第5章时域离散系统的基本网络结构
《数字信号处理》课程教学大纲
《数字信号处理》课程教学大纲课程编码:课程名称:数字信号处理英文名称: Digital signal processing适用专业:物联网工程先修课程:复变函数、线性代数、信号与系统学分:2总学时:48实验(上机)学时:0授课学时:48网络学时:16一、课程简介《数字信号处理》是物联网工程专业基础必修课。
主要研究如何分析和处理离散时间信号的基本理论和方法,主要培养学生在面对复杂工程问题时的分析、综合与优化能力,是一门既有系统理论又有较强实践性的专业基础课。
课程的目的在于使学生能正确理解和掌握本课程所涉及的信号处理的基本概念、基本理论和基本分析方法,来解决物联网系统中的信号分析问题。
培养学生探索未知、追求真理、勇攀科学高峰的责任感和使命感。
助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神。
培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当。
它既是学习相关专业课程设计及毕业设计必不可少的基础,同时也是毕业后做技术工作的基础。
二、课程目标和任务1.课程目标课程目标1(CT1):运用时间离散系统的基本原理、离散时间傅里叶变换、Z变换、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、时域采样定理和频域采样定理等工程基础知识,分析物联网领域的复杂工程问题。
培养探索未知、追求真理、勇攀科学高峰的责任感和使命感[课程思政点1]。
助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神[课程思政点2]。
课程目标2 (CT2):说明利用DFT对模拟信号进行谱分析的过程和误差分析、区分各类网络的结构特点;借助文献研究运用窗函数法设计具有线性相位的FIR数字滤波器,分析物联网领域复杂工程问题解决过程中的影响因素,从而获得有效结论的能力。
培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当[课程思政点3]。
2.课程目标与毕业要求的对应关系三、课程教学内容第一章时域离散信号与系统(1)时域离散信号表示;(2)时域离散系统;(3)时域离散系统的输入输出描述法;*(4)模拟信号数字处理方法;教学重点:数字信号处理中的基本运算方法,时域离散系统的线性、时不变性及系统的因果性和稳定性。
第五章 时域离散系统的基本网络结构
本章的主要内容就是描述数字滤波器的基 本网络结构。(IIR、FIR)
引言
时域离散系统或网络可以用差分方程、单 位脉冲响应以及系统函数进行描述。
M
N
y(n) bi x(n i) ai y(n i)
i0
i 1
系统函数H(z)为
M
H (z)
(2) 流图环路中必须存在延时支路;
(3) 节点和支路的数目是有限的。
信号流图表达的系统含义
每个节点连接的有输入支路和输出支路,节点变 量等于所有输入支路的输出之和.
根据信号流图可以求出系统函数(节点法、梅逊 公式法)。
1(n) 2 (n 1) 2 (n) 2 (n 1) 2 (n) x(n) a12 (n) a21n y(n) b21(n) b12 (n) b02(n)
画出H(z)的直接型结构和级联型结构。
级联型
解: 将H(z)进行因式分解,得到: H(z)=(0.6+0.5z-1)(1.6+2z-1+3z-2)
其直接型结构和级联型结构如图所示。
x(n)
0.6
z- 1 0.5
1.6 z- 1
2 z- 1
3
y(n) x(n)
z- 1
z- 1
z- 1
0.96 2
2.8 1.5 y(n)
0 j
y(n)
1 j
z- 1 1j
1 j
z- 11 j
(a)
2 j
z-
1
2
j
(b)
一阶和二阶直接型网络结构 (a)直接型一阶网络结构;(b)直接型二阶网络结构
IIR的级联型例题
信号分析与处理技术习题册
第一章 时域离散信号与离散系统1-1 给定信号:⎪⎩⎪⎨⎧≤≤-≤≤-+=其它,040,614,52)(n n n n x(1) 画出x(n)序列的波形,标上各序列值;(2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列; (3) 令x 1(n)=2x(n-2),试画出x 1(n)波形; (4) 令x 2(n)=2x(n+2),试画出x 2(n)波形; (5) 令x 3(n)=x(2-n),试画出x 3(n)波形。
1-2 有序列如下图所示请计算x e (n)=[x(n)+x(-n)]/2,并画出波形。
1-3 试判断 (1)∑-∞==nm m x n y )()((2)y(n)=[x(n)]2 (3))792sin()()(ππ+=n n x n y是否线性系统,并判断(2)、(3)是否移不变系统。
1-4设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如图所示,要求画出y(n)的波形。
1-5 已知线性移不变系统的输入为x(n)=δ(n)-δ(n-2),系统的单位抽样响应为h(n)=0.5n R3(n),试求系统的输出y(n)1-6 设有一系统,其输入输出关系由以下差分方程确定:y(n)-0.5y(n-1)=x(n)+0.5x(n-1)设系统是因果性的。
