基本不等式知识点归纳

合集下载

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点总结向量不等式:注意: a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线⇔||||||||||||a b a b a b -<±<+.这些和实数集中类似代数不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+-=+≥.绝对值不等式: 123123a a a a a a ++++≤双向不等式:a b a b a b -±+≤≤左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.放缩不等式:①00a b a m >>>>,,则b m b b ma m a a m-+<<-+. 说明:b b m a a m+<+0,0a b m >>>,糖水的浓度问题. 拓展:,则,,000>>>>n m b a ba nb n a m a m b a b <++<<++<1. ②,,a bc R +∈,b d ac <,则b bd da a c c+<<+; ③n N +∈<< ④,1n N n +∈>,21111111n n n n n-<<-+-. ⑤ln 1x x -≤(0)x >,1xe x +≥()x R ∈.函数()(0)bf x ax a b x=+>、图象及性质1函数()0)(>+=b a xbax x f 、图象如图:2函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 基本不等式知识点总结重要不等式1、和积不等式:,a b R ∈⇒222a b ab +≥当且仅当a b =时取到“=”.变形:①222()22a b a b ab ++≤≤当a = b 时,222()22a b a b ab ++==注意:(,)2a b a b R ++∈,2()(,)2a b ab a b R +∈≤ 2、均值不等式:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均≥算术平均≥几何平均≥调和平均”.若0x >,则12x x +≥ 当且仅当1x =时取“=”; 若0x <,则12x x+≤- 当且仅当1x =-时取“=”若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 当且仅当b a =时取“=”.若0>ab ,则2≥+ab ba 当且仅当b a =时取“=”若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 当且仅当b a =时取“=” 3、含立方的几个重要不等式a 、b 、c 为正数:3333a b c abc ++≥0a b c ++>等式即可成立,时取等或0=++==c b a c b a ;不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,ab b a 222≥+同时除以ab 得2≥+b a a b 或ba ab -≥-11; ,,b a 均为正数,b a ba -≥22八种变式: ①222b a ab +≤ ; ②2)2(b a ab +≤; ③2)2(222b a b a +≤+ ④)(222b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则ba b a +≥+411;⑦若a>0,b>0,则ab b a 4)11(2≥+; ⑧ 若0≠ab ,则222)11(2111b a ba +≥+; 上述八个不等式中等号成立的条件都是“b a =”;最值定理积定和最小①,0,x y x y >+≥由若积()xy P =定值,则当x y =时和x y +有最小值和定积最大②,0,x y x y >+≥由若和()x y S +=定值,则当x y =是积xy 有最大值214s .推广:已知R y x ∈,,则有xy y x y x 2)()(22+-=+.1若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.2若和||y x +是定值,则当||y x -最大时,||xy 最小;当||y x -最小时,||xy 最大.③已知,,,R a x b y +∈,若1ax by +=,则有则的最小值为:21111()()2 ()by axax by a b a b ab a b x y x y x y+=++=+++++=+≥④已知,若则和的最小值为:①.②应用基本不等式求最值的“八种变形技巧”:⑴凑系数乘、除变量系数.例1.当 04x <<时,求函的数(82)y x x =-最大值.⑵凑项加、减常数项:例2.已知54x <,求函数1()4245f x x x =-+-的最大值.⑶调整分子:例3.求函数2710()(1)1x x f x x x ++=≠-+的值域; ⑷变用公式:基本不等式2a b ab +≥有几个常用变形2222a b a b ++≥,222()22a b a b ++≥不易想到,应重视;例4.求函数152152()22y x x x =--<<的最大值;⑸连用公式:例5.已知0a b >>,求216()y a b a b =+-的最小值;⑹对数变换:例6.已知1,12x y >>,且xy e =,求ln (2)yt x =的最大值;⑺三角变换:例7.已知20y x π<<≤,且tan 3tan x y =,求t x y =-的最大值;⑻常数代换逆用条件:例8.已知0,0a b >>,且21a b +=,求11t a b=+的最小值. “单调性”补了“基本不等式”的漏洞: ⑴平方和为定值若22x y a +=a 为定值,0a ≠,可设,,x a y a αα==,其中02απ<≤.①(,)2)4f x y x y a a a πααα=+==+在15[0,],[,2)44πππ上是增函数,在15[,]44ππ上是减函数; ②1(,)sin 22g x y xy a α==在1357[0,],[,],[,2)4444πππππ上是增函数,在1357[,],[,]4444ππππ上是减函数;③11(,)x y m x y x yxy +=+==.令sin cos )4t πααα=+=+,其中[1)(1,1)(1,2]t ∈--.由212sincos t αα=+,得22sin cos 1t αα=-,从而2(,)1)m x y t t==-在[1)(1,1)(1,2]--上是减函数. ⑵和为定值若x y b +=b 为定值,0b ≠,则.y b x =-①2(,)g x y xy x bx ==-+在(,]2b -∞上是增函数,在[,)2b +∞上是减函数;②211(,)x y bm x y x y xy x bx +=+==-+.当0b >时,在(,0),(0,]2b -∞上是减函数,在[,),(,)2b b b +∞上是增函数;当0b <时,在(,),(,]2b b b -∞上是减函数,在[,0),(0,)2b+∞上是增函数. ③2222(,)22n x y x y x bx b =+=++在(,]2b -∞上是减函数,在[,)2b +∞上是增函数;⑶积为定值若xy c =c为定值,0c ≠,则.c y x= ①(,)cf x y x y x x=+=+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是增函数;②111(,)()x y cm x y x x y xy c x+=+==+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是减函数;③222222(,)()2c c n x y x y x x c x x=+=+=+-在(,-∞上是减函数,在()+∞上是增函数.⑷倒数和为定值若112x y d +=d 为定值,111,,x d y ,则.c y x=成等差数列且均不为零,可设公差为z ,其中1z d≠±,则1111,,z z x d y d =-=+得,.11d d x y dz dz ==-+. ①222()1d f x x y d z =+=-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是增函数,在11[0,),(,)d d --+∞上减函数;②222(,).1d g x y xy d z ==-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是减函数,在11[0,),(,)d d --+∞上是增函数;③222222222(1)(,).(1)d d z n x y x y d z +=+=-.令221t d z =+,其中1t ≥且2t ≠,从而22222(,)4(2)4d t d n x y t t t==-+-在[1,2)上是增函数,在(2,)+∞上是减函数.。

