数理统计试卷
《概率论与数理统计》考试试卷
填空题(每空2分, 2×12=24分)1、 设 A.B.C 为三事件, 事件 A.B.C 恰好有两个事件发生可表示为__________________。
2、 已知 =0.5, =0.3, =0.6, 则 =__________________。
3、 设 , 则 的密度函数为____________________。
4、 设 服从区间 上的均匀分布, 则 ______________, _______________。
5、 设 是X 的一个随机样本, 则样本均值 _______________, 且 服从的分布为_____________________。
6、 若二维连续型随机变量密度函数为 , 则 。
7、 总体 且 已知, 用样本检验假设 时, 采用统计量_________________________。
8、 评选估计量的标准有_______________、_____________和一致性。
9、 切贝雪夫不等式应叙述为_______________判断题(每小题2分, 2×8=16分)1、 互不相容的随机事件一定相互独立。
( )2、 若连续型随机变量 的概率密度为 , 则 。
( )3、 二维随机变量的边缘分布可以确定联合分布。
( )4、 对于任意随机变量 , 有 。
( )5、 不相关的两个随机变量一定是相互独立的。
( )6、 对任意随机变量 , 若 存在, 则 。
( )7、 若 , 则 。
( )若 , , 密度函数分别为 及 , 则 。
( )概率计算题(每题10分, 4×10=40分)在1-2000的整数中随机地取一个数, 问取到的整数即不能被4整除又不能被6整除的概率是多少? (10分)设两台车床加工同样的零件, 第一台车床的优质品率为0.6, 第二台车床的优质品率为0.9, 现把加工的零件放在一起, 且已知第一台加工的零件比第二台加工的零件多一倍, 求: (1)从产品中任取一件是优质品的概率。
数理统计试卷及答案
课程名称:概率论与数理统计以下为可能用到的数据或公式(请注意:计算结果按题目要求保存小数位数) :t 0.05(28)= 2.306 ,t 0.05(29)= 2.262 ,t 0.02 2(20)=2.528 ,t 0.05(220)= 2.086 , 0.2 05(8)= 15.507 ,2 (8)= 2.7332(1) 2 . 706 ,2 (1) 0 016 ,, 0.100.90u0.01 2.58 , u 0.051.96 ,0.9522X Y22c r(| O ij2T, S w (n 1 1)S 1(n 21)S2 ,2E ij | 0.5)S w 1/ n 1E ij1/ n 2n 1 n 2 2j 1 i 1一、单项选择题 (共 5 小题 , 每题 3 分, 共 15 分).1. 将一枚均匀的硬币投掷三次,恰有一次出现正面的概率为( c).(A)1(B)1(C)3(D)18 4 8 22. 为认识某中学学生的身体情况,从该中学学生中随机抽取了200 名学生的身高进行统计剖析。
试问,随机抽取的这 200 名学生的身高以及数据 200 分别表示 ( b ).(A) 整体,样本容量 (B) 从整体中抽取的一个样本,样本容量 (C) 个体,样本容量 (D) A, B,C 都不正确3. 设随机变量 X 听从正态散布,其概率密度函数为1 ( x 2) 2f (x)2(x) ,则 E( X 2) =( c ).e2(A) 1(B)4 (C) 5(D) 84. 已知随机变量 X: N (0,1), Y : 2( n) ,且 X 与 Y 互相独立,则 X 2: ( b ).Y n(A) F(n,1)(B)F(1,n)(C)t(n) (D)t(n 1)5. 设随机变量 t : t(5),且 t 0.05(25)= 2.571 ,则以下等式中正确的选项是( a ).(A) P( t 2.571) 0.05 (B) P( t 2.571) 0.05 (C) P(t2.571)0.05(D)P(t2.571) 0.05二、填空题 (共 5小题, 每题 3 分, 共 15 分).1. 设 P( A) 0.5, P(B) 0.3, P( AU B) 0.6,则 P(AB) .2. 两人商定在下午 2 点到 3 点的时间在某地见面,先到的人应等待另一人 15 分钟才能离开,问他们两人能见面的概率是 _____.3. 若互相独立的事件 A 与 B 都不发生的概率为 4,且 P(A) P(B) ,则 P(A) _1/3____94. 在有奖摸彩中,有 200 个奖品是 10 元的, 20 个奖品是 30 元的, 5 个奖品是 1000 元的 .若是刊行了 10000 张彩票,并把它们卖出去 .那么一张彩票的合理价钱应当是元 .5. 对随机变量 X 与 Y 进行观察,获取了 15 对数据,并算得有关数据:l xx 121,l xy 101,l yy 225 ,则样真有关系数 r _101/165____(保存二位 小数) .三、计算与应用题 1. 设某批产品是由 3 个不一样厂家生产的 .