萃取设备错流萃取逆流萃取.ppt
合集下载
第四节 萃取与萃取设备

1.平衡相图 1.平衡相图
液相萃取传质是在两液相之间进行,其极限为相际平 液相萃取传质是在两液相之间进行, 体系, 衡。假设,原料液为二组分(A +B)体系,萃取剂为纯溶剂 假设,原料液为二组分(A +B)体系 (S); (S);则,液-液萃取的萃取相及萃取余相常为三元混合 S)。 物(A + B + S)。 三元混合物的平衡相图常用等边三角坐标或直角三角 坐标表示。 坐标表示。
二、萃取剂的选择
选择适合的萃取剂是保证萃取操作能够正常进行, 选择适合的萃取剂是保证萃取操作能够正常进行,且经济合理的关 键。在实际生产中,选择萃取剂需重点考虑如下几个方面的因素。 在实际生产中,选择萃取剂需重点考虑如下几个方面的因素。
1.萃取剂的选择性 1.萃取剂的选择性
萃取剂的选择性是指萃取剂 S 对原料液中溶质 A 及溶剂 B 两个组 分溶解能力的差异。 分溶解能力的差异。 若萃取剂 S 对溶质 A 的溶解能力比对溶剂B的溶解能力大得多,则 的溶解能力比对溶剂B的溶解能力大得多, 大得多, 大得多。 萃取相中 yA 比 yB 大得多,萃取余相中 xB 比 xA 大得多。为了定量地表 示萃取剂的选择性,可用萃取剂选择性系数β来描述。 示萃取剂的选择性,可用萃取剂选择性系数β来描述。即: β= 萃取相中A的质量分数/萃取相中B 萃取相中A的质量分数/萃取相中B的质量分数 萃取余相中A的质量分数/萃取余相中B 萃取余相中A的质量分数/萃取余相中B的质量分数 yA/yB xA/xB = yA/xA yB/xB = kA/kB
萃取余相 (R相) 萃取相 (E相)
在溶质 A 完全溶于溶剂 B 及萃取剂 S,但溶剂 B 与萃取剂 S 互不 相溶的情况下, 在两相中的分配关系与吸收类似。 相溶的情况下,溶质 A 在两相中的分配关系与吸收类似。 即: K• Y = K•X 或: K = Y/X = WA(Y)/W(萃取剂) 萃取剂) WA(X)/W(溶剂) 溶剂)
萃取课件专题知识课件

=K0 /(1 +10 pH - pK )
对于弱碱性电解质
K
K0
Kp
Kp H
=K0 /(1 +10 pK - pH )
K0-只与T、P有关; K-与T、P和pH有关 K可经过试验求出,而K0不能,可由公式求出。
有机溶剂旳选择
根据相同相溶旳原理,选择与目旳产物极性相近 旳有机溶剂为萃取剂,能够得到较大旳分配系数 (根据介电常数判断极性);
溶剂萃取概述
分液漏斗
有机相 水相
一般工业液液萃取过程
料液 (待分离物
质+杂质 萃 取
萃取液 (待分离物 质+少量杂质
洗 涤 剂
洗 涤
萃取剂 +稀释剂
杂质+少量 萃残液 待萃物质 (杂质)
反
萃 萃取剂+稀释剂
剂
(待返回使用)
待反 萃萃 物取 质
产物(待萃物质)
生物萃取与老式萃取相比旳特殊性
生物工程不同于化工生产,主要体现在生物 分离往往需要从浓度很稀旳水溶液中除去大 部分旳水,而且反应液中存在多种副产物和 杂质,使生物萃取具有特殊性。
青霉素旳分配平衡
弱电解质旳分配系数:
热力学分配系数K0 :萃取平衡时,单分子化 合物溶质在两相中浓度之比。
Kp=
弱酸性电解质K0= [AH]/[AH] 弱碱性电解质K0 = [B]/[B]
弱电解质旳表观分配系数K:
分配达平衡时,溶质在两相旳总浓度之比
对于弱酸性电解质
H K K0 K p H