基本不等式知识点和基本题型

基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。

2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。

3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当$a=b$时取“=”。

4、求最值的条件:“一正,二定,三相等”。

5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。

若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。

若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。

若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。

6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。

题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。

2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。

3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点总结与例题讲解一、本节知识点 (1)基本不等式.(2)利用基本不等式求最值.(3)基本不等式的拓展——三个正数的基本不等式. 二、本节题型(1)利用基本不等式求最值. (2)利用基本不等式证明不等式. (3)基本不等式的实际应用. (4)与基本不等式有关的恒成立问题. 三、知识点讲解知识点 基本不等式(均值不等式) 一般地,∈∀b a ,R ,有22b a +≥ab 2.当且仅当b a =时,等号成立.特别地,当0,0>>b a 时,分别用b a ,代替上式中的b a ,,可得2ba +≥ab . 当且仅当b a =时,等号成立. 通常称不等式2b a +≥ab 为基本不等式(也叫均值不等式),其中2ba +叫做正数b a ,的算术平均数,ab 叫做正数b a ,的几何平均数.基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.注意 重要不等式22b a +≥ab 2与基本不等式2ba +≥ab 成立的条件是不一样的.前者b a ,为任意实数,后者b a ,只能是正数.但两个不等式中等号成立的条件都是b a =.基本不等式的变形(1)b a +≥ab 2,ab ≤22⎪⎭⎫⎝⎛+b a .其中∈b a ,R +,当且仅当b a =时,等号成立.(2)当0>a 时,a a 1+≥2,当且仅当a a 1=,即1=a 时,等号成立; 当0<a 时,aa 1+≤2-,当且仅当1-=a 时,等号成立.实际上,当0<a 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+a a a a 11. ∵()⎪⎭⎫ ⎝⎛-+-a a 1≥2,∴()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--a a 1≤2-,即a a 1+≤2-.当且仅当a a 1-=-,即1-=a (0<a )时,等号成立. (3)当b a ,同号时,b a a b +≥2,当且仅当b a =时,等号成立;当b a ,异号时,baa b +≤2-,当且仅当b a -=时,等号成立.(4)不等式链: ba 112+≤ab ≤2ba +≤222b a +(0,0>>b a ,当且仅当b a =时,等号成立.)其中,ba 112+,ab ,2b a +,222b a +分别叫做正数b a ,的调和平均数、几何平均数、算术平均数、平方平均数. 知识点 利用基本不等式求最值设0,0>>y x ,则有(1)若S y x =+(和为定值),则当y x =时,积xy 取得最大值42S ;(∵∈∀y x , R +,有xy ≤22Sy x =+,∴xy ≤42S .) 和定积最大.(2)若P xy =(积为定值),则当y x =时,和y x +取得最小值P 2. (∵∈∀y x , R +,有y x +≥xy 2,∴y x +≥P 2.)积定和最小.说明 上述结论可简记为: 和定积最大,积定和最小.即两个正数的和为定值时,可求出其积的最大值;两个正数的积为定值时,可求出其和的最小值.利用基本不等式求最值时,必须满足三个条件,即:一正、二定、三相等. 一正: 各项都必须为正数;二定: 和或积为定值.当和为定值时,积有最大值,当积为定值时,和有最小值; 三相等: 等号能取到,即取得最值的条件能满足.(1)对于函数()x x x f 4+=,当0>x 时,xx 4+≥44242==⋅x x ,即()x f ≥4,当x x 4=,即2=x 时,等号成立;当0<x 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+x x x x 44≤4-,()x f ≤4-,当2-=x 时,等号成立.由此可见,对于函数()xx x f 4+=,0>x 和0<x 的最值情况是不一样的. (2)当230<<x 时,求()x x 23-的最大值时,x 23-与x 的和不是定值,无法利用基本不等式求最值,此时可对原式进行等价变形,变形为()()x x x x 2232123⋅-=-,即可求出其最大值.∵()()x x x x 2232123⋅-=-≤89232122232122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+-⨯x x∴()x x 23-的最大值为89,当且仅当x x 223=-,即43=x 时,取得最大值.(3)求21222+++x x 的最小值时,虽然22+x 与212+x 都是正数,且乘积为定值1,但是当=+22x 212+x 时,有122=+x ,显然是不成立的,所以此时不能用基本不等式求其最小值.知识点 基本不等式的拓展——三个正数的基本不等式一般地,∈∀c b a ,,R +,有3cb a ++≥3abc . 当且仅当c b a ==时,等号成立.上面的不等式表明:三个正数的算术平均数不小于它们的几何平均数.设0,0,0>>>z y x ,则有(1)若M xyz =,则当z y x ==时,和z y x ++取得最小值为33M ;(2)若N z y x =++,则当z y x ==时,积xyz 取得最大值273N .关于三个正数的不等式链若c b a ,,均为正数,则有cb a 1113++≤3abc ≤3c b a ++≤3222c b a ++.当且仅当c b a ==时,等号成立.n 个正数的基本不等式对于n 个正数n a a a a ,,,,321 ,则有na a a a n++++ 321≥n n a a a a 321.当且仅当n a a a a ==== 321时,等号成立.上面的不等式表明: 对于n 个正数(n ≥2)的算术平均数不小于它们的几何平均数.四、例题讲解例1. 若0,0>>b a ,证明: ba 112+≤ab ≤2b a +≤222b a +.分析: 本题即要求证明两个正数的不等式链. 证明: ∵0,0>>b a∴()ab b a b a 22-+=-≥0∴b a +≥ab 2 ∴ab ≤2ba +(当且仅当b a =时,等号成立) ∴211b a +≥abab b a 1111==⋅∴ba 112+≤ab (当且仅当b a =时,等号成立).∵22b a +≥ab 2∴2222b a b a +++≥ab 222b a ++ ∴()222b a +≥()2b a +∴()2224⎪⎭⎫ ⎝⎛+=+b a b a ≤()2422222b a b a +=+,即22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴根据正数可开方性得:22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴2ba +≤222b a +(当且仅当b a =时,等号成立).综上所述,ba 112+≤ab ≤2ba +≤222b a +.例2. 函数xx y 41+-=(0>x )的最小值为_________,此时=x _________. 解: ∵0>x∴1441-+=+-=xx x x y ≥3142142=-=-⋅x x ,即y ≥3.当且仅当xx 4=,即2=x 时,取等号. ∴当2=x 时,函数x x y 41+-=(0>x )取得最小值3.例3. 已知3>a ,求34-+a a 的最小值.分析: 当利用基本不等式求最值时,若两项的乘积为定值(常数),可求出两项和的最小值.当然,某些式子需要进行适当的变形,但要注意三个必须满足的条件:一正、二定、三相等.解: ∵3>a ,∴03>-a .∴334334+-+-=-+a a a a ≥()733432=+-⋅-a a ,当且仅当343-=-a a ,即5=a 时,等号成立. ∴34-+a a 的最小值为7. 例4. 已知1>x ,且1=-y x ,则yx 1+的最小值是_________. 解: ∵1=-y x ,∴1+=y x .∵1>x ,∴01>+y ,∴0>y . ∴11111++=++=+y y y y y x ≥3112=+⋅yy . 当且仅当yy 1=,即1=y 时,等号成立. ∴yx 1+的最小值是3. 另解: ∵1=-y x ,∴1-=x y .∵1>x ,∴01>-=x y ∴1111111+-+-=-+=+x x x x y x ≥()311112=+-⋅-x x . 当且仅当111-=-x x ,即2=x 时,等号成立. ∴yx 1+的最小值是3. 例5. 已知0,0>>y x ,且12=+y x ,求yx 11+的最小值. 解: ∵12=+y x ,0,0>>y x∴y x x y y y x x y x y x ++=+++=+232211≥223223+=⋅+yx x y . 当且仅当yxx y =2,且12=+y x ,即221,12-=-=y x 时,等号成立.∴yx11+的最小值为223+.点评 本题若由()y x y x y x 21111+⎪⎭⎫ ⎝⎛+=+≥2422112=⋅⋅xy yx ,得y x 11+的最小值为24,则结论是错误的,错因是连续使用基本不等式时,忽视了等号成立的条件一致性.所以有下面的警示.易错警示 连续两次(多次)使用基本不等式时,应注意保证等号成立的条件是否相同. 例6. 已知0,0>>y x ,且191=+yx ,求y x +的最小值. 解: ∵0,0>>y x ,191=+yx ∴()x y y x x y y x y x y x y x ++=+++=⎪⎭⎫⎝⎛++=+91099191≥169210=⋅+x y y x . 当且仅当x y y x =9,且191=+yx ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.另解(消元法): ∵191=+yx ,∴9-=y yx∵0,0>>y x ,∴09>-y y,∴9>y . ∴999919999+-+-+=+-+-=+-=+y y y y y y y y y x 99910-+-+=y y ≥()16999210=-⋅-+y y . 当且仅当999-=-y y ,且9-=y y x ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.例7. 若正数y x ,满足xy y x 53=+,则y x 43+的最小值是 【 】(A )524 (B )528 (C )5 (D )6解: ∵xy y x 53=+,∴15351=+xy . ∵y x ,均为正数∴()x y y x x y y x x y y x y x 5125351351254595353514343++=+++=⎪⎭⎫ ⎝⎛++=+ ≥5562513512532513=⨯+=⋅+x y y x . 当且仅当x y y x 51253=,且xy y x 53=+,即21,1==y x 时,等号成立. ∴y x 43+的最小值是5. ∴选择答案【 C 】.例8.(1)已知45>x ,求代数式54124-+-x x 的最小值; (2)已知45<x ,求代数式54124-+-x x 的最大值.分析: 本题考查利用基本不等式求代数式的最值.