(1)利用递推法求系统的单位抽样响应;(2)由(1)的结果,利用卷积和求输入x(n)=e jwn u(n)的响应。
第二章时域离散信号与系统的频域分析2-1 试求如下序列的傅立叶变换:(1)x1(n)=R5(n)(2)x2(n)=u(n+3)-u(n-4)2-2 设⎩⎨⎧==其它,01,0,1)(n n x ,将x(n)以4为周期进行周期延拓,形成周期序列~)(n x ,画出x(n)和~)(n x 的波形,求出~)(n x 的离散傅立叶级数~)(k X 和傅立叶变换。
2-3 设如图所示的序列x(n)的FT 用X(e jw )表示,不直接求出X(e jw ),确定并画出傅立叶变换实部Re[X(e jw )]的时间序列x e (n)2-4 求序列-2-n u(-n-1)的Z 变换及收敛域:2-5 已知)(2||5.02523)(211n x z zzz z X 对应的原序列,求收敛<<+--=---2-6 分别用长除法、部分分式法求以下X(z)的反变换:21||,411311)(21>--=--z zz z X2-7 用Z 变换法解下列差分方程:y(n)-0.9y(n-1)=0.05u(n),y(-1)=1,y(n)=0,n<-12-8 研究一个输入为x(n)和输出为y(n)的时域线性离散移不变系统,已知它满足)()1()(310)1(n x n y n y n y =++--,并已知系统是稳定的,试求其单位抽样响应。
2022年硕士初试自命题大纲892无人系统专业综合
题号:892《无人系统专业综合》考试大纲注:以下七部分内容只选择两部分进行答题一、数据结构(75分)考查目标:1、掌握数据结构的基本概念、基本原理和基本方法。
2、掌握数据的逻辑结构、存储结构及基本操作的实现,能够对算法进行基本的时间复杂度与空间复杂度的分析。
3、能够运用数据结构基本原理和方法进行问题的分析与求解。
考试内容:1、数据结构、算法的概念,数据结构的逻辑结构和物理结构,算法的性能评价方法。
2、线性表的概念和基本运算,线性表的顺序存储和链式存储,线性表的基本运算在顺序存储和链式存储结构上的实现。
3、栈和队列的基本概念、基本操作和存储结构。
4、树、二叉树的基本概念,二叉树的遍历方法,二叉树的应用。
5、图的基本概念和存储结构,图的遍历,图的基本应用算法。
6、查找的基本概念、静态查找表和动态查找表、哈希表。
7、排序的基本概念、排序算法和性能分析。
参考书目:严蔚敏、吴伟民编著,《数据结构(C语言版)》,清华大学出版社,2009年。
二、计算机组成原理(75分)考查目标:1、理解计算机系统中各部件的内部工作原理、组成结构以及相互连接方式,建立计算机系统的整机概念。
2、理解计算机系统层次化结构概念,掌握各部件的组织结构和工作原理,熟悉硬件与软件之间的关系。
3、能够综合运用计算机组成的基本原理和基本方法,对有关计算机硬件系统中的理论和实际问题进行计算、分析,对一些基本部件进行简单设计。
考试内容:1、计算机的基本组成,冯.诺依曼计算机原理,计算机的工作过程,计算机软件和硬件的关系,计算机系统的主要技术指标,计算机系统的层次结构。
2、总线基本概念、分类、结构及其控制逻辑。
3、存储器的分类、基本工作原理,存储器与其他部件的连接,存储器系统的层次结构。
4、运算器和运算方法:数在计算机中的表示,定点运算和浮点运算,算术逻辑单元的工作原理。
5、控制器:指令系统原理,CPU的基本结构,控制单元的功能和原理,控制单元的两种设计方法。
第5章离散信号与离散系统的时域分析
A (k )
k
A k (k )
A
1
0 1
A, , 为实数
A
0 1 2 3 4 5
k
0 1 2 3 4 5
k
A k (k )
A
1
A k (k )
A
3
1 4
A k (k )
3
A
4
1 2
3
4
0
2
0
2
0
A
k
A
k 1 0
f1 (t ) f 2 (t )
同样地, 我们定义:
f1 ( ) f 2 (t )d
f (k ) f1 (k ) f 2 (k ) f2 (k i ) f1 (i )
i
为序列f1(k)和f2(k)的卷积和运算, 简称卷积和 ( Convolution Sum)。
(8)z序列 定义:
f (k ) z k
k
z z e j0
j0 k
f (k ) z ( z e
k
) z e j0k
k
z [cos(0 k ) j sin(0 k )]
17
2013年8月13日8时9分
5.2 卷积和
5.2.1 卷积和的定义
定义两个连续时间信号f1(t)和f2(t)的卷积运算为:
t
0
T ( t )
s
t
0T
s
t
0 Ts
温度℃
30 20
人数
10000 5000
10
0 2 4 6 8 10 12 14 16 18 20 22 24
《数字信号的处理》课后上机的题目
0.1702
B =
0.0028 0.0111 0.0166 0.0111 0.0028
A =
1.0000 -2.6103 2.7188 -1.3066 0.2425
实验报告
第一章:时域离散信号和时域离散系统
*16.已知两个系统的差分方程分别为
(1) y(n)=0.6y(n-1)-0.08y(n-2)+x(n)
(2) y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)
分别求出所描述的系统的单位脉冲响应和单位阶跃响应.