亲水
亲油基团 亲油
亲水基团伸向水中,亲油基团伸向油中。
乳浊液类型
当将有机溶剂(通称为油)和水混在一起搅拌时,可
能产生两种形式的乳浊液。
第三章 溶剂萃取法分离稀土元素 稀土金属冶金 教学课件

2020/6/16
1 中性络合萃取体系
• 特点:
➢ 萃取剂为中性萃取剂,如醇、脂、醚、中性磷萃取剂 ➢ 萃取剂与被萃组分依靠配位键组成中性络合物 ➢ 被萃组分以中性分子形态被萃取
• 举例:
(RO)3P=O:
NO3
TBP萃取硝酸稀土
NO3 RE :OP(OR)3
(RO)3P=O:
NO3
3TBP (org) + RE3+(aq) +3NO3- (aq) =RE(NO3)3 ·3TBP (org)
2020/6/16
1 错流萃取
• 定义:一份料液依次与多份有机相接触的萃取方式 • 萃取过程示意图:
S0
S0
S0
F0
1 F1
2 F2
3
S0
n
Fn(纯B)
S1
S2
S3
Sn
F0—萃取料液;S0—空白有机相
• 萃取计算:φA =[A]n/[A]F =1/(1+EA)n;
φB =[B]n/[B]F =1/(1+EB)n
喹啉,脂肪酸、异构酸、环烷酸等 – 胺类萃取剂:伯胺、仲胺、叔胺、季铵盐
• 常用萃取剂与稀释剂
2020/6/16
2020/6/16
2020/6/16
2020/6/16
二、 萃取体系
• 萃取体系:被萃组分(含被萃物质的水溶液
)+萃取有机相(萃取剂+稀释剂+改性剂)
• 萃取体系的分类
1、中性络合萃取体系 2、酸性络合萃取体系 3、离子缔合萃取体系 4、协同萃取体系
2020/6/16
2 酸性络合萃取体系 • 特点
➢ 萃取剂为酸性萃取剂:酸性磷萃取剂、羧酸萃取剂、螯 合萃取剂等
1 中性络合萃取体系
• 特点:
➢ 萃取剂为中性萃取剂,如醇、脂、醚、中性磷萃取剂 ➢ 萃取剂与被萃组分依靠配位键组成中性络合物 ➢ 被萃组分以中性分子形态被萃取
• 举例:
(RO)3P=O:
NO3
TBP萃取硝酸稀土
NO3 RE :OP(OR)3
(RO)3P=O:
NO3
3TBP (org) + RE3+(aq) +3NO3- (aq) =RE(NO3)3 ·3TBP (org)
2020/6/16
1 错流萃取
• 定义:一份料液依次与多份有机相接触的萃取方式 • 萃取过程示意图:
S0
S0
S0
F0
1 F1
2 F2
3
S0
n
Fn(纯B)
S1
S2
S3
Sn
F0—萃取料液;S0—空白有机相
• 萃取计算:φA =[A]n/[A]F =1/(1+EA)n;
φB =[B]n/[B]F =1/(1+EB)n
喹啉,脂肪酸、异构酸、环烷酸等 – 胺类萃取剂:伯胺、仲胺、叔胺、季铵盐
• 常用萃取剂与稀释剂
2020/6/16
2020/6/16
2020/6/16
2020/6/16
二、 萃取体系
• 萃取体系:被萃组分(含被萃物质的水溶液
)+萃取有机相(萃取剂+稀释剂+改性剂)
• 萃取体系的分类
1、中性络合萃取体系 2、酸性络合萃取体系 3、离子缔合萃取体系 4、协同萃取体系
2020/6/16
2 酸性络合萃取体系 • 特点
➢ 萃取剂为酸性萃取剂:酸性磷萃取剂、羧酸萃取剂、螯 合萃取剂等
萃取与浸提