注意三个必须满足的条件:一正、二定、三相等.解:(1)∵45>x ,∴054>-x . ∴35415454124+-+-=-+-x x x x ≥()53541542=+-⋅-x x . 当且仅当54154-=-x x ,即23=x 时,等号成立. ∴代数式54124-+-x x 的最小值为5;(2)∵45<x ,∴054<-x .∴34514535415454124+⎥⎦⎤⎢⎣⎡-+--=+-+-=-+-x x x x x x ≤()1323451452=+-=+-⋅--xx 当且仅当x x 45145-=-,即1=x 时,等号成立,54124-+-x x 取得最大值1.例9. 已知实数0,0>>b a ,且11111=+++b a ,则b a 2+的最小值是【 】 (A )23 (B )22 (C )3 (D )2解: ∵11111=+++b a ∴()()11111=+++++b a a b ,整理得:1=ab .∵0,0>>b a∴b a 2+≥221222222=⨯==⋅ab b a . 当且仅当b a 2=,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22. ∴选择答案【 B 】.另解: ()()31212-+++=+b a b a .∵0,0>>b a ,11111=+++b a ∴()()[]()132112111111131212⨯-+++++++=⎪⎭⎫ ⎝⎛+++-+++=+a b b a b a b a b a ()11211+++++=a b b a ≥()22112112=++⋅++a b b a . 当且仅当()11211++=++a b b a ,且11111=+++b a ,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22.例10. 设0,0>>y x ,且53=+y x ,则yx 311++的最小值为 【 】 (A )23(B )2 (C )32 (D )3 解: ∵53=+y x∴()813=++y x ,∴()18813=++yx .∵0,0>>y x ∴()()()8318819833118813311+++++=⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡++=++x y y x y x y x y x ()()4318819++++=x y y x ≥()()234383243188192=+⨯=++⋅+x y y x . 当且仅当()()18819+=+x y y x ,且53=+y x ,即4,31==y x 时,等号成立. ∴y x 311++的最小值为23. ∴选择答案【 A 】.另解: ∵53=+y x ,∴x y 35-=.∵0,0>>y x ,∴⎩⎨⎧>->0350x x ,解之得:350<<x .∴x 的取值范围为⎪⎭⎫⎝⎛35,0.()()52383518353113112++-=-+=-++=++x x x x x x y x . 设()31631352322+⎪⎭⎫ ⎝⎛--=++-=x x x x f ∵⎪⎭⎫ ⎝⎛∈35,0x ,∴()⎥⎦⎤⎝⎛∈316,0x f . ∴当31=x 时,233168311min ==⎪⎭⎫⎝⎛++y x . ∴选择答案【 A 】.例11. 代数式11072+++x x x (1->x )的最小值为 【 】(A )2 (B )7 (C )9 (D )10分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: 可设()()n x m x x x ++++=++1110722. ∴()1071222++=+++++x x n m x m x∴⎩⎨⎧=++=+10172n m m ,解之得:⎩⎨⎧==45n m . ∴()()415110722++++=++x x x x . ∴()()514114151110722++++=+++++=+++x x x x x x x x ∵1->x ,∴01>+x ∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立. ∴代数式11072+++x x x (1->x )的最小值为9. ∴选择答案【 C 】.另解: ()()()[]()[]1411115211072+++++=+++=+++x x x x x x x x x ()()5141141512++++=+++++=x x x x x . ∵1->x ,∴01>+x∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立,91107min2=⎪⎭⎫ ⎝⎛+++x x x . ∴选择答案【 C 】.例12. 求函数222163x x y ++=的最小值. 解: ∵022>+x∴()62162321632222-+++=++=xx x x y ≥()638621623222-=-+⋅+x x . 当且仅当()2221623x x +=+,即2334-±=x 时,等号成立.638min -=y . 例13. 已知函数()xa x x f +=4(0,0>>a x )在3=x 时取得最小值,则=a ______. 解: ∵0,0>>a x ∴()xa x x f +=4≥a x a x 442=⋅. 当且仅当x a x =4,即2a x =时,等号成立,函数()x f 取得最小值a 4. ∴32=a ,解之得:36=a . 实际上,函数()⎪⎪⎪⎪⎭⎫ ⎝⎛+=+=x a x x a x x f 444(0,0>>a x ),当24a a x ==时,函数()x f 取得最小值.所以32=a ,从而求得36=a . 例14. 设正实数y x ,满足xy y x =+2,若y x m m 222+<+恒成立,则实数m 的取值范围是_____________.分析: 利用基本不等式可求出y x 2+的最小值.要使y x m m 222+<+恒成立,只需()min 222y x m m +<+即可.解: ∵y x ,为正实数,xy y x =+2∴1212=+=+x y xy y x ∴()y x x y y x x y y x y x y x ++=+++=+⎪⎭⎫ ⎝⎛+=+442422122≥8424=⋅+y x x y 当且仅当yx x y =4,即2,4==y x 时,等号成立.∴()82min =+y x .∵y x m m 222+<+恒成立∴只需()min 222y x m m +<+即可∴822<+m m ,解之得:24<<-m .∴实数m 的取值范围是()2,4-.例15. 已知()()x x x f 22-=(10<<x ),求()x f 的最大值.分析: 当两个正数的和为定值S 时,这两个正数的乘积在两个正数相等时取得最大值,简称为:和定积最大.本题中,观察到()2222=-+x x 为定值,故考虑用基本不等式求函数()x f 的最大值,但要对原解析式解析等价变形.解: ∵10<<x ,∴022>-x∴()()()x x x x x f 2222122-⋅=-=≤211212222212=⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 222-=,即21=x 时,等号成立. ∴()x f 的最大值为21. 另解: ∵10<<x ,∴022>-x∴()()()x x x x x f -⋅=-=1222≤2121221222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x -=1,即21=x 时,等号成立. ∴()x f 的最大值为21. 例16. 求代数式12-x x (1<x )的最大值. 分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: ∵1<x ,∴01>-x .∴()()21111111*********+-+-=-++=-+-+=-+-=-x x x x x x x x x x x ()2111+⎥⎦⎤⎢⎣⎡-+--=x x ≤()02221112=+-=+-⋅--x x 当且仅当xx -=-111,即0=x 时,等号成立. ∴代数式12-x x (1<x )的最大值为0. 注意 使用基本不等式法求最值时,一定要满足三个条件:一定、二正、三相等. 例17. 已知210<<x ,求()x x y 2121-=的最大值. 解: ∵210<<x ,∴021>-x . ∴()()x x x x y 212412121-⋅=-=≤161214122124122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 212-=,即41=x 时,等号成立. ∴161max =y . 例18. 设210<<m ,若m m 2121-+≥k 恒成立,则k 的最大值为_________. 分析: 只需min2121⎪⎭⎫ ⎝⎛-+m m ≥k 即可,这样问题就转化为求m m 2121-+的最小值的问题.解: ()()m m m m m m m m 211212212121-=-+-=-+. ∵210<<m ,∴021>-m ∴()()m m m m 212211211-⋅=-≥84121122122112=⨯=⎪⎭⎫ ⎝⎛-+⨯m m . 当且仅当m m 212-=,即41=m 时,等号成立.(注意,当210<<m 时,()0212>-m m ) ∴mm 2121-+的最小值为8.∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8. 另解: ∵210<<m ,∴021>-m ∴()[]221214221212122121+-+-+=⎪⎭⎫ ⎝⎛-+-+=-+m m m m m m m m m m m m m m 212144-+-+=≥82121424=-⋅-+m m m m . 当且仅当m m m m 21214-=-,即41=m 时,等号成立. ∴mm 2121-+的最小值为8. ∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8.例19. 若对任意0>x ,132++x x x ≤a 恒成立,则实数a 的取值范围是_________. 解: ∵0>x ∴311132++=++x x x x x ≤513213121=+=+⋅xx 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∵对任意0>x ,132++x x x ≤a 恒成立 ∴a ≥max213⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 例20. 已知0,0>>y x ,y x xy 2+=,若xy ≥2-m 恒成立,则实数m 的最大值是__________.分析: 可求出m 的取值范围,根据范围确定其最大值.这种方法叫做不等分析法.解: ∵y x xy 2+= ∴1122=+=+yx xy y x . ∵0,0>>y x ∴xyy x 22122=⋅≤112=+y x ∴xy8≤1,∴xy ≥8. 当且仅当y x 12=,即2,4==y x 时,等号成立.()8min =xy . ∵xy ≥2-m 恒成立∴2-m ≤()min xy ,即2-m ≤8,解之得:m ≤10.∴实数m 的最大值是10.例21. 若不等式xa x 29+≥1+a (常数0>a )对一切正实数x 恒成立,求实数a 的取值范围.解: ∵0>x ,0>a ∴xa x 29+≥a x a x 6922=⋅. 当且仅当x a x 29=,即3a x =时,等号成立. ∴a x a x 69min 2=⎪⎭⎫ ⎝⎛+. ∵xa x 29+≥1+a 对一切正实数x 恒成立 ∴只需min 29⎪⎭⎫ ⎝⎛+x a x ≥1+a 即可 ∴a 6≥1+a ,解之得:a ≥51.∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 方法总结 解决与不等式恒成立有关的问题,把参数从不等式中分离出来,使不等式的一端是含有参数的代数式,另一端是一个具体的函数,这样就把问题转化为只有一端是参数的不等式的形式,便于问题的解决.例22. 已知b a ,是正实数,且032=-+ab b a ,则ab 的最小值是_________,b a +的最小值是_________.