解:(可附程序)
(1)系统差分方程的系数向量为
yn=conv(x1n,x2n)
%用DFT计算卷积ycn:
M1=length(x1n);
M2=length(x2n);
N=M1+M2-1;
X1k=fft(x1n,N); %计算x1n的N点DFT
X2k=fft(x2n,N); %计算x2n的N点DFT
Yck=X1k.*X2k;
ycn=ifft(Yck,N)
subplot(2,2,1);stem(n,hn1,'.')
title('(a)系统1的系统单位脉冲响应');
xlabel('n');ylabel('h(n)')
xn=ones(1,30);
%xn=单位阶跃序列,长度N=31
sn1=filter(B1,A1,xn,xi);
%调用filter解差分方程,求系统输出信号sn1
解:(可附程序)
hn=[5,5,5,3,3,3];
r=0.95;
Hk=fft(hn,6);
离散系统的时域分析法
第五章离散系统的时域分析法目录5.1 引言5.2 离散时间信号5.3 离散系统的数学模型-差分方程 5.4 线性常系数差分方程的求解5.5 单位样值响应5.6 卷积和§5.1引言连续时间信号、连续时间系统连续时间信号:f(t)是连续变化的t的函数,除若干不连续点之外对于任意时间值都可以给出确定的函数值。
函数的波形都是具有平滑曲线的形状,一般也称模拟信号。
模拟信号抽样信号量化信号连续时间系统:系统的输入、输出都是连续的时间信号。
离散时间信号、离散时间系统离散时间信号:时间变量是离散的,函数只在某些规定的时刻有确定的值,在其他时间没有定义。
离散时间系统:系统的输入、输出都是离散的时间信号。
如数字计算机。
o k t ()k t f 2t 1−t 1t 3t 2−t 离散信号可以由模拟信号抽样而得,也可以由实际系统生成。
量化幅值量化——幅值只能分级变化。
采样过程就是对模拟信号的时间取离散的量化值过程——得到离散信号。
数字信号:离散信号在各离散点的幅值被量化的信号。
ot ()t f T T 2T 31.32.45.19.0o T T 2T 3()t f q t3421离散时间系统的优点•便于实现大规模集成,从而在重量和体积方面显示其优越性;•容易作到精度高,模拟元件精度低,而数字系统的精度取决于位数;•可靠性好;•存储器的合理运用使系统具有灵活的功能;•易消除噪声干扰;•数字系统容易利用可编程技术,借助于软件控制,大大改善了系统的灵活性和通用性;•易处理速率很低的信号。
离散时间系统的困难和缺点高速时实现困难,设备复杂,成本高,通信系统由模拟转化为数字要牺牲带宽。
应用前景由于数字系统的优点,使许多模拟系统逐步被淘汰,被数字(更多是模/数混合)系统所代替;人们提出了“数字地球”、“数字化世界”、“数字化生存”等概念,数字化技术逐步渗透到人类工作与生活的每个角落。
数字信号处理技术正在使人类生产和生活质量提高到前所未有的新境界。
《数字信号处理》教案
《数字信号处理》教学大纲课程类型:专业课总学时:通信工程专业70;信息工程专业64讲课学时:通信工程专业60;信息工程专业54实践学时:通信工程专业10;信息工程专业10一、课程的目的与任务本课程讲授数字信号处理的基本理论和基本分析方法,并且进行理论与算法的实践。
要求学生掌握离散时间信号与系统的基本理论,掌握离散时间系统的时域分析与 Z变换及离散傅立叶变换和快速傅里叶变换的理论计算法;掌握IIR和FIR数字滤波器的结构、理论和设计方法,为学生毕业后从事数字技术及其工程应用提供必要的训练。
二、课程有关说明《数字信号处理》是通信工程专业和信息工程专业的专业课,课程的内容包括:线性时不变离散时间系统的基础知识、数学模型(差分方程)及其求解,Z变换,离散傅立叶变换(DFT)理论及应用,快速傅立叶变换(FFT),无限长单位脉冲响应(IIR)数字滤波器设计,有限长单位脉冲响应(FIR)数字滤波器设计等内容。