此中一厂、二厂、三厂生产的产品分别占总量的 30%、35%、35%,各厂的产品的次品率分别为 3%、3%、5%,现从中任取一件,(1)求取到的是次品的概率;(2)经查验发现取到的产品为次品,求该产品是三厂生产的概率.21 x 1,求常数 C 以及随机2. 设随机变量 X 的概率密度为 f ( x)Cx ,0,其余变量 X 落在 (0, 1) 内的概率 .c=3/2p=1/1623. 检查某大学 225 名健康大学生的血清总蛋白含量 (单位: g/dL),算得样本均数为,样本标准差为 .试求该大学的大学生的血清总蛋白含量的 95%置信区间(结果保存二位小数) .4. 为判断某新药对治疗病毒性流行感冒的疗效性,对500 名患者进行了调查,结果以下:X Y服药未服共计药治愈170( 168) 230400(E 12)未愈40 (E )60 () 100试 求 :2158( 1)求表格中理论共计 210290 500频数E 12 ,E 21 ;e12=232 ,e21=42(2)判断疗效与服药能否有关(结果保存三位小数)5.正常人的脉搏均匀为每分钟 72 次.某职业病院测得 10 例慢性四乙基铅中毒患者的脉搏(单位:次 /min )以下:55 68 69 71 67 79 68 71 6670假设患者的脉搏次数近似听从正态散布,试问四乙基铅中毒患者和正常人的脉搏次数能否有明显性差别(0.01)6.某企业生产两种品牌的洗发水,现分别对这两种洗发水的聚氧乙烯烷基硫酸钠含量做抽检,结果以下:甲品牌: n1=10x =s12=乙品牌:n2=12y =s22=若洗发水中的聚氧乙烯烷基硫酸钠含量听从正态散布,而且这两种品牌洗发水中的聚氧乙烯烷基硫酸钠含量拥有方差齐性,试问这两种品牌洗发水中的聚氧乙烯烷基硫酸钠含量有无明显性差别(0.05,结果保存三位小数)。
大学概率论与数理统计期末考试试卷
大学概率论与数理统计期末考试试卷一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为(A) A. B.BCC.ABC D.2.设随机事件A与B相互独立,且P(A)=,P(B)=,则P(A B)=(B) A. B.C. D.3.设随机变量X~B(3,0.4),则P{X≥1}=(C)A.0.352B.0.432C.0.784D.0.936A.0.2B.0.35C.0.55D.0.85.设随机变量X的概率密度为f(x)=,则E(X),D(X)分别为(B)A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=(A)A.B.C.2 D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~(B )A.N(-3,-5)B.N(-3,13)C.N(1,)D.N(1,13)8.设X,Y 为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY =(D ) A. B. C. D.9.设随机变量X~2(2),Y~2(3),且X 与Y 相互独立,则(C )A.2(5)B.t(5)C.F(2,3) D.F(3,2)10.在假设检验中,H 0为原假设,则显著性水平的意义是(A ) A.P{拒绝H 0|H 0为真}B.P{接受H 0|H 0为真}C.P{接受H 0|H 0不真} D.P{拒绝H 0|H 0不真}二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,P(A)=0.6,P(B|A)=0.3,则P(AB)=_0.18_____. 12.设随机事件A 与B 互不相容,P()=0.6,P(A B)=0.8,则P(B)=_0.4_____.13.设随机变量X 服从参数为3的泊松分布,则P{X=2}=_____.14.设随机变量X~N(0,42),且P{X>1}=0.4013,(x)为标准正态分布函数,则(0.25)=_0.5987____. 15.设二维随机变量(X,Y)的分布律为392e则P{X=0,Y=1}=_0.1_____.16.设二维随机变量(X,Y)的概率密度为f(x,y)=则P{X+Y>1}=____0.5__.17.设随机变量X 与Y 相互独立,X 在区间[0,3]上服从均匀分布,Y 服从参数为4的指数分布,则D (X+Y )=__13/16____.18.设X 为随机变量,E (X+3)=5,D (2X )=4,则E (X 2)=__5____. 19.设随机变量X 1,X 2,…,X n ,…相互独立同分布,且E (X i )=则___0.5_______. 20.设随机变量X-2(n),(n)是自由度为n 的2分布的分位数,则P{x}=_1-a_____. 21.设总体X~N(),x 1,x 2,…,x 8为来自总体X 的一个样本,为样本均值,则D ()=__8____. 22.设总体X~N(),x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,s 2为样本方差,则~__t(n-1)___.23.