相似三角形添加辅助线的方法举例有答案新
初中数学三角形中14种辅助线添加方法
初中数学三角形中14种辅助线添加方法在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。
下面是三角形中14种辅助线添加方法:1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。
2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。
3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。
4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。
5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。
6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。
7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。
8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。
9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。
10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。
11. 等腰三角形的中线、高线和垂心重合。
12. 等边三角形的中线、高线、垂心和外心重合。
13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。
14. 任意三角形的外心到三个顶点的距离相等。
初中数学14种方法教会你给三角形加辅助线!
初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。
通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。
3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。
通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。
4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。
通过内切圆可以获得三个切点,进而使用切点的性质解决问题。
5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。
通过外切圆可以获得三个切点,进而使用切点的性质解决问题。
6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。
通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。
8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。
9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。
10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧.doc
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧以下六种常用的辅助线添加方法和技巧。
相互学习,一起进步。
方法一、双垂直构造三角形全等。
遇见角平分线,角平分线上的点向角两边做垂直,必出三角形全等。
例题1,是最基础,最简单的题型。
有些,需要我们证明角平分线的时候,同样可以向角两边做垂直,那么只要两个垂线段相等,到角两边距离相等的点在角平分线上。
例题2,过点P做MN平行BC,则出现在AB边和CD 边上,双垂直。
根据题意,证明三角形QNP全等于三角形PMB,结论得证。
方法二,倍长中线。
三角形中,遇见中点,很容易想到倍长中线。
例题3,倍长中线后,得出三角形ACE全等于三角形ACM。
例题4,延长AD至E,使DE=AD。
得出三角形ADC全等于三角形EDB。
第2小题,根据三角形的三边关系,等量代换,即可求出AD的取值范围。
方法三、截长补短法。
求证两个线段和等于一个线段的时候,很容易想到截长补短的辅助线添加方法。
截长补短法,包括了截长法和补短法,两种方法。
一般来说,一道题,既可以用截长法,也可以用补短法。
例题6、解析中用了延长AD至M,使MD=FD。
请认真看解答过程。
再请按照图3的辅助线,自行练习推理,举一反三,得出结论。
方法四、平行线发或者平移法。
解题方法1,过点O做OD平行BC。
还有两个方法,请自行推理,如图3和图4.方法五,旋转法。
把一个三角形,经过旋转,旋转后必出三角形全等,得出结论。
例8和例9,其实也就是,最近经典的半角模型。
之前也专门讲过,这个几何模型。
请认真参考,这个两个例题。