除了理论教学外,还配有一定数量的上机实验。
数字信号处理在理论上所涉及的范围及其广泛。
高等数学、随机过程、复变函数等都是其数学基本工具。
电路理论、信号与系统等是其理论基础。
其算法及实现(硬件和软件)与计算机学科和微电子技术密不可分。
学生应该认真学习以上的知识,更好地掌握数字信号处理的基本理论、算法和实现技能。
主要教学方式:教师主讲,答疑、课堂讨论为辅,并结合实验教学。
考核评分方式:闭卷考试三、教学内容绪论(2学时)本章应掌握:数字信号处理的基本概念。
熟悉:数字信号处理系统的基本组成。
了解:数字信号处理的学科概貌、学科特点、实际应用、发展方向和实现方法。
第一章时域离散信号和时域离散系统(4学时)第一节时域离散信号本节应掌握:序列的运算,即移位、翻褶、和、积、累加、差分、时间尺度变换、卷积和等;序列的周期性。
熟悉:几种常用序列,即单位抽样序列、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦序列。
了解:用单位抽样序列来表示任意序列。
第一章 时域离散信号和时域离散系统
x(n) = −3δ (n + 4) − δ (n + 3) − δ (n + 2) − δ (n + 1) +6δ (n) + 6δ (n − 1) + 6δ (n − 2) + 6δ (n − 3) + 6δ (n − 4)
时域离散信号
Example (2) x1(n)的波形是x (n)的波形右移2个单位,再乘以2,波形如 下。
x3(n) 6 3 1 0 1 2 -1 -3 n
时域离散信号
Example 2. 给定信号x(n) : ( n) x
= R5 (n + 1) − R4 (n − 1)
试用延迟的单位脉冲序列及其加权和画出表示x(n)序列
R5(n+1) -R4(n-1)
x (n)
-1 0 1
n
0
n
x( n) = δ ( n + 1) + δ ( n) − δ (n − 4)
时域离散系统
【例2】检查y(n)=nx(n)所代表的系统是否是时不变系统。 解 : y(n)=nx(n) y(n-n0)=(n- n0)x(n- n0) T[x(n- n0)]=nx(n- n0) y(n- n0)≠T[x(n- n0)] )≠T[ 因此该系统不是时不变系统。 π 同样方法可以证明 y(n) = x(n)sin(ω0n + ) 4 所代表的系统不是时不变系统。
ω = Ω / fs
时域离散信号
复指数序列
x(n) = e(σ+jω0)n
式中 ω0 为数字域频率,设σ=0,用极坐标和实部虚部表示如 下式:
x(n)=e jω0n x(n)=cos(ω0n)+jsin(ω0n)
第五章离散信号与系统时域分析
解: (1) E2 3E 2 0
E1 1 E2 2
y0 (k) C1(1)k C2 (2)k
(2) 激励为f (k) 2kU (k) yt (k) A(2k )
代入差分方程,可得
yt
(k)
1 3
(2k
)
(3)
全 响 应 为y(k )
C1 (1) k
C2 (2)k
1 3
(2k
)
(4) 全响应为y(k) 2 (1)k 2 (2)k 1 (2k ) k 0
y(k) 2(1 k)(2)k
k 0
19
二、非齐次差分方程时域解
(En an1En1 a0 ) y(k) (bmEm b0 ) f (k)
传输算子 特征方程
H(E)
E n
bmE m b0 an1E n1 a0
En an1En1 a0 0 (自然频率)
时域解为
y(k ) y0 (k ) yt (k )
k 0 : f (k) 0 k 0 : y(k) 0
12
三、离散时间系统模型 1、差分方程描述: 例1:y(k)表示一个国家在第k年的人口数, a、b分别代表出生率和死亡
率,是常数。设f(k)是国外移民的净增数,则该国在第k+1年的人口总数 y(k+1)为多少?
