有机化合物谱图解析--第六章 质谱图分析

合集下载

质谱谱图解析

质谱谱图解析
4. 对较大未知物分子,应综合质谱等所取得的信息,列出可能结 构,再根据裂解规律筛选,最后用合成化合物的方法确定
有机化合物的质谱图千变万化,有些
化合物仅仅是取代基的位置不同,其质 谱图几有很大的差异,因此,解析未知 物质谱图很难有统一的格式,要灵活运 用可能取得的结构信息和知识
二、实例
例1
1. 最高峰A峰m/z 126(偶数),与碎片峰m/z 95(奇数)相差31u, 是失去合理中性物,据此判断m/z 126为分子离子峰
3. 分子量为偶数,显著的碎片峰都为奇数,因此未知物不含N
4. 由m/z 206 的丰度14.4%推断,m/z 离子含13个C
5. m/z 207的丰度1.2%暗示未知物分子含1-2个O,若只含一个O则H数 不合理,因此m/z 205合理的化学式为C13H17O2
6. m/z 205离子加一个甲基即为分子离子,因此未知物分子的化学式应 为C14H20O2,环加双键值为5
7. 化合物(2)能产生如右碎片: 化 合 物 ( 2 ) 能 产 生 较 强 m/z72 而在未知物的谱图中,m/z 72 峰的丰度很低,此外,化合物 (2)不易产生m/z 58的显著峰
8. 化合物(3)能产生以下碎片离子
由化合物(3)的结构,能够很好地解释未知物谱图中各个峰的生成途 径,因此,化合物(3)为未知物谱图最可能的答案
(6) 通过上述各方面的研究,提出化合物的结构单元。再根 据化合物的分子量、分子式、样品来源、物理化学性质等, 提出一种或几种最可能的结构。必要时,可根据红外和核 磁数据得出最后结果。
(7)验证所得结果。验证的方法有:将所得结构式按质谱断裂 规律分解,看所得离子和所给未知物谱图是否一致;查该 化合物的标准质谱图,看是否与未知谱图相同;寻找标样, 做标样的质谱图,与未知物谱图比较等各种方法。

第六章 质谱4

第六章 质谱4

(b) 化合物中若除 、H、O、N、F、I、P外还 化合物中若除C、 、 、 、 、 、 外还 含s个硫 个硫 时: CxHyOzNwSs则除了上述同 则除了上述同 位素外, 的贡献: 位素外,还要考虑33S、34S的贡献: 、 的贡献 以分子离子M的相对丰度为 以分子离子 的相对丰度为100时: 的相对丰度为 时 M+1相对丰度 相对丰度=1.1 × x + 0.37 × w + 0.8 × s 相对丰度 M+2的相对丰度 (1.1×x)2/200 + 0.20×z + 4.4×s 的相对丰度= 的相对丰度 × × ×
一些重同位素与最轻同位素天然丰度相对比值* 一些重同位素与最轻同位素天然丰度相对比值
重同 位素 轻同 位素
13C 2H 17O 18O 15N 33S 34S 37Cl 81Br 29S 30Si
i
12C 1H 16O 16O 14N 32S 32S 35Cl 79Br 28S 28Si
i
相对 1.11 0.015 0.04 0.20 0.37 0.80 4.4 32.5 98.0 5.1 3.4 忽略 忽略 丰度 %
在质谱中出现的质量最大处的主峰是分子 离子峰,还是碎片峰, 离子峰,还是碎片峰,可根据以下几点判断 : 1.注意质量数是否符合氮元素规则。 注意质量数是否符合氮元素规则。 注意质量数是否符合氮元素规则 2.与邻近峰之间的质量差是否合理。 .与邻近峰之间的质量差是否合理。 一般认为分子离子和碎片峰差4~14; 一般认为分子离子和碎片峰差 ; 21~25;37,38,50~53,65,66等是不合 ; , , , , 等是不合 理的丢失。 理的丢失。
之一, (c)化合物若含 、Br之一,它们对 )化合物若含Cl、 之一 它们对M+2、 、 M+4的贡献可按 的贡献可按(a+b)n的展开系数推算,若同 的展开系数推算, 的贡献可按 的展开系数推算 时含Cl、 ,可用(a+b)n •(c+d)m的展开系数 时含 、Br,可用 的展开系数 推算。 推算。