241混合澄清槽物料和萃取剂在混合器中借叫板作用而密切接触传质然后进入澄清器分离萃取相对于以澄清的混合液可以利用两相间的密度差进行重力沉降对于难分离的混合液可采用离心式澄清器加速两相的分离特点优点缺点结构简单操作方便运行稳定效率高设备占地面积大能耗较大设备费和操作费较高242填料萃取塔与吸收和蒸馏使用的填料塔基本相同塔内底部支撑板上充填一定高度的填料层重液作为连续相自塔顶引入轻液做为分散相自塔底进入逆流接触传质填料萃取塔填料层作用
到纯化或浓缩的单元操作叫做萃取
属于两相之间的传质过程
初步分离纯化技术
应用:
石油化工、湿法冶金、医药、食品、环境
固液萃取(浸取) 物理状态 液液萃取
有机溶液萃取
双水相萃取
液膜萃取 反胶束萃取
超临界萃取
分 物理萃取 萃取原理 化学萃取 分批萃取 操作方式 连续萃取 单级萃取 操作方式 多级萃取
第二种情况较常见,第三种情况应
避免,第一种情况较少
2.2.1 溶解度曲线与连接线
右图,为典型的平衡相图,表示 在一定温度和压力下,A、B、和
S三组分混合达平衡的相图,其
中B、S是部分互溶
图中,
溶解度曲线
共轭线与连接线 混溶点与两个相区
连接线倾斜,方向一致,但不平行
2.3 杠杆规则
如图所示,设点M为三组分混合物的总组成点,M 与料液F和萃取剂S之间,M与萃取相E和萃余相R 之间符合杠杆规则。即符合以下比例关系
采用以下模型:
假定在不溶性的多孔惰性固体 (A量)内部含有不被固体所吸附的溶质B。
溶质量B对所加溶剂量S而言,假定是在饱和溶解度以下。如果固体与
溶剂经过长时间的充分接触,则溶质完全溶解,并且固体空隙中的液体 浓度等于周围液体的浓度,这时液体的组成不随更长的接触时间而改变。 这种级接触则称为理论级。或称理论效。
到纯化或浓缩的单元操作叫做萃取
属于两相之间的传质过程
初步分离纯化技术
应用:
石油化工、湿法冶金、医药、食品、环境
固液萃取(浸取) 物理状态 液液萃取
有机溶液萃取
双水相萃取
液膜萃取 反胶束萃取
超临界萃取
分 物理萃取 萃取原理 化学萃取 分批萃取 操作方式 连续萃取 单级萃取 操作方式 多级萃取
第二种情况较常见,第三种情况应
避免,第一种情况较少
2.2.1 溶解度曲线与连接线
右图,为典型的平衡相图,表示 在一定温度和压力下,A、B、和
S三组分混合达平衡的相图,其
中B、S是部分互溶
图中,
溶解度曲线
共轭线与连接线 混溶点与两个相区
连接线倾斜,方向一致,但不平行
2.3 杠杆规则
如图所示,设点M为三组分混合物的总组成点,M 与料液F和萃取剂S之间,M与萃取相E和萃余相R 之间符合杠杆规则。即符合以下比例关系
采用以下模型:
假定在不溶性的多孔惰性固体 (A量)内部含有不被固体所吸附的溶质B。
溶质量B对所加溶剂量S而言,假定是在饱和溶解度以下。如果固体与
溶剂经过长时间的充分接触,则溶质完全溶解,并且固体空隙中的液体 浓度等于周围液体的浓度,这时液体的组成不随更长的接触时间而改变。 这种级接触则称为理论级。或称理论效。
溶剂萃取

则
A
EA 1
E n1 A
1
2.5 1 2.510 1
1.57 10 4
B 1 EB 1 0.5 0.5
b B A
0.5 1.57 10 4
3.18 103
PB
b b 1
3180 3180 1
99.97%
YB B 0.5 50%
例2 例1中的纯度是满意的,但收率太低, 如收率 提高到70%, 问纯度能达到多少?
79.4
PB
b b 1
79.4 79.4 1
98.7%
例3 在上题条件下, 问增加级数,能否使收率达 到70%,纯度达到99.95%?