从中总结规律和解题方法。
方法六、翻折法,或者叫对称法。
例题10,看起来很难,当你认真看完解题过程,肯定会有所收获。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
小专题(六) 相似三角形的辅助线添作技巧
小专题(六) 相似三角形的辅助线添作技巧本专题主要通过添加适当的辅助线构造相似三角形,运用相似三角形的知识来解决数学问题.添作辅助线的方法有:添作平行线、添作垂线、连接线段等.类型1 巧添平行线求线段的比1.如图,在△ABC 中,点D ,E 分别在BC ,AC 上,BE 与AD 交于点F ,且BD=DC ,AE ∶AC=1∶3,求AFFD 的值.解:过点A 作AG ∥BC 交BE 的延长线于点G ,那么△AEG ∽△CEB ,△AFG ∽△DFB ,∴AG BC =AE EC =12,又BD=DC , ∴AG=BD ,∴AFFD =AGBD =1.2.如图,在▱ABCD 中,E 是BC 的中点,在AB 上截取BF=12FA ,EF 交BD 于点G ,求BG ∶GD 的值.解:过点E 作EM ∥AB 交BD 于点M ,那么△BFG ∽△MEG ,∴BGGM =BFEM .∵AB ∥CD ,∴EM ∥CD ,∵BE=EC ,∴BM=MD ,∴EM=12CD ,∵BF=12FA ,∴BF=13AB , ∵AB=CD ,∴BFEM =BGGM =23,∵BM=MD ,∴BG ∶GD=2∶8=1∶4.类型2 巧连线段证线段之间的关系3.如图,在正方形ABCD 中,M 为AD 中点,以M 为顶点作∠BMN=∠MBC ,MN 交CD 于点N. 求证:DN=2NC.解:延长MN ,BC 交于点E ,连接MC ,设AB=2a ,那么AM=a ,BM=√5a.由△BAM≌△CDM,那么BM=MC,且∠BCM=∠CBM=∠BMN.∴△BMC∽△BEM.∴BMBE =BCBM,即√5aBE=√5a,∴BE=52a,∴CE=BE-BC=52a-2a=12a.∵四边形ABCD为正方形,∴∠D=∠DCB=90°,即∠D=∠NCE=90°.∵∠DNM=∠CNE,∴△MDN∽△ECN,∴DNNC =MDCE=a12a=2,即DN=2NC.4.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处(AE为折痕,点E在CD上),在AD上截取DG,使DG=CF.求证:(1)△ABF∽△FCE;(2)BD⊥GE.解:(1)∵四边形ABCD是矩形,∴∠ABF=∠C=∠ADC=90°,∴∠BAF+∠BFA=90°,由折叠的性质可得∠AFE=∠ADC=90°,∴∠CFE+∠BFA=90°,∴∠BAF=∠CFE,∴△ABF∽△FCE.(2)由(1)知EFAF =FCAB,又EF=ED,AF=AD,FC=GD,∴DEAD=GDAB.又∵∠BAD=∠GDE=90°,∴△BAD∽△GDE,∴∠ADB=∠DEG,又∠ADB+∠BDC=90°,∠DEG+∠BDC=90°,∴BD⊥GE.类型3巧添垂线求线段的长5.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,点F在边BC上,且BF=2FC,AF分别与DE,DB相交于点M,N,求MN的长.解:过点F作FH⊥AD于点H,交ED于点O,那么FH=AB=2,∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF=√FH 2+AH 2=√22+22=2√2,∵OH ∥AE ,∴HO AE =DH AD =13,∴OH=13AE=13,∴OF=FH-OH=2-13=53,∵AE ∥FO ,∴△AME ∽FMO ,∴AM FM =AE FO ,即AM FM =153=35,∴AM=38AF=3√24,∵AD ∥BF ,∴△AND ∽△FNB ,∴ANFN =AD BF =32,∴AN=35AF=6√25,∴MN=AN-AM=6√25−3√24=9√220. 类型4 巧添垂线求线段的比6.如图,在△ABC 中,AB=AC ,E ,F ,G 分别是BC ,AB ,AC 上一点,∠FEG=2∠B. (1)求证:∠BFE=∠AGE ; (2)假设BECE =12,求EFEG 的值.解:(1)∵2∠B+∠A=180°,∴∠FEG+∠A=180°,∴∠BFE=∠AGE. (2)过点E 作EM ⊥AB 于点M ,作EN ⊥AC 于点N ,∴△EMF ∽△ENG ,∴EFEG =EM EN ,易证△EBM ∽△ECN ,∴EM EN=BECE=12,∴EF EG=12.7.如图,△ABC 中,AB=AC ,∠BAC<60°,D 为BC 延长线上一点,E 为∠ACD 内部一点,且∠ABE=∠ECD=45°,求BE AC的值.解:作AF ⊥BC 于点F ,BG ⊥CE 交EC 的延长线于点G.∵AB=AC ,∴BF=FC=12BC.∵∠ABE=∠ECD=∠BCG=45°,∴∠CBG=45°,BG=√22BC=√2BF.又∵∠ABF=∠EBG ,∴Rt △ABF ∽Rt △EBG ,∴BEAB =BGBF =√2,∴BEAC =√2.8.如图,将一个直角三角板的直角顶点P 放在矩形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与BC 相交于点E ,且AD=10,DC=8,求AP ∶PE 的值.解:过点P作PM⊥AB于点M,PN⊥BC于点N,易证△APM∽△EPN,那么AP∶PE=PM∶PN=AD∶DC=10∶8=5∶4.。
