2020年高考全国1卷文科数学试卷
2020年普通高等学校招生全国统一考试文科数学全国1卷
1.【ID:4005071】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,则,故选:D.2.【ID:4005072】若,则()A.B.C.D.【答案】C【解析】解:,.故选:C.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4005073】设为正方形的中心,在,,,,中任取点,则取到的点共线的概率为()A.B.C.D.【答案】A【解析】解:,,,,中任取点,共有种,其中共线为,,和,,两种,故取到的点共线的概率为,故选:A.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4005074】已知圆,过点的直线被该圆所截得的弦的长度的最小值为()A.B.C.D.【答案】B【解析】解:由圆的方程可得圆心坐标,半径;设圆心到直线的距离为,则过的直线与圆的相交弦长|AB|=2,当最大时弦长|AB|最小,当直线与所在的直线垂直时最大,这时,所以最小的弦长,故选:B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4005075】设,则()A.B.C.D.【答案】B【解析】解:因为,则,则,则,故选:B.9.【ID:4005076】执行右面的程序框图,则输出的()A.B.C.D.【答案】C【解析】解:,,第一次执行循环体后,,不满足退出循环的条件,;第二次执行循环体后,,不满足退出循环的条件,;第三次执行循环体后,,不满足退出循环的条件,;第四次执行循环体后,,不满足退出循环的条件,;第五次执行循环体后,,不满足退出循环的条件,;第六次执行循环体后,,不满足退出循环的条件,;第七次执行循环体后,,不满足退出循环的条件,;第八次执行循环体后,,不满足退出循环的条件,;第九次执行循环体后,,不满足退出循环的条件,;第十次执行循环体后,,不满足退出循环的条件,;第十一次执行循环体后,,满足退出循环的条件,故输出值为,故选:C.10.【ID:4005077】设是等比数列,且,,则()A.B.C.D.【答案】D【解析】解:是等比数列,且,则,即,,故选:D.11.【ID:4005078】设,是双曲线:的两个焦点,为坐标原点,点在上且,则的面积为()A.B.C.D.【答案】B【解析】解:由题意可得,,,,,,为直角三角形,,,,,,的面积为,故选:B.12.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4005079】设向量,,若,则________.【答案】【解析】解:向量,,若,则,则,故答案为:.15.【ID:4005080】曲线的一条切线的斜率为,则该切线的方程为________.【答案】【解析】解:的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即,故答案为:.16.【ID:4005081】数列满足,前项和为,则________.【答案】【解析】解:由,当为奇数时,有,可得,,累加可得;当为偶数时,,可得,,,.可得..,,即.故答案为:.17. 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,四个等级,加工业务约定:对于级品、级品、级品,厂家每件分别收取加工费元,元,元;对于级品,厂家每件要赔偿原料损失费元.该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为元/件,乙分厂加工成本费为元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了件这种产品,并统计了这些产品的等级,整理如下:(1)【ID:4005082】分别估计甲、乙两分厂加工出来的一件产品为级品的概率.【答案】;【解析】解:由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为级品的概率的估计值为;乙分厂加工出来的一件产品为级品的概率的估计值为.(2)【ID:4005083】分别求甲、乙两分厂加工出来的件产品的平均利润,以平均利润为依据厂家应选哪个分厂承接加工业务?【答案】甲分厂【解析】解:由数据知甲分厂加工出来的件产品利润的频数分布表为因此甲分厂加工出来的件产品的平均利润为.由数据知乙分厂加工出来的件产品利润的频数分布表为因此乙分厂加工出来的件产品的平均利润为.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.18. 的内角,,的对边分别为,,.已知.(1)【ID:4005084】若,,求的面积.【答案】【解析】解:由题设及余弦定理得,解得(含去),,从而.的面积为.(2)【ID:4005085】若,求.【答案】【解析】解:在中,,所以,故.而,所以,故.19. 如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,.(1)【ID:4005086】证明:平面平面.【答案】见解析【解析】证明:由题设可知,.由于是正三角形,故可得,.又,故,.从而,,故平面,所以平面平面.(2)【ID:4005087】设,圆锥的侧面积为,求三棱锥的体积.【答案】【解析】解:设圆锥的底面半径为,母线长为.由题设可得,.解得,.从而.由可得,故.所以三棱锥的体积为.20. 已知函数.(1)【ID:4008459】当时,讨论的单调性.【答案】在上单调递减,在上单调递增.【解析】解:由题意,的定义域为,且.当时,,令,解得.∴当时,,单调递减,当时,,单调递增.在上单调递减,在上单调递增.(2)【ID:4008481】若有两个零点,求的取值范围.【答案】【解析】①当时,恒成立,在上单调递增,不合题意;②当时,令,解得,当时,,单调递减,当时,,单调递增.的极小值也是最小值为.又当时,,当时,.要使有两个零点,只要即可,则,可得.综上,若有两个零点,则的取值范围是.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2020年普通高等学校招全国生统一考试文科数学(全国卷Ⅰ)(含答案)
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .B .C .D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学文试题(新课标1卷,含答案)
绝密★启封并使用完毕前2020年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} (2)212(1)i i +=-( ) (A )112i -- (B )112i -+ (C )112i + (D )112i - (3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为2,则C 的渐近线方程为( ) (A )14y x =± (B )13y x =± (C )12y x =± (D )y x =± (5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S属于(A )[3,4]-(B )[5,2]-(C )[4,3]-(D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C上一点,若||42PF =,则POF ∆的面积为( )(A )2 (B )22 (C )23 (D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9(C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+(D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
2020年全国卷Ⅰ文科数学高考试题(附答案)
2020年全国卷Ⅰ文科数学高考试题(附答案)2020年英语高分策略专业省时高效2022/4/25注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
1. 已知集合A={x|x^2-3x-4<0}, B={-4,1,3,5},则AA. {-4,1}B. {1,5}C. {3,5}2. 若z=1+2i+i^3,则|z|=A. 2B. 1C. 23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A. (5-1)/4B. (5-1)/2C. (5+1)/44. 设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为A. 1/5B. 2/5C. 1/25. 某校一个课外研究小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi, yi)(i=1,2,...,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A. y=a+bxB. y=a+bx^2C. y=a+bex6. 已知圆x^2+y^2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A. 1B. 2C. 37. 设函数f(x)=co s(ωx+θ)在[-π,π]的图像大致如下图,则f(x)的最小正周期为A. 6B. 9C. 10π/38. 设alog3 4=2,则4-a=A. 1/16B. 1/9C. 8D. 1/6甲分厂产品等级的频数分布表:等级频数A 28B 17C 34乙分厂产品等级的频数分布表:等级频数A 40B 2018. (8分)19. (10分)20. (10分)21. (20分)D18.(12分)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sinA+3sinC=1,求∠C.19.(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;20.(12分)已知函数f(x)=e^(-a(x+2)).(1)当a=1时,讨论f(x)的单调性;21.(12分)已知A、B分别为椭圆E:x^2/a^2+y^2=1(a>1)的左、右顶点,G为E的上顶点,AG·GB=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(二)选考题:共10分。
2020年高考文科数学试卷 全国Ⅰ卷(含答案)
2020年高考文科数学试卷全国Ⅰ卷(含答案)2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x^2-3x-4<0\}$,$B=\{-4,1,3,5\}$,则$A$ 为A。
$ \{-4,1\}$B。
$\{1,5\}$C。
$\{3,5\}$D。
$\{1,3\}$2.若 $z=1+2i+i^3$,则 $|z|$ 等于A。
$1$B。
$2$___$D。
$3$3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。
$\dfrac{5-\sqrt{5}}{4}$B。
$\dfrac{1}{2}$C。
$\dfrac{5+\sqrt{5}}{4}$D。
$\dfrac{5+\sqrt{10}}{2}$4.设 $O$ 为正方形 $ABCD$ 的中心,在 $O$,$A$,$B$,$C$,$D$ 中任取 $3$ 点,则取到的 $3$ 点共线的概率为A。
$\dfrac{1}{5}$B。