解:纯度为99.95%, 则要求纯化倍数b等于
b B1 / A1 99.95 / 0.05 2000 B
BF / AF 0.5 / 0.5
A
A
B
b
0.70 2000
Yn
1 R
( X n1
X1) Yo
……
Y3
1 R
(X4
X1)
Yo
Y2
1 R
(X3
X1)
Yo
Y1
1 R
(X2
X1)
Yo
操作线方程
(通常假设Yo=0)
B A
D
1Hale Waihona Puke RCMCGabe-Thiele图解
显而易见,进入第n级的水相组分浓度Xf与离开 第n级的有机相浓度Yn为在操作线上的A点(Xf、 Yn),而离开第n级的水相组份浓度Xn与离开第n 级的有机相组份浓度Yn处于平衡状态,故应为过 A点的水平线与平衡线的交点B(Xn,Yn)。从B点 作垂直线交操作线于C,其坐标(Xn, Yn-1)表 示进入第n-1级的水相组份浓度Xn与离开第n-1 级的有机相组份浓度Yn-1。从C点作水平线交平 衡线与D,其坐标(Xn-1、Yn-1)代表离开该级 的水相和有机相平衡浓度,如此继续下去,一直 作到水相出口浓度接近于X1为止,所得之阶梯数, 即为所求理论级数。上图所画的阶梯数为3,即所 求理论级数为3 。
化工原理萃取PPT课件

M
0.6
0.8
B
0.8 0.6 0.4 0.2
S
三角形的三个顶点分别表示A、B、S三个纯组分。
三条边上的任一点代表某二元混合物的组成,不含 第三组分。E 点: xA =0.4, xB =0.6
组成表示法
A
A
0.8
0.2
0.8
0.2
0.6
0.4
E
0.4
M
0.6
0.2
0.8
0.6 E 0.4
0.2
0.4
D 1 CM 1
C
DM
D C CM DM
C
DM
M CD
4-1
C DM
D MC M CD
4-1a
二、三角形相图 (三元体系的液-液平衡关系)
按组分间互溶度的不同,可将三元混合液分为: (1) 溶质A可完全溶解于B及S中,而B、S不互溶; (2) 溶质A可完全溶解于B及S中,而B、S只能部分 互溶; (3) 溶质A与B完全互溶,B与S和A与S为二对部分 互溶组分。 通常,将(1)(2)中只有一对部分互溶组分的三 元溶合物体系称为第I类物质。 如丙酮(A)-水(B)-甲基异丁基酮(S) 醋酸(A)-水(B)-苯(C) 萃取中(I)类物系较普遍,故主要讨论该类物系的液 -液相平衡。
(1) M点为C与D点的和点,C点
为M点与D点的差点,D点
A
为M点与C点的差点。分点
与合点在同一条直线上,分
点位于合点的两边;
xAC
C
(2) 分量与合量的质量与直线上 相应线段的长度成比例,即:
xAM xAD
M D
B xSD xSM xSC
S
C / D DM CM
生物分离工程-第五章-萃取技术PPT课件

mCl
[R Cl - ] [Cl - ]
则
mAKeC mlCl1[H K 2][K H 1 K ]2 21
43
-化学萃取平衡之分配平衡(2)
二(2-乙基己基)磷酸萃取氨基酸为例,其所对应的离 子交换反应
A2(H2RA ) R(3H H R )
KeH[A[AR]([(HH3R]R[2)H])]
氨基酸的表观分配系数为
6
生物产品萃取根据分子量大小划分
小分子类 化合物相对分子量约小于1000,如氨基酸、 抗生素、维生素、有机酸等,采用有机溶 剂萃取
大分子类 相对分子量大于1000,如酶,抗体,蛋白 质等,有机溶剂不适用,可选用反胶团萃 取、双水相萃取等
7
工业上生产青霉素
大多采用醋酸丁酯为萃取剂,pH=1.8~2.2, 相比VO/VW=1/2~1/2.5,温度5℃,反萃取过 程采用碳酸氢钾或碳酸钾水溶液为反萃取剂。
A
A+
A+
AA+
A AClA
有机相
R+Cl-
RR++CA-l-
R+Cl-
R+Cl-
R+Cl-
42
化学萃取平衡之分配平衡
季胺盐萃取氨基酸为例,其所对应的离子交换反应
R C lA R A -C l