质谱谱图解析

质谱谱图解析

小结
1.M+峰较强的分子结构:芳烃、苯酚、芳基烷基醇、芳 基烷基醚、醛、酮、芳杂环、芳香一元羧酸及其酯、 芳香胺天脂环胺、芳香族胺、芳族硝基物脂肪族硫醚 等。
2.M+峰较弱的分子结构:脂肪族卤化物、酰胺、脂肪胺、 羧酸、酯、醚、伯、肿醇、烯、直链烷烃等。
3.不易观察到M+峰的分子结构:脂肪族硝基物、腈类、 不饱和脂肪醚、叔醇、支链烷烃等。
八、酰胺类化合物
1)分子离子峰较强。 2) α 裂解; γ-氢重排
九、 氨基酸与氨基酸酯
小结:
羰基化合物中 各类化合物的 麦氏重排峰
醛、酮:58+14 n 酯: 74+14 n 酸: 60+14 n 酰胺: 59+14 n
十、双取代芳环的邻位效应
芳环的邻位取代基间容易形成六元环过渡态,发生氢 的重排裂解,该效应称为邻位效应(ortho effect), 通式:
5914质谱图中低荷质比区出现mz314559等含氧碎片峰高质荷比区出现m3峰可能为醇类化合物的m15及m18可能为甲基仲醇不排除m15丢失的可能性这可由mz3145峰的相对强度来判断
有机波谱分析
2.4 各类有机化合物的质谱
一、碳氢化合物的质谱图 1. 直链烷烃
饱和烃类:对直链烷烃分子离子,先通 过半异裂失去一个烷基游离基,形成正 离子,后连续失去28个质量单位。 (CH2=CH2)
卓翁离子可进一步裂解生成环戊二烯(m/z = 65)及 环丙烯离子(m/z = 29)。
2.麦氏重排.(如有—H存在)—具有氢的烷基取代
苯,能发生麦氏重排裂解,产生m/z 92(C7H8+·)的 重排离子(奇电子离子峰),进一步裂解,产生m/z 78

质谱解析

质谱解析

在一定的实验条件下,各种分子都有自己特征的裂解模式和途径,产生各具特征的离子峰,包括其分子离子峰、同位素离子峰及各种碎片离子峰。

根据这些峰的质量及强度信息,可以推断化合物的结构。

如果从单一的质谱信息还不足以确定化合物的结构或需进一步确证的话,可借助于其他的手段,如红外光谱法、核磁共振波谱法、紫外-可见吸收光谱法等。

质谱图的解释,一般要经历以下几个方面的步骤:⑴ 确定分子量;⑵ 确定分子式,除了上面阐述的用质谱法确定化合物分子式外,也常用元素分析法来确定。

分子式确定之后,就可以初步估计化合物的类型;⑶ 计算化合物的不饱和度(也叫不饱和单元)Ω(也有的用U表示):Ω=1+n4+式中n4、n3、n1分别表示化合物分子中四价、三价、一价元素的原子个数(通常n4为C原子的数目,n3为N原子的数目,n1为H和卤素原子的数目)计算出Ω值后,可以进一步判断化合物的类型Ω=0时为饱和(及无环)化合物Ω=1时为带有一个双键或一个饱和环的化合物Ω=2时为带有二个双键或一个三键或一个双键加一个环的化合物(其他以此类推)Ω=4时常是带有苯环的化合物或多个双键或三键。

⑷ 研究高质量端的分子离子峰及其与碎片离子峰的质量差值,推断其断裂方式及可能脱去的碎片自由基或中性分子,这些可以从前面的表8-2、表8-3查找参考。

在这里尤其要注意那些奇电子离子,这些离子一定符合“氮律”,因为它们的出现,如果不是分子离子峰,就意味着发生重排或消去反应,这对推断结构很有帮助。

⑸ 研究低质量端的碎片离子,寻找不同化合物断裂后生成的特征离子或特征系列,如饱和烃往往产生15+14n质量的系列峰;烷基苯往往产生91-13n质量的系列峰。

根据特征系列峰同样可以进一步判断化合物的类型。

⑹根据上述的解释,可以提出化合物的一些结构单元及可能的结合方式,再参考样品的来源、特征、某些物理化学性质,就可以提出一种或几种可能的结构式。

⑺验证:验证有几种方式——由以上解释所得到的可能结构,依照质谱的断裂规律及可能的断裂方式分解,得到可能产生的离子,并与质谱图中的离子峰相对应,考察是否相符合;——与其他的分析手段,如IR、NMR、UV-VIS等的分析数据进行比较、分析、印证;——寻找标准样品,在与待定样品的同样条件下绘制质谱图,进行比较;——查找标准质谱图、表进行比较,常用标准谱图有:①S.R. Heller,G.W.A.Milne EPA/NIH Mass spectral Data base, U.S.Government printing office,Washington,1978②Eight pe ak Index of Mass spectra,The mass spectrometry Data’centrey, The Royal of chemistry,1983③E.Stenhagen,S.Abrahamsson,F.W.McLafferey,Registy of Mass spectral Data,vol.1-4,John wiley,1974谱图解释例举:[例1]某化合物的化学式是C8H16O,其质谱数据如下表,试确定其结构式解:⑴ 不饱和度Ω=1+8+=1,即有一个双键(或一个饱和环);⑵ 不存在烯烃特有的41及41+14n系列峰(烯丙基的α断裂所得),因此双键可能为羰基所提供,而且没有29(HC O+)的醛特征峰,所以可能是一个酮;⑶ 根据碎片离子表,为43、57、71、85的系列是及离子,分别是C3H7+、CH3CO+,C4H9+、C2H5CO+,C5H11+、C3H7CO+及C6H13+、C4H9CO+离子;⑷ 化学式中N原子数为0(偶数),所以m/e为偶数者为奇电子离子,即86、58的离子一定是重排或消去反应所得,且消去反应不可能,所以是发生麦氏重排,羰基的γ位置上有H,而且有两处γ-H。

