/FKHRL1are presented as the fold change compared to 0m g/ml control group.Increased expression of phosphorylated p66Shc and FKHRL1were detected in HDFs after UVB irradiation.Genistein treatment at concentrations of 10,20,40and 80m g/ml significantly down-regulates the expressions of phosphorylated p66Shc (compared with 0m g/ml control group,*p <0.05)and phosphorylated FKHRL1(compared with 0m g/ml control group,#p <0.05).Y.N.Wang et al./Journal of Dermatological Science 58(2010)19–2725reach the upper dermis,and do harm tofibroblasts and extracellular matrix as well[20].Chronic exposure to high intensity UVB causes cumulative damage over time,and it is regarded as one of the most important environmental hazards affecting human skin.Recent studies have observed that UVB has far more potent carcinogenic potential and can also generate ROS, and the molecular mechanisms which are responsible for UVB-induced gene expression differ from those involved in UVA-induced gene regulation[21,22].However,the exact mechanisms of UVB on skin aging and related signaling pathways are still a matter of debate.In2005,stress-induced premature senescence (SIPS)of human diploidfibroblasts(HDFs)was induced by a series of subcytotoxic exposures to UVB[23],which helps to explore the mechanisms of UVB-induced senescence,and it has been proved to be an unique and attractive in vitro model for photoaging study [24,25].In our study,based on this in vitro model system,we evaluated the protective effect of genistein against photoaging in HDFs and its mechanism of action.Consistent with previous studies[23–25], we found that repetitive subcytotoxic doses of UVB irradiation successfully induces the expression of SA-b-gal,causes cell apoptosis and cell cycle arrest in HDFs,while genistein protects cells against senescence-like state in a dose-dependant manner. The result clearly demonstrated the anti-aging effect of genistein in premature HDFs induced by UVB exposure.Genistein is well known for its diverse biological actions including protective effects against cellular aging[26].Accumulating evidence from cell culture and laboratory animal experiments also indicates that genistein has the potential to prevent or delay the photoaging process[27].However,we are interested in not only the anti-aging effect in HDFs of genistein but also the underlying molecular mechanism.Previous studies have been observed that genistein might protect against the cellular aging process by modulating oxidative stress and subsequent events[28,29].It has been well established that cellular aging is accompanied by increased oxidative stress,DNA damage(including mtDNA damage)and altered expression of aging-related genes.Oxidative stress,as the major event in the pathogenesis of the aging process,in turn, increases the occurrence of cell damages,especially by apoptosis, which contributes to cellular aging[30].Our data showed that genistein treatment resulted in significant inhibition of elevated levels of MDA as well as copy number of large deletion mutations (including4977bp deletion and3895bp deletion)in mtDNA,and increased the intracellular activity of SOD in UVB-irradiated HDFs. The4977bp‘‘common’’deletion and3895bp deletion in mtDNA have been proposed to be valuable as biomarkers of photodamage or photoaging in skin,and to reflect the dysfunctions of mitochondria[31–34],which are both generators and targets of radical damage in aging.Our results supported the hypothesis that genistein protects skinfibroblasts against senescence by inducing antioxidant enzymes and preventing intracellular oxidative stress that originates in the mitochondria.Still,it is unclear what events are involved in genistein’s effects of protecting both intracellular oxidative stress and mitochondrial damages.In this respect,it is of interest that p66Shc adaptor protein has been involved in mitochondrial signal transduction pathways that regulate cellular responses to oxidative stress.It has been demonstrated that p66Shc plays a critical role in linking mitochondrial functions,oxidative stress and cellular aging. p66Shc translates oxidative damage into cell death by acting as reactive oxygen species producer within mitochondria[35–37], and causes alterations of mitochondrial responses and three-dimensional structure,thus inducing apoptosis[38,39].Mice lacking expression of p66Shc are less susceptible to oxidative stress and have an extended life span[40].Phosphorylation of p66Shc at serine36in the N-terminal CH2domain is critical for the cell aging response elicited by oxidative damage,such as UV and H2O2treatment[19,41,42].Thesefindings prompted us to investigate whether p66Shc was involved in the anti-aging effect of genistein in HDFs.We found that expression and phosphoryla-tion of p66Shc on Ser36in cultured HDFs increased significantly upon UVB irradiation,while a decrease in total and phosphorylated p66Shc was observed in HDFs after treatment with genistein. These data support the concept that p66Shc is correlated with oxidative stress and plays a pivotal role in the cell aging process, and it participates in genistein’s protective effect against senes-cence-like characteristics at least as an important signaling molecule.Therefore,genistein might block the oxidative and aging pathway by a mechanism regulated by p66Shc.Additionally,p66Shc protein seems to interfere with oxidative stress-induced aging by regulating forkhead transcription factors [43].Forkhead family members are well known for their role in regulating stress responses[44–46].They can be activated by a wide range of stress stimuli,in response to which they can regulate a broad variety of cellular mechanisms(e.g.,DNA repair, scavenging of ROS,cell cycle progression,apoptosis,or metabo-lism)[45–48].Recent studies revealed that deletion of p66shc largely blocks phosphorylation of FKHRL1,a homologue of the forkhead family members,indicating the functional interaction with FKHRL1of p66shc[49].To determine whether FKHRL1 expression is regulated by p66Shc in human HDFs during genistein’s anti-aging process,total and phosphorylated FKHRL1 on T1(Thr32)were assessed by western blot in this study.Our data show UVB irradiation of HDFs induced up-regulation of not only p66Shc but also FKHRL1as well as its phosphorylation.Similar with the expression of p66Shc protein,a down-regulation of total and phosphorylated FKHRL1expression was also observed with the treatment of genistein.These data suggested the possibility that redox-dependent forkhead activation was regulated by intracellular oxidative stress in a p66Shc-dependent pattern, and this interplay may modulate the anti-aging effect of genistein on HDFs.Overall,this study presents evidence to explore the protective effect of genistein against senescence-like characteristics on HDFs and the mechanism underlying it.The above data indicate that genistein reverses the senescence process in HDFs by anti-oxidative action,which is mediated through down-regulation of p66Shc protein that involves forkhead protein suppression. Therefore,targeting of this pathway may benefit skin-aging (including photoaging and photodamage)treatment.Given that oxidative stress has been implicated in a lot of human aging processes besides skin aging,this role for p66Shc as signaling agents may have important therapeutic implications. AcknowledgmentsThis work is supported by Zhejiang Health Department Foundation of China(No.2006B865)and Skin Grant Program (2007)of L’Oreal-Chinese Medical Association(CMA). References[1]Bartlett HE,Eperjesi F.Nutritional supplementation for type2diabetes:asystematic review.Ophthalmic Physiol Opt2008;28:503–23.[2]Montenegro MF,Pessa LR,Tanus-Santos JE.Isoflavone genistein inhibits theangiotensin-converting enzyme and alters the vascular responses to angio-tensin I and bradykinin.Eur J Pharmacol2009;607:173–7.[3]Widyarini S,Husband AJ,Reeve VE.Protective effect of the isoflavonoid equolagainst hairless mouse skin carcinogenesis induced by UV radiation alone or with a chemical cocarcinogen.Photochem Photobiol2005;81:32–7.[4]Dixon RA,Ferreira D.Genistein.Phytochemistry2002;60:205–11.[5]Su SJ,Yeh TM,Chuang WJ,Ho CL,Chang KL,Liu HS,et al.The novel targets foranti-angiogenesis of genistein on human cancer cells.Biochem Pharmacol 2005;69:307–18.Y.N.Wang et al./Journal of Dermatological Science58(2010)19–27 26。