解: ∵032=-+ab b a∴ab b a 32=+,∴13132=+ba . ∵b a ,是正实数 ∴()b a a b b a a b b a b a b a 332131332323132++=+++=+⎪⎭⎫ ⎝⎛+=+ ≥322133221+=⋅+b a a b . 当且仅当ba ab 332=,即312,322+=+=b a 时,等号成立. ∴b a +的最小值为3221+. ∵b a ,是正实数,13132=+b a ∴ab b a 92231322=⋅≤13132=+ba ∴ab ≥98. 当且仅当b a 3132=,即32,34==b a 时,等号成立. ∴ab 的最小值是98. 例23. 已知0,0>>y x ,且32=+y x ,则xy 的最大值是_________,xy y x +3的最小值是_________.解: ∵0,0>>y x ,32=+y x ∴xy y x 2222=⋅≤32=+y x∴xy ≤89,当且仅当y x 2=,即43,23==y x 时,等号成立. ∴xy 的最大值是89. ∵32=+y x ,∴1323=+y x . ∴37322323131323313++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+x y y x x y y x y x y x y x xy y x ≥37623732237322+=+=+⋅x y y x . 当且仅当xy y x 32=,即106318,5363-=-=y x 时取等号. ∴xyy x +3的最小值是3762+. 例24. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是,平方米10元,则该容器的最低总造价是 【 】(A )80元 (B )120元 (C )160元 (D )240元 解: 由题意可知:该容器的底面积为4 m 2,设底面长为x m,则底面宽为x 4m,容器的总造价为y 元.则有804204102420+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⨯⨯+⨯=x x x x y ≥160804220=+⋅⨯x x (元) 当且仅当xx 4=,即2=x 时,等号成立. ∴该容器的最低总造价是160元.∴选择答案【 C 】.例25. 设0,0>>y x ,52=+y x ,则()()xy y x 121++的最小值为_________.解: ∵52=+y x∴()()⎪⎪⎭⎫ ⎝⎛+=+=+=+++=++xy xy xy xy xy xy xyy x xy xy y x 326262122121. ≥34322=⋅⨯xy xy . 当且仅当xy xy 3=,且52=+y x ,即1,3==y x 或23,2==y x 时,等号成立. ∴()()xy y x 121++的最小值为34.注意 注意与下面的例25做比较.例26. 设0,>b a ,且1=+b a ,则abab 1+的最小值为_________. 分析: 利用基本不等式求最值时,一定要满足三个条件:一定、二正、三相等. ∵0,>b a ,∴ab ab 1+≥212=⋅ab ab . 当且仅当ab ab 1=时,等号成立,此时⎪⎩⎪⎨⎧=+=11b a ab ab 无实数解. ∴上面的等号是取不到的,即abab 1+的最小值不是2. 解: ∵0,>b a ,且1=+b a ∴ab ≤212=+b a ,∴ab <0≤41. 设t ab =,则⎥⎦⎤ ⎝⎛∈41,0t . ∵t t y 1+=在⎥⎦⎤ ⎝⎛∈41,0t 上单调递减 ∴4174414114141min =+=+=⎪⎭⎫ ⎝⎛=f y . ∴ab ab 1+的最小值为417. 例27. 设20<<x ,求代数式224x x -的最大值.解: ∵20<<x∴02>-x ∴()()x x x x x x -⋅=-=-2222242≤2222=-+⨯x x 当且仅当x x -=2,即1=x 时,等号成立.∴代数式224x x -的最大值2.例28. 已知0,0,0>>>z y x ,求证:⎪⎭⎫⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥8. 证明: ∵0,0,0>>>z y x ∴x z x y +≥02>x yz ,y z y x +≥02>yxz ,z y z x +≥02>z xy . 当且仅当z y x ==时,上面三个等号同时成立.∴⎪⎭⎫ ⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥888==⋅⋅xyzxyz xyz xy xz yz . 当且仅当z y x ==时,等号成立.例29. 已知0,0,0>>>c b a ,且1=++c b a .求证:cb a 111++≥9. 证明: ∵0,0,0>>>c b a ,1=++c b a ∴cc b a b c b a a c b a c b a ++++++++=++111 ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b 3 ≥922232223=+++=⋅+⋅+⋅+cb bc c a a c b a a b 当且仅当c b a ==时,等号成立.例30. 已知正数b a ,满足4=+b a ,求3111+++b a 的最小值. 解: ∵4=+b a ∴()()831=+++b a .∵b a ,均为正数∴()()[]31813111+++=+++b a b a ⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛+++113311813111a b b a b a ⎪⎭⎫ ⎝⎛++++++=13318141a b b a ≥21133128141=++⋅++⨯+a b b a . 当且仅当1331++=++a b b a ,即1,3==b a 时,等号成立. ∴3111+++b a 的最小值为21. 例31. 若实数2,1>>b a ,且满足062=-+b a ,则2211-+-b a 的最小值为______. 解: ∵062=-+b a∴()()2212=-+-b a .∵2,1>>b a ,∴02,01>->-b a . ∴()()[]212212211-+-=-+-b a b a ⎪⎭⎫ ⎝⎛-+-2211b a()()⎥⎦⎤⎢⎣⎡--+--+=⎥⎦⎤⎢⎣⎡+--+--+=12214212212214221a b b a a b b a≥()4122142212=--⋅--⨯+a b b a . 当且仅当()12214--=--a b b a ,即3,23==b a 时,等号成立. ∴2211-+-b a 的最小值为4. 例32. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】 (A )5 (B )6 (C )7 (D )8 (参见例9)解: ()33-++=+y x y x .∵0,0>>y x ,且21131=++y x∴()⎪⎭⎫⎝⎛++=-++=+y x y x y x 131233()[]33-++y x ⎪⎭⎫ ⎝⎛++++=-⎪⎭⎫ ⎝⎛+++++=y x x yy x x y 3321313312≥533221=+⋅+⨯+yx x y . 当且仅当yx x y 33+=+,即4,1==y x 时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.另解: ∵21131=++y x ,∴31211+-=x y . 整理得:()()2141412132++=+++=++=x x x x x y . ∵0,0>>y x ∴1141214++++=+++=+x x x x y x ≥()511412=++⋅+x x . 当且仅当141+=+x x ,即1=x (此时4=y )时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.点评 在利用基本不等式求最值时,根据需要有时要对关键条件进行变形,或对要求最值的代数式进行变形,以使和为定值或积为定值. 例33. 已知0>>y x ,求()y x y x -+42的最小值.分析: 注意到()x y x y =-+,所以()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+,这样就消去了字母y ,因此()y x y x -+42≥2216x x +≥4.当且仅当2216,xx y x y =-=时,等号成立.解: ∵0>>y x∴()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+(当且仅当y x y -=时,等号成立) ∴()[]42maxx y x y =-,()22min16444x x y x y ==⎥⎦⎤⎢⎣⎡-. ∴()y x y x -+42≥2216xx +≥816222=⋅x x .当且仅当2216x x =,y x y -=,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.另解: ∵0>>y x ,∴()0>-y x y .∵()[]22y x y x -+=≥()y x y -4(这里,ab ≤22⎪⎭⎫⎝⎛+b a )(当且仅当y x y -=时,等号成立) ∴()y x y x -+42≥()()y x y y x y -+-44≥()()8442=-⋅-y x y y x y .(当且仅当()()y x y y x y -=-44,即()1=-y x y 时,等号成立)当且仅当()1,=--=y x y y x y ,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.例34. 若b a >,且2=ab ,求证:ba b a -+22≥4.证明: ∵b a >,∴0>-b a .∵2=ab∴()ba b a b a ab b a b a b a -+-=-+-=-+42222≥()442=-⋅-b a b a .当且仅当ba b a -=-4,即13,13-=+=b a 或13,13--=+-=b a 时,等号成立.∴ba b a -+22≥4.例35. 已知b a ,为正数,求证:b a 41+≥()ba ++21222. 证明: ∵b a ,为正数,∴02>+b a .∴()b a a b b a a b b a b a 86482241++=+++=+⎪⎭⎫ ⎝⎛+ ≥()()21222232246826+=+=+=⋅+baa b . 当且仅当baa b 8=,即a b 22=时,等号成立. ∴b a 41+≥()ba ++21222.(这里,02>+b a ) ★例36. 若10<<x ,0,0>>b a .求证:xb x a -+122≥()2b a +. 分析: 注意到()11=-+x x 这一隐含条件. 证明: ∵10<<x ,∴01>-x .∴()[]()2222222211111b x x a x x b a x b x a x x x b x a +-+-+=⎪⎭⎫ ⎝⎛-+-+=-+ ≥()()22222222112b a ab b a xx a x x b b a +=++=-⋅-++. 当且仅当()x x a x x b -=-1122,即b a ax +=时,等号成立. ∴xb x a -+122≥()2b a +. 例37. 已知c b a ,,均为正数.求证:ccb a b bc a a a c b 33222332-++-++-+≥3. 证明: ∵c b a ,,均为正数∴ccb a b bc a a a c b 33222332-++-++-+ 33223332213231232132-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-++-++-+=c b b c c a a c b a a b cb c a b c b a a c a b≥336332232332222=-=-⋅+⋅+⋅cb bc c a a c b a a b . 当且仅当cbb c c a a c b a a b 3223,33,22===,即c b a 32==时,等号成立. ∴c c b a b b c a a a c b 33222332-++-++-+≥3. 例38. 已知0,0>>y x ,y yx x -=-812,则y x +2的最小值为 【 】 (A )2 (B )22 (C )23 (D )4分析: 注意到02>+y x ,根据题目所给条件的特点可先求出()[]min22y x +,然后开方即可得到()min 2y x +,而()()⎪⎭⎫ ⎝⎛++=+y x y x y x 81222.