波谱分析质谱-6

波谱分析质谱-6

,一般较少标出)。如:11H, 21D, 126C等。
������ 带 电荷数相同而质量数不同,所以原子核的表示方法可简化为只 由于同位素之间有相同的质子数,而中子数不同,即它们所
原子核的自旋和自旋角动量
原子核有自旋运动,与宏观物体旋转时产生角动量(或称 为动力矩)一样,原子核在自旋时也产生角动量P。 而与宏观物体不同,在量子力学中用自旋量子数I描述原子 核的自旋状态。 角动量P 的大小与自旋量子数I有以下关系:
4. 固体高分辨NMR 技术、HPLC-NMR 联用技术、碳 、氢以外核的研究等多种测定技术的实现大大扩展 了NMR 的应用范围; 5. 核磁共振成象技术等新的分支学科出现,可无损测 定和观察物体以及生物活体内非均匀体系的图象, 在许多领域有广泛应用,也成为当今医学诊断的重 要手段。美国科学家保罗· 劳特布尔 (Paul Lauterbur)和英国科 学家彼得· 曼斯菲尔德(Peter Mansfield ) 因在此方面的杰出贡献 而获得2003年诺贝尔医学奖 。
简述基质辅助激光解吸电离和电喷雾电离的原理和特点。
基质辅助激光解吸电离 试样溶解或悬浮于基质中,激光束辐射到基质和试样分 子上。 基质吸收激光束能量后汽化,部分试样分子伴随基质的 汽化而解吸。 基质吸收大部分激光能量,减少了试样分子被激光能量 破坏及过度电离成碎片离子。
优点: 质量范围可达50万。 高灵敏度,可测至10-12~10-15摩尔。 软电离,没有或很少有碎片离子,可用于分析混合物。 缺点: 基质背景易干扰质量数1000Da以内的物质分析。 激光解析电离可能导致被分析物分解。
magnetic resonance spectroscopy for determining the threedimensional structure of biological macromolecules in solution".

(新)有机化合物谱图解析-质谱图分析(一)

(新)有机化合物谱图解析-质谱图分析(一)
+ + +
Analyte Ion (M+H)
+ + +
CH5 , C2H5 , C3H5 C4H9 NH4 NH4 F
+ +
(M+H) , (M+ C2H5) , (M+ C3H5)
+ + +
+
(M+H) , (M+ C4H9) (M+H) , (M+ NH4) (M+H)
+
+
+
+ -
CH3O
(M-H)
+
3)应用氮规则 当化合物不含氮或含偶数个氮时,其分子量为偶数; 当化合物含奇数个氮时,其分子量为奇数。
4)分子离子峰的强度和化合物的结构类型密切相关。 (1) 芳香化合物共轭多烯脂环化合物短直链烷烃 某些含硫化合物。通常给出较强的分子离子峰。 (2) 直链的酮、酯、醛、酰胺、醚、卤化物等通常显 示分子离子峰。 (3) 脂肪族且分子量较大的醇、胺、亚硝酸酯、硝酸 酯等化合物及高分支链的化合物通常没有分子离子峰。
-
(M-H)
(M+ C4H9)
+
CI(with isobutane as the reagent gas) and EI mass spectra of C6H5CH2CH2CH2CH2CH3
6.1.6 用低分辨质谱数据推测未知物元素组成
1)利用元素分析数据求元素组成 。 2)利用碳谱、氢谱数据。 3)利用同位素峰簇 有机化合物中的常见元素通常不只含一种同位素,因此 分子离子峰或碎片离子一般都以同位素峰簇的形式存在。 设某一元素有两种同位素,在某化合物中含有m个该元 素的原子,则分子离子同位素峰簇各峰的相对强度为:

仪器分析-质谱图解析.

仪器分析-质谱图解析.
2、质荷比为偶数,表明分子中不含N或含偶数个N
3、m/z 57为M-17离子,m/z 29为M-45 离子,同时产生m/z 45(COOH)离子峰, 说明化合物可能含有羧基
4、m/z 29为乙基碎片离子峰,说明化合物可能含有乙基
H2 O H3C C C OH
m/z=74
H3C
H2 C
O C m/z=57
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原三 子价 数原子数
U四价原 - 子2数
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
相对丰度 (%)
100 80 60 40 20
m/z
43 O
71
断裂
H7C3 C
58
99
Rearrangement
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H1 1
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
未知化合物质谱图分析
CH2
某化合物C10H4
HH CH2
结构式:
1、计算不饱和度U=4, 2、分子离子峰m/z=134较大,结合不饱和度,说明该化合物含有苯环
3、m/z=91为(M-43)碎片离子峰,说明化合物可能失去C3H7+为烷基苯,m/z=65是 其进一步丢失乙炔分子产生的碎片离子峰。