$\dfrac{2}{5}$C。
$\dfrac{4}{5}$D。
$1$5.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据$(x_i,y_i)(i=1,2,\dots,20)$ 得到下面的散点图:在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。
2020年全国卷一文科数学高考试题(word版+详细解析版)
2020年普通高等学校招生全国统一考试全国卷一文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|340}A x x x =--<,{4,1,3,5}B =-,则A B =A .{4,1}-B .{1,5}C .{3,5}D .{1,3}答案:D解析:2{|340}{|14}A x x x x x =--<=-<<,则交集的定义可得,{13},A B =,故选D 2.若312i i z =++,则||z =A .0B .1C .2D .2答案:C解析:因为312i i 12i (i)1i z =++=++-=+,所以22||=112z +=,故选C3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14 B.12C.14 D.12 答案:C解析:如图,P ABCD -是正四棱锥,过P 作PO ABCD ⊥平面,O 为垂足,则O 是正方形ABCD 的中心,取BC 的中点E ,则OE BC ⊥,因为PO ABCD ⊥平面,所以BC PO ⊥,又PO OE O =,所以BC POE ⊥平面,因为PE POE ⊂平面,所以PE BC ⊥,设BC a =,PO h =,由勾股定理得PE =1122PBCS BC PE =⋅=212h =,所以221142PE a aPE -=,解得PE =或PE =(舍去),故选CE OPA B C D4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .45答案:A解析:O ,A ,B ,C ,D 中任取3点的取法用集合表示有{,,}O A B ,{,,}O A C ,{,,}O A D ,{,,}O B C ,{,,}O B D ,{,,}O C D ,{,,}A B C ,{,,}A B D ,{,,}A C D ,{,,}B C D ,共有10种取法,其中3点共线的取法有{,,}O A C ,{,,}O B D ,共2种,故取到的3点共线的概率为21105=,故选AODCBA5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i ix y i=得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.y a bx=+B.2y a bx=+C.e xy a b=+D.lny a b x=+答案:D解析:本题考查回归方程及一次函数、二次函数、指数函数、对数函数的图象,观察散点图可知,散点图用光滑曲线连接起来比较接近对数函数的图象,故选D。
2020年全国统一高考数学试卷(文科)(新课标Ⅰ)
2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题1. 已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A. {−4,1}B.{1,5}C.{3,5}D.{1,3}【答案】D【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:由x2−3x−4<0,解得−1<x<4,所以A={x|−1<x<4}.又因为B={−4,1,3,5},所以A∩B={1,3}.故选D.2. 若z=1+2i+i3,则|z|=()A.0B.1C.√2D.2【答案】C【考点】复数的模【解析】此题暂无解析【解答】解:因为z=1+2i+i3=1+2i−i=1+i,所以|z|=√12+12=√2.故选C.3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.√5−14B.√5−12C.√5+14D.√5+12【答案】 C【考点】棱锥的结构特征 【解析】 此题暂无解析 【解答】 解:如图,设正四棱锥边长为a , 有{ℎ2=12am ,(12a)2+ℎ2=m 2,∴ 12am +14a 2=m 2, 整理得4m 2−2am −a 2=0, 令m a =t ,∴ 4t 2−2t −1=0, ∴ t 1=1+√54,t 2=1−√54(舍去).故选C .4. 设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25C.12D.45【答案】 A【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:如图,,从O,A,B,C,D5个点中任取3个有{O,A,B},{O,A,C},{O,A,D},{O,B,C},{O,B,D},{O,C,D},{A,B,C},{A,B,D},{A,C,D},{B,C,D},共10种不同取法,3点共线只有{A,O,C}与{B,O,D}共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为210=15.故选A.5. 某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:∘C)的关系,在20个不同温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,⋯,20)得到下面的散点图:由此散点图,在10∘C至40∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+be xD.y=a+b ln x【答案】D【考点】散点图【解析】此题暂无解析【解答】解:由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适宜作为发芽率y和温度x的回归方程类型的是y=a+b ln x.故选D.6. 已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A.1B.2C.3D.4【答案】B【考点】与圆有关的最值问题【解析】此题暂无解析【解答】解:圆x2+y2−6x=0化为(x−3)2+y2=9,所以圆心C坐标为C(3,0),半径为3,设P(1,2),当过点P的直线和直线CP垂直时,圆心到过点P的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2.故选B.7. 设函数f(x)=cos(ωx+π6)在[−π,π]的图象大致如图,则f(x)的最小正周期为()A.10π9B.7π6C.4π3D.3π2【答案】C【考点】三角函数的周期性及其求法余弦函数的图象【解析】此题暂无解析【解答】解:由题图可得:函数图象过点(−4π9,0),将其代入函数f(x)可得:cos(−4π9⋅ω+π6)=0;又(−4π9,0)是函数f(x)图象与x轴负半轴的第一个交点,所以−4π9⋅ω+π6=−π2,解得:ω=32,所以函数f(x)的最小正周期为T=2πω=2π32=4π3.故选C.8. 设a log34=2,则4−a=()A.1 16B.19C. 18D.16【答案】B【考点】对数的运算性质【解析】此题暂无解析【解答】解:由a log34=2可得log34a=2,所以4a=9,故有4−a=19.故选B.9. 执行下面的程序框图,则输出的n=()A.17B.19C.21D.23【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:依据程序框图的算法功能可知,输出的n是满足1+3+5+⋯+n>100的最小正奇数.因为1+3+5+⋯+n=(1+n)(n−12+1)2=14(n+1)2>100,解得n>19,所以输出的n=21.故选C.10. 设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【答案】D【考点】等比数列的通项公式【解析】1【解答】解:设等比数列{a n}的公比为q,则a1+a2+a3=a1(1+q+q2)=1,a2+a3+a4=a1q+a1q2+a1q3=a1q(1+q+q2)=2,故q=2,因此a6+a7+a8=a1q5+a1q6+a1q7=a1q5(1+q+q2)=q5=32.故选D.11. 设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为( )A.7 2B.3C.52D.2【答案】B【考点】双曲线的应用双曲线的定义【解析】此题暂无解析【解答】解:由题知,a=1,b=√3,c=2,F1(−2,0),F2(2,0).∵|OP|=2,故点P在以F1F2为直径的圆上,故PF1⊥PF2,则|PF1|2+|PF2|2=(2c)2=16.由双曲线的定义知||PF1|−|PF2||=2a=2,∴|PF1|2+|PF2|2−2|PF1||PF2|=4,∴|PF1||PF2|=6,|PF1||PF2|=3.∴ △PF1F2的面积为12故选B.12. 已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【答案】A【考点】正弦定理球的体积和表面积【解析】此题暂无解析【解答】解:设圆O1半径为r,球的半径为R,依题意,得πr2=4π,∴r=2.由正弦定理可得AB=2r sin60∘=2√3,∴OO1=AB=2√3,根据圆截面性质OO1⊥平面ABC,∴OO1⊥O1A,R=OA=√OO12+O1A2=√OO12+r2=4,∴球O的表面积为S=4πR2=64π.故选A.若x ,y 满足约束条件 {2x +y −2≤0,x −y −1≥0,y +1≥0, 则z =x +7y 的最大值为________.【答案】 1【考点】求线性目标函数的最值 【解析】 此题暂无解析 【解答】解:绘制不等式组表示的平面区域如图所示,目标函数z =x +7y 即: y =−17x +17z ,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点A 处取得最大值, 联立直线方程:{2x +y −2=0,x −y −1=0,可得点A 的坐标为: A (1,0).据此可知目标函数的最大值为: z max =1+7×0=1. 故答案为:1.设向量a →=(1,−1),b →=(m +1,2m −4),若a →⊥b →,则m =________. 【答案】 5【考点】数量积判断两个平面向量的垂直关系 平面向量数量积 【解析】 此题暂无解析 【解答】 解:由a →⊥b →,可得a →⋅b →=1×(m +1)+(−1)×(2m −4)=0,故答案为:5.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为________.【答案】y=2x【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:设切线的切点坐标为(x0,y0),y=ln x+x+1,y′=1x+1,y′|x=x0=1x0+1=2,故x0=1,y0=2,所以切点坐标为(1,2),所求的切线方程为y−2=2(x−1),即y=2x.故答案为:y=2x.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=________.【答案】7【考点】数列的求和数列递推式【解析】此题暂无解析【解答】解:a n+2+(−1)n a n=3n−1,当n为奇数时,a n+2=a n+3n−1;当n为偶数时,a n+2+a n=3n−1.