y(k+1)=y(k)+ay(k)-by(k)+f(k)=(a-b+1)y(k)+f(k) 所以,有 y(k+1)+(b-a-1)y(k)=f(k)
3.倒相: y(k)=-f(k)
4.展缩: y(k)=f(ak) (横坐标k只能取整数)
5
四、常用离散信号 1.单位序列(单位取样序列、单位脉冲序列、单位函数)
离散系统时域分析_OK
例:设 y(k)+3y(k-1)+2y(k-2)=2k (k),y(0)=0, y(1)=2,求y(k)。
f(k)=ak(k)
|a| >
1
f(k)=ak(k)
|a| <
11
1
-2 -1 0 1 2 3
k
-2 -1 0 1 2 3
k
3
发散
收敛
5.正弦序列
f (k) Acos(kω0 )
0序列依次重复出现的频率。
2
ω 0
为有理数,正弦序列为周期序列。
f (k N ) A cosω[ 0(k N ) ] A cosω[ 0k ω0 N ]
any(k)+an-1y(k-1)+…+a1y(k-n+1)+a0y(k-n)=0(后向)
any(k+n)+an-1y(k+n-1)+…+a1y(k+1)+a0y(k)=0(前向)
对应的特征方程为:ann+an-1n-1+ + …+a1 + a0=0
1.特征根均为单根: 则齐次通解为:
1≠2≠…≠n
10
§5–2 离散时间系统的数学模型
一、线性时不变离散时间系统
1.离散系统:激励和响应都是离散信号的系统
f(k)
y(k)
离散时间系统
2.分类:亦可分为线性与非线性;时不变与时变;因果与非 因果等。
时不变: f(k) → y(k) f(k-m) → y(k-m)
因果系统:响应总是出现在激励之后。即: 当k < k0 ,f(k)
(2) 初始条件y(0), y(1),…, y(n-1)(与外施激励有关)代入完全解,可确 定待定常数Ci 。
离散信号与系统的时域分析
连续时间信号,在数学上可以表示为连续时间变量t的函 数。这类信号 的特点是:在时间定义域内,除有限个不连续 点外, 对任一给定时刻都对应有确定的信号值。 离散时间信号,简称离散信号,它是离散时间变量 tk(k=0,±1, ±2, …)的函数。信号仅在规定的离散时间点上 有意义,而在其它时间则没有定义。
1
(k-k 0 )
1
o
k 0 -1 k 0 k 0 +1 (a )
k
-k 0 - 1 -k 0 -k 0 + 1 (b )
o
k
2. 正弦序列 正弦序列的一般形式为 由于
f (k ) A cos(0k )
f ( k ) A cos(0k ) A cos(0k 2m ) 2 m A cos0 k 0
5.2.2 卷积和的性质
性质1 离散信号的卷积和运算服从交换律、结合律和 分配律,即
f1 (k ) f 2 (k ) f 2 (k ) f1 (k )
f1 (k ) [ f 2 (k ) f 3 (k )] [ f1 (k ) f 2 (k )] f 3 (k )
f1 (k ) [ f 2 (k ) f 3 (k )] f1 (k ) f 2 (k ) f1 (k ) f 3 (k )
第五章 离散信号与系统 的时域分析
引 言
连续时间系统:这类系统用于传输和处理连续时间信号
离散系统:用于传输和处理离散时间信号的系统称为离散时间系
统,数字计算机是典型的离散系统例子,数据控制系统和数字通
信系统的核心组成部分也都是离散系统。
混合系统:连续系统与离散系统组合起来使用。
5.1 离散时间基本信号
丁玉美《数字信号处理》笔记和课后习题(时域离散系统的网络结构)
8 / 44
圣才电子书
三、FIR 系统的基本网络结构 FIR 网络结构特点是没有反馈支路,其单位脉冲响应是有限长的。设单位脉冲响应 h(n) 长度为 N,其系统函数 H(z)和差分方程分别为:
1.直接型 按照 H(z)或者卷积公式直接画出的结构图,称为直接型网络结构或者称为卷积型结 构。
5 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
1 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 5-2 信号流图 3.网络结构分类 一般将网络结构分成两类,一类称为有限长单位脉冲响应网络,简称 FIR 网络,另一类 称为无限长单位脉冲响应网络,简称 IIR 网络。 (1)FIR 网络中一般丌存在输出对输入的反馈支路,因此,差分方程用下式描述: 单位脉冲响应 h(n)是有限长的,表示为: (2)IIR 网络结构存在输出对输入的反馈支路,信号流图中存在反馈环路。这类网络 的单位脉冲响应是无限长的。
3.并联型 (1)系统函数和流图形式 ①将级联形式的 H(z)展成部分分式形式,则得到:
对应的网络结构为这 k 个子系统并联。Hi(z)通常为一阶网络或二阶网络,网络系数 均为实数。二阶网络的系统函数一般为:
式中,β0j、β1j、α1i 和 α2i 都是实数。如果 β1j=α2i=0,则构成一阶网络。
图 5-3 IIR 网络直接型结构 2.级联型 (1)系统函数和流图形式 ①将直接型表达式中分子、分母多项式分别迚行因式分解得到:
上式中,A 是常数,cr 和 dr 分别表示 H(z)的零点和极点。cr 和 dr 是实数或者是共轭
3 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
信号与系统第五章 离散信号与系统的时域分析
f1(k) f (n)
6
n
3 2
1
1 1 2 3 k
3
1
1 1 2 3 4 k
《信号与系统》SIGNALS AND SYSTEMS
返回
ZB
5.1.3 常用的离散信号
(k)
1. 单位函数 (k)
(k)
1 0
k0 k0
1
1 1 2 3 k
(k n)
(k
n)
1 0
k n kn
1
1 0 1 2 n k