设总体X 的概率密度为f(x;),其中(X)=,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值.若c 为的无偏估计,则常数c=__0.5____. 24.设总体X~N(),已知,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,则参数的置信度为1-的置信区间为__=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→0lim 1σμn n X P n i i n 22(a ax x nn-+____. 25.设总体X~N(,x 1,x 2,…,x 16为来自总体X 的一个样本,为样本均值,则检验假设H 0:时应采用的检验统计量为______.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A 表示“第二次取到的全是新球”,求P(A).解:27.设总体X 的概率密度为,其中未知参数x 1,x 2,…,x n 为来自总体X 的一个样本.求的极大似然估计.解:四、综合题(本大题共2小题,每小题12分,共24分) 28.设随机变量x 的概率密度为求:(1)常数a,b ;(2)X 的分布函数F(x);(3)E(X).(0,1)416x u N =22322244311()444C C p A C C =+=2121111111(,,;)2(2)ln ln 2(21)ln ln 2ln 02ln nnnn iii i nii ni i nii L X X xx L n x Lnx n x θθθθθθθθθθ--========+-∂=+=∂∴=-∏∏∑∑∑解:(1)(2)(3) 29.设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)分别关于X,Y 的边缘分布律;(2)D(X),D(Y),Cov(X ,Y). 解:(1)2021()1()1ax b dx ax b dx ⎧+=⎪⎨+=⎪⎩⎰⎰121a b ⎧=-⎪⇒⎨⎪=⎩1102()20x x f x ⎧-+<<⎪=⎨⎪⎩其他20212F x x x x x ⎧⎪⎪+≤<⎨⎪≥⎪⎩0x<01()=-4212()(1)23E X x x dx =-+=⎰(2)XY 的分布列为五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X ,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.解:由于xy 相互独立得:2222()()03.6()()() 3.6(,)()()()E X E Y EX EY D X D Y EX EX Cov x y E XY E X E Y ======-==-()0(,)0E XY Cov x y ==110001200010()1000010()20000x x e x f x e y f y --⎧>⎪=⎨⎪⎩⎧>⎪=⎨⎪⎩x<0y<011100020001191000200051200120010,0(,)()()20000000()1000()200011{1200,1200}10002000x y x y e x y f x y f x f y E x E y p x y e dxe dy e -----+∞+∞⎧>>⎪==⎨⎪⎩==>>==⎰⎰其他。
概率论与数理统计期末考试试卷
一、填空题:(每题3分,共30分.请把答案填在题中横线上.)1.设C B A ,,是三个随机事件,则事件“C B A ,,不同时发生”可以表示为: .2. 三个人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4,问三人中至少有一个人能将此密码译出的概率是____________.3.设离散型随机变量X 的分布函数为()F x ,则{}P a X b <≤= .4.设X 的概率密度函数是{}111()10.520x f x P X ⎧-<<⎪=-<<=⎨⎪⎩,则其它 . 5.若(2,4)X N ,令__________Y =,则(0,1)Y N . 6. 设随机变量X 的方差()D X 存在,则[]()D X '= .7.已知随机变量X 有2(),()E X D X μσ==,根据契比雪夫不等式,则{}3P X μσ-<≥ .8.已知离散型随机变量X 服从参数为2的泊松分布,则()D X = .9.设12,,n X X X 是来自总体X 的样本,则11ni i X X n ==∑,2S = .10.评价估计量的标准有无偏性、有效性和 .1.用3个机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别为0.94,0.9,0.95,求全部产品中的合格率.2.已知随机变量X 的分布律为1240.50.30.2Xp ⎛⎫⎪⎝⎭,求()F x 及{}1 2.5P X -<<.3.