解: ∵y yx x -=-812,∴y x y x 812+=+.∵0,0>>y x ,∴02>+y x .∴()()y x y x +=+222⎪⎭⎫ ⎝⎛+y x 81x y y x x y y x ++=+++=16108162 ≥1816210=⋅+xyy x . 当且仅当xyy x =16,即22,22==y x (x y 4=)时,等号成立. ∴()22y x +的最小值为18. ∴y x +2的最小值为2318=. ∴选择答案【 C 】.例39. 已知0,0>>b a ,且8=+b a ,则ba ab43+的最大值是_________. 解: ∵0,0>>b a ,8=+b a∴()a b b a a b b a b a b a b a ab b a b a ab 452414424148131434343++=+++=⎪⎭⎫ ⎝⎛++=+=+=+ ≤38924452442524==+=⋅+abb a . 当且仅当a b b a 4=,即38,316==b a 时,等号成立. ∴b a ab 43+的最大值是38. 例40. 已知93,0,0=++>>xy y x y x ,则y x 3+的最小值为_________. 解: ∵93=++xy y x ,∴39+-=x xy . ∵0,0>>y x ∴()()633633336336333933-+++=-++=+++-+=+-+=+x x x x x x x x x x y x ≥()6612633632=-=-+⋅+x x . 当且仅当3363+=+x x ,即1,3==y x 时,等号成立. ∴y x 3+的最小值为 6. 点评: 上面的方法为消去元y 后,利用基本不等式求得最值.例41. 已知x 为正实数,且1222=+y x ,求21y x +的最大值. 解: ∵x 为正实数∴()⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=+22122212112222222y x y x y x y x≤423221122221222=+⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⨯y x .当且仅当22122y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 另解: ∵1222=+y x ,∴2222=+y x .∵x 为正实数∴()()()22222221222122111y x y x y x y x +=+⋅=+=+ ≤()4232122221222212222222=+⨯=++⨯=⎥⎦⎤⎢⎣⎡++⨯y x y x . 当且仅当2212y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 例42. 求函数131-++-=x x x y 的最大值.解: 设1-=x t ,则t ≥0,∴12+=t x . ∴41312++=-++-=t t tx x x y .当0=t ,即1=x 时,0=y ; 当0>t ,即1>x 时,141++=t t y ≤511421=+⋅tt . 当且仅当tt 4=,即5,2==x t 时,取等号. ∴当1>x 时,函数131-++-=x x x y 的最大值为51.综上所述,函数131-++-=x x x y 的最大值为51.例43. 设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,代数式zy x 212-+的最大值为 【 】 (A )0 (B )1 (C )49(D )3 解: ∵04322=-+-z y xy x ,∴2243y xy x z +-=.∵z y x ,,为正实数 ∴341431432222-+=+-=+-=x y y x xy y xy x y xy x xy z xy ≤13421=-⋅xy y x .当且仅当xyy x 4=,即y x 2=时,等号成立,此时22y z =. ∴1112122122212222+⎪⎭⎫⎝⎛--=+-=-+=-+y y y y y y z y x ≤1 ∴当1=y 时,zy x 212-+的最大值为1. ∴选择答案【 B 】.例44. 若正数y x ,满足3039422=++xy y x ,则xy 的最大值是 【 】(A )34 (B )35 (C )2 (D )45解: ∵xy y x 39422++≥xy xy xy xy y x 153123322=+=+⋅⋅∴xy 15≤30,∴xy ≤2. ∴xy 的最大值是2. ∴选择答案【 C 】.例45. 设0,0>>b a ,且ba kb a +++11≥0恒成立,则实数k 的最小值等于 【 】 (A )0 (B )4 (C )4- (D )2-解: ∵ba kb a +++11≥0恒成立∴k ≥()abb a 2+-恒成立.(这里,注意0>+b a )只需k ≥()max2⎥⎦⎤⎢⎣⎡+-ab b a 即可,此时()ab b a 2+取得最小值. ∵0,0>>b a ∴()abb a 2+≥()4422==ababab ab ,当且仅当b a =时,等号成立. ∴()abb a 2+-≤4-,∴()4max2-=⎥⎦⎤⎢⎣⎡+-ab b a ∴k ≥4-,即k 的最小值为4-. ∴选择答案【 C 】.例46. 设c b a >>,且c b b a -+-11≥ca m-恒成立,求m 的取值范围; 解: ∵c b a >>,∴0,0,0>->->-c a c b b a .∵c b b a -+-11≥ca m-恒成立 ∴c b ca b a c a --+--≥m 恒成立,只需m ≤min⎪⎭⎫ ⎝⎛--+--c b c a b a c a 即可.∵cb ba b a c b c b c b b a b a c b b a c b c a b a c a --+--+=--+-+--+-=--+--2 ≥422=--⋅--+cb ba b a c b ∴当且仅当b c a 2=+时,等号成立,4min=⎪⎭⎫⎝⎛--+--c b c a b a c a . ∴m ≤4.∴m 的取值范围是(]4,∞-.例47. 对于任意∈x R ,不等式031222>++-x a x 恒成立,求实数a 的取值范围. 解: ∵031222>++-x a x 恒成立∴13222++<x x a 恒成立,只需<a min 22132⎪⎭⎫ ⎝⎛++x x 即可.()⎪⎪⎪⎪⎭⎫⎝⎛+++=+++=+++=++12112111*********2222222x x x x x x x x . 设t x =+12,则[)+∞∈,1t ,⎪⎪⎪⎪⎭⎫ ⎝⎛+=++t t x x 21213222. ∵[)+∞∈,1t ,且()⎪⎪⎪⎪⎭⎫ ⎝⎛+=t t t f 212在⎪⎪⎭⎫⎢⎣⎡+∞,22上单调递增 ∴()()321121min=⎪⎭⎫ ⎝⎛+==f t f ,即3132min22=⎪⎭⎫ ⎝⎛++x x . ∴3<a ,即实数a 的取值范围是()3,∞-.注意 本题不能用基本不等式求最值.当111222+=+x x 时,方程无解.例48. 设0,0>>b a ,5=+b a ,则31+++b a 的最大值为_________. 解: ∵()()()()()31293124312+++=+++++=+++b a b a b a b a≤()()18319=++++a a . 当且仅当31+=+b a ,即23,27==b a 时,取等号. ∴()231+++b a 的最大值为18.∵031>+++b a∴31+++b a 的最大值为2318=.例49. 已知3,2>>y x ,()()432=--y x ,则y x +的最小值是 【 】(A )7 (B )9 (C )5 (D )11解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x ∴()()232-+-y x ≥()()2432==--y x∴25-+y x ≥2,∴y x +≥9. ∴y x +的最小值是9.∴选择答案【 B 】.另解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x∴()()532+-+-=+y x y x ≥()()95425322=+⨯=+--y x .∴y x +的最小值是9.∴选择答案【 B 】. 例50. 若关于x 的不等式ax x -+4≥5在()+∞∈,a x 上恒成立,则实数a 的最小值为_________.解: ∵()+∞∈,a x ,∴0>-a x .∵ax x -+4≥5恒成立 ∴只需min 4⎪⎭⎫ ⎝⎛-+a x x ≥5即可. ∵a ax a x a x x +-+-=-+44≥()a a a x a x +=+-⋅-442 当且仅当ax a x -=-4,即2+=a x 时,等号成立. ∴a a x x +=⎪⎭⎫ ⎝⎛-+44min ∴a +4≥5,解之得:a ≥1.∴实数a 的最小值为1.例51. 已知0,0>>y x ,且121=+yx ,则y x xy ++的最小值为_________. 解: ∵121=+yx ∴xy y x =+2∴y x y x y x y x xy 232+=+++=++.∵0,0>>y x ∴⎪⎭⎫ ⎝⎛+=+y x y x 2123()y xx y y x x yy x 627462323++=+++=+≥3476227+=⋅+y xx y. 当且仅当y x x y 62=,即23,3323+=+=y x 时,等号成立.∴y x 23+,即y x xy ++的最小值为347+.例52. 已知0,0>>y x ,且053=+-+xy y x ,求xy 的最小值.解: ∵053=+-+xy y x∴xy y x 35=++.∵0,0>>y x∴5++y x ≥52+xy ,即xy 3≥52+xy ∴523--xy xy ≥0 ∴()()531-+xy xy ≥0解之得:xy ≥35.∴xy ≥925,当且仅当35==y x 时,等号成立.∴xy 的最小值为925.例53. 已知z y x ,,为正数,则222z y x yzxy +++的最大值为【 】 (A )1 (B )2 (C )22(D )2解: ∵z y x ,,为正数 ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+++222222222z y y x yz xy z y x yz xy ≤yz xy yz xy 222222⨯+⨯+ ()22212==++=yz xy yzxy . 当且仅当y z x 22==时,等号成立. ∴222z y x yz xy +++的最大值为22. ∴选择答案【 C 】.例54. 设0>>b a ,则()b a a ab a -++112的最小值是 【 】 (A )1 (B )2 (C )3 (D )4解: ∵0>>b a ,∴0>-b a .∴()()()()ab ab b a a b a a b a a ab ab ab a b a a ab a 11111122++-+-=-+++-=-++ ≥()()41212=⋅+-⋅-abab b a a b a a . 当且仅当()()abab b a a b a a 1,1=-=-,即22,2==b a 时,等号成立. ∴()b a a ab a -++112的最小值是4. ∴选择答案【 D 】.例55. 设y x ,都是正数,且()1=+-y x xy .(1)求xy 的最小值;(2)求y x +的最小值.分析: 关于(1)的解决,参见例52.解:(1)∵()1=+-y x xy ∴xy y x =++1. ∵y x ,都是正数 ∴y x ++1≥xy 21+,即xy ≥xy 21+. ∴12--xy xy ≥0. 解之得:xy ≥21+. ∴xy ≥()223212+=+. 当且仅当21+==y x 时,等号成立. ∴xy 的最小值为223+;(2)由(1)知:xy y x =++1. ∵y x ,都是正数∴xy ≤()4222y x y x +=⎪⎭⎫ ⎝⎛+. (当且仅当21+==y x 时取等号) ∴()42y x +≥y x ++1,()()142-+-+y x y x ≥0. ∴()()442-+-+y x y x ≥0. 解之得:y x +≥222+. 当且仅当21+==y x 时,等号成立. ∴y x +的最小值为222+.。