整理,得 y(k 2) 3y(k 1)+2y(k)=0
《信号与系统》SIGNALS AND SYSTEMS ZB
例:每月存入银行 A 元,设月息为 ,试确定第 k 次存
款后应有的存款额 y(k) 的方程。
解:第 k+1 次存入后应有的存款额为
A y(k) y(k)
即 y(k 1) y(k) y(k) A
(1) 筛选特性 f (k) (k n) f (n)
k
(2) 加权特性 f (k) (k n) f (n) (k n)
应用此性质,可以把任意离散信号 f (k) 表示为一系 列延时单位函数的加权和,即
f (k) f (2) (k 2) f (1) (k 1)
返回《信号f与(0)系 (统k) 》fS(1IG) N(kAL1)SANDSnYSTfE(Mn)S
一阶后向差分
f (k) f (k) f (k 1)
二阶后向差分
f (k) 2 f (k) f (k) f (k 1)
《信号与系统》SIGf (Nk)AL2SfA(kND1)SYfS(TkEM2)S
返回
ZB
6. 序列的求和(累加) (对应于连续信号的积分)
课后习题及答案_第5章 时域离散系统的网络结构--习题
第4章 时域离散系统的网络结构习题1. 已知系统用下面差分方程描述:)1(31)()2(81)1(43)(−+−−n x n x n y n y n y +-=试分别画出系统的直接型、 级联型和并联型结构。
式中x (n )和y (n )分别表示系统的输入和输出信号。
2. 设数字滤波器的差分方程为)2(41)1(31)1()()(−+−+−+=n y n y n x n x n y试画出系统的直接型结构。
3. 设系统的差分方程为y (n )=(a +b )y (n -1)-aby (n -2)+x (n -2)+(a +b )x (n -1)+ab式中, |a |<1, |b |<1, x (n )和y (n )分别表示系统的输入和输出信号, 试画出系统的直接型和级联型结构。
4. 设系统的系统函数为)81.09.01)(5.01()414.11)(1(4)(211211−−−−−−++−+−+=z z z z z z z H试画出各种可能的级联型结构, 并指出哪一种最好。
5. 题 5图中画出了四个系统, 试用各子系统的单位脉冲响应分别表示各总系统的单位脉冲响应, 并求其总系统函数。
题 5图6. 题6图中画出了10种不同的流图, 试分别写出它们的系统函数及差分方程。
题6图7. 假设滤波器的单位脉冲响应为h (n )=a n u (n ) 0<a <1求出滤波器的系统函数, 并画出它的直接型结构。
8. 已知系统的单位脉冲响应为h (n )=δ(n )+2δ(n -1)+0.3δ(n -2)+2.5δ(n -3)+0.5δ(n -5)试写出系统的系统函数, 并画出它的直接型结构。
9. 已知FIR 滤波器的系统函数为)9.01.29.01(101)(4321−−−−++++=z z z z z H试画出该滤波器的直接型结构和线性相位结构。
10. 已知FIR 滤波器的单位脉冲响应为:(1) N=6h(0)=h(5)=15h(1)=h(4)=2h(2)=h(3)=3(2) N=7h(0)=h(6)=3h(1)=-h(5)=-2h(2)=-h(4)=1h(3)=0试画出它们的线性相位型结构图,并分别说明它们的幅度特性、相位特性各有什么特点。
数字信号处理—课程简介
数字信号处理——课程地位
“数字信号处理”课是通信工程专业、电子 信息工程专业,以及其他电器与信息类专业的一 门重要专业基础课。 随着计算机技术与信息科学的飞速发展,数 字信号处理(DSP)技术已迅速发展,形成一门 独立的学科体系。目前以DSP芯片及外围开发设 备为主,正在形成一个具有很大潜力的产业与市 场。
4
数字信号处理——教材章节
第1章 时域离散信号和时域离散系统
第2章 时域离散信号和系统的频域分析
第3章 离散傅里叶变换(DFT) 第4章 快速傅里叶变换(FFT)
第5章 时域离散系统的网络结构
第6章 无限脉冲响应数字滤波器的设计 第7章 有限脉冲响应数字滤波器的设计 第8章 多采样率数字信号处理 第9章 数字信号处理的实现
7
6
数字信号处理——教学方式及其它
教学方式 本课程采用课堂多媒体教学讲授:56学时,周4学时 实验:6学时,第6、10、12周,计算中心 课外练习为书面习题。答疑:周三下午15:00—16:30,实验楼503室。 成绩评定办法 采用百分制,平时15%,实验15%,期末70% 。 教材及教参 教材:数字信号处理 (第三版),高西全,丁玉美编著,西安电子科技大学 出版社,2008年8月 第3版 教参: 1、《离散时间信号处理》,[美]A.V.奥本海姆、R.W.谢弗、J.R.巴克 编 著,刘树棠 黄建国 译 西安交通大学出版社,2001年9月 第1版 2、《离散时间信号分析和处理》,应启珩 冯一云 窦维蓓 编著,清华大 学出版社,2001年9月第1版
概率与随机过程复变函数信号与系统一种计算机语言数字信号处理课是通信工程专业电子信息工程专业以及其他电器与信息类专业的一门重要专业基础课
数字信号处理————课程简介
信号与系统(精编版)第5章 离散信号与系统的时域分析
26
5.2 LTI离散系统的自由响应、强迫响应
与零输入响应、零状态响应
5.2.1 离散信号的差分运算与累和运算 1.序列的差分运算 与连续信号微分运算相对应,离散信号有差分运算。一
阶前向、后向差分运算本来的定义式分别应为 因为离散信号变量k为整变量,所以前向差分定义式中前向变 量增量Δk=(k+1)-k=1,后向差分定义式中后向变量增量
第5章 离散信号与系统的时域分析
20
例5.1-1 计算和式
解
第5章 离散信号与系统的时域分析
21
例5.1-2 计算换元移动累和式
解 考虑单位脉冲序列的偶函数性及式(5.1-6)关系,所以
这一结果正确吗?