[RA-][Cl- ] KeCl [RCl- ][A- ]
氨基酸和氯离子对应的表观分配系数分别为
[R A- ] mA cA
51
2、双水相形成
当两种高分子聚合物之间存在相互排斥作 用时,即一种分子周围将聚集同种分子而 排斥异种分子,则在达到平衡时,就形成 分别富含不同聚合物的两相 。
4.3 萃取计算

原料 A+B 萃取剂 S 萃取相 E
萃余相 R
4.3.1 单级萃取
1、原溶剂和萃取剂部分互溶的体系(杠杆规则)
原料 A+B 萃取剂 S
萃取相 E
S用量的计算:
S = F(MF / MS)
R、E的计算:
萃余相 R
A E’m E’
R+E=F+S
R / E = ME / MR R’、E’组成计算:
F
B R’ R M
Y2 =
Y3 =
( B / S 1 )( X
( B / S 1 )( X
2
- X 1)
- X 2)
3
··· ··· ···
YN = ( B / S 1 )( X
N
- X
N
1
)
(4-8c)
12.3.2 多级错流萃取
(1)图解法
Y 1 = - ( B / S 1 )( X 1 - X F )
Y1
E1 E2 E3
(2)解析法
平衡线 Y=mX
1
Y 1 = mX
Y 1 = - ( B / S 1 )( X 1 - X F )
Y1
Y2 Y
E2 E3 E4
E1
E
mS X1 = X
F
/( B
1
+ 1)
萃取因数
令 b1=mS1/B ,则X1=XF/( b1 +1)
Y1 = mX
F
Y3 Y4
0
/( b1 + 1 )
/( b 1 + 1 )
例4-4 含丙酮20%(质量百分率,下同)的水溶液,流量 F=800kg/h,按错流萃取流程,以1,1,2-三氯乙烷萃取其中的丙酮, 每一级的三氯乙烷流量S1=320kg/h。要求萃余液中的丙酮含量降到 5%以下,求所需的理论级数和萃取相、萃余相的流量。操作温度为 25℃,此温度下的平衡数据示于下表。
萃余相 R
4.3.1 单级萃取
1、原溶剂和萃取剂部分互溶的体系(杠杆规则)
原料 A+B 萃取剂 S
萃取相 E
S用量的计算:
S = F(MF / MS)
R、E的计算:
萃余相 R
A E’m E’
R+E=F+S
R / E = ME / MR R’、E’组成计算:
F
B R’ R M
Y2 =
Y3 =
( B / S 1 )( X
( B / S 1 )( X
2
- X 1)
- X 2)
3
··· ··· ···
YN = ( B / S 1 )( X
N
- X
N
1
)
(4-8c)
12.3.2 多级错流萃取
(1)图解法
Y 1 = - ( B / S 1 )( X 1 - X F )
Y1
E1 E2 E3
(2)解析法
平衡线 Y=mX
1
Y 1 = mX
Y 1 = - ( B / S 1 )( X 1 - X F )
Y1
Y2 Y
E2 E3 E4
E1
E
mS X1 = X
F
/( B
1
+ 1)
萃取因数
令 b1=mS1/B ,则X1=XF/( b1 +1)
Y1 = mX
F
Y3 Y4
0
/( b1 + 1 )
/( b 1 + 1 )
例4-4 含丙酮20%(质量百分率,下同)的水溶液,流量 F=800kg/h,按错流萃取流程,以1,1,2-三氯乙烷萃取其中的丙酮, 每一级的三氯乙烷流量S1=320kg/h。要求萃余液中的丙酮含量降到 5%以下,求所需的理论级数和萃取相、萃余相的流量。操作温度为 25℃,此温度下的平衡数据示于下表。
食品分离技术(3)萃取技术1

疏水性 共价键化合物 弱极性或非极性
35
萃取百分率
E
溶质溶 在质 有的 机总 相量 中的量
mo mo mw
coVo coVo cwVw
co
co cw cw Vw
Vo
D DR
其中
R
Vw Vo
称为相比
当 R = 1 时,
E
D D 1
D
1 10 100 1000
E % 50 91 99 99.9