基本不等式知识点

基本不等式知识点

基本不等式知识点基本不等式知识点1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)db c a dc b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)nna b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>⇒∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b=时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理): 设1212...,...n na aa b b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,nb b b的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...na a a ===或12...nb bb ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f xg x a a f x g x >⇔> ⑵当01a <<时,()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法 ⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法 解形如2axbx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题 ⑴不等式2ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max();f x a ⇔< ()f x a≤恒成立max();f x a ⇔≤⑷()f x a >恒成立min();f x a ⇔>()f x a≥恒成立min().f x a ⇔≥15、线性规划问题 常见的目标函数的类型: ①“截距”型:;z Ax By =+ ②“斜率”型:y z x=或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

高三数学知识点总结3:基本不等式

高三数学知识点总结3:基本不等式

基本不等式1.基本不等式:2b a ab +≤.(一正、二定、三相等) (1)基本不等式成立的条件:0,0≥≥b a .(2)等号成立的条件:当且仅当b a =时取等号. 2.算术平均数与几何平均数设,0,0>>b a 则b a ,的算术平均数为,2b a +几何平均数为,ab 基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.3.几个重要的不等式(1)),(222R b a ab b a ∈≥+;(2))0,0(2≥≥≥+b a ab b a ;(3)),(4)(2R b a b a ab ∈+≤;(4)222)()(2b a b a +≥+(R b a ∈,) 4.利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (2)如果和y x +是定值,s 那么当且仅当y x =时,xy 有最大值是.4s 2注:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正(各项均为正),二定(积或和为定值),三相等(等号能否取得)”,若忽略了某个条件,就会出现错误.解答题用基本不等式求最值一定要说明何时取等号,不说明会扣分。

如果多次用基本不等式求最值,必须保持每次取“=”的一致性.5.注意:正负要判断,等号要考虑例(1)已知,45<x 函数54124-+-=x x y 的最大值为_________答案:1. (2)函数4522++=x x y 的最小值是_________答案:.25 6.“1”的代换问题:例(3)设,32,0,0=+>>b a b a 则11a b+最小值是 答案:3223+. (4)已知P 是ABC ∆的边BC 上的任一点,且满足,,,R y x AC y AB x AP ∈+=则xy y x +4的最小值是 .答案:9.7.“y x +”与“xy ”的互相转化例(5)若正实数y x ,满足,62++=y x xy 则xy 的最小值是_________答案:18.(6)设y x ,为实数,若,1422=++xy y x 则y x +2的最大值是_________答案:.5102 8.巧妙运用换元法 例(7)设y x ,是正实数,且,1=+y x 则1222+++y y x x 的最小值是_________答案:41. (8)若,0,0>>b a 且,11121=+++b b a 则b a 2+的最小值为________答案:.321+ 9.灵活使用消元法例(9)已知正实数y x ,满足,42=++y x xy 则y x +的最小值为_____答案:62.3-(10)若ABC ∆的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是_____答案:.426-。

第7讲 基本不等式(知识点串讲)(解析版)

第7讲 基本不等式(知识点串讲)(解析版)
当且仅当x-2= ,即(x-2)2=1时等号成立,
解得x=1或3.又∵x>2,∴x=3,即a等于3时,函数f(x)在x=3处取得最小值.]
练习、(2019·山东济宁月考)已知0<x<1,则x(3-3x)取得最大值时x的值为()
A. B.
C. D.
【答案】B[∵0<x<1,∴x(3-3x)=3x(1-x)≤3 = .当且仅当x=1-x,即x= 时,“=”成立.]
练习、(2019·广东梅州月考)设a,b,c均为正数,满足a-2b+3c=0,则 的最小值是________.
【答案】3[∵a-2b+3c=0,∴b= ,∴ = ≥ =3,当且仅当a=3c时取“=”.]
【知识梳理】
6、用基本不等式求实际应用题的三个注意点
(1)设变量时一般要把求最大值或最小值的变量定义为函数.
(1)求S关于x的函数关系式;
(2)求S的最大值.
解(1)由题设,得S=(x-8) =-2x- +916,x∈(8,450).
(2)因为8<x<450,
所以2x+ ≥2 =240,
当且仅当x=60时等号成立,从而S≤676.
故当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为676 m2.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
【考点精炼】
考点四、基本不等式的实际应用
例4、(2019·山东聊城月考)某化工企业2018年年底将投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).

不等式知识点总结

不等式知识点总结

不等式知识点总结一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 2>5,x - 1≤slant2x等。

2. 不等式的解与解集。

- 不等式的解:使不等式成立的未知数的值叫做不等式的解。

例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。

- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。

3. 解不等式。

- 求不等式解集的过程叫做解不等式。

例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。

二、不等式的基本性质。

1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。

例如5>3,那么3 < 5。

2. 性质2(传递性)- 如果a>b,b>c,那么a>c。

例如7>5,5>3,那么7>3。

3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。

例如3>1,那么3+2>1 + 2,即5>3。

- 推论:如果a>b,c>d,那么a + c>b + d。

例如4>2,3>1,那么4 + 3>2+1,即7>3。

4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。

例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点归纳不等式是数学中重要的概念之一,其在代数中应用广泛。

基本的不等式知识点包括一元一次不等式、二元一次不等式、绝对值不等式以及高次不等式等内容。

本文将对这些基本不等式知识点进行归纳总结。

一、一元一次不等式一元一次不等式即只含有一个变量的一次方程,形如ax+b>0或ax+b<0,其中a、b均为已知常数,x为未知变量。

解一元一次不等式的关键是将其转化为等价的简单形式。

具体解法如下:1.当a>0时,将不等式转化为x>-b/a或x<-b/a,即可得到不等式的解集。

令x=-b/a,即x=b/a为关键点,将实数轴分成两个半区间,选取其中一个半区间,即可确定不等式的解集。

2.当a<0时,将不等式转化为x<-b/a或x>-b/a,即可得到不等式的解集。

同样令x=-b/a,即x=b/a为关键点,将实数轴分成两个半区间,选取其中一个半区间,即可确定不等式的解集。

二、二元一次不等式二元一次不等式即含有两个变量的一次方程,形如ax+by>c或ax+by<c,其中a、b、c均为已知常数,x、y为未知变量。

解二元一次不等式的关键是确定不等式的解集。

具体解法如下:1. 将不等式转化为等价的简单形式,即将不等式化为一个以上的不等式。

例如,对于ax+by>c,可以根据a、b的正负情况,分别得到x>c/a、x<c/a、y>c/b和y<c/b四个不等式。

2.根据得到的不等式,确定不等式的解集。

根据不等式的关系,将x、y的解集分别标在坐标平面上,其中各个解集的交集即为该二元一次不等式的解集。

三、绝对值不等式绝对值不等式是含有绝对值的不等式,形如,ax+b,>c或,ax+b,<c,其中a、b、c均为已知常数,x为未知变量。

解绝对值不等式的关键是确定绝对值不等式的情况,然后将其转化为简单的不等式。

具体解法如下:1. 当a>0时,原绝对值不等式可以转化为ax+b>c或ax+b<c的形式。

基本不等式知识点

基本不等式知识点

基本不等式知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)(同向可加性)(异向可减性)④(可积性)⑤(同向正数可乘性)(异向正数可除性)⑥(平方法则)⑦(开方法则)⑧(倒数法则)2、几个重要不等式①,(当且仅当时取号). 变形公式:②(基本不等式) ,(当且仅当时取到等号).变形公式:用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当时取到等号).④(当且仅当时取到等号).⑤(当且仅当时取到等号).⑥(当仅当a=b时取等号)(当仅当a=b时取等号)⑦,(其中规律:小于1同加则变大,大于1同加则变小.⑧⑨绝对值三角不等式3、几个著名不等式①平均不等式:,,当且仅当时取号).(即调和平均几何平均算术平均平方平均).变形公式:②幂平均不等式:③二维形式的三角不等式:④二维形式的柯西不等式:当且仅当时,等号成立.⑤三维形式的柯西不等式:⑥一般形式的柯西不等式:⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使时,等号成立.⑧排序不等式(排序原理):设为两组实数.是的任一排列,则(反序和乱序和顺序和),当且仅当或时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任意两点有则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如②将分子或分母放大(缩小),如等.5、一元二次不等式的解法求一元二次不等式解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则(时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴⑵⑶⑷⑸规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时,⑵当时,规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:⑶同解变形法,其同解定理有:①②③④规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时②当时⑵不等式的解集是全体实数(或恒成立)的条件是:①当时②当时⑶恒成立恒成立⑷恒成立恒成立15、线性规划问题常见的目标函数的类型:①“截距”型:②“斜率”型:或③“距离”型:或或在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

《基本不等式》知识点及题型总结

《基本不等式》知识点及题型总结

基本不等式 一、考点、热点回顾 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 知识拓展不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D ); 若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ).(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D ); 若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ;不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .二、典型例题例1、设0a b ,则下列不等式中正确的是( )A .a <b << B. a <<<bC .a <<b < D .<a <<b变式训练1、已知等比数列的各项均为正数,公比0<q <1,设392a a P +=,Q =,则a 3,a 9,P 与Q 的大小关系是( )A .a 3>P >Q >a 9 B. a 3>Q >P >a 9C .a 9>P >a 3>QD .P >Q >a 3>a 9考点二、利用基本不等式求最值例2、(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________. (3)设a >0,b >0,且21a b +=,则11a b+的最小值为 。

(完整版)基本不等式知识点

(完整版)基本不等式知识点

基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

基本不等式知识点梳理

基本不等式知识点梳理

基本不等式1、教学重点:应用数形结合的思想理解不等式ab b a 222≥+,并从不同角度探索不等式2a b ab +≤的证明过程; 通过简单的变形发现基本不等式在最值问题上的作用,并能够进行使用条件辨析及其简单运用。