设连续型随机变量X 的分布函数为20()0xA Be x F x -⎧+>=⎨⎩其它,试求:(1)A 、B 的值;(2)概率密度函数()f x .4. 已知随机变量X 、Y 相互独立,二维随机变量(,)X Y 的联合概率分布如下,请将表内空白处填入适当的数.试卷装订线5. 袋中有2只黑球,2只白球,3只红球,从中任取2只,用ξ表示取到黑球的只数,以η表示取到白球的只数(1)求(,)ξη的联合分布律; (2)求(2)P ξη+≥,22(1)P ξη+≤.6.设随机变量1234,,,X X X X 相互独立,且有(),()5,1,2,3,4i i E X i D X i i ==-=,设12341232Y X X X X =-+-,求 1(),(),X YE Y D Y ρ.三、应用题(每题8分,共16分)1.设电站供电网有10000盏电灯,夜晚每一盏开灯的概率是0.8,假定开、关时间彼此独立,估计夜晚同时开着的灯数在7900与8100之间的概率.2.一个车间生产铁钉,从某天的产品里随机抽取9个,量得结果如下(单位:毫米): 215,0.09x s ==,已知铁钉长度服从正态分布,求平均长度的双侧置信区间(0.05α=). 以下数据有可能在计算过程中要用到 0.025(2.5)0.9938,(8) 2.306t Φ==测验题(一)一、填空1、设123,,A A A 是三个事件,则这三个事件中至少有两个发生的事件是 。
概率论与数理统计考试试卷(附答案)
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计试卷及参考答案
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
《概率论与数理统计》试卷
《概率论与数理统计》试卷一、填空题('308'3=⨯)1、 若,A B 相互独立,且()()0.5P A P B ==,则 ()P A B = .2、 设总体X 服从正态分布()2,σμN ,12,,n X XX 是来自总体X 的样本,则()2E S = .3、 已知离散型随机变量X 的分布律如下:则b = ,{}13P X <<= .4、设()~1,5U ξ,当1215x x <<<时,{}12P x x ξ≤≤= .5、设随机变量,X Y 相互独立,且()4,1~N X ,)21,8(~b Y ,则()E X Y -= . 6、设总体X 服从参数为λ的泊松分布,λ未知,若125,,,X X X 是来自总体的样本,则λ23___+X 统计量.(请填写“是”或者“不是”) 7则()=XY E . 8、设()()25,36,0.4XY DX D Y ρ===,则()D X Y += .9、设X 表示10次独立重复射击命中目标的次数,每次命中率为0.4,则X 服从的分布为 . 10、口袋中有5只球,其中3只新的2只旧的,现接连取球三次,每次1只,则第二次取到新球的概率是 .二、('10)商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1, 0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?三、('10)已知离散型随机变量的分布律如下表:求:(1)常数C ; (2)概率{}1=X P ;(3) 概率{}23<<-X P ;(4)随机变量的分布函数()x F .四、('10) 设二维离散型随机变量(),X Y 的分布律如下: 1231 16 19118213ab问:当,a b 取什么值时,,X Y 相互独立.五、('10)设总体X 的概率密度为1,01,()0,x x f x θθ-⎧≤≤⎪=⎨⎪⎩其他,其中0>θ,θ为未知参数,12,,,n X X X 是来自总体X 的样本,12,,,n x x x 为相应的样本值,分别用矩估计法和最大似然估计法求参数θ的估计值.六、('10)有两只口袋,每只口袋中装2个红球和2个绿球.先从第一个口袋中任取2个球放入第二个口袋中,再从第二只口袋中任取2个球.把两次取到的红球数分别记作X 和Y ,求(),X Y 的分布律,X ,Y 的边缘分布律,并求)(),(),(XY E Y E X E .七、('10)设随机变量X 服从参数为θ指数分布, 其概率密度为⎪⎩⎪⎨⎧≤>=-,0,0,0,1)(/x x e x f x θθ其中,0>θ 求).(),(X D X E八、('10)根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”(单位:kg ·cm -2)X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下:32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ·cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?(96.105.0=Z )Y X。
概率论与数理统计考试试卷