设数列{a n}的前n项和为S n,S16=a1+a2+a3+a4+⋯+a16=a1+a3+a5+⋯+a15+(a2+a4)+⋯⋅(a14+a16)=a1+(a1+2)+(a1+10)+(a1+24)+(a1+44)+(a1+70)+(a1+102)+(a1+140)+(5+17+29+41)=8a1+392+92=8a1+484=540,∴a1=7.故答案为:7.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】=0.4,解:(1)由表可知,甲厂加工出来的一件产品为A级品的概率为40100=0.28;乙厂加工出来的一件产品为A级品的概率为28100(2)甲分厂加工100件产品的总利润为:40×(90−25)+20×(50−25)+20×(20−25)−20×(50+25)=1500(元),所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为:28×(90−20)+17×(50−20)+34×(20−20)−21×(50+20)=1000(元),所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.【考点】众数、中位数、平均数古典概型及其概率计算公式【解析】此题暂无解析【解答】=0.4,解:(1)由表可知,甲厂加工出来的一件产品为A级品的概率为40100=0.28;乙厂加工出来的一件产品为A级品的概率为28100(2)甲分厂加工100件产品的总利润为40×(90−25)+20×(50−25)+20×(20−25)−20×(50+25)=1500(元),所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为28×(90−20)+17×(50−20)+34×(20−20)−21×(50+20)=1000(元),所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.△ABC的内角A,B,C的对边分别为a,b,c.已知B=150∘.(1)若a=√3c,b=2√7,求△ABC的面积;(2)若sin A+√3sin C=√22,求C.【答案】解:(1)由余弦定理可得:b2=28=a2+c2−2ac⋅cos150∘=7c2,∴c=2,a=2√3,∴△ABC的面积S=12ac sin B=√3.(2)∵A+C=30∘,∴sin A+√3sin C=sin(30∘−C)+√3sin C=12cos C+√32sin C=sin(C+30∘)=√22.∵0∘<C<30∘,∴30∘<C+30∘<60∘,∴C+30∘=45∘,∴C=15∘.【考点】两角和与差的正弦公式解三角形余弦定理【解析】此题暂无解析【解答】解:(1)由余弦定理可得:b2=28=a2+c2−2ac⋅cos150∘=7c2,∴c=2,a=2√3,∴△ABC的面积S=12ac sin B=√3(2)∵A+C=30∘,∴sin A+√3sin C=sin(30∘−C)+√3sin C=12cos C+√32sin C=sin(C+30∘)=√22.∵0∘<C<30∘,∴30∘<C+30∘<60∘,∴C+30∘=45∘,∴C=15∘.如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO 上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.【答案】(1)证明:连接CO,延长CO交AB于点E,如图,∵ O是正三角形ABC外接圆的圆心,∴ CO⊥AB.∵ 在圆锥中易知PO⊥平面ABC,AB⊂平面ABC,∴ PO⊥AB.又CO,PO⊂平面POC,CO∩PO=O,∴ AB⊥平面POC.又PC⊂平面POC,∴ PC⊥AP.又∵ PA,AB⊂平面PAB,PA∩AB=A,∴ PC⊥平面PAB.又∵ PC⊂平面PAC,∴ 平面PAC⊥平面PAB.(2)解:由DO=√2,圆锥的侧面积为√3π,设底面圆半径为r,母线长为l,r2+(√2)2=l2,12⋅2πrl=√3π,∴ r=1,l=√3,∴ AB=BC=AC=√3.∵ PA⊥PC,PA=PC,∴ PA=PC=√62.在直角三角形APO中,AO=1,PA=√62,∴ PO=√22,∴V P−ABC=13S△ABC⋅PO=√68.【考点】平面与平面垂直的判定柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】(1)证明:连接CO,延长CO交AB于点E,如图,∵ O是正三角形ABC外接圆的圆心,∴ CO⊥AB.∵ 在圆锥中易知PO⊥平面ABC,AB⊂平面ABC,∴ PO⊥AB.又CO,PO⊂平面POC,CO∩PO=O,∴ AB⊥平面POC.又PC⊂平面POC,∴ PC⊥AP.又∵ PA,AB⊂平面PAB,PA∩AB=A,∴ PC⊥平面PAB.又∵ PC⊂平面PAC,∴ 平面PAC⊥平面PAB.(2)解:由DO=√2,圆锥的侧面积为√3π,设底面圆半径为r,母线长为l,r2+(√2)2=l2,12⋅2πrl=√3π,∴ r=1,l=√3,∴ AB=BC=AC=√3.∵ PA⊥PC,PA=PC,∴ PA=PC=√62.在直角三角形APO中,AO=1,PA=√62,∴ PO=√22,∴V P−ABC=13S△ABC⋅PO=√68.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【答案】解:(1)由题知f(x)的定义域为(−∞,+∞),且f′(x)=e x−a.当a=1时,f′(x)=e x−1,令f′(x)=0,解得x=0.当x∈(−∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.∴f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当a≤0时,f′(x)>0恒成立,f(x)在(−∞,+∞)上单调递增,不符合题意;②当a>0时,令f′(x)=0,解得x=ln a.当x∈(−∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,∴f(x)在x∈(−∞,ln a)上单调递减,在x∈(ln a,+∞)上单调递增,∴f(x)min=f(ln a)=a−a(ln a+2)=−a(1+ln a),∴要使f(x)有两个零点,则f(ln a)<0即可,则1+ln a>0⇒a>e−1.综上,若f(x)有两个零点,则a∈(e−1,+∞).【考点】利用导数研究与函数零点有关的问题利用导数研究函数的单调性【解析】此题暂无解析【解答】解:(1)由题知f (x )的定义域为(−∞,+∞),且f ′(x )=e x −a .当a =1时,f ′(x )=e x −1,令f ′(x )=0,解得x =0.当x ∈(−∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.∴ f (x )在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当a ≤0时,f ′(x )>0恒成立,f (x )在(−∞,+∞)上单调递增,不符合题意;②当a >0时,令f ′(x )=0,解得x =ln a .当x ∈(−∞,ln a )时,f ′(x )<0;当x ∈(ln a,+∞)时,f ′(x )>0,∴ f (x )在x ∈(−∞,ln a )上单调递减,在x ∈(ln a,+∞)上单调递增,∴ f (x )min =f (ln a )=a −a (ln a +2)=−a (1+ln a ),∴ 要使f (x )有两个零点,则f (ln a )<0即可,则1+ln a >0⇒a >e −1.综上,若f (x )有两个零点,则a ∈(e −1,+∞).已知A ,B 分别为椭圆E :x 2a 2+y 2=1 (a >1) 的左、右顶点,G 为E 的上顶点, AG →⋅GB →=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)解:依题意作出如下图象,由椭圆方程E:x 2a 2+y 2=1(a >1),可得: A (−a,0),B (a,0),G (0,1),∴ AG →=(a,1),GB →=(a,−1),∴ AG →⋅GB →=a 2−1=8,∴ a 2=9,∴ 椭圆方程为: x 29+y 2=1.(2)证明:设P (6,y 0),则直线AP 的方程为: y =y 0−06−(−3)(x +3),即: y =y 09(x +3).联立直线AP 的方程与椭圆方程可得:{x 29+y 2=1,y =y 09(x +3),整理得:(y 02+9)x 2+6y 02x +9y 02−81=0,解得: x =−3或x =−3y 02+27y 02+9. 将x =−3y 02+27y 02+9代入直线y =y 09(x +3), 可得: y =6y 0y 02+9,所以点C 的坐标为(−3y 02+27y 02+9,6y 0y 02+9).同理可得:点D 的坐标为(3y 02−3y 02+1,−2y 0y 02+1). ∴ 直线CD 的方程为y −(−2y 0y 02+1)=6y 0y 02+9−(−2y 0y 02+1)−3y 02+27y 02+9−3y 02−3y 02+1(x −3y 02−3y 02+1),整理可得: y +2y 0y 02+1=8y 0(y 02+3)6(9−y 04)(x −3y 02−3y 02+1)=8y 06(3−y 02)(x −3y 02−3y 02+1),整理得: y =4y 03(3−y 02)x +2y 0y 02−3=4y 03(3−y 02)(x −32), 故直线CD 过定点(32,0).【考点】圆锥曲线中的定点与定值问题椭圆的标准方程平面向量数量积【解析】此题暂无解析【解答】(1)解:依题意作出如下图象,由椭圆方程E:x 2a 2+y 2=1(a >1),可得: A (−a,0),B (a,0),G (0,1),∴ AG →=(a,1),GB →=(a,−1),∴ AG →⋅GB →=a 2−1=8,∴ a 2=9,∴ 椭圆方程为: x 29+y 2=1(2)证明:设P (6,y 0),则直线AP 的方程为: y =y 0−06−(−3)(x +3),即: y =y 09(x +3).联立直线AP 的方程与椭圆方程可得:{x 29+y 2=1,y =y 09(x +3),整理得:(y 02+9)x 2+6y 02x +9y 02−81=0,解得: x =−3或x =−3y 02+27y 02+9. 将x =−3y 02+27y 02+9代入直线y =y 09(x +3), 可得: y =6y 0y 02+9,所以点C 的坐标为(−3y 02+27y 02+9,6y0y 02+9). 同理可得:点D 的坐标为(3y 02−3y 02+1,−2y 0y 02+1). ∴ 直线CD 的方程为y −(−2y 0y 02+1)=6y 0y 02+9−(−2y 0y 02+1)−3y 02+27y 02+9−3y 02−3y 02+1(x −3y 02−3y 02+1),整理可得: y +2y 0y 02+1=8y 0(y 02+3)6(9−y 04)(x −3y 02−3y 02+1) =8y 06(3−y 02)(x −3y 02−3y 02+1),整理得: y =4y 03(3−y 02)x +2y0y 02−3=4y 03(3−y 02)(x −32), 故直线CD 过定点(32,0).在直角坐标系xOy 中,曲线C 1的参数方程为{x =cos k t ,y =sin k t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ−16ρsin θ+3=0.