2、教学难点:基本不等式2a b ab +≤使用限制条件 基本不等式2a b ab +≤等号成立条件 基本不等式在最值问题中的运用3、学生必须掌握的内容:1.重要不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.2.基本不等式(1)定理2:如果a ,b >0,那么2a b ab +≥ ( a +b 2≥ab),当且仅当a =b 时,等号成立.(2)定理2的应用:对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,最大值为S 24. ②如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值,最小值为2P .3.基本不等式ab ≤a +b 2的几何解释如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直AB 的弦.若AC =a ,BC =b ,则AB =a +b ,⊙O 的半径R =a +b 2,Rt △ACD ∽Rt △DCB ,CD 2=AC ·BC =ab ,CD =ab ,CD ≤R ⇒ab ≤a +b 2,当且仅当C 点与O 点重合时,CD =R =AB 2,即ab =a +b 2.4.几个常用的重要不等式(1)如果a ∈R ,那么a 2≥0,当且仅当a =0时取等号;(2)如果a ,b >0,那么ab ≤(a +b )24,当且仅当a =b 时等号成立. (3)如果a >0,那么a +1a ≥2,当且仅当a =1时等号成立.(4)如果ab >0,那么a b +b a ≥2,当且仅当a =b 时等号成立.3.三个正数的算术-几何平均不等式1.如果a 、b 、c ∈R +,那么a 3+b 3+c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.(定理3)如果a 、b 、c ∈R +,那么3++≥a b c (a +b +c 3≥3abc),当且仅当a =b =c 时,等号成立.即三个正数的算术平均不小于它们的几何平均.3.如果a 1,a 2,…,a n ∈R +,那么a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.即对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均.4、容易出现的问题:学生容易忽略和混淆不等式取到等号的条件,容易遗忘不等式使用的限制条件.5、解决方法:找到具体实例,和学生一起分析存在的问题并及时纠正学生的易错之处.。

基本不等式完整版(非常全面)

基本不等式完整版(非常全面)

基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,abc d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥---5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a bc ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥- 题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点归纳基本不等式是数学中的重要概念,涉及到数值之间的大小关系。

在数学学习中,掌握基本不等式的知识点对于解决各类问题至关重要。

本文将对基本不等式的定义、性质以及常用的基本不等式进行归纳总结。

一、基本不等式的定义基本不等式是指关于变量的不等关系式,通常形式为a ≤ b 或 a < b,其中 a、b 为实数,表示 a 与 b 之间的大小关系。

二、基本不等式的性质1. 传递律:若a ≤ b 且b ≤ c,则a ≤ c。

2. 对称律:若a ≤ b,则b ≥ a。

3. 加法性:若a ≤ b,则a + c ≤ b + c。

4. 减法性:若a ≤ b,则 a - c ≤ b - c(其中 c 为正数)。

5. 乘法性:若a ≤ b 且c ≥ 0,则ac ≤ bc。

若c ≤ 0,则ac ≥ bc。

6. 除法性:若a ≤ b 且 c > 0,则a/c ≤ b/c。

若 c < 0,则a/c ≥ b/c。

三、常用的基本不等式1. 平均值不等式:对于任意非负实数 a₁、a₂、...、aₙ,有 (a₁ +a₂ + ... + aₙ)/n ≥ √(a₁a₂...aₙ)。

该不等式表明,若 n 个非负实数的算术平均值大于等于它们的几何平均值,那么这些数之间存在不等关系。

2. 柯西-施瓦茨不等式:对于任意实数 a₁、a₂、...、aₙ 和 b₁、b₂、...、bₙ,有(a₁b₁ + a₂b₂ + ... + aₙbₙ)² ≤ (a₁² + a₂² + ... + aₙ²)(b₁² + b₂²+ ... + bₙ²)。

柯西-施瓦茨不等式表明了两个向量内积的平方与两个向量长度乘积的平方之间的关系。

该不等式在数学分析、线性代数等领域有广泛应用。

3. 三角不等式:对于任意实数 a、b,有|a + b| ≤ |a| + |b|。

三角不等式表明了两个实数之和的绝对值小于等于两个实数的绝对值之和。

必修五数学基本不等式知识点总结

必修五数学基本不等式知识点总结

必修五数学基本不等式知识点总结
必修五数学基本不等式的知识点总结如下:
1. 基本不等式的定义:对于任意的实数a和b,有a≤b,即两个数的大小关系。

2. 数轴上的不等式:通过将不等式转化为数轴上的线段表示,可以直观地表示出不等式的解集。

3. 加法性质:对于任意的实数a、b和c,如果a≤b,则a+c≤b+c。

4. 减法性质:对于任意的实数a、b和c,如果a≤b,则a-c≤b-c。

5. 乘法性质:对于任意的实数a、b和c,如果a≤b且c≥0,则ac≤bc。

如果a≤b且c ≤0,则ac≥bc。

6. 除法性质:对于任意的实数a、b和c,如果a≤b且c>0,则a/c≤b/c。

如果a≤b且c<0,则a/c≥b/c。

7. 对称性:对于任意的实数a和b,如果a≤b,则b≥a,反之亦然。

8. 传递性:对于任意的实数a、b和c,如果a≤b且b≤c,则a≤c。

9. 绝对值不等式:对于任意的实数a,有|a|≥a或|a|≥-a。

10. 三角形不等式:对于任意的三角形的边a、b和c,有a+b>c、a+c>b和b+c>a。

以上就是必修五数学基本不等式的知识点总结。

基本不等式知识点

基本不等式知识点

基本不等式知识点1. 算术-几何平均不等式(AM-GM不等式)- 表述:对于所有非负实数 \(a_1, a_2, ..., a_n\),算术平均数总是大于或等于几何平均数。

- 数学表达:\(\frac{a_1 + a_2 + ... + a_n}{n} \geq\sqrt[n]{a_1 \cdot a_2 \cdot ... \cdot a_n}\)。

- 等号成立条件:当且仅当所有 \(a_i\) 相等时,等号成立。

2. 柯西-施瓦茨不等式(Cauchy-Schwarz不等式)- 表述:对于所有实数序列 \(a_1, a_2, ..., a_n\) 和 \(b_1,b_2, ..., b_n\),两序列对应元素乘积的和的平方不超过各自平方和的乘积。

- 数学表达:\((a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)\)。

- 等号成立条件:当且仅当 \(a_i = \lambda b_i\) 对所有 \(i\) 成立时,等号成立,其中 \(\lambda\) 是一个常数。

3. 詹森不等式(Jensen's Inequality)- 表述:如果 \(\phi\) 是一个实数上的凸函数,对于任意实数序列 \(x_1, x_2, ..., x_n\),算术平均数的函数值总是小于或等于这些数的函数值的算术平均数。

- 数学表达:\(\phi\left(\frac{x_1 + x_2 + ... +x_n}{n}\right) \leq \frac{1}{n}\phi(x_1) +\frac{1}{n}\phi(x_2) + ... + \frac{1}{n}\phi(x_n)\)。