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1()(1),1,2,,01k P X k p p k p -==-=<< ,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
专升本-概率论与数理统计(0512026)试卷含答案
一、单选题1.若随机变量X与Y满足D(X+Y)=D(X-Y),则A、X与Y相互独立B、X与Y不相关C、X与Y不独立D、X与Y不独立、不相关答案: B2.一个口袋中有2个白球和3个黑球,从中任取两个球,则这两个球恰有一个白球一个黑球的概率是A、0.5B、0.6C、0.7D、0.8答案: B3.设P(AB)=0,则有A、A和B互不相容B、A和B相互独立C、P(A)=0或P(B)=0D、P(A-B)=P(A)答案: D4.同时抛掷3枚硬币,则恰有2枚硬币正面向上的概率是A、1/8B、3/8C、1/4D、1/2答案: B5.三个箱子,第一个箱子中有4个黑球,1个白球;第二个箱子中有3个黑球,3个白球;第三个箱子中有3个黑球,5个白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率为A、53/120B、5/6C、31/37D、1/4答案: A6.地铁列车的运行间隔时间为2分钟,某旅客可能在任意时刻进入月台,求他侯车时间X的方差为A、1/3B、1/2C、1/4D、1/5二、 判断题答案: A7.设X-B(n ,p ),则有A 、E (2x-1)=2npB 、D (2x-1)=4np (1-p )C 、E (2x+1)=4np+1D 、D (2x+1)=4np (1-p )+1答案: B8.设X~N (2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案: B1.设A 、B 是Ω中的随机事件,必有P(A-B)=P(A)-P(B)A 、正确B 、错误答案: 正确2.A 、正确B 、错误答案: 错误3.设A 、B 是Ω中的随机事件,则A ∪B=A ∪AB ∪BA 、正确B 、错误答案: 错误4.A 、正确B 、错误答案: 正确5.A 、正确B 、错误答案: 正确6.假设检验基本思想的依据是小概率事件原理三、 名词解释四、 计算题A 、正确B 、错误答案: 正确7.A 、正确B 、错误答案: 错误8.若X 服从二项分布b(k;n,p),则EX=pA 、正确B 、错误答案: 错误9.A 、正确B 、错误答案: 正确10.A 、正确B 、错误答案: 正确1.取伪错误:答案: 原假设本来是错误的,但由于ɑ取值较小,反而接受了它,称取伪错误 2.中心极限定理:答案: 概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理1.答案:。
数理统计考试试卷
数理统计考试试卷一、填空题(本题15分,每题3分)1、总体的容量分别为10,15的两独立样本均值差_N(1,0.5)__;2、设为取自总体的一个样本,若已知,则=_0.01;3、设总体,若和均未知,为样本容量,总体均值的置信水平为的置信区间为,则的值为___t(n-1)S*/n0.5_____;4、设为取自总体的一个样本,对于给定的显著性水平,已知关于检验的拒绝域为2≤,则相应的备择假设为________;5、设总体,已知,在显著性水平0.05下,检验假设,,拒绝域是________。
1、;2、0.01;3、;4、;5、。
二、选择题(本题15分,每题3分)1、设是取自总体的一个样本,是未知参数,以下函数是统计量的为( B)。
(A)(B)(C)(D)2、设为取自总体的样本,为样本均值,,则服从自由度为的分布的统计量为( D )。
(A)(B)(C)(D)3、设是来自总体的样本,存在, ,则( C )。
(A)是的矩估计(B)是的极大似然估计(C)是的无偏估计和相合估计(D)作为的估计其优良性与分布有关4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验的拒绝域为( A )。
(A)(B)(C)(D)5、设总体,已知,未知,是来自总体的样本观察值,已知的置信水平为0.95的置信区间为(4.71,5.69),则取显著性水平时,检验假设的结果是( B )。
(A)不能确定(B)接受(C)拒绝(D)条件不足无法检验1、B;2、D;3、C;4、A;5、B.三、(本题14分)设随机变量X的概率密度为:,其中未知参数,是来自的样本,求(1)的矩估计;(2)的极大似然估计。
解:(1) ,令,得为参数的矩估计量。
(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为。
四、(本题14分)设总体,且是样本观察值,样本方差,(1)求的置信水平为0.95的置信区间;(2)已知,求的置信水平为0.95的置信区间;(,)。
(完整)高等数理统计参考试卷