中考数学点对点-几何问题辅助线添加技巧(解析版)
专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。
学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。
所以希望大家学深学透添加辅助线的技巧和方法。
一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
3.梯形问题梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
初中在三角形中辅助线添加规律归纳总结
初中在三角形中辅助线添加规律归纳总结
几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的。
现在将三角形添加辅助线的规律为大家总结成顺口溜:
图中有角平分线,可向两边作垂线
也可将图对折看,对称以后关系现
角平分线平行线,等腰三角形来添
角平分线加垂线,三线合一试试看
线段垂直平分线,常向两端把线连
要证线段倍与半,延长缩短可试验
三角形中两中点,连接则成中位线
三角形中有中线,延长中线等中线
具体解释如下:
一、三角形中辅助线的添加
1. 与角平分线有关的
(1)可向两边作垂线。
(2)可作平行线,构造等腰三角形
(3)在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的
(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的
(1)考虑三线合一
(2)旋转一定的度数,构造全等三角形,等腰一般旋转顶角的度数,等边旋转60 °。
初中数学辅助线的九种添加方法
初中数学辅助线的九种添加方法1添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
相似形中常用的辅助线
相似形中常用的辅助线山东 程方岩添加辅助线实际上就是构造出某种图形,构造哪些图形?这就需要掌握一些基本图形.相似三角形中的基本图形如下图所示:这些基本图形可以把它们当作一种数学模型,在解决问题时就可以去观察,看看能不能运用上它们,这就是建模的思想方法.1、添加平行线构造平行线型基本图形,我们称之为“A”、“X”型.例1、已知:如图,过△ABC 的顶点C 任作一条直线,与边AB 及中线AD 分别交于点F 和E ,求证:AE:ED=2AF:FB .分析:要证线段成比例,而题中没有平行条件,故无法证明,所以想到引平行线,构建基本图形“A”、“X”型.证明:过B 作BN ∥CF 交AD 的延长线于N ,∴.,BDCD DNED EN AE FBAF ==∵BD=CD ,∴2ED=2DN=EN , ∴,2EDAE FB AF =∴AE:ED=2AF:FB . 注意:引平行线时注意以下几点:(1)选点:一般选已知(或求证)中线段的比的前项(或后项)在同一直线的线段的端点作为引平行线的点;(2)引平行线时尽量使较多已知线段来求证线段成比例;(3)引平行线的实质是构造“A”、“X”型基本图形,在上例中过每个已知点均可引平行线构造“A”型或“X”型,进而使结论获证,故本题有多种证法,仅过E 点就有四种方法,都能证明结认正确,有兴趣的读者可以去研究.2、根据条件,构造相似三角形的基本图形.例2、在△ABC 中,∠A 、∠B 、∠C 所对的边分别用a 、b 、c 表示.(1)如图,在△ABC 中,平行线型CCBNEFDCBA图(2)图(1)a baCBACBA∠A=2∠B ,且∠A=600,求证:a 2=b (b+c );(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.(1)中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC ,其中∠A=2∠B ,关系式a 2=b (b+c )是否仍然成立?并证明你的结论.分析:(1)由∠A=2∠B ,且∠A=600,易得∠C=900.所以在Rt △ABC 中,三边a 、b 、c 之间的关系为,c=2b ,a=3b .所以a 2=3b 2,b (b+c )=3b 2,则a 2=b (b+c ).(2)要证a 2=b (b+c ),则需构造有关a 、b 与(b+c )的相似的三角形,且a 为公共边.对照基本图形,有类似的图形,这提醒我们延长BA 到D ,使AD=b ,则∠D=∠ACD ,又∠BAC=∠D+∠ACD ,所以∠BAC=2∠D ,得到∠B=∠D ,DC=BC (如图).于是构造出了有关a 、b 与(b+c )的三角形,易证△BCD ∽△CAD 相似,于是得到a 2=b (b+c ).a D CB。
相似三角形中几种常见的辅助线作法(有辅助线)