波谱分析-有机化学PDF课件-中国科技大学-06

波谱分析-有机化学PDF课件-中国科技大学-06

1 2 k

m1 .m2 m1 m2
式中:k — 化学键的力常数,单位为N.cm-1 μ — 折合质量,单位为 g
力常数k:与键长、键能有关:键能↑(大),键长 ↓(短),k↑。
化学 键 C― C C= C C≡ C 键长 (nm) 0.154 0.134 0.116 键能 (KJ mol-1) 347.3 610.9 836.8 力常数 k(N.cm-1) 4.5 9.6 15.6 波数范围 (cm-1) 700~1200 1620~1680 2100~2600
产生红外光谱的必要条件是: 1. 辐射光的频率与分子振动的频率相当。 2. 能引起分子偶极矩变化的振动才能产生红外收。 三、有机化合物的红外光谱解析 (一) 特征谱带区、指纹区和相关峰
1、4000-1400cm-1 特征谱带区 H-X (X=O、N、C) 主要是左边各化学键 的伸缩振动吸收 C=X (X=O、N、C) 峰少,易辨认,用于 C X (X=N、C) 鉴定某功能团的存在
γH ν= 2π 0

质子实际感受到的磁场并不是H0,而是:

H = H0 + H’ = H0 +σH0 =H0(1+ σ)
σ 为屏蔽常数
当H’在质子处与H0反向,质子感受到的磁场减弱—屏蔽 当H’在质子处与H0同向,质子受到的磁场增强—去屏蔽 不同质子所处的环境不同,产生的H’不同;尽管实 现共振的实际磁场 H是一样的,但共振时观察到的外 加磁场H0不同—这种由于电子屏蔽或去屏蔽引起的共 振吸收位置的移动称为化学位移
二、红外光谱 的基本原理 1.分子的振动方式 (1)伸缩振动:
沿轴振动,只改变键长,不改变键角
C
对称伸缩振动(νs) -1 (2853 cm )

仪器分析-质谱图解析

仪器分析-质谱图解析
准分子离子: 比分子多或少一个H的离子
[MH]+, [M-H]+
同位素离子: 有些元素具有天然存在的稳定同位素,
所以在质谱图上出现一些M+1,M+2,M+3的峰,由这些 同位素形成的离子峰称为同位素离子峰。
EI 质 谱 的 解 析 步 骤
分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
H3C CH2
m/z=29
O C OH
m/z=45
HH O
结构式:
H
O
H
CH3
1、不饱和度U=4 2、分子离子峰m/z=122强度较大,结合不饱和度,说明该化合物含有苯环
3、m/z=77为 苯环离子峰,m/z=51是其进一步丢失乙炔分子产生的碎片离子峰
4、m/z=94为 M-28 离子,可能丢失C2H4,说明化合物含有乙基。
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 若含硫的样品 RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
例:设 m/z 154为分子离子峰, 154-139=15, 合理
m/z 154 155 156 157 M+2/M=5.1>4.4→分子中含有S RI 100 9.8 5.1 0.5
M/Z=154,偶数,设不含N,含1S
M+1/ M×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18

MS(质谱分析)讲解

MS(质谱分析)讲解
比值m/z(质荷比)大小依次排列而被记录下来的图谱,称 为质谱。
第二页,编辑于星期二:十三点 十三分。
质谱分析法有如下特点:
(1)应用范围广。测定样品可以是无机物,也可以是有机物。应 用上可做化合物的结构分析、测定原子量与相对分子量、同位 素分析、生产过程监测、环境监测、热力学与反应动力学、空 间探测等。被分析的样品可以是气体和液体,也可以是固体。
发展概况:
从20世纪60年代开始,质谱就广泛应用于有机化合 物分子结构的测定。随着科学技术的发展,质谱仪已实 现了与不同的分离仪器的联用。例如,气相色谱与质谱 联用、液相色谱与质谱联用、质谱和质谱的联用已成为 一种用途很广的有机化合物分离、结构测定及定性定量 分析的方法。另外,质谱仪和电子计算机的结合使用, 不仅简化了质谱仪的操作,又提高了质谱仪的效能。特 别是近年来从各种类型有机分子结构的研究中,找出了 一些分子结构与质谱的规律,使质谱成为剖析有机物结 构的强有力的工具之一。在鉴定有机物的四大重要手段 (NMR、MS、IR、UV)中,也是唯一可以确定分子式 的方法(测定精度达10−4)。
第六页,编辑于星期二:十三点 十三分。
图6.1 单聚焦质谱仪
第七页,编辑于星期二:十三点 十三分。
(1)真空系统
质谱仪的离子源、质谱分析器及检测器必须处于高真空状
态(离子源的真空度应达10−3~10−5Pa ,质量分析 器应达10−6Pa),若真空度低,则:
(i)大量氧会烧坏离子源的灯丝;
(ii)会使本底增高,干扰质谱图;
在电离室内,气态的样品分子受到高速电子的轰击后,该分子就失去电子成为正离 子(分子离子):
M eM • 2e
分子离子继续受到电子的轰击,使一些化学键断裂,或引起重排以瞬间速度裂解成多种碎片离 子(正离子)。在排斥极上施加正电压,带正电荷的阳离子被排挤出离子化室,而形成离子束, 离子束经过加速极加速,而进入质量分析器。多余热电子被钨丝对面的电子收集极(电子接收 屏)捕集。分子离子继续受到电子的轰击,使一些化学键断裂,或引起重排以瞬间速度裂解成 多种碎片离子(正离子)。在排斥极上施加正电压,带正电荷的阳离子被排挤出离子化室,而 形成离子束,离子束经过加速极加速,而进入质量分析器。多余热电子被钨丝对面的电子收集 极(电子接收屏)捕集。