在实际工作中,人们所关注的是被萃物分配在两 相中的实际总浓度各为多少,而不是它们的具体存 在的型体。
分配比
D CA(有机 ) C(A 水)
即,在一定条件下,当达到萃取平衡时,被萃物 质在有机相和在水相的总浓度之比。
9
分配系数和分配比的比较
●概念不同,关注的对象有差别 ●两者有一定的联系
KD表示在特定的平衡条件下,被萃物在两相中的 有效浓度(即分子形式一样)的比值;而D表示实际 平衡条件下被萃物在两相中总浓度(即不管分子以 什么形式存在)的比值。分配比随着萃取条件变化 而改变。
丁酯逆流萃取
萃取液
乳酸沉淀
分解转碱
红霉素乳酸盐 调 pH9.8, 溶于丙酮 红霉素碱
加水
红霉素碱成品
结晶
18
2. 温度T
◆ T↑,分子扩散速度↑,故萃取速度↑ ◆ T影响分配系数
例:pen ― T↑ 水中的溶解度↑ ∴ 萃取时 T↓使K↑;反萃时 T↑使K反↑ 红霉素、螺旋霉素― T↑ 水中的溶解度↓ ∴ 萃取时 T ↑使K ↑ ;反萃时 T ↓使K反↓
16
举例:
青霉素 ( pK2.75 ) 工业钾盐 :
预处理及过滤
发酵液
滤洗液
35
萃取百分率
E
溶质溶 在质 有的 机总 相量 中的量
mo mo mw
coVo coVo cwVw
co
co cw cw Vw
Vo
D DR
其中
R
Vw Vo
称为相比
当 R = 1 时,
E
D D 1
D
1 10 100 1000
E % 50 91 99 99.9
在实际工作中,人们所关注的是被萃物分配在两 相中的实际总浓度各为多少,而不是它们的具体存 在的型体。
分配比
D CA(有机 ) C(A 水)
即,在一定条件下,当达到萃取平衡时,被萃物 质在有机相和在水相的总浓度之比。
9
分配系数和分配比的比较
●概念不同,关注的对象有差别 ●两者有一定的联系
KD表示在特定的平衡条件下,被萃物在两相中的 有效浓度(即分子形式一样)的比值;而D表示实际 平衡条件下被萃物在两相中总浓度(即不管分子以 什么形式存在)的比值。分配比随着萃取条件变化 而改变。
丁酯逆流萃取
萃取液
乳酸沉淀
分解转碱
红霉素乳酸盐 调 pH9.8, 溶于丙酮 红霉素碱
加水
红霉素碱成品
结晶
18
2. 温度T
◆ T↑,分子扩散速度↑,故萃取速度↑ ◆ T影响分配系数
例:pen ― T↑ 水中的溶解度↑ ∴ 萃取时 T↓使K↑;反萃时 T↑使K反↑ 红霉素、螺旋霉素― T↑ 水中的溶解度↓ ∴ 萃取时 T ↑使K ↑ ;反萃时 T ↓使K反↓
16
举例:
青霉素 ( pK2.75 ) 工业钾盐 :
预处理及过滤
发酵液
滤洗液
化工原理课件(天大版)第七章 萃取

Ys XF 1 K) n ln( YS ln( 1 Am ) Xn K
2013-5-19
33
3、多级逆流萃取的流程与计算
1、多级逆流萃取的流程
2013-5-19
34
2、多级逆流萃取的计算
1)萃取剂与稀释剂部分互溶的体系
E1 F R1 R2 M
E2 E3
△
RN
2013-5-19
35
F S M E1 R N
Yn Yo B S N ( X N X N 1 )
——错流萃取每一级的操作线方程
2013-5-19
31
E
Y1 Y2 Y0 O
E1 E2
-B/S2
-B/S3 X2 U X1
-B/S1
V XF
2013-5-19
32
b)解析法 分配曲线: 设: A m
Y KX
KS B
——萃取因子
R
MR ME
S MF F MS
萃余液
2013-5-19
R
萃余相
最小溶剂比
S M'F = F min M ' S
18
7.1.6 、萃取剂的选择
1、萃取剂的选择性和选择性系数
1)萃取剂的选择性
A在萃取相中的质量分率 B在萃取相中的质量分率
A在萃余相中的质量分率 B在萃余相中的质量分率
(X R X F )
——单级萃取的操作线方程
Y
Y1 E1
B S
X1
2013-5-19
XF X
27