- 等号成立条件:当且仅当 \(x_1 = x_2 = ... = x_n\) 时,等号成立。

基本不等式知识点

基本不等式知识点

基本不等式知识点1.不等式的性质:不等式具有与等式类似的运算性质,例如可以进行加减乘除运算,并且可以对不等式的两边同时进行相同的运算。

但需要注意的是,当不等式两边同时乘或除以负数时,不等号的方向会发生改变。

2.加法不等式:对于实数a、b和c,若a<b,则a+c<b+c。

即不等式两边同时加上相同的数,不等式的关系保持不变。

3.减法不等式:对于实数a、b和c,若a<b,则a-c<b-c。

即不等式两边同时减去相同的数,不等式的关系保持不变。

4.乘法不等式:对于实数a、b和正数c,若a<b且c>0,则a·c<b·c。

即不等式两边同时乘以正数,不等式的关系保持不变。

需要注意,当c为负数时,不等号的方向会发生改变。

5.除法不等式:对于实数a、b和正数c,若a<b且c>0,则a/c<b/c。

即不等式两边同时除以正数,不等式的关系保持不变。

需要注意,当c为负数时,不等号的方向会发生改变。

6.平方不等式:对于实数a和正实数b,若a>b,则a²>b²。

即不等式两边同时取平方,不等式的关系保持不变。

7.绝对值不等式:对于任意实数a和正实数b,若,a,<b,则-b<a<b。

即如果一个实数的绝对值小于一个正实数,则这个实数的取值范围在-b和b之间。

8.基本不等式的应用:基本不等式可以应用于各类数学问题的解决,例如求解方程组、解决最值问题等。

这些应用需要根据具体问题,结合基本不等式的性质,并运用合适的不等式进行推导。

以上是基本不等式的主要知识点。

通过掌握这些知识点,我们能够更好地理解不等式的性质,并有效地运用于解决实际问题。

在学习和应用过程中,我们可以通过大量的练习,加深对基本不等式的理解和掌握,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.基本不等式2ba ab +≤(1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义提示:①当b a =时,ab b a ≥+2取等号,即.2ab ba b a =+⇒= ②仅当b a =时,ab b a ≥+2取等号,即.2b a ab b a =⇒=+ 2.几个重要的不等式).0(2);,(222>≥+∈≥+ab b aa b R b a ab b a),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题 已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,xx y 1+=在2≥x 时的最小值,利用单调性,易知2=x 时.25min =y[自测·牛刀小试]1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( )A .18B .36C .81D .243解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18. 2.若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .4 3.已知,02,0,0,0=+->>>z y x z y x 则2y xz的( ) A .最小值为8 B .最大值为8 C .最小值为18 D .最大值为184.函数xx y 1+=的值域为 ____________________. 5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.利用基本不等式证明不等式[例1] 已知,0,0>>b a ,1=+b a 求证:.9)11)(11(≥++ba保持例题条件不变,证明:a +12+b +12≤2.———————————————————利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.1.已知,0,0,0>>>c b a 求证:.c b a cab b ca a bc ++≥++利用基本不等式求最值[例2] (1)(2012·浙江高考)若,0,0>>y x 满足,53xy y x =+则y x 43+的最小值是( ) C .5D .6(2)已知,0,0>>b a ,1222=+b a 则21b a +的最大值为________. ———————————————————应用基本不等式求最值的条件利用基本不等式求最值时,要注意其必须满足的三个条件:(1)一正二定三相等.“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.1.(1)函数)1,0(1≠>=-a a ay x的图象过定点,A 若点A 在直线)0,(01>=-+n m ny mx 上,求nm 11+的最小值;(2)若正数b a ,满足,3++=b a ab 求ab 的取值范围.利用基本不等式解决实际问题[例3] 为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用)0(≥t t 万元满足124+-=t kx (k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2014年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2014年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家2014年的年促销费用投入多少万元时,厂家利润最大 ———————————————————解实际应用题时应注意的问题(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需再利用基本不等式求得函数的最值; 3在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围内求.4有些实际问题中,要求最值的量需要用几个变量表示,同时这几个变量满足某个关系式,这时问题就变成了一个条件最值,可用求条件最值的方法求最值.3.某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入)600(612-x 万元作为技改费用,投入50万元作为固定宣传费用,投入x 51万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和并求出此时商品的每件定价.1个技巧——公式的逆用运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如ab b a 222≥+逆用就是),0,0(222>>+≤b a b a ab 逆用就是)0,()2(2>+≤b a b a ab 等,还要注意“添、拆项”技巧和公式等号成立的条件等.2个变形——基本不等式的变形(1)).,,(2)2(222”时取“当且仅当==∈≥+≤+b a R b a ab b a b a (2),0,0(1122222>>+≥≥+≥+b a ba ab b a b a ).”时取“当且仅当==b a 3个关注——利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.创新交汇——基本不等式在其他数学知识中的应用1.考题多以函数、方程、立体几何、解析几何、数列等知识为载体考查基本不等式求最值问题.2.解决此类问题的关键是正确利用条件转换成能利用基本不等式求解的形式,同时要注意基本不等式的使用条件. [典例] (2012·湖南高考)已知两条直线m y l =:1和),0(128:2>+=m m y l 1l 与函数x y 2log =的图象从左至右相交于点A 、B ,2l 与函数x y 2log =的图象从左至右相交于点C 、D ,记线段AC 和BD 在x 轴上的投影长度分别为.,b a 当m 变化时,ab的最小值为( ) A .16 2 B .8 2 C .348 D .344 [名师点评]1.本题具有以下创新点(1)本题是对数函数的图象问题,通过分析、转化为基本不等式求最值问题.(2)本题将指数、对数函数的性质与基本不等式相结合,考查了考生分析问题、解决问题的能力. 2.解决本题的关键有以下几点(1)正确求出A 、B 、C 、D 四点的坐标;(2)正确理解b a ,的几何意义,并能正确用A 、B 、C 、D 的坐标表示; (3)能用拼凑法将)0(128>++m m m 化成利用基本不等式求最值的形式.[变式训练]1.已知,0,0>>y x y b a x ,,,成等差数列y d c x ,,,成等比数列,则cdb a 2)(+的最小值是( )A .0B .1C .2D .42.若直线),0,0(02>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值为( ) + 2 +223.若,0,0>>y x 且y x a y x +≤+恒成立,则a 的最小值是________.练习一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012·福建高考)下列不等式一定成立的是( ) A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(212R x x x ∈≥+ D.)(1112R x x ∈>+ 2.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (b a <),其全程的平均时速为,v 则( )C.2ba v ab +<< D .2ba v +=3.若,0,0>>b a 且,0)ln(=+b a 则ba 11+的最小值是( ) B .1 C .4D .84.(2013·淮北模拟)函数)1(122>-+=x x x y 的最小值是( ) A .23+2 B .23-2 C .2 3 D .25.设,0,0>>b a 且不等式011≥+++ba kb a 恒成立,则实数k 的最小值等于( ) A .0 B .4 C .-4 D .-26.(2013·温州模拟)已知M 是ABC ∆内的一点,且AB ·AC =23,,300=∠BAC 若MCA MBC ∆∆,和MAB ∆的面积分别为,,,21y x 则y x 41+的最小值是( )A .20B .18C .16D .19 二、填空题(本大题共3小题,每小题5分,共15分)7.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.8.若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号).①1≤ab ②2≤+b a ③222≥+b a ④322≥+b a ⑤.211≥+ba 9.(2013·泰州模拟)已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________.三、解答题(本大题共3小题,每小题12分,共36分) 10.已知.0,0,0,0>>>>d c b a 求证:.4≥+++acadbc bd bc adv1.0 可编辑可修改11.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)1.已知,1log log 22≥+b a 则ba93+的最小值为________. 2.设b a ,均为正实数,求证:.221122≥++ab ba3.已知,45<x 求54124)(-+-=x x x f 的最大值.4.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=),1(>x x 求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计[归纳·知识整合]1.合情推理(1)归纳推理:①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:类比推理是由特殊到特殊的推理.[探究] 1.归纳推理的结论一定正确吗提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理(1)模式:三段论①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)特点:演绎推理是由一般到特殊的推理.[探究] 2.演绎推理所获得的结论一定可靠吗提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.[自测·牛刀小试]1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④2.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为( ) A.3 125 B.5 625v1.0 可编辑可修改C .0 625D .8 1253.(教材习题改编)有一段演绎推理是这样的:“直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误归纳推理[例1] (1)(2012·江西高考)观察下列各式:,,11,7,4.3,155443322=+=+=+=+=+b a b a b a b a b a 则=+1010b a ( )A .28B .76C .123D .199 (2)设,331)(+=xx f 先分别求),3()2(),2()1(),1()0(f f f f f f +-+-+然后归纳猜想一般性结论,并给出证明.利用本例(2)的结论计算)2015()1()0()1()2013()2014(f f f f f f ++++-++-+- 的值.归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.1.观察下列等式:1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…13=113+23=913+23+33=3613+23+33+43=10013+23+33+43+53=225…可以推测:13+23+33+…+3n =________(n ∈N *,用含n 的代数式表示).类比推理[例2] (2013·广州模拟)已知数列}{n a 为等差数列,若b a a a n m ==,),,,1(+∈≥-N n m m n 则,mn manb a m n --=+类比等差数列}{n a 的上述结论,对于等比数列}{n b ),,0(+∈>N n b n 若d a c a n m ==,),,,2(+∈≥-N n m m n 则可以得到=+m n b ________. ———————————————————类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.2.在ABC ∆中,,AC AB ⊥BC AD ⊥于D ,求证:.111222AC AB AD +=演 绎 推 理[例3] 已知函数).10()(≠>+-=a a aa ax f x且 (1)证明:函数)(x f y =的图象关于点)21,21(-对称; (2)求)3()2()1()0()1()2(f f f f f f ++++-+-的值.———————————————————演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.3.已知函数,)(bx xax f +=其中),,0(,0,0+∞∈>>x b a 试确定)(x f 的单调区间,并证明在每个单调区间上的增减性.2个步骤——归纳推理与类比推理的步骤(1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想); ③检验猜想.实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想); ③检验猜想.观察、比较→联想、类推→猜想新结论 1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.创新交汇——合情推理与证明的交汇创新1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比.题型多为客观题,而2012年福建高考三角恒等式的推理与证明相结合出现在解答题中,是高考命题的一个创新.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·合肥模拟)正弦函数是奇函数,)1sin()(2+=x x f 是正弦函数,因此)1sin()(2+=x x f 是奇函数,以上推理( )2.(2013·银川模拟)当x ∈(0,+∞)时可得到不等式,3)2(224,2122≥++=+≥+xx x x x x x 由此可以推广为,1+≥+n x px n取值p 等于( ) A .nn B .2nC .nD .1+n3.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(y x ,)的个数为4,|x |+|y |=2的不同整数解(y x ,)的个数为8,|x |+|y |=3的不同整数解(y x ,)的个数为12,…,则|x |+|y |=20的不同整数解(y x ,)的个数为( )A .76B .80C .86D .925.设ABC ∆的三边长分别为a 、b 、c ,ABC ∆的面积为S ,内切圆半径为r ,则;2cb a Sr ++=类比这个结论可知:四面体ABCD S -的四个面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为R ,四面体ABC S -的体积为V ,则R =( )A.4321S S S S V+++B.43212S S S S V+++C.43213S S S S V+++D.43214S S S S V+++6.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1) 二、填空题(本大题共3小题,每小题5分,共15分) 7.(2012·陕西高考)观察下列不等式1+122<32,v1.0 可编辑可修改1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为________.8.(2012·湖北高考)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.1.正方形ABCD的边长是a,依次连接正方形ABCD各边中点得到一个新的正方形,再依次连接新正方形各边中点又得到一个新的正方形,依此得到一系列的正方形,如图所示.现有一只小虫从A点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个正方形的边逆时针方向爬行,如此下去,爬行了10条线段.则这10条线段的长度的平方和是( )023,2 048)2a023,768)2a024)2a047,4 096)2a。

相关文档
最新文档