质谱介绍及质谱图的解析

质谱介绍及质谱图的解析

质谱介绍及质谱图的解析质谱用于定量分析,其选择性、精度和准确度较高。

化合物通过直接进样或利用气相色谱和液相色谱分离纯化后再导入质谱。

质谱定量分析用外标法或内标法,后者精度高于前者。

定量分析中的内标可选用类似结构物质或同位素物质。

前者成本低,但精度和准确度以使用同位素物质为高。

使用同位素物质为内标时,要求在进样、分离和离子化过程中不会丢失同位素物质。

在使用FAB质谱和LC/MS(热喷雾和电喷雾)进行定量分析时,一般都需要用稳定的同位素内标。

分析物和内标离子的相对丰度采用选择离子监测(只监测分析物和内标的特定离子)的方式测定。

选择离子监测相对全范围扫描而言,由于离子流积分时间长而增加了选择性和灵敏度。

利用分析物和内标的色谱峰面积或峰高比得出校正曲线,然后计算样品中分析物的色谱峰面积或它的量。

解析未知样的质谱图,大致按以下程序进行。

(一)解析分子离子区(1)标出各峰的质荷比数,尤其注意高质荷比区的峰。

(2)识别分子离子峰。

首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。

若二者均相符,可认为是分子离子峰。

(3)分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有CI、Br、S、Si等元素及F、P、I等无同位素的元素。

(4)推导分子式,计算不饱和度。

由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。

若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。

(5)由分子离子峰的相对强度了解分子结构的信息。

分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。

对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。

例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z 208也是基峰。

分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。

第六章 质谱法

第六章 质谱法

进样系统
离子源
质量分析器
检测器
1.直接进样 2.液相色谱 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
仪器在高真空下工作:离子源(10-3 10-5 Pa);质量分析器(10-6 Pa )。 原因: (1) 大量氧会烧坏离子源的灯丝; (2) 用作加速离子的几千伏高压会引起放电; (3) 引起额外的离子-分子反应,改变裂解模型,谱复杂化。
同样的运动曲率半径,才能顺利通过狭缝进
入磁分析器。 双聚焦质量分析器
31
四级杆质量分析器
m 0.136V 2 z r0 f
r0 场半径;f为频率;V为电压
只有质荷比满足要求的离子才能 通过四级杆到达检测器。其它离子则 撞到四级电极上而被“过滤”掉。
四极杆质谱结构简单,价廉,体积小,易操作,扫描速度快, 适合于GC-MS, LC-MS,但分辨率不高。
29
单聚焦磁场分析器
离子进入分析器后,由于磁场的作用,其运动轨道发生偏转改作圆周运 动。其运动轨道半径R可由下式表示:
1.44 10-2 m R V B z
上式中, m -离子质量 Z -离子电荷量 V -离子加速电压 B -磁感应强度 在一定的B、V下,不同m/z 的离子其R不同,由离子源 产生的离子,经过分析器后 可实现质量分离。
1 mv 2 zV 2
m 2 zV
2 zV 1/ 2 v( ) m
漂移时间 t L
34
傅立叶变换离子回旋共振质谱仪
(Fourier Transform ion cyclotron resonance Mass Spectrometer, FTICR-MS)