相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下几种:一、添加平行线构造“A”“X”型例1:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,求:BE:EF的值.解法一:过点D作CA的平行线交BF于点P,则∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE:EF=5:1.解法二:过点D作BF的平行线交AC于点Q,∴BE:EF=5:1.解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,∵BD=2DC ∴∴BE:EF=5:1.变式:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,连结BE并延长交AC于F,求AF:CF的值.解法一:过点D作CA的平行线交BF于点P,解法二:过点D作BF的平行线交AC于点Q,解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,,1==AEDEFEPE,2==DCBDPFBP,则2==EADAEFDQ,3==DCBCDQBF,EFEFEFEFDQEFBFBE563=-=-=-=,则DCCTDT21==;TCBTEFBE=,DCBT25=例2:如图,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:(证明:过点C 作CG//FD 交AB 于G )例3:如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。
不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。
(完整版)初二数学辅助线常用做法及例题(含答案)
DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是咼频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目, 不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:证明:延长BA, CE交于点Xl、倍长中线法遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点•延长AD至点E,使得DE = AD,并连接BE,贝UAADC 也zEDB (SAS)我们来看一个例题:三、遇角平分线作双垂线法在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!例 3;已知,如SLAC 平分ZBAD, CD=CB, AB>AD, 求证畫ZB+ZADC=18O0・AC证明:作CE丄AB于E,CF丄AD于F. TAC 平分 ZBADr ACE=CF.在 RtACBE 和RtACDF 中,%心RtACBE^RtACDF (HL),二ZB二ZCDF,VZCDF+ZADC=180° , A ZB+ZATC=180°四、作平行线法在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
例4如ffl, A ABC中,是朋上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF.求证當DE=DF.五、截长补短法题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系例6;如图甲.AD/BC.点E 在线段AB 上.ZADE 二ZCDE, ZDCE=ZECB,求证:CRAMBU证明:在CD 上截取CF-BC.如图乙(T - < Ji在厶 FCE^ABCE 中 - netCE CLAAFCE^ABCE(SAS), .\Z2=Z1- 又VAD/7BC,AZADC+ZBCD^180° , :.ZXE+ZCDE=90<>, /- Z2+Z3=90* , •\ ZUZ4=90° . :. Z3=Z14 LH 3)1加十 z5 = Z4A AFDE^AADli (ASA) , ADF-DAr 又 VCD=DF+CF, <\CD=AD+BC O D D{。
三角形全等添加辅助线的技巧和方法
三角形全等添加辅助线的技巧和方法嘿,朋友们!今天咱就来聊聊三角形全等添加辅助线的那些超棒技巧和方法。
比如说,当遇到两个看起来不太好直接证明全等的三角形时,咱就可以巧妙地加条辅助线呀!就好像走在迷宫里突然找到了一条捷径一样。
比如在一个三角形里,有一条边特别长,而另一个三角形里对应的边较短,这时候怎么办呢?咱就在长边上截取一段,让它和短边一样长,这不就多了个等量关系嘛!
还有哦,要是两个三角形有共同的边或者角,那辅助线简直就是开启全等大门的钥匙呀!像有两个三角形,它们有一条公共边,但是其他条件不好用,这时候把公共边延长或者作垂线,哇塞,全等的条件可能一下子就冒出来啦!比如说小明和小红一起做数学题,小明就被一道题难住了,后来小红提醒他加个辅助线,结果一下子就豁然开朗了,这不就像是在黑暗中找到了明灯嘛!