第5章 离散信号与系统的时域分析
22
参看图5.1-8,当k-2<3即k<5时有
(5.1-15)
第5章 离散信号与系统的时域分析
6
图5.1-2 复杂序列用单位阶跃序列表示
第5章 离散信号与系统的时域分析
7
图5.1-3 序列与ε(k)相乘被截取
第5章 离散信号与系统的时域分析
8
5.1.2 单位脉冲序列 单位脉冲序列定义为
(5.1-2)
其波形如图5.1-4所示。它与连续信号δ(t)的定义有着显著的区 别:δ(k)只在k=0处定义函数值为1,而在k等于其余各整数时 函数值均为零。
(5.1-12)
(5.1-13)
第5章 离散信号与系统的时域分析
17
令k-m=n并代入上式,考虑m=0时n=k,m=∞时 n=-∞,得
(5.1-14)
第5章 离散信号与系统的时域分析
18
图5.1-7 换元移动累和示意图
第5章 离散信号与系统的时域分析
数字信号处理-有限脉冲响应的基本结构
x(xn(n)) 0Z.61 Z1 1Z.61 y(n)
00.9.56
Z 1
2
2.82 1Z.51
3 yZ(n1 )
第五章 时域离散系统的基本网络结构
横截型
又称卷积型、直接型
级联型
级联型:分解的因子越多,需要的乘法器也越多 级联型:阶次高时,不易分解
频率采样结构
第五章 时域离散系统的基本网络结构
22 Z 1
2[ N ] 2
Z 1
第五章 时域离散系统的基本网络结构
设FIR网络系统函数H(Z)为下式,画出其的直接型结构和级联 型结构。
H (Z ) 0.96 2.0z1 2.8z2 1.5z3
因式分解得:
H (Z ) (0.6+0.5z1)(1.6+2z1 3z2 )
y(n)
第五章 时域离散系统的基本网络结构
级联型
N 1
[N /2]
H (Z ) h(n)Z n (0k 1k Z 1 2k Z 2 )
n0
k 1
01
02
0[ N ]
y(n)
2
x(n)
11 Z 1
12 Z 1
1[ N ] 2
Z 1
21 Z 1
第五章 时域离散系统的基本网络结构
5.4 有限脉冲响应的基本结构
横截型
又称卷积型、直接型
级联型
频率采样结构
第五章 时域离散系统的基本网络结构
横截型 又称卷积型、直接型
N 1
y(n) h(m)x(n m) m0
x(n)
Z 1
Z 1
Z 1
h(0) h(1) h(2)
h(N-2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中, 和 均为实数。这样 就分解成一些一阶或二阶数字网络的级联形式,如下式:
例 设FIR网络系统函数 如下式:
画出 的直接型结构和级联型结构。
解 将 进行因式分解,得到:
其级联型结构和直接型结构如图所示。
第五章 时域离散系统的基本网络结构
§
一个时域离散系统或网络的表示方法有三种:
1.差分方程
2. 系统函数
3. 单位脉冲响应
上述三种表示方法实际上是一致的,在实际中,我们经常采用一种信号流图来表示一个系统,这种流图直观地反映了在实现该系统时具体的算法,如延迟单元,加法和乘法等一些基本运算单元,构成了系统转移函数实现的功能,我们称这种流图为网络结构。
例2:对于同一个系统函数,可以有很多信号流图与之对应。
可以证明以上 ,但它们具有不同的算法。不同的算法直接影响系统运算误差、运算速度以及系统的复杂程度和成本等。
三.网络结构的分类
一般将网络结构分成两类,一类称为有限长脉冲响应网络,简称FIR(Finite Impulse Response)网络,另一类称为无限长脉冲响应网络,简称IIR(Infinite Impulse Response)网络。
1.直接型
将N阶差分方程重写如下:
设M=N=2,其系统函数如下:
按照差分方程可以直接画出网络结构如图所示。图中第一部分系统函数用 表示,第二部分用 表示,那么 ,当然也可以写成 ,按照该式,相当于将图中两部分流图交换位置,如图所示。该图中节点变量 ,因此前后两部分的延时支路可以合并,形成如图所示的网络结构流图,我们将图 所示的的这类流图称为IIR直接型网络结构。