高等数理统计专业:_____________________________ 姓名:_________________ 学号: __________________注:卷面总分70分,实验及报告20分,平时作业和出勤10分,总成绩共100分、选择题(每小题2分,8个小题共16分)(每题只有一个正确答案,请将其编号填入括号)1、样本的统计直方图作为()的估计。
①频数分布②频率分布③概率分布函数④概率密度函数2、总体期望为0.80,方差为0.01,容量为25的样本均值为0.90,则U统计量的值为()。
①0.01 ②1 ③5 ④253、设正态总体N( , 2)的5个独立观测值为3.21、3.12、2.86、3.41、2.95,贝U 的最大似然估计为()。
① 3.00 ② 3.11 ③ 3.89 ④ 2.594、在二元假设检验中,若原假设为H1,备择假设为H0,则条件概率P(H0IH1)称为()。
①虚警概率②漏报概率③检测概率④先验概率5、设利用样本对未知的确定参数的估计量为?,若估计的偏倚和方差分别为B和V, 则B=0和V=min是最小均方误差估计的()。
①充要条件②充分但非必要条件先③必要但非充分条件④非充分非必要条件6、在正态总体方差的估计中,点估计量可以作为最大似然估计量的()。
①极限②近似③特例④推广7、Bayes检验是Newman-Pearson检验的()。
①极限②近似③特例④推广①最大似然估计②条件均值估计③条件中值估计④最大后验估计&均方误差代价下随机参数的Bayes估计就是()。
、简述题(每小题4分,6 个小题共24 分)1. 简述依概率收敛和依分布收敛的含义2. 简述依阶RLS 的基本过程和作用3. 简述Bayes 检验与最小差错概率检验的关系4. 某射手10 发子弹的中靶环数分别为6、9、7、8、10、6、7、8、9、9,则样本的频率分布和经验分布函数对应的观察值各为多少?5. 简述条件均值估计和条件中值估计。
数理统计试卷及答案
数理统计试卷及答案数理统计考试试卷⼀、填空题(本题15分,每题3分)1、设n X X X ,,,21 是取⾃总体)1,0(~2N X 的样本,则 ni i X Y 12~________。
2、设总体),(~2 N X ,X 是样本均值,则)(X D ________。
3、设总体),(~2N X ,若未知,2已知,n 为样本容量,总体均值的置信⽔平为1的置信区间为),(nX nX,则的值为________。
4、设总体),(~2 N X ,2已知,在显著性⽔平下,检验假设0100:,:u H u H ,拒绝域是________。
5、设总体0],,0[~ U X 为未知参数,n X X ,,1 是来⾃X 的样本,则未知参数的矩估计量是______。
⼆、选择题(本题15分,每题3分)1、设随机变量X 和Y 都服从标准正态分布,则()(A )Y X 服从正态分布(B )22Y X 服从2布(C )22Y X 和都服从2分布(D )22/Y X 都服从F 分布2、设)9,1(~N X ,921,...,,X X X 为取⾃总体X 的⼀个样本,则有()。
(A ))1,0(~11N X (B ))1,0(~31N X (C ))1,0(~91N X (D ))1,0(~31N X 3、设X 服从参数为p 的(0-1)分布,0 p 是未知参数,n X X X ,...,,21为取⾃总体X 的样本,X为样本均值,212)(1X X n S i ni n,则下列说法错误的是()。
(A )X 是p 的矩估计(B )2n S 是)(X D 的矩估计(C )2X 是)(2X E 的矩估计(D ))1(X X 是)(X D 的矩估计4、设总体)4,(~ N X ,由它的⼀个容量为25的样本,测得样本均值10 x ,在显著性⽔平下进⾏假设检验, 975.0)96.1( ,则以下假设中将被拒绝的是()。
(A )90 :H (B )5.90 :H (C )100 :H (D )5.100 :H 5、设总体),(~2 N X ,样本容量为n ,已知在显著性⽔平下,检验00: H ,01: H 的结果是拒绝0H ,那么在显著性⽔平下,检验0100:,:u H u H的结果()。
《概率论与数理统计》期末复习试卷4套+答案
1、(10分)甲箱中有 个红球, 个黑球,乙箱中有 个黑球, 个红球,先从甲箱中随机地取出一球放入乙箱。混合后,再从乙箱取出一球,
(1)求从乙箱中取出的球是红球的概率;
(2)若已知从乙箱取出的是红球,求从甲箱中取出的是黑球的概率;
2、(8分)设二维随机变量的联合概率密度为:
求关于 的边缘概率密度,并判断 是否相互独立?
7、(8分)设有一种含有特殊润滑油的容器,随机抽取9个容器,测其容器容量的样本均值为10.06升,样本标准差为0.246升,在 水平下,试检验这种容器的平均容量是否为10升?假设容量的分布为正态分布。
( , )
第二套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若 是离散型随机变量,则随机变量 的取值个数一定为无限个。()
2、(8分)设二维随机变量(X,Y)的联合概率密度为:
求边缘概率密度 ,并判断 与 是否相互独立?