总之呀,三角形全等添加辅助线真的太神奇啦,只要你掌握了这些技巧和方法,那些原本难搞的题目就会变得轻而易举啦!。
相似三角形添加辅助线的方法举例
相似三角形添加辅助线的方法举例1.垂直角辅助线:当三角形中存在垂直角时,我们可以通过添加一条垂直角辅助线来将问题简化。
例如,在一个直角三角形中,我们可以通过从直角顶点到斜边的任意一点画一条垂直辅助线,这样可以将原问题转化为两个相似的直角三角形的求解。
2.中位线辅助线:在一个任意三角形中,我们可以通过连接每个顶点与对边中点的线段来得到三条中位线。
这些中位线的交点被称为三角形的重心。
通过画三角形重心与其他顶点的连线,可以将原问题转化为多个相似的三角形的求解。
3.等角辅助线:当我们需要证明两个三角形相似时,可以通过添加等角辅助线来帮助我们得到一些相等的角度。
例如,在两个直角三角形中,如果我们能找到一个等角辅助线使得两个直角形成的角相等,那么我们可以推断这两个三角形相似。
4.比例辅助线:当我们需要求解相似三角形的长边与短边的比例时,可以利用比例辅助线。
例如,在两个相似三角形中,我们可以通过添加比例辅助线,将两个相似三角形分割成若干个相似的小三角形,并且利用小三角形的边长比例来求解长边与短边的比例关系。
5.平行辅助线:当我们需要证明两个三角形相似时,可以通过添加平行辅助线来帮助我们得到一些对应边平行的关系。
例如,在两个直角三角形中,如果我们能找到一条边使得它与另一个直角三角形的对边平行,那么我们可以推断这两个三角形相似。
以上是一些常见的相似三角形添加辅助线的方法,它们可以帮助我们更好地理解问题、简化问题以及找到解决问题的方法。
在实际解题过程中,根据问题的不同,我们可以选择适合的辅助线方法来解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形添加辅助线的方法举例例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2=2CD ·AC . 例2.已知梯形ABCD 中,BC AD //,AD BC 3=,E 是腰AB 上的一点,连结CE(1)如果AB CE ⊥,CD AB =,AE BE 3=,求B ∠的度数;(2)设BC E ∆和四边形AECD 的面积分别为1S 和2S ,且2132S S =,试求AEBE的值 例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点,AD AF 31=,连E 、F 交AC 于G .求AG :AC 的值.例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________.例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC 于F ,若AB=a ,BC=b ,BE=c ,求BF 的长.例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BD AC AB =.相似三角形添加辅助线的方法举例答案例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2=2CD ·AC .分析:欲证 BC 2=2CD ·AC ,只需证BCACCD BC =2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,因此需要结合图形特点及结论形式,通过添加辅助线,对其中某一线段进行倍、分变形,构造出单一线段后,再证明三角形相似.由“2”所放的位置不同,证法也不同.证法一(构造2CD ):如图,在AC 截取DE =DC , ∵BD ⊥AC 于D ,∴BD 是线段CE 的垂直平分线, ∴BC=BE ,∴∠C=∠BEC , 又∵ AB =AC , ∴∠C=∠ABC . ∴ △BCE ∽△ACB . ∴BC AC CE BC =, ∴BCACCD BC =2 ∴BC 2=2CD ·AC .证法二(构造2AC ):如图,在CA 的延长线上截取AE =AC ,连结BE , ∵ AB =AC , ∴ AB =AC=AE . ∴∠EBC=90°, 又∵BD ⊥AC .∴∠EBC=∠BDC=∠EDB=90°,BCBCEB C∴∠E=∠DBC , ∴△EBC ∽△BDC ∴BC CE CD BC =即BCACCD BC 2=∴BC 2=2CD ·AC . 证法三(构造BC 21) :如图,取BC 的中点E ,连结AE ,则EC=BC 21. 