(1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标.【答案】解:(1)当k =1时,曲线C 1的参数方程为{x =cos t ,y =sin t(t 为参数), 两式平方相加得x 2+y 2=1,所以曲线C 1表示以坐标原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4t ,y =sin 4t(t 为参数), 所以x ≥0,y ≥0,曲线C 1的参数方程化为{√x =cos 2t ,√y =sin 2t(t 为参数), 两式相加得曲线C 1方程为√x +√y =1,得√y =1−√x ,平方得y =x −2√x +1,0≤x ≤1,0≤y ≤1.曲线C 2的极坐标方程为4ρcos θ−16ρsin θ+3=0,曲线C 2直角坐标方程为4x −16y +3=0,联立C 1,C 2方程{y =x −2√x +1,4x −16y +3=0,整理得12x −32√x +13=0,解得√x =12或√x =136 (舍去), ∴ x =14,y =14,∴ C 1,C 2公共点的直角坐标为(14,14). 【考点】圆的参数方程参数方程与普通方程的互化直线的极坐标方程与直角坐标方程的互化【解析】此题暂无解析【解答】解:(1)当k =1时,曲线C 1的参数方程为{x =cos t ,y =sin t(t 为参数), 两式平方相加得x 2+y 2=1,所以曲线C 1表示以坐标原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4t ,y =sin 4t(t 为参数), 所以x ≥0,y ≥0,曲线C 1的参数方程化为{√x =cos 2t ,√y =sin 2t (t 为参数), 两式相加得曲线C 1方程为√x +√y =1,得√y =1−√x ,平方得y =x −2√x +1,0≤x ≤1,0≤y ≤1.曲线C 2的极坐标方程为4ρcos θ−16ρsin θ+3=0,曲线C 2直角坐标方程为4x −16y +3=0,联立C 1,C 2方程{y =x −2√x +1,4x −16y +3=0,整理得12x −32√x +13=0,解得√x =12或√x =136 (舍去), ∴ x =14,y =14,∴ C 1,C 2公共点的直角坐标为(14,14).已知函数f(x)=|3x +1|−2|x −1|.(1)画出y =f(x)的图象;(2)求不等式f(x)>f(x +1)的解集.【答案】解:(1)因为f(x)={x +3,x ≥1,5x −1,−13<x <1,−x −3,x ≤−13,作出f(x)的图象,如图所示:(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象, 由−x −3=5(x +1)−1,解得x =−76, 所以不等式的解集为(−∞,−76). 【考点】绝对值不等式的解法与证明函数的图象【解析】此题暂无解析【解答】解:(1)因为f(x)={x +3,x ≥1,5x −1,−13<x <1,−x −3,x ≤−13,作出f(x)的图象,如图所示:(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象, 由−x −3=5(x +1)−1,解得x =−76,所以不等式的解集为(−∞,−76).。
2020年全国统一高考数学试卷(文科)
【详解】因为直线 与抛物线 交于 两点,且 ,
根据抛物线的对称性可以确定 ,所以 ,
代入抛物线方程 ,求得 ,所以其焦点坐标为 ,
故选:B.
8.点(0,﹣1)到直线 距离的最大值为()
A. 1B. C. D. 2
【答案】B
【详解】由 可知直线过定点 ,设 ,
当直线 与 垂直时,点 到直线 距离最大,
【答案】D
【解析】
【详解】因为 ,所以 .
故选:D
3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()
A. 0.01B. 0.1C. 1D. 10
【答案】C
【详解】因为数据 的方差是数据 的方差的 倍,
所以所求数据方差为
故选:C
4.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型: ,其中K为最大确诊病例数.当I( )=0.95K时,标志着已初步遏制疫情,则 约为().
【答案】A
【详解】因为 , ,
所以 .
故选:A.
11.在△ABC中,cosC= ,AC=4,BC=3,则tanB=()
A. B. 2 C. 4 D. 8
【答案】C
【详解】设
故选:C
12.已知函数f(x)=sinx+ ,则()
A.f(x)的最小值为2B.f(x)的图像关于y轴对称
因为 ,所以 ,易知截距 越大,则 越大,
平移直线 ,当 经过A点时截距最大,此时z最大,
由 ,得 , ,
所以 .
故答案为:7.
14.设双曲线C: (a>0,b>0)的一条渐近线为y= x,则C的离心率为_________.
2020年高考文科数学全国1卷(word版,含答案)
1.【ID:4005071】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,则,故选:D.2.【ID:4005072】若,则()A.B.C.D.【答案】C【解析】解:,.故选:C.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4005073】设为正方形的中心,在,,,,中任取点,则取到的点共线的概率为()A.B.C.D.【答案】A【解析】解:,,,,中任取点,共有种,其中共线为,,和,,两种,故取到的点共线的概率为,故选:A.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4005074】已知圆,过点的直线被该圆所截得的弦的长度的最小值为()A.B.C.D.【答案】B【解析】解:由圆的方程可得圆心坐标,半径;设圆心到直线的距离为,则过的直线与圆的相交弦长|AB|=2,当最大时弦长|AB|最小,当直线与所在的直线垂直时最大,这时,所以最小的弦长,故选:B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4005075】设,则()A.B.C.D.【答案】B【解析】解:因为,则,则,则,故选:B.9.【ID:4005076】执行右面的程序框图,则输出的()A.B.C.D.【答案】C【解析】解:,,第一次执行循环体后,,不满足退出循环的条件,;第二次执行循环体后,,不满足退出循环的条件,;第三次执行循环体后,,不满足退出循环的条件,;第四次执行循环体后,,不满足退出循环的条件,;第五次执行循环体后,,不满足退出循环的条件,;第六次执行循环体后,,不满足退出循环的条件,;第七次执行循环体后,,不满足退出循环的条件,;第八次执行循环体后,,不满足退出循环的条件,;第九次执行循环体后,,不满足退出循环的条件,;第十次执行循环体后,,不满足退出循环的条件,;第十一次执行循环体后,,满足退出循环的条件,故输出值为,故选:C.10.【ID:4005077】设是等比数列,且,,则()A.B.C.D.【答案】D【解析】解:是等比数列,且,则,即,,故选:D.11.【ID:4005078】设,是双曲线:的两个焦点,为坐标原点,点在上且,则的面积为()A.B.C.D.【答案】B【解析】解:由题意可得,,,,,,为直角三角形,,,,,,的面积为,故选:B.12.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4005079】设向量,,若,则________.【答案】【解析】解:向量,,若,则,则,故答案为:.15.【ID:4005080】曲线的一条切线的斜率为,则该切线的方程为________.【答案】【解析】解:的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即,故答案为:.16.【ID:4005081】数列满足,前项和为,则________.【答案】【解析】解:由,当为奇数时,有,可得,,累加可得;当为偶数时,,可得,,,.可得..,,即.故答案为:.17. 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,四个等级,加工业务约定:对于级品、级品、级品,厂家每件分别收取加工费元,元,元;对于级品,厂家每件要赔偿原料损失费元.该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为元/件,乙分厂加工成本费为元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了件这种产品,并统计了这些产品的等级,整理如下:(1)【ID:4005082】分别估计甲、乙两分厂加工出来的一件产品为级品的概率.【答案】;【解析】解:由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为级品的概率的估计值为;乙分厂加工出来的一件产品为级品的概率的估计值为.(2)【ID:4005083】分别求甲、乙两分厂加工出来的件产品的平均利润,以平均利润为依据厂家应选哪个分厂承接加工业务?【答案】甲分厂【解析】解:由数据知甲分厂加工出来的件产品利润的频数分布表为因此甲分厂加工出来的件产品的平均利润为.由数据知乙分厂加工出来的件产品利润的频数分布表为因此乙分厂加工出来的件产品的平均利润为.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.18. 的内角,,的对边分别为,,.已知.(1)【ID:4005084】若,,求的面积.【答案】【解析】解:由题设及余弦定理得,解得(含去),,从而.的面积为.(2)【ID:4005085】若,求.【答案】【解析】解:在中,,所以,故.而,所以,故.19. 如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,.(1)【ID:4005086】证明:平面平面.【答案】见解析【解析】证明:由题设可知,.由于是正三角形,故可得,.又,故,.从而,,故平面,所以平面平面.(2)【ID:4005087】设,圆锥的侧面积为,求三棱锥的体积.【答案】【解析】解:设圆锥的底面半径为,母线长为.由题设可得,.解得,.从而.由可得,故.所以三棱锥的体积为.20. 已知函数.(1)【ID:4008459】当时,讨论的单调性.【答案】在上单调递减,在上单调递增.【解析】解:由题意,的定义域为,且.当时,,令,解得.∴当时,,单调递减,当时,,单调递增.在上单调递减,在上单调递增.(2)【ID:4008481】若有两个零点,求的取值范围.【答案】【解析】①当时,恒成立,在上单调递增,不合题意;②当时,令,解得,当时,,单调递减,当时,,单调递增.的极小值也是最小值为.又当时,,当时,.要使有两个零点,只要即可,则,可得.综上,若有两个零点,则的取值范围是.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2020年高考文数全国卷1 试题详解
试题及答案详解
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.已知集合 A {x | x2 3x 4 0}, B {4,1,3,5},则 A B ( )
A. {4,1}
B. {1, 5}
对数函数的图象附近,
∴最适合作为发芽率 y 和温度 x 的回归方程类型的是 y a b ln x .故选 D.