质谱分析图谱解析-图文

质谱分析图谱解析-图文
例:化合物中含有2个氯和2个溴原子
Cl2: (a + b) n = (3 +1) 2 =9: 6: 1
Br2: (c + d) m =(1 + 1) 2 =1: 2: 1
(9 6 1) ×1= 9 6 1
( 9 6 1) ×2= 18 12 2
( 9 6 1) ×1 =
96 1
—————————————
如何识别质谱图中的的OE+·?
不含氮的化合物, m/z 为偶数的离子是奇电子离子 在质谱图中, 奇电子离子并不多见, 但重要.
烃类化合物的裂解规律:
烃类化合物的裂解优先生成稳定的正碳离子
CH3(CH2)nCH3
m/z 43或57 是基峰
C6H5CH2(CH2)n CH3 m/z 91是基峰
含杂原子化合物的裂解(羰基化合物除外):
1-十二烯的质谱图如下:
环烯: RDA反应
芳烃
烷基苯M+·强或中等强度。 β-键的断裂,产生m/z 91的基峰或强峰; γ-H的重排,产生m/z 92的奇电子离子峰, 进一步裂解,产生m/z 77,65,51,39的峰或 者m/z 78, 66,52,40的峰。
例如,正己基苯的MS如下:
醇、酚、醚
H2 H2+ H. .CH3 O. or NH2
OH. H2O HF
= 4~14, 21~24, 37~38……通常认为是不合理丢失
■ 判断其是否符合氮律
不含N或含偶数N的有机分子, 其分子离子峰的m/z
(即分子量)为偶数。含奇数N的有机分子, 其分子离
子峰的m/z (即分子量)为奇数。
◎ 使用CI电离时,可能出现 M+H, MH, M+C2H5, M+C3H5… ◎ 使用FAB时,可出现 M+H, MH, M+Na, M+K… ◎ 较高分子量的化合物,可能同时生成 M+H, M+2H, M+3H等

第六章 质谱

第六章 质谱

End!
(二)碎片离子(fragment ion)——分子 获得能量后,分子中的某化学键断裂而产生 碎片离子。
(三)同位素离子
定义:含有同位素的离子称为同位素离子。
(四)亚稳离子
• 在离子源生成的离子,如果在飞行中发生裂解, 生成子离子和中性碎片,则把这种在飞行中发 生裂解的母离子称为亚稳离子,由它形成的质 谱峰为亚稳峰。 • 亚稳峰的特点:
.
+
C H2 + C H3
.
+ +
C H3 C H2
C
H2 O
C H3 C H3 C H C
.
M-18
m /e 70
脱水碎片继续分裂
C H3 C H3 C H2 C C H2
+
.
C H3 C H3
+
C H2
.+
C H2
C
M-18-15 m /e 55
羰基化合物
醛、酮的分子离子 – 断裂 氧鎓离子 –CO
Beynon 贝农表
只有 C, H, O, N 的化合物:同位素峰强度比 与组成分子的元素间的关系编制
M, M+1, M+2 峰相对强度 分子式
J. H. Beynon, A. E. Williams ‘‘ Mass and Abundance Tables for use in Mass Spectrometry’’
新的正离子
+ C H3 C H2 C C H3 O
.
C H3
.+
C H3 C H2 C
O
+
m /e 57 CO
+
C H3 C H2 + m /e 29

第六章 质谱

第六章 质谱

同位素
15N/14N 33S/32S 37Cl/35Cl 81Br/79Br
丰度比% 0.36 0.80 32.5 98.0
同位素峰的强度:只含CHON化合物
在一般有机分子鉴定时,可以通过同位素峰的统计分布来确定 其元素组成,分子离子的同位素离子峰相对强度之比总是符合 统计规律的 CH4分子离子峰m/z = 17和16的相对强度之比为0.011 丁烷中出现一个13C的几率是甲烷的4倍,则分子离子峰m/z = 59和58的强度之比I59/I58 = 0.044,同样出现[M + 2](m/z = 60)同 位素峰的几率为0.0007,非常小,故在丁烷质谱中一般看不到 [M + 2]+峰 只含CHON化合物中,重同位素的丰度都较小,同位素峰很弱。 其相对强度可按经验公式粗略估算:
25
第二节
质谱图及其应用
例1: 在十六烷质谱中发现有几个亚稳离子峰,其质荷比分
别为32.8,29.5,28.8,25.7和21.7,其中29.5 ≈ 412/57,则 表示存在分裂: C4H9+ → C3H5+ + CH4 m/z = 57 m/z = 41 但并不是所有的分裂过程都会产生m*,因此没有m*峰并不
H2O
20
丢 失
Δ m = 4-14, 21-24, 37-38·· ·· ·通常认为是不合理丢失
合理碎片丢失
w
w w
a: 与最大离子相邻的离子差值为13,不合理。 b: 最大离子为122,最近离子106,合理 c: 最大离子84,最近离子69,合理
如何辩认分子离子峰
如图所示,只含有C、H、O、 N的化合物,最高质量端有两 个峰m/z = 57和58,若判断m/z = 57是分子离子峰,其分子式 为C3H7N,符合氮规律。m/z = 42可能是M-CH3 ,m/z = 41可 能是M-NH2 ,都是合理的丢失 ,但m/z = 43则是M-CH2 ,这 种丢失不合理 若判断m/z = 58是分子离子峰,分子式为C4H10符合氮规律, m/z = 43可能是M-CH3,m/z = 42可能是M-CH4,m/z = 41可 能是M-CH3-H2。则m/z = 58的峰与相邻峰的质量差都较合理 ,很可能是分子离子峰