又∵AB=AC ,∴AE ⊥BC ,∠ACE=∠C ∴∠AEC=∠BDC=90° ∴△ACE ∽△BCD .∴BC AC CD CE =即BCAC CD BC=21. ∴BC 2=2CD ·AC . 证法四(构造BC 21):如图,取BC 中点E ,连结DE ,则CE=BC 21. ∵BD ⊥AC ,∴BE=EC=EB , ∴∠EDC=∠C又∵AB=AC ,∴∠ABC=∠C , ∴△ABC ∽△EDC . ∴EC AC CD BC =J 即BC AC CD BC 21=. ∴BC 2=2CD ·AC .说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔.例2.已知梯形ABCD 中,BC AD //,AD BC 3=,E 是腰AB 上的一点,连结CE (1)如果AB CE ⊥,CD AB =,AE BE 3=,求B ∠的度数;(2)设BCE ∆和四边形AECD 的面积分别为1S 和2S ,且2132S S =,试求AEBE的值 (1)设k AE =,则k BE 3= 解法1如图,延长BA 、CD 交于点FBC AD //,AD BC 3=, ∴AF BF 3= ∴k AF 2=,E 为BF 的中点 又BF CE ⊥ CF BC =,又BF CF = ∴B C F ∆为等边三角形 故︒=∠60B解法2如图作AB DF //分别交CE 、CB 于点G 、F 则DF CE ⊥,得平行四边形ABFD 同解法1可证得CDF ∆为等边三角形 故︒=∠=∠601B 解法3如图作EC AF //交CD 于G ,交BC 的延长线于F 作AB GI //,分别交CE 、BC 于点H 、I 则GI CE ⊥,得矩形AEHGCE AF // ∴3==AEBECF BC , 又AD BC 3= ∴AD CF =,故G 为CD 、AF 的中点BCB以下同解法1可得CGI ∆是等边三角形 故︒=∠=∠601B 解法4如图,作CD AF //,交BC 于F ,作CE FG //,交AB 于G ,得平行四边形AFCD ,且AB FG ⊥读者可自行证得ABF ∆是等边三角形,故︒=∠60B 解法5 如图延长CE 、DA 交于点F ,作CD AG //,分别交BC 、CE 于点G 、H ,得平行四边形AGCD可证得A 为FD 的中点,则k AH 2=,故︒=∠601得ABG ∆为等边三角形,故︒=∠60B解法6如图(补形法),读者可自行证明CDF ∆是等边三角形, 得︒=∠=∠60FB(注:此外可用三角形相似、等腰三角形三线合和一、等积法等) (2)设S S BCE 3=∆,则S S AECD 2=四边形 解法1(补形法)如图补成平行四边形ABCF ,连结AC ,则AD DF 2= 设x S ACD =∆,则x S S ACE -=∆2,x S CDF 2=∆ 由ACF ABC S S ∆∆=得, x x x s s 223+=-+,∴s x 45=解法2(补形法)如图,延长BA 、CD 交于点F ,91=∆∆ABC FAD S S ∴s S FAD 85=∆,s s s S FEC 821285=+=∆,又s S EBC 3=∆ 设m 8=BE ,则m 7=EF ,m 15=BF ,m 5=AF∴m 2=AE ,∴4==AE BE解法3(补形法)如图连结AC ,作AC DF //交BA 延长线于点F 连结FC则FAD ∆∽ABC ∆,故AF AB 3=(1)ACF ACD S S ∆∆=,FEC AECD S S ∆=四边形故AF AE AF AE EF BE 33)(332+=+==(2) 由(1)、(2)两式得AE BE 4= 即4=AEBE解法4(割补法)如图 连结A 与CD 的中点F 并延长交BC 延长线于点G ,如图,过E 、A 分别作高1h 、2h ,则ADCG =且AECG AECD S S 四边形四边形=,∴s S S ABCD ABG 5==∆梯形∴21212153h BG h BC S S ABGEBC ⋅⋅⋅⋅==∆∆,又43=BG BC ∴5421=h h ,∴54=AB BE ,故4=AEBE 说明 本题综合考查了等腰三角形的性质,相似三角形的判定和性质,解题关键是作辅助线,构造相似三角形.例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点,AD AF 31=,连E 、F 交AC 于G .求AG :AC 的值.