6.已知圆 x2 y2 6x 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
A. 1
B. 2
C. 3
D. 4
【答案】B
【解析】当直线和圆心与点 (1, 2) 的连线垂直时,所求的弦长最短,即可得出结论.
2
42
化简得 4( b )2 2 b 1 0 ,
a
a
解得 b 1 5 (负值舍去).故选 C. a4
4.设 O 为正方形 ABCD 的中心,在 O,A,B,C,D 中任取 3 点,则取到的 3 点共线的概
率为( )
1
2
1
4
A.
B.
C.
D.
5
5
2
5
【答案】A
【解析】列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,
C. 36π
D. 32π
【答案】A
【解析】设圆 O1 半径为 r ,球的半径为 R ,
依题意得 r2 4 , r 2 , ABC 为等边三角形,
由正弦定理可得 AB 2r sin 60 2 3 ,
∴ OO1 AB 2 3 , 根据球的截面性质 OO1 平面 ABC ,
精品解析:2020年全国统一高考数学试卷(文科)(新课标Ⅰ)(解析版)
.
故答案为: .
【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
根据散点图的分布可选择合适的函数模型.
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 和温度 的回归方程类型的是 .
故选:D.
【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.
6.已知圆 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最大值为: .
故答案为:1.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
甲分厂产品等级的频数分布表
2020年全国统一高考数学试卷(文科)(新课标I)(有详细解析)
2020年全国统一高考数学试卷(文科)(新课标I)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数f(x)=cos (ωx+π6)在的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4−a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共80.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.20.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcos θ−16ρsin θ+ 3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│−2│x−1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.答案和解析1.D解:由不等式x2−3x−4<0,解得−1<x<4,所以A∩B={1,3},2.C解:z=1+2i−i=1+i,则|z|=√12+12=√2,3.C解:设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为ℎ′,则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a)2−2(ℎ′a)−1=0,ℎ′a>0,解得ℎ′a =√5+14.4.A解:如图,从5点中随机选取3个点,共有10种情况,AOB,AOD,BOC,DOC,ABC,ADC,DBC,DAB,AOC,BOD,其中三点共线的有两种情况:AOC和BOD,则p=210=15.5.D用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.6.B解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3−1)2+(0−2)2=√8,弦长2√r2−OA2=2,7.C解:由图可知f(−4π9)=cos (−4π9ω+π6)=0,所以−4π9ω+π6=π2+kπ(k∈Z),化简可得ω=−3+9k4(k∈Z),又因为T<2π<2T,即2π|ω|<2π<4π|ω|,所以1<|ω|<2,则当且仅当k=−1时,1<|ω|<2,所以|ω|=32,故最小正周期T=2π|ω|=4π3.8.B解:由alog34=log34a=2,可得4a=32=9,∴4−a=(4a)−1=9−1=1,99.C解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.10.D解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,11.B解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(−2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|−|PF2||=2a=2,所以||PF1|−|PF2||2=|PF1|2+|PF2|2−2|PF1|⋅|PF2|=4,所以|PF1|⋅|PF2|=6,所以三角形PF1F2面积为12|PF1|⋅|PF2|=3,12.B解:由圆O1的面积为4π=πr2,故圆O1的半径r=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,13.1解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,14.5解:∵a⃗⊥b⃗ ,所以a⃗⋅b⃗ =0,因为a⃗=(1,−1),b⃗ =(m+1,2m−4),所以m+1−(2m−4)=0,故m=5.15.2x−y=0解:∵y=lnx+x+1,∴y′=1x+1设切点坐标为(x0,y0),因为切线斜率为2,所以1x+1=2,故x0=1,此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y−2=2(x−1)所以切线方程为2x−y=0.16.7解:因为a n+2+(−1)n a n=3n−1,当n=2,6,10,14时,a2+a4=5,a6+a8=17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540−(5+17+ 29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2−a n=3n−1,所以a3−a1=2,a5−a3=8,a7−a5=14⋯a n+2−a n=3n−1,累加得an+2−a1=2+8+14+⋯3n−1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13=102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.17.解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90−25)+0.2×(50−25)+0.2×(20−25)+0.2×(−50−25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90−20)+0.17×(50−20)+0.34×(20−20)+0.21×(−50−20)=10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.18.解:(1)由余弦定理得b2=a2+c2−2accosB,即28=3c2+c2−2√3c2cos150∘,解得c=2,所以a=2√3,所以S△ABC=12acsin B=12×2√3×2×12=√3.(2)因为A=180∘−B−C=30∘−C,所以sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(30∘+C)=√22,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.19.解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32−1=√22,所以三棱锥P−ABC的体积V=13SΔABC⋅PO=13×12×√3×√3×√32×√22=√68.20.解:(1)当a=1时,f(x)=e x−(x+2),则f′(x)=e x−1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(−∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x−a(x+2)=0,显然x≠−2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<−2或−2<x<−1时,g′(x)<0,g(x)单调递减;当x >−1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(−1)=1e ,当x <−2时,g(x)<0,当x >−2时,g(x)>0,所以当a >1e 时,y =a 与g(x)的图象有两个交点, 所以a 的取值范围为(1e ,+∞).21. 解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y =m 9(x +3)x 29+y 2=1⇒(9+m 2)x 2+6m 2x +9m 2−81=0,由韦达定理−3x C =9m 2−819+m 2⇒x C =−3m 2+279+m 2,代入直线PA 的方程y =m9(x +3)得,y C =6m9+m ,即C(−3m 2+279+m ,6m9+m ),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).22.(1)当k=1时,曲线C1的参数方程为{x=costy=sint,化为直角坐标方程为x2+y2=1,表示以原点为圆心,半径为1的圆.(2)当k=4时,曲线C1的参数方程为{x=cos 4ty=sin4t,化为直角坐标方程为√x+√y=1,曲线C2化为直角坐标方程为4x−16y+3=0,联立{√x+√y=14x−16y+3=0,解得{x=14y=14,所以曲线C1与曲线C2的公共点的直角坐标为(14,14 ).23. (1)函数f(x)=|3x +1|−2|x −1|={x +3,x >15x −1,−13≤x ≤1−x −3,x <−13,图象如图所示:(2)函数f(x +1)的图象即将函数f(x)的图象向左平移一个单位所得,如图, 联立{y =−x −3y =5x +4可得交点横坐标为x =−76, 所以f(x)>f(x +1)的解集为{x|x <−76}.。
2020年普通高等学校招生全国统一考试文科数学试题及答案(全国新课标卷1)