波谱分析-第六章 波谱综合解析

波谱分析-第六章 波谱综合解析
C≡C 65~100 若有氢,在 2~3
13C-NMR
1H-NMR
MS (m/z)
烯丙基开裂 产生41、55、 69离子峰。
2140~2100, 如果有氢原子 26离子峰。 在3310~3200出 现吸收带。 首先看 1650~1450的吸 收谱带,然后 用900~650可推 断出取代类型。
芳香 环
可推出分子中元素的组成,进而得到 可能的分子式。 (3)结合核磁共振氢谱、碳谱推测简单烃类等 分子的分子式。 (4)综合光谱材料与元素分析确定分子式。 (a)确定碳原子数 ■从13C-NMR得出碳原子的类型数。 (b)确定氢原子数
■从13C-NMR计算出碳上质子的总数HC。
■从1H-NMR的积分强度计算得到的
氢原子数HH。 (c)确定氧原子数 ♦由IR确定有无vOH、vC=O和vC-O-C 的特征 吸收谱带,进一步用 13C-NMR、 1H-NMR 和MS 等有关峰数确定。 (d)确定氮原子数 ♦可由元素分析氮含量推测氮原子个数。 与波谱数据对照。 ♦若MS中有分子离子峰且m/z 为奇数时,分 子中应含奇数个氮。
综合解析就是各种波谱法彼此补充,
用于复杂有机化合物的结构鉴定。 7.1 各种谱图解析时的作用
1.UV法: (1) 判断芳香环是否存在; (2) 判断共轭体系是否存在; (3)由Woodward一Fieser 规则估算共轭双键 或α,β一不饱和醛酮或用F. Scott 经验 公式计算芳香羰基化合物的λmax。
解:从 UV:λmax =275nm(εmax=12) 无共轭系统。
IR光谱:
可看出:
无芳香系统,但有 C=O、-CH2-、-CH3。
NMR:
也示无芳香系统。
1. 确定各部分结构:

MS(质谱分析)讲解

MS(质谱分析)讲解

2021/3/26
13
(i)化学电离源(CI)
有些化合物稳定性差,用EI方式不易得到分子离子, 因而也就得不到分子量。为了得到分子量可以采用化学 电离源(chemical ionization)。
现以甲烷作为反应气为例,说明化学电离的过程。 在电子轰击下,甲烷首先被电离:现以甲烷作为反应气 为例,说明化学电离的过程。
对于高沸点的液体、固体,可以用探针(probe) 杆直接进样(图6.2下图)。调节加热温度,使试样气 化为蒸汽。此方法可将微克量级甚至更少试样送入电离 室。探针杆中试样的温度可冷却至约-100℃,或在数 秒钟内加热到较高温度(如300℃左右)。
2021/3/26
11
(3)离子源 (ion source)
2021/3/26
23
(4)分离管为一定半径的圆形管道,在分离管的四周 存在均匀磁场。再磁场的作用下,离子的运动由直线运 动变为匀速圆周运动。此时,圆周上任何一点的向心力 和离心力相等。故:
mυ2/R=H z υ
(6.2)
其中,R为圆周半径,H为磁场强度。
2021/3/26
24
合并(6.1)及(6.2)消去υ,可得
2021/3/26
22
(3)加速室中有2000V的高压电场,正离子在高压电场 的作用下得到加速,然后进入分离管。在加速室里,正
离子所获得的动能应该等于加速电压和离子电荷的乘积 (即电荷在电场中的位能)。
1 m2 zU
2
(6.1)
式中z为离子电荷数, U为加速电压。显然,在一定 的加速电压下,离子的运动速度与质量m有关。
(6.5)
E–扇形电场强度,m–离子质量,z–离子电荷, υ–离子速度,Re–离子在电场中轨道半径。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