3、(8分)设随机变量 的分布函数为:
求:(1) 的值;
(2) 落在 及 内的概率;
4、(8分)设随机变量 在 服从均匀分布,求 的概率密度;
5、(10分)设 及 为 分布中 的样本的样本均值和样本方差,求 ( )
第一套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若随机变量 的取值个数为无限个,则 一定是连续型随机变量。()
3、 与 独立,则 。()
4、若 与 不独立,则 。()
5、若 服从二维正态分布, 与 不相关与 与 相互独立等价。()
二、选择题(3分 5)
1、对于任意两个事件 和 ()
5、袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )
概率论与数理统计考核试卷
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计一、 知识点1. 矩估计法;极大似然估计法2. 估计量的评判标准(会验证一个估计量的无偏性,比较两个无偏估计量的有效性)3. 区间估计的概念4. 会求一个正态总体期望μ和方差2σ的置信区间 二、习题解答1. 设总体X ~22()(),0p x a x x a a =-<<,求参数a 的矩估计。
解:22002()()()3a aa E X xp x dx ax x dx a ==-=⎰⎰令3aX =,⇒3a X =,由矩估计定义知a 的矩估计ˆ3aX =。
2. 设总体X ~()(1),01,ap x a x x =+<<求(1) 参数a 的矩估计,(2)参数a 的似然估计解:(1)112110001()()(1)(1)22a a x a E X xp x dx a x dx a a a +++==+=+=++⎰⎰ 令12a X a +=+,⇒211X aX -=-,由矩估计定义知a 的矩估计21ˆ1X a X-=-(2)似然函数()(;)(1)(1)()a n ai i i L a p x a a x a x ==+=+∏∏∏ln ()ln(1)ln i L a n a a x =++∑, 由ln ()ln 01i d L a nx da a =+=+∑⇒ 1ln i n a x =--∑,得a 的极大似然估计ˆ1ln ina x =--∑ 3. 总体X 服从区间[a,b]上的均匀分布,(1) 求参数a,b 的极大似然估(2) 设从总体取得样本1.4,2.5,1.6,1.8,2.2,1.8,2.0。
分别求a,b 的矩估计值和极大似然估值。
解:(1)总体X 的密度函数1,()0,a x b p x b a ⎧≤≤⎪=-⎨⎪⎩其他似然函数1,1,2,,()()(;,)0i ni a x b i n b a L a b p x a b ⎧≤≤=⎪-==⎨⎪⎩∏ ,其他显然, b a -越小,似然函数就越大,但由于,1,2,,i a x b i n ≤≤= ,所以能套住所有的i x 的最短区间(ˆa,ˆb )应为:{}1ˆmin i i na x ≤≤=,{}1ˆmax ii nbx ≤≤=(2)由课本例题知,a,b的矩估计为ˆˆa X b X ⎧=-⎪⎨=+⎪⎩,代入样本值得矩估计ˆa=1.31,ˆb =2.49;极大似然估ˆa=1.4,ˆb =2.5 5. 已知总体X 服从参数为θ的泊松分布, 其分布律为:0;,2,1,0,)(!1>===-θθθ k e k X P k k n X X X ,,,21 为取自总体X 的样本. 求 θ的最大似然估计量;解.L (θ;x 1,x 2,...,x n ) =∏==ni i x XP 1)(= =θθ-=∏e x i x ni i1!1=θθn n i i x e x ni i-=∏∑=1!1lnL =∑∑==--n i ni iin x x 11!ln ln θθ,令θd L d ln =01=-∑=n xni iθ,θˆ=X X n n i i =∑=11为θ的最大似然估计量.6.设总体X 的均值为μ,试证2ˆσ=211()n i i X n μ=-∑是总体方差2σ的无偏估计量。
证明:E(2ˆσ)=E[211()n i i X n μ=-∑]=211()n i i E X n μ=-∑=211n i n σ=∑=2σ 7. .设对总体X ,有EX=μ,DX=2σ>0,且对样本均值X ,有EX μ=,试证22EX μ=不成立。
证明:因为DX=22()()E X EX -=222()0E X nσμ-=>, 即22EX μ=不成立。
8.一批零件的长度服从正态分布,从中任取16个测得如下数据2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15,2.12,2.14,2.10,2.13,2.11,2.14,2.11。
对α=0.05,求总体均值μ的置信区间。