(1) 设计型问题。 已知原料液处理量 和组成,给定溶剂 用量和组成 , 在图中 可确定C(XF,Y0), 按斜率(-B/S) 作操作 线, 与分配曲 线的交点D即为该 过程获得的萃取相 和萃余相的组成点 。 (2) 操作型问题。规定单级萃取的分离要求,如萃余相 组成X,求所需溶剂用量,可在图中根据X确定D(X,Y), 连接C、D得到操作线CD,根据操作线斜率即可求出所需 的溶剂用量。
《化工单元操作》萃取与萃取设备

x xmin
R2
M
当S=Smin时: y ymax
B R1
E1 S
x xmax
单级萃取的溶剂范围:Smin<S<Smax
4、萃取液的最大浓度
当S=Smin时,E的浓度yA最大,但y'A一般不是最大。
y'A= y'Amax时溶剂用量的求法:
A
过S点作溶解度曲线的切线得点E,
求得R,得M点,于是得:
已知F、S可确定M,由M、RN可确定E1 由 qmE1 qmF qmS qmRN qmD 可确定 D 点。
A
F
E1
R'N RN
M
D
B
S
由 E1 通过平衡关系确定 R1,R1 和 D 连线确定 E2
如此交替直至x x iN
,则
N
为理论级数。
A
F SM RN E1 (差点 ) → R1
F S RN E1 D
加入的B 、S适量,搅拌均匀, 静止分层,得到互呈平衡的 液-液两相(共轭相),得到一 组平衡数据。
• 再加入一定量A,搅拌均匀, 静止分层,得到互呈平衡的 液-液两相(共轭相),得到另 一组平衡数据……...
(1)总组成点在两相区内; (2)能得到完整的平衡数据。
A
K En
Rn R2
E2
R1
E1
M点是F、S的和点,也是E1、RN的和点
确定E
1
依
F,S
确定
M,依
M
和 RN
,确定E 1
A
F
R'N B
RN
利用杠杆定律:
qmE1
MRN E1RN
qmM
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、分类
(二)混合设备
1、混合管
(1)工作原理
萃取剂及料液在一定流速下进入管道一端,混合后从 另一端导出,依靠管内特殊设计的内部单元和流体流 动实现液体混合。
强迫湍流状态;料液在管内平均停留时间10~20s。
(2)特点
混合管的萃取效果高于混合罐,且为连续操作。流程 简单、结构紧凑、能耗小、萃取效率高。适于各种黏 度的流体。
罐中存在着返混、 死角及短路情况, 两液相间
不可能达到平衡, 因此,
应由以下校正后
的公式求得:
即
分散相 (一般定义体积小的相为分散相, 体 积大的相为连续相) 液滴直径 可由下式 求得:
所以, 萃取相浓度、 萃余相浓度为:
萃取因数: 产物得率:
三、离心分离机中分界面的计算
青霉素发酵过滤液进入第一级萃取罐,在此与从第二级分离器来的萃 取相(含产品青霉素)混合萃取,然后流入第一级分离器分成上下层,上 层为萃取相,富含目的产物,送去蒸馏回收溶剂和产物进一步精制;下一 层为萃余相,含目的产物浓度比新鲜料液低得多,送第二级萃取;如此经 三级萃取后,最后一级的萃余相作为废液排走。
设离心机的角速度为ω, 质量为dm的液体在 半径r处所受到的离心力为:
且
此处h为离心机转筒高度。 于是,
在r处回转面上所受压强为: 则对轻液相,上式积分为:
对重液相,上式积分为: 其中p1、p2分别为出口处轻液相、 重液相内
界面压强, 由于出口与大气相通, 则 p1 = p2 =大气压强。
1、萃取体系的组成及功能
液-液萃取设备应包括3个部分:混合设备、 分离设备和溶剂回收设备。
混合设备:使料液与萃取剂充分混合形成乳 浊液,欲分离的生物产品自料液转入萃取剂 中。
分离设备:将萃取后形成的萃取相和 萃余相进行分离。
溶剂回收设备:把萃取液中的生物产 品与萃取溶剂分离并加以回收。
1
100%
99.32%
由此可见,当萃取剂用量相同时,二级萃取收 率比单级萃取收率要高。也就是说,在萃取剂 用量一定的情况下,萃取次数越多,则萃取越 完全。