2020年普通高等学校招生全国统一考试文科数学(全国新课标1)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B. {}1,5 C. {}3,5D. {}1,32.若312z i i =++,则z = A.0 B.1 C.2 D. 23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.514- B. 512-C.514+ D. 512+4. 设O 为正方形ABCD 的中心,在O, A ,B, C, D 中任取3点,则取到的3点共线的概率为 A.15 B. 25 C. 12 D. 455. 某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i y i =(x 1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A. y a bx =+B. 2y a bx =+C. x y a be =+D. ln y a b x =+6. 已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A. 1 B. 2 C. 3 D. 47. 设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109πB.76π C.43π D.32π 8. 设3a log 42=,则-a 4 A.116 B. 19 C. 18 D. 169.执行右面的程序框图,则输出的n = A. 17 B. 19 C. 21D. 2310.设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a += A. 12 B. 24 C. 30 D. 3211. 设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP | =2,则∆12PF F 的面积为A.72 B. 3 C. 52D. 2 12. 已知A ,B ,C 为球O的球面上的三个点,1O 为△ABC 的外接圆. 若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48π C .36π D .32π二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(文科)(新课标I)附答案
2020年全国统一高考数学试卷(文科)(新课标I)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知合集,,则A. B. C. D.2.若,则( )A.0 B. 1 C. D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. B. C. D.4.设O为正方形ABCD的中心,在O, A ,B, C, D中任取3点,则取到的3点共线的概率为( )A. B. C. D.5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据1,2, (20)得到下面的散点图:由此散点图,在10至40之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( )A.B. C. D.6.已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 47.设函数在的图像大致如下图,则的最小正周期为( )A. B. C. D.8.设,则=()A. B. C. D.9.执行下面的程序框图,则输出的()A. 17B. 19C. 21D. 2310.设是等比数列,且,,则()A. 12B. 24C. 30D. 3211.设,是双曲线的两个焦点,为坐标原点,点在上且|| =2,则的面积为()A. B. C. D.12.已知,,为球的球面上的三个点,为的外接圆. 若的面积为,,则球的表面积为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件,则z=x+7y的最大值为_____.14.设向量=(1,-1),=(m+1,2m-4),若,则m=______.15.曲线的一条切线的斜率为2,则该切线的方程为____.16.数列满足,前16项和为540,则=____.三、解答题(本大题共7小题,共82.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.的内角的对边分别为,已知.(1)若,,求的面积;(2)若,求.19.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,.(1)证明:平面平面;(2)设,圆锥的侧面积为π,求三棱锥的体积.20.已知函数(1)当a=1时,讨论的单调性;(2)若有两个零点,求的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为,(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)当k=1时,是什么曲线?(2)当k=4时,求与的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数=│3+1│-2│-1│.(1)画出y=的图像;(2)求不等式>的解集.答案和解析1.【答案】D【解析】【分析】本题主要考查集合的交集运算和解一元二次不等式,属于基础题.【解答】解:由不等式,解得,所以,故选D.2.【答案】C【解析】【分析】本题主要考查复数的运算,求复数的模,属于基础题.【解答】解:,则,故选C.3.【答案】C【解析】【分析】根据题意列出的关系式,化简即可得到答案.本题考查了立体几何中的比例关系,属于基础题.【解析】如图,设正四棱锥的高为h,底面边长为侧面三角形底边上的高为,则由题意可得,故,化简可得解得.故答案选C.4.【答案】A【解析】【分析】本题主要考查概率的知识,属于基础题.【解答】解:如图,从5点中随机选取3个点,共有10种情况,其中三点共线的有两种情况:AOC和BOD,则.故选A.5.【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为.故答案选D.6.【答案】B【解析】【分析】本题考查圆的方程、直线方程以及求弦长,属于较易题.【解答】解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,弦长,故选B.7.【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用得到,由,可得,由可得k的值,w的值可得,即可求解.【解析】解:由图可知,所以化简可得,又因为,即,所以,当且仅当时,所以,最小正周期.故答案选C.8.【答案】B【解析】【分析】本题主要考查指对数的运算,属于基础题.【解答】解:由,可得,,故选B.9.【答案】C【解析】【分析】本题以程序框图为载体,考查了等差数列求和,属于中档题.【解答】解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.故选C.10.【答案】D【解析】【分析】本题主要考查等比数列的通项公式,属基础题.根据,结合等比数列的通项公式可求得等比数列的公比,因为,从而得到答案.【解答】解:∵,∴,所以,,所以,故选D11.【答案】B【解析】【分析】本题主要考查双曲线的定义、双曲线的简单几何性质、圆的性质,属一般题.根据双曲线的标准方程得到其焦点坐标,结合,可确定点P在以为直径的圆上,得到,结合双曲线的定义可得的值,从而得到答案.【解答】解:由双曲线的标准方程可得,,所以焦点坐标为,因为,所以点P在以为直径的圆上,,,所以,所以,所以三角形面积为3,故选B.12.【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为,故圆O1的半径ρ=2,∵,则三角形ABC是正三角形,由正弦定理:,得,由,得球O的半径,表面积为,故答案为A.13.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由得,平移直线,要使z最大,则在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.14.【答案】5【解析】【分析】本题主要考查平面向量垂直的充要条件,平面向量数量积的坐标运算,属基础题.由可得,再把两向量坐标代入运算可得答案.【解答】解:,所以,因为,所以,故.故答案为:515.【答案】【解析】【分析】本题主要考查导数的几何意义,属基础题.根据导数的几何意义确定切点坐标,再根据直线的点斜式得到切线方程.【解答】解:,设切点坐标为,因为切线斜率为2,所以,故,此时,,所以切点坐标为,所以切线方程为.故答案为:.16.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题.对取偶数,再结合条件可求得前16项中所有奇数项的和,对取奇数时,利用累加法求得的值,用其表示出前16项和可得答案.【解答】解:因为,当=2,6,10,14时,,,,因为前16项和为540,所以,所以,当为奇数时,,所以,,,累加得,,,,,,,,,因为,所以,所以.故答案为7.17.【答案】解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为,,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.【解析】本题主要考查频率的算法,平均数的概念及其意义,属基础题.(1)根据图表信息可得甲乙分厂的频数,从而得到答案.(2)根据图表信息可得甲乙分厂的四个等级的频率,再根据平均数的定义求得答案,比较两厂的平均数得到最终答案即可.18.【答案】解:(1)由余弦定理得,即,解得c=2,所以,所以S△ABC=.(2)因为,所以,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.19.【答案】解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得解得,所以等边三角形ABC的边长为,从而PA=PB=PC=,所以,所以三棱锥P-ABC的体积V=.【解析】【解析】本题考查线面位置关系的判定,圆锥的侧面积公式,棱锥的体积公式的应用,考查空间想象能力与运算能力,属于中档题.(1)由题意证得PB⊥PA,PB⊥PC,从而得到PB⊥平面PAC,根据面面垂直的判定定理即可证明;(2)由圆锥的性质可求得底面半径与母线长,从而可求得△ABC的边长,从而可求得三棱锥P-ABC的高,从而可求得体积.20.【答案】解:(1)当a=1时,,则,令,得x>0;令,得x<0,从而f(x)在(-∞,0)单调递减;在(0,+∞)单调递增.(2),显然x≠-2,所以,令,问题转化为y=a与g(x)的图象有两个交点,所以,当x<-2或-2<x<-1时,,g(x)单调递减;当x>-1时,,g(x)单调递增,所以g(x)的极小值为,当x<-2时,g(x)<0,当x>-2时,g(x)>0,所以当a>时,y=a与g(x)的图象有两个交点,所以a的取值范围为.【解析】【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,有一定难度.(1)先求导,可直接得出函数的单调性;(2)先分离参数得,再构造函数,利用导数研究函数的性质,即可得出a的取值范围.21.【答案】解:由题意,∴椭圆E的方程为.(2)由(1)知,则直线PA的方程为,联立,由韦达定理,代入直线PA的方程得,,即,直线PB的方程为,联立,由韦达定理,代入直线PA的方程得,,即,∴直线CD的斜率,∴直线CD的方程为,整理得,∴直线CD过定点.【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.22.【答案】【答案】(1)当时,曲线的参数方程为,化为直角坐标方程为,表示以原点为圆心,半径为1的圆.(2)当时,曲线的参数方程为,化为直角坐标方程为,曲线化为直角坐标方程为,联立,解得,所以曲线与曲线的公共点的直角坐标为.【解析】本题考查简单曲线的参数方程、极坐标方程,参数方程、极坐标方程与直角坐标方程的互化等知识,考查运算求解能力,难度一般.23.【答案】(1)函数,图象如图所示:(2)函数的图象即将函数的图象向左平移一个单位所得,如图,联立可得交点横坐标为,所以的解集为.【解析】本题考查解绝对值不等式,考查了运算求解能力及数形结合的思想,难度一般.。
2020年全国高考数学文科试卷-(Ⅰ卷含答案解析)