FIR网络结构特点是没有反馈支路,即没有环路,其单位脉冲响应是有限长的。设单位脉冲响应 长度为N,其系统函数 和差分方程分别为
1.直接型
按照 或者差分方程直接画出结构图如图所示。
这种结构称为直接型网络结构或者称为卷积型结构。
2.级联型
将 进行因式分解,并将共轭成对的零点放在一起,形成一个系数为实数的二阶形式,这样级联型网络结构就是由一阶或二阶因子构成的级联结构,其中每一个因式都用直接型实现。
3.两个变量相加,用一个圆点表示,称为网络节点。
4.每个节点处的信号称节点变量,节点变量等于所有输入支路之和。
二.基本信号流图
不同的信号流图代表不同的运算方法,而对于同一个系统函数可以有很多种信号流图与之相对应。从基本运算考虑,满足以下条件,称为基本信号流图(Primitive Signal Flow Graghs)。
(1)信号流图中所有支路都是基本的,即支路增益是常数或者是 ;
(2)流图环路中必须存在延迟支路;
(3)节点和支路的数目是有限的。
例1:根据下图的网络结构,写出该系统的传输函数。
()
对式进行Z变换,得到:
经过联立求解得到:
图是基本信号流图,图中有两个环路,环路增益分别为 和 ,且环路中都有延时支路,而图不是基本信号流图,它不能决定一种具体的算法,不满足基本信号流图的条件。
网络结构实际表示的是一种运算结构。
§
一.基本运算单元的流图表示
数字信号处理中有三种基本算法,即乘法、加法和单位延迟。三种基本运算用流图表示如图所示。
图 三种基本运算的流图表示
说明:
1. 与系数 作为支路增益写在支路箭头旁边,如果箭头旁边没有标明增益符号,则认为支路增益是1。
2.箭头表示信号流动方向。
例设IIR数字滤波器的系统函数 为
画出该滤波器的直接型结构。
解由 写出差分方程如下:
按照差分方程画出如图所示直接型网络结构。
上面我们按照差分方程画出了网络结构,也可以按照 表达式,直接画出直接型网络结构。
2.级联型
在式表示的系统函数 中,分子、分母均为多项式,且多项式的系数一般为实数。现将分子、分母多项式分别进行因式分解,得到:
1.FIR网络
FIR网络中一般不存在输出对输入的反馈支路,因此差分方程用下式描述:
其单位脉冲响应 是有限长的,按照式, 表示为
2.IIR网络
IIR网络结构存在输出对输入的反馈支路,也就是说,信号流图中存在环路。这类网络的单位脉冲响应是无限长的。
§
IIR网络的特点是信号流图中含有反馈支路,即含有环路,其单位脉冲响应是无限长的。基本网络结构有三种,即直接型、级联型和并联型。
解 将例中 展成部分分式形成:
将每一部分用直接型结构实现,其并联型网络结构如图所示。
并联型特点:
在这种并联型结构中,每一个一阶网络决定一个实数极点,每一个二阶网络决定一对共轭极点,因此调整极点位置方便,但调整零点位置不如级联型方便。另外,各个基本网络是并联的,产生的运算误差互不影响,不象直接型和级联型那样有误差积累,因此,并联形式运算误差最小。由于基本网络并联,可同时对输入信号进行运算,因此并联型结构与直接型和级联型比较,其运算速度最高。
如果将级联形式的 展成部分分式形式,则得到IIR
并联型结构。
式中, 通常为一阶网络或二阶网络,网络系统均为实数。二阶网络的系统函数一般为
式中, 和 都是实数。如果 ,则构成一阶网络。由式,其输出 表示为
上式表明将 送入每个二阶(包括一阶)网络后,将所有输出加起来得到输出 。
例 画例题中 的并联型结构。
级联型结构特点:
级联型结构中每一个一阶网络决定一个零点、一个极点,每一个二阶网络决定一对零点、一对极点。在式中,调整 三个系数可以改变一对零点的位置,调整 可以改变一对极点的位置。因此,相对直接型结构,调整方便是优点。此外,级联结构中后面的网络输出不会再流到前面,运算误差的积累相对直接型也小。
3.并联型
式中 表示一个一阶或二阶的数字网络的系统函数,每个 的网络结构均采用前面介绍的直接型网络结构,如图所示。
例 设系统函数 如下式:
试画出其级联型型网络结构。
解 将 的分子、分母进行因式分解,得到:
为减少单位延迟的数目,将一阶的分子、分母多项式组成一个一阶网络,二阶的分子、分母多项式组成一个二阶网络,画出结构图如图所示。