缺点: 当样品分子稳定性不高时,分子离子峰的强度低,甚至不存 在分子离子峰。
5.2.2 化学电离(chemical ionization, CI) 化学电离是通过离子-分子反应来完成的。反应气体一般是 甲烷、异丁烷、氨等。 例: CH4 + e CH4 + CH4 CH5 + M
+ +
CH4 + 2e
5)母离子(parent ion)与子离子(daughter ion) 任何一离子进一步产生某离子,前者称为母离子,后者 称为子离子。 6)亚稳离子(metastable ion) 是从离子源出口到检测器之间产生的离子。
7)奇电子与偶电子离子(odd- and even-electron ion) 具有未配对电子的离子称为奇电子离子,不具有未配对 电子的离子称为偶电子离子。 8)多电荷离子(multiply-charged ion) 失掉两个以上电子的离子称为多电荷离子。
5.1.2 质谱图
横坐标: 质荷比 纵坐标: 离子流强度, 相对丰度:最强峰的强度定为100%
5.1.3 有机质谱中的各种离子
1)分子离子(molecular ion) + 样品分子失去一个电子而电离所产生的离子,记为 M 。 2)准分子离子(quasi-molecular ion) + + 准分子离子常由软电离产生,一般为 M+H 、M-H 。 3)碎片离子(fragment ion) 泛指由分子离子破裂而产生的一切离子。狭义的碎片离 子指由简单断裂产生的离子。 4)重排离子(rearrangement ion) 经重排反应产生的离子,其结构不是原分子结构单元。
场电离:是一种软电离技术。当样品蒸汽邻近或接触到带高 正电位的金属针时,由于高曲率的针端产生很强的电位梯度, 样品分子可被电离。 优点:电离快速,适合于和气相色谱联机; 缺点:要求样品汽化,灵敏度低。 场解吸:原理与FI相同,但样品是被沉积在电极上。 FD适用于难汽化的、热不稳定样品。FD的准分子离子峰比 FI的强,质谱图比FI的还要简单。
9)同位素离子(isotopic ion) 当元素具有非单一的同位素组成时,产生同位素离子。
5.2 电离过程
5.2.1 电子轰击电离(electron impact ionization, EI) 质谱中最常用的离子源,一般为70eV的电子束,远大于大 多数有机化合物的电离电位(7~15eV),会使相当多的分 子离子进一步裂解,产生广义的碎片离子。 优点: 1)结构简单,稳定,电离效率高,易于实现; 2)质谱图再现性好,便于计算机检索及比较; 3)离子碎片多,可提供较多的分子结构信息。
低分辨率质谱仪: R < 1000 高分辨率质谱仪: R > 10000
(FT-ICR MS:R可达 1106)
利用高分辨率质谱仪可测定精 确的质量数(分子式)!
质荷比均为 28 的分子: CO: 27.9949 N2: 28.0062 C2H4: 28.0313
3. 灵敏度(sensitivity) 对于一定样品(如硬脂酸甲酯),在一定的分辨率情 况下,产生一定信噪比(如101)的分子离子峰所需的 样品量。
质谱仪所能测定的离子质荷比的范围。 四极质谱: 1000以内 离子阱质谱: ~ 6000 飞行时间质谱: 无上限
2. 分辨率(resolution) 分辨率R是指分离质量数为M1及M2的相邻质谱峰的能力。 若近似等强度的质量分别为M1及M2的两个相邻峰正好分 开,则质谱仪的分辨率定义为: M1+M2 M R = M ; 式中 M = ; M = M2 -M1 2 说明: 1)R10%:两峰间的峰谷高度为峰高的10%时的测定值; 2)一般难以找到两个质量峰等高,且重叠的谷高正好等 于峰高的10%,则定义: M a; R= M b 式中 a为相邻两峰的中心距离; b为其中一峰的峰高5%处的峰宽。
+
CH5 + CH3 CH4 + MH
+
+
优点: 1)准分子离子峰强度高,便于推算分子量; 2)用于色质联用仪器上,载气不必除去,可作为反应气体; 3)反映异构体的差别较EI谱要好些。 缺点: 碎片离子峰少,强度低。
5.2.3 场电离(field ionization, FI)和 场解吸(field desorption, FD)
5.2.4 快原子轰击(fast atom bombardment, FAB)和 二次离子质谱(secondary ion MS, SIMS)
FAB:是一种广泛应用的软电离技术。快原子轰击利用的重 原子一般为 Xe 或 Ar。 Ar+(高动能的) + Ar(热运动的) Ar(高动能的) + Ar+(热运动的)
FAB可完成连FD都有困难的、高极性、难汽化的化合物的 电离。样品多调匀于基质(一般为甘油等)中。基质应具有 流动性、低蒸气压、化学惰性、电解质性和好的溶解性。 SIMS:原理类似于FAB,但用重离子取代原子进行轰击, 可用于固体表面分析和溶液样品的分析。
5.2.5 基质辅助激光解吸电离 (matrix-assisted laser desportion ionization, MALDI) 在一个微小的区域内,在极短的时间间隔,激光可对靶物提 供高的能量,对它们进行极快的加热,可以避免热敏感的化 合物加热分解。 MALDI的方法:将被分析化合物的溶液和某种基质溶液相 混合。蒸发掉溶剂,则被分析物质与基质形成晶体或半晶体。 用一定波长的脉冲式激光进行照射。基质分子能有效地吸收 激光的能量,并间接地传给样品分子,从而得到电离。 优点: 1)使一些难于电离的样品电离,且无明显的碎裂,从而得 到完整的被分析化合物分子的电离产物; 2)特别适用于与飞行时间质谱相配(MALDI-TOF MS)。
第五章 有机质谱法 Organic Mass Spectroscopy
优点:
1. 分析范围广Biblioteka 气体、液体、固体)2. 测定分子量,确定分子式 3. 分析速度快,灵敏度高 4. 各种联用技术 5. 新的电离、检测技术
5.1 基本知识 5.1.1 质谱仪的主要性能指标
1. 质量范围(mass range)
相关文档
最新文档