(1)已知总体标准差σ=0.01 (2)总体标准差未知解:(1)计算出X =2.125=0.0049,μ的1-α置信区间为(2.120,2.130) (2) 总体标准差未知,查表得(15)t 的分位数为2.1315,由公式计算出μ的1-α置信区间为(2.116,2.134)二、例题与自测题1.总体)2,(~θθU X , 其中0>θ是未知参数, 又n X X X ,,,21 为取自该总体的样本, X 为样本均值.证明: 32ˆ=θ是参数θ的无偏估计.证明: 因为23323232ˆθθ===EX X E E =θ, 故X 2ˆ=θ是参数θ的无偏估计.2.设321,,X X X 是取自总体x 的样本,试证下列统计量都是总体均值μ的无偏估计量,并指出哪一个最有效?(1)3211613121ˆX X X ++=μ(2)3212313131ˆX X X ++=μ(3)3211326161ˆX X X ++=μ4. 设总体),0(~θU X , 现从该总体中抽取容量为10的样本, 样本值为:0.5, 1.3, 0.6, 1.7, 2.2, 1.2, 0.8, 1.5,2.0, 1.6 试求参数θ的矩估计和似然估计. 解: 因为),0(~θU X , 所以EX =2θ, 2EX θ=故矩估计X2ˆ=θ=2×)6.10.25.18.02.12.27.16.03.15.0(101+++++++++=2.68 似然估计{}1ˆmax 2.2ii nx θ≤≤== 5. 从一批电子元件中抽取8个进行寿命测试, 得到如下数据(单位: 小时):1 050, 1 100, 1 130, 1 040, 1 250, 1 300, 1 200, 1 080试对这批元件的平均寿命以及寿命分布的标准差进行点估计. 解: 设这批元件的平均寿命为u , 寿命分布的标准差为σ,75.1431)08012001300125010401130110010501(81ˆ=+++++++==X u,*ˆ96.06S σ==== 6、从均值为μ, 方差为2σ的正态总体中分别抽取容量为1n 和2n 的两组独立样本, 21,分别为两组样本的样本均值. 试证: 对任何常数)1(,=+b a b a , 21X b X a Y +=都是μ的无偏估计, 并确定b a ,的值使21b a Y +=在此形式的估计量中最有效. 解:因为.)(21u EX EX b a bEX aEX X bE X aE EY==+=+=+=所以,对任何常数)1(,=+b a b a , 21X b X a Y +=都是μ的无偏估计.DX n b n a DX n b DX n a X D b X D a DY )(221222122212+=+=+=令 f (a ,b )=2212n b n a +, 求f (a ,b )在a +b =1下的条件极值,可知当a =211n n n +, b =212n n n +时, f (a ,b )最小, 从而Y 最有效.7. 总体),(~2σμN X 分布,n X X X ,,,21 为取自该总体的简单随机样本,试建立总体期望μ的1α-置信区间,假设(1)方差2σ=20σ已知;(2)方差2σ未知 8(思考题)设从总体),(~211σμN X 和总体),(~222σμN Y 中分别抽取容量为21,n n 的独立样本X 1,X 2,……,X n1 与Y 1,Y 2,……,Y n2,试建立总体期望12μμ-的1α-置信区间,假设(1)两总体的方差21σ,22σ已知; (2)两总体的方差21σ=22σ=2σ但2σ未知 答案(1):1212{())x x u x x u αα---+(2):11222{()(x x t n n S x x t n n S αα--+--++-其中*2*22112212(1)(1)2Wn S n S S n n -+-=+-为两总体的合样本方差 9.(思考题)设从总体),(~211σμN X 和总体),(~222σμN Y 中分别抽取容量为21,n n 的独立样本X 1,X 2,……,X n1 与Y 1,Y 2,……,Y n2,试建立总体方差比2122σσ的1α-置信区间10.总体),(~2σμN X 分布,方差2σ=20σ已知,n X X X ,,,21 为取自该总体的简单随机样本。
总体期望μ的置信区间的长度L ,随着置信度1α-的增加(1) 长度不变 (2) 长度增大 (3) 长度减小 (4) 增减不定11. 已知某种材料的抗压强度),(~2σμN X , 现随机地抽取10个试件进行抗压试验, 测得数据如下: 482,493, 457, 471, 510, 446, 435, 418, 394, 469. (1) 求平均抗压强度μ的矩估计值;(2) 求2σ的矩估计值;(3) 求平均抗压强度μ的95%的置信区间;(4) 求2σ的95%的置信区间;(5) 若已知σ=30, 求平均抗压强度μ的95%的置信区间;12.总体),(~2σμN X , 2σ已知,问样本容量n 取多大时才能保证μ的95%的置信区间的长度不大于k .解:由于2σ已知时,μ的95%的置信区间为:{X X +它的长度为:L=,令L ≤k,则n ≥22222419.615.37k k σσ=, 故n 至少要取1]37.15[22+k σ. 13.若两总体的方差21σ=22σ=2σ未知时,记*2*22112212(1)(1)2Wn S n S S n n -+-=+-,称其为两总体的合样本方差,证明其为总体方差的无偏估计。
14. 设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,即(答案:(A)). A. ),(θθ以概率a -1包含θ B. θ 以概率a -1落入),(θθC.θ以概率a 落在),(θθ之外D. 以),(θθ估计θ的范围,不正确的概率是a -115.设X 1,X 2,……,X n 是来自总体N (2,σμ)的S.R.S,X是样本均值,记S 12=21)(11∑=--n i i X X nS 22=21)(1∑=-n i i X X n S 32=21)(11∑=--n i i X n μ S 42=21)(1∑=-n i i X n μ S 12、S 22、S 32、、S 42作为总体方差2σ的四个估计量,其中无偏估计量有 。
16.在总体μ的所有线性无偏估计中,以 最为有效。
17.从去年出生的新生儿随机抽取10名,测得体重值(单位:千克),已计算出X =3.6,∑=-ni iX X12)(=1.6。