2020年全国高考(Ⅰ卷)文科数学1.已知合集,,则()A、B 、C、D、2.若,则()A、0B、1C、D、23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A、B、C、D、4. 设O为正方形ABCD的中心,在O, A ,B, C, D中任取3点,则取到的3点共线的概率为()A、B、C、D、5. 某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A、B、C、D、6. 已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A、1B、2C、3D、47. 设函数在的图像大致如下图,则的最小正周期为()A、B、C、D、8. 设3log42a=,则4a-=( )A.116B.19C.18D.169.执行下面的程序框图,则输出的n=( )A.17B.19C.21D.2310.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A.12B.24C.30D.3211.设12,F F 是双曲线22:13y C x -=的两个焦点,O为坐标原点,点P在C上且||2OP =,则12PF F △的面积为( ) A.72B.3C.52D.212.已知,,A B C 为球O的球面上的三个点,1O 为ABC的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O的表面积为( )A.64πB.48πC.36πD.32π二、填空题13.若,x y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则7z x y =+的最大值为____________.14.设向量(1,1),(1,24)m m =-=+-a b ,若a b ⊥,则m =____________.15.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 16.数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1a =_____________. 三、解答题17.(12分) 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,A B C D 四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?18. (12分)∆ABC 的内角,,A B C 的对边分别为,,a b c .已知150B =︒. (1)若,a b =,求∆ABC 的面积; (2)若sin 2A C =,求C.19. (12分) 如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P为DO 上一点,90APC ∠=︒.(1)证明:平面PAB ⊥平面PAC ; (2)设DO,求三棱锥P ABC -的体积.20. (12分)已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 21. (12分) 已知,A B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G为E的上顶点,8AG GB ⋅=,P为直线6x =上的动点,PA 与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD 过定点.22. (10分) [选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎪⎨=⎪⎩(t为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23. [选修4—5:不等式选讲] (10分) 已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集.2020年全国高考(Ⅰ卷)文科数学答案与解析1.D2.C3.C如图,设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为'h ,则依题意有:222212'()2'h ah a h h ⎧=⎪⎪⎨⎪=-⎪⎩,因此有221'()22'a h ah -=,化简得2'4()2()1'0h h a a --=,解得'h a =. 4.A 5.D用光滑的曲线把图中各点连接起来,由图像的大致走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为ln y a b x =+. 6.B 7.C 由图知4π4ππ()cos()0996f ω-=-+=,所以4ππππ()962k k ω-+=+∈Z ,化简得39()4k k ω+=-∈Z ,又因为2π2T T <<,即2π4π2π||||ωω<<,所以1||2ω<<,当且仅当1k =-时1||2ω<<,所以32ω=,最小正周期2π4π||3T ω==.故选C. 8.B 9.C 10.D 11.B 12.A 13.1 14.5 15.y=2x 16.7 17.解: (1)由试加工产品等级的频数分布表知, 甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务. 18.解:(1)由题设及余弦定理得2222832cos150c c =+-⨯︒. 解得2c =-(舍去),2c =,从而a =∆ABC 的面积为12sin1502⨯⨯︒(2)在∆ABC中,18030A B C C =︒--=︒-,所以()()sin sin 30sin 30A C C C C +=-+=︒+︒.故()sin 30C ︒+=. 而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒. 19.解:(1)由题设可知,PA PB PC ==.由于∆ABC 是正三角形,故可得∆PAC ≌∆PAB ,∆PAC ≌ ∆PBC. 又90APC ∠=︒,故90,90APB BPC ∠=︒∠=︒.从而,PB PA PB PC ⊥⊥,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得222rl l r =-=.解得1,r l ==从而AB 由(1)可得222PA PB AB +=,故PA PB PC ===所以三棱锥P ABC -的体积为311113232PA PB PC ⨯⨯⨯⨯=⨯⨯⎝⎭.20.解: (1)当1a =时,()e 2x f x x =--,则1'()e x f x =-. 当0x <时,)'(0f x <;当0x >时,)'(0f x >. 所以()f x 在(,0)-∞单调递减,在(0,)+∞单调递增. (2))'(e x f x a =-.当0a ≤时,()'0f x >,所以()f x 在(),-∞+∞单调递增,故()f x 至多存在1个零点,不合题意. 当0a >时,由()'0f x =可得ln x a =,当(),ln x a ∈-∞时,()'0f x <;当()ln ,x a ∈+∞时,()'0f x >,所以()f x 在(),ln a -∞单调递减,在()ln ,a +∞单调递增,故当ln x a =时,()f x 取得量小值,最小值为()()ln 1ln f a a a =-+.()i 若10ea <≤,则(ln )0f a ≥,()f x 在(,)-∞+∞至多存在1个零点,不合题意.()ii 若1ea >,则(ln )0f a <.由于2(2)e 0f --=>,所以()f x 在(,ln )a -∞存在唯一零点.由(1)知,当2x >时,2e 20x -->,所以当4x >且()2ln 2x a >时,22()e e (2)x x f x a x =⋅-+ ()ln 2e2(2)2a x a x ⎛⎫>⋅+-+ ⎪⎝⎭2a =0>.故()f x 在(ln ,)a +∞存在唯一零点.从而()f x 在(,)-∞+∞有两个零点.综上,a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭.21.解: (1)由题设得(,0),(,0),(0,1)A a B a G -.则(1)(1)AG a GB a ==-,,,.由8AG GB ⋅=得218a -=,即3a =. 所以E 的方程为2219x y +=.(2)设()()1122,,,,(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<.由于直线PA 的方程为(3)9t y x =+,所以()1139t y x =+. 直线PB 的方程为(3)3t y x =-,所以()2233t y x =-. 可得()()1221333y x y x -=+.由于222219x y +=,故()()2222339x x y +-=-,可得()()12122733y y x x =-++,即 ()()22121227(3)(3)0m y ym n y y n ++++++=.①将x my n =+代入2219x y +=得()2229290my mny n +++-=.所以212122229,99mn n y y y y m m -+=-=++.代入①式得()()()22222792(3)(3)90m n m n mn n m +--++++=. 解得3n =-(舍去),32n =.故直线CD 的方程为32x my =+,即直线CD 过定点3,02⎛⎫⎪⎝⎭. 若0t =,则直线CD 的方程为0y =,过点3,02⎛⎫ ⎪⎝⎭. 综上,直线CD 过定点3,02⎛⎫ ⎪⎝⎭. 22.解:(1)当1k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得221x y +=,故曲线1C 是圆心为坐标原点,半径为1的圆.(2)当4k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得1C1, 2C 的直角坐标方程为41630x y -+=.由1,41630x y =-+=⎪⎩解得1,41.4x y ⎧=⎪⎪⎨⎪=⎪⎩故1C 与2C 的公共点的直角坐标为11()44,. 23. .解:(1)由题设知13(),31()51(1)33(1).x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪+>⎪⎪⎩,,,,()y f x =的图像如图所示.(2) 函数()y f x =的图像向左平移1个单位长度后得到函数(1)y f x =+的图像.()y f x =的图像与(1)y f x =+的图像的交点坐标为711,66⎛⎫-- ⎪⎝⎭.由图像可知当且仅当76x <-时,()y f x =的图像在()1y f x =+的图像上方.故不等式()()1f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.。
2020年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)