解法1: 延长FE 交CB 的延长线于H , ∵ 四边形ABCD 是平行四边形,∴BC AD //,∴ ∠H=∠AFE ,∠DAB=∠HBE又AE=EB ,∴ △AEF ≌△BEH ,即AF=BH ,∵AD AF 31=,∴ BC AF 31=,即CH AF 41=.∵ AD ∥CH ,∠AGF=∠CGH ,∠AFG=∠BHE ,∴ △AFG ∽△CGH .∴ AG :GC=AF :CH , ∴ AG :GC=1:4,∴ AG :AC=1:5.解法2: 如图4—2,延长EF 与CD 的延长线交于M ,由平行四边形ABCD 可知,DC AB //,即AB ∥MC ,∴ AF :FD=AE :MD ,AG :GC=AE :MC . ∵ AD AF 31=,∴ AF :FD=1:2,∴ AE :MD=1:2.∵DC AB AE 2121==.∴ AE :MC=1:4,即AG :GC=1:4,∴ AG :AC=1:5例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________. 解析:取CF 的中点G ,连接BG .∵ B 为AC 的中点, ∴ BG :AF=1:2,且BG ∥AF ,又E 为BD 的中点, ∴ F 为DG 的中点. ∴ EF :BG=1:2.故EF :AF=1:4,∴ AF :AE=4:3.例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC 于F ,若AB=a ,BC=b ,BE=c ,求BF 的长. 解法1: 过O 点作OM ∥CB 交AB 于M , ∵ O 是AC 中点,OM ∥CB ,∴ M 是AB 的中点,即a MB 21=,∴ OM 是△ABC 的中位线,b BC OM 2121==,且OM ∥BC ,∠EFB=∠EOM ,∠EBF=∠EMO .∴ △BEF ∽△MOE ,∴EM BEOMBF =, 即cacb BF +=221,∴c a bc BF 2+=. 解法2: 如图4-8,延长EO 与AD 交于点G ,则可得△AOG ≌△COF ,∴ AG=FC=b-BF ,∵ BF ∥AG ,∴AE BE AG BF =.即c a cBF b BF +=-, ∵ c a c bBF 2+= ∴ c a bcBF 2+=. 解法3: 延长EO 与CD 的延长线相交于N ,则△BEF 与△CNF 的对应边成比例,即CN BECF BF =. 解得c a bcBF 2+=.例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BDAC AB =. 分析 1 比例线段常由平行线而产生,因而研究比例线段问题,常应注意平行线的作用,在没有平行线时,可以添加平行线而促成比例线段的产生.此题中AD 为△ABC 内角A 的平分线,这里不存在平行线,于是可考虑过定点作某定直线的平行线,添加了这样的辅助线后,就可以利用平行关系找出相应的比例线段,再比较所证的比例式与这个比例式的关系,去探求问题的解决.证法1: 如图4—9,过C 点作CE ∥AD ,交BA 的延长线于E .在△BCE 中,∵ DA ∥CE ,∴ AE BADCBD =① 又∵ CE ∥AD ,∴ ∠1=∠3,∠2=∠4,且AD 平分∠BAC , ∵ ∠1=∠2,于是∠3=∠4,∴ AC=AE .代入②式得AC ABDC BD =. 分析2 由于BD 、CD 是点D 分BC 而得,故可过分点D 作平行线. 证法2: 如图4—10,过D 作DE ∥AC 交AB 于E ,则∠2=∠3. ∵ ∠1=∠2,∴ ∠1=∠3. 于是EA=ED .又∵DC BD EA BE =,∴ EA BE ED BE AC AB ==,∴CD BDAC AB =. 分析3 欲证式子左边为AB :AC ,而AB 、AC 不在同一直线上,又不平行,故考虑将AB 转移到与AC 平行的位置.证法3: 如图4—11,过B 作BE ∥AC ,交AD 的延长线于E ,则∠2=∠E . ∵ ∠1=∠2,∴ ∠1=∠E ,AB=BE .又∵AC BE DCBD =,∴ CD BDAC AB =. 分析4 由于AD 是∠BAC 的平分线,故可过D 分别作AB 、AC 的平行线,构造相似三角形求证. 证法4 如图4—12,过D 点作DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F . 易证四边形AEDF 是菱形.则 DE=DF .由△BDE ∽△DFC ,得DE BEDF BE DC BD ==. 又∵ AC AB DEBE =,∴ DC BDAC AB =.。