2020年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-3x -4≤0},B ={-4,1,3,5},且A ∩B =( )A .{-4,1}B .{1,5}C .{3,5}D .{1,3} 2.若z =1+2i +i 3,则|z |=( )A .0B .1C 2D .2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积 等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( )A .514B .512C .514D .5124.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下 进行种子发芽实验,由实验数据 (x i . y i )(i =1,2,···,20)得到散点图:由此散点图,在10°C 至40°C 之 间,下面四个回归方程类型中最 适宜作为发芽率y 和温度x 的回 归方程类型的是( ) A .y=a+bx B .y=a+bx 2 C .y=a+be xD .y=a+b ln x6.已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .47.设函数f (x )=cos(ωx +6π)在[-π,π]的图像大致如下图,则f (x )的最小正周期为( )A .109πB .76πC .43πD .32π8.设a log 34=2,则4-a =( )A .116B .19C .18D .169.执行下面的程序框图,则输出的n =( )A .17B .19C .21D .2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=( ) A.12 B.24 C.30 D.3211.设F1, F2是双曲线C:2213yx-=的两个焦点,O为坐标原点,点P在C上且|OP|=2,则∆PF1F2的面积为( )A.72B.3 C.52D.212.已知A,B,C为球O的球面上的三个点,⊙O1为∆ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )AA.64πB.48πC.36πD.32π二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.若x,y满足约束条件220,10,10,x yx yy+-≤⎧⎪--≥⎨⎪+≥⎩则z=x+7y的最大值为.14.设为(1,1)(1,24),a b m m a b-=+-⊥=,若,则m= .15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为.16.数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1= .三、解答题:解答应写出文字说明,证明过程或演算步骤。
2020年普通高等学校招生全国统一考试 文科数学(全国 I 卷)解析版
2020年普通高等学校招生全国统一考试(全国卷I)文科数学一、选择题1.已知集合,,则()A.B.C.D.答案:D解析:由题意可得,而,∴.2.若,则()A.B.C.D.答案:C解析:.∴.3.同理科第3题()A.B.C.D.答案:D解答:.4.设为正方形的中心,在,,,,中任取点,则取到的点共线的概率为()A.B.C.D.答案:A解析:五个点任取三个有,,,,,,,,,共种情况,其中三点共线的情况有,两种,故点共线的概率为,故选A.5.某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据(,)()得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.答案:D解析:图象与对数函数图象相近,所以答案选D.6.已知圆,过点的直线被该圆所截得的弦长的长度的最小值为()A.B.C.D.答案:B解答:圆的方程可化为,其圆心为,半径为,当过点的直线与,所连直线垂直时,弦长最小,又,故根据勾股定理可得此时弦长为.7.同理科第7题A.B.C.D.答案:D解答:.8.设,则()A.B.C.D.答案:B解答:,所以.9.执行右面的程序框图,则输出的()A.B.C.D.答案:C解析:根据框图执行规则有:,,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;...第九次循环:,;第十次循环:,;循环结束,故,选C.10.设是等比数列,且,,则()A.12B.24C.30D.32答案:D解答:由性质知、、……、成等比数列,则.11.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A.B.C.D.答案:B解答:由题可得,且为的中点,所以,两边平方可得,所以.12.同理科第10题A.B.C.D.答案:D解答:.二、填空题13.同理科第13题___.答案:1解答:.14.设向量,,若,则 .答案:解析:由,可得,解得.15.曲线的一条切线的斜率为,则该切线的方程为 .答案:解析:由题意可得,设切点为,则,得,∴,∴切点坐标为,∴切线方程为,即.16.数列满足,前16项和为540,则__________.答案:7解答:由,得,,两式相加,得,取,得,取,得,取,得,取,得.由,得,则;得,则;得,则;得,则;得,则;得,则.所以,解得.另法:由,得,,,,则.由,得,则;得,则;得,则;得,则;得,则;得,则;得,则.那么,则两式相加,解得.三、解答题17.某工厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:(1)分别估计甲、乙两个分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?答案:略解答:(1)根据上表,可得甲分厂加工出一件A级品的概率为,乙分厂加工一件A 级品的概率为.(2)甲分厂生成A级品、B级品、C级品、D级品产品的概率分别为,所以甲分厂生产100件这种产品的平均利润为元;乙分厂生成A级品、B级品、C级品、D级品产品的概率分别为,所以甲分厂生产100件这种产品的平均利润为元,所以甲分厂利润高于乙分厂,故选择甲分厂承接.18.的内角的对边分别为,,,已知.(1)若,,求的面积;(2)若,求.答案:见解答解答:(1)根据余弦定理,可得,解得,∴,∴的面积为.(2)∵且,∴,即,∴,∵,∴,∴.19.如图,为圆锥的顶点,是圆锥底面的圆心,△是底面的内接正三角形,为上一点,.(1)证明:平面平面;(2)设,圆锥的侧面积为,求三棱锥的体积.答案:见解答解答:(1)由圆锥的性质知圆锥底面,则平面,而,则,那么△、△、△两两全等,又,则、、两两垂直,则平面,而在平面内,则平面平面.(2)设圆锥底面半径为,母线长为,则,,又,则解得,.,则.那么,则三棱锥的体积为.20.已知函数(1)当时,讨论的单调性;(2)若有两个零点,求的取值范围.答案:见解答解答:由题知的定义域为,且(1)时,,令,解得.当时,;当时,.∴在上单调递减,在上单调递增.(2)①当时,恒成立,在上单调递增,不符合题意;②当时,令,解得,当时,;当时,.∴在上单调递减,在上单调递增.∴.∴要使有两个零点,则即可,则.综上,若有两个零点,则.21.已知,分别为椭圆的左、右顶点,为的上顶点,.为直线上的动点,与的另一交点为,与的另一交点为.(1)求的方程;(2)证明:直线过定点.答案:见解答解析:(1)设,,,则有,.由已知得,所以,所以,所以的方程.(2)设,,直线的方程为,联立,得,整理得,由韦达定理得,所以,把代入直线得,所以,直线的方程为,联立,得,由韦达定理得,所以,,所以,所以直线,整理得,所以,则恒过定点.四、选做题(2选1)22.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)当时,是什么曲线?(2)当时,求与的公共点的直角坐标.答案:见解析解析:(1)当时,的参数方程为(为参数),消参得,故为圆心在原点,半径为的圆.(2)当时,的参数方程为(为参数),的极坐标方程可化为,将参数方程代入得,化简得,∴或(舍去),∴,故与的公共点的直角坐标为.23.已知函数.(1)画出的图像;(2)求不等式的解集.答案:见解析解析:(1),故图像如下:(2)图像是由图像向左平移一个单位得到,如图所示.联立,得交点,∴不等式的解集为. .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|x 2−3x −4<0},B ={−4,1,3,5},则A ∩B =( )
A 、{−4,1}
B 、{1,5}
C 、{3,5}
D 、{1,3}
2.若z =1+2i +i 3,则|z|=( )
A 、0
B 、1
C 、2
D 、2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A 、415-
B 、2
15- C 、
415+ D 、215+ 4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )
A 、51
B 、52
C 、21
D 、5
4 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:
由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )
A 、y =a +bx
B 、y =a +bx 2
B 、
C 、y =a +be x
D 、y =a +blnx
6.已知圆x 2+y 2−6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
A 、1
B 、2
C 、3
D 、4
7.设函数f (x )=cos (ωx +6π)在[−π,π]的图象大致如图,则f (x )的最小正周期为( )
A 、910π
B 、67π
C 、34π
D 、2
3π 8.设alog 34=2,则4−a =( )
A 、161
B 、91
C 、81
D 、6
1 9.执行如图的程序框图,则输出的n =( )
A 、17
B 、19
C 、21
D 、23
10.设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4
=2,则a 6+a 7+a 8=( )
A 、12
B 、24
C 、30
D 、32 11.设F 1,F 2是双曲线C :x 2−3
2
y =1的两个焦点,O 为坐标原点,点P 在C 上且|OP|=2,则△PF 1F 2的面积为( )
A 、27
B 、3
C 、2
5 D 、2 12.已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )
A 、64π
B 、48π
C 、36π
D 、32π
二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件⎪⎩
⎪⎨⎧≥+≥--≤-+0101022y y x y x ,则z =x +7y 的最大值为________.
14.设向量a =(1,−1),b =(m +1,2m −4),若a ⊥b ,则m =___________.
15.曲线y =lnx +x +1的一条切线的斜率为2,则该切线的方程为_______________.
16.数列{a n }满足a 2+n +(−1)n
a n =3n −1,前16项和为540,则a 1=_________.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
18.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.
(1)若a =3c ,b =27,求△ABC 的面积;
(2)若sinA +3sinC =
2
2,求C .
19.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.
(1)证明:平面PAB ⊥平面PAC ;
(2)设DO =2,圆锥的侧面积为3π,求三棱锥P −ABC
的体积.
20.已知函数f (x )=e x −a (x +2).
(1)当a =1时,讨论f (x )的单调性;
(2)若f (x )有两个零点,求a 的取值范围.
21.已知A ,B 分别为椭圆E :22
a
x +y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG •GB =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .
(1)求E 的方程;
(2)证明:直线CD 过定点.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4−4:坐标系与参数方程](10分)
22.在直角坐标系xOy中,曲线C
1的参数方程为
⎩
⎨
⎧
=
=
t
y
t
x
k
k
sin
cos
(t为参数).以坐标原点为
极点,x轴正半轴为极轴建立极坐标系,曲线C
2
的极坐标方程为4ρcosθ−16ρsinθ+3=0.
(1)当k=1时,C
1
是什么曲线?
(2)当k=4时,求C
1与C
2
的公共点的直角坐标.
[选修4−5:不等式选讲](10分)
23.已知函数f(x)=|3x+1|−2|x−1|.(1)画出y=f(x)的图象;
(2)求不等式f(x)>f(x+1)的解集.。