多级错流萃取流程的特点:每级均加新鲜溶剂,
故溶剂消耗量大,得到的萃取液产物平均浓度
较稀,但萃取较完全。
(三)多级逆流萃取
在第一级中加入料液(F),萃余液顺 序作为后一级的料液,而在最后一级加入 萃取剂(S),萃取液顺序作为前一级的萃 取剂。由于料液移动的方向和萃取剂移动 的方向相反,故称为逆流萃取。
的醋酸丁酯,第二级用1/10体积的醋酸丁酯,
则
E1
E2
3355111/ /410
8.75
3.5
11Biblioteka 1
8.75
1
13.5
1
100%
97.72%
二、混合设备的计算
(一)平衡时出口浓度
上式假设混合罐内两液相间达到完全平衡。
(二)实际出口浓度计算
实际情况下, 由于混合时间的限制, 加之
(三)混合清澄槽
混合清澄槽是一种单件组合式萃取设备, 每一级均由一个混合器与一个澄清器组成。
优点:级数可增减,既可连续操作也可间 歇操作,级效率高,操作稳定,操作弹性 大,结构简单;缺点是动力消耗大,占地 面积大。
原料液及 溶剂同时加入 混合器内,经 搅拌后流入澄 清器,进行沉 降,即重相沉 至底部形成重 相层,而轻相 浮入器上部, 形成轻相层。 轻相层及重相 层分别由其排 出口引出。
萃余率:
n
1
E1 1E2 1En
1 100%
理论收率
n
1
E 1n
100%
1n
1
E
1
1n
100%
E 1n E 1n
1
100%
红霉素在pH 9.8时的分配系数(醋酸丁酯/水) 为44.5,若用1/2体积的醋酸丁酯进行单级萃取,则:
此法与错流萃取相比,萃取剂耗量较少, 因而萃取液平均浓度较高。
多级逆流萃取示意图
L1
L2
S
L3
混 分混 分混 分 合 离合 离合 离 器 器器 器器 器
F
第一级
第二级
R3 第三级
青霉素的多级逆流萃取
第一级
第二级
第三级
含青霉素乙酸戊酯
青霉素滤液
废液 乙酸戊脂
在三级逆流萃取装置中用乙酸戊酯从澄清的发酵液中分离青霉素
即不发生缔合或离解。
③萃取工艺操作方式
单级萃取 多级错流萃取 多级萃取 多级逆流萃取
2、液-液萃取的分类
(2)化学萃取
在萃取过程中常伴随有化学反应,包括相内 反应与相界面上的反应。这类萃取统称为化 学萃取(反应萃取)。
根据溶质与萃取剂之间发生的化学反应机理, 大致可分为五类,即络合反应、阳离子交换 反应、离子缔合反应、加合反应和带同萃取 反应等。
S
萃取器 F
分离器 R
回收器 P(产物)
萃取因素E为:
E
萃取相中溶质总量 萃余相中溶质总量
C1VS C 2VF
K
VS VF
K
1 m
式中 :VF—料液体积;Vs—萃取剂的体积; C1—溶质在萃取液的浓度; C2—溶质在萃余相的浓度; K—表观分配系数; m—浓缩倍数
萃余率:
萃余液中溶质总量 原始料液中溶质总量
E 44.5 1/ 2 22.25 1
理论收率 1 1 22.25 100% 95.7%
22.25 1
若用1/2体积的醋酸丁酯进行二级错流萃取,则
E1 E2 44.5 1/ 4 11.125 1
理论收率
1
11.125 12 1 11.125 111.125
5、双水相萃取
(5)特点
操作条件温和,在常温常压下进行; 两相的界面张力小,一般在10-4N/cm量级,
两相易分散; 两相的相比随操作条件而变化; 上下两相密度差小,一般在10 g/L,因此两相
分离较困难; 易于连续操作,处理量大,成本较低,适合
工业应用。
二、萃取设备
(一)组成、功能及分类
5、双水相萃取
(1)概念
双水相现象:当两种聚合物或一种聚合物与 一种盐溶于同一溶剂时,由于聚合物之间或 聚合物与盐之间的不相容性,当聚合物或无 机盐浓度达到一定值时,就会分成不互溶的 两相。
双水相萃取:利用物质在不相溶的两水相间 分配系数的差异进行萃取的方法。
5、双水相萃取
(2)可以构成双水相的体系有:
缺点:结构复杂,制造困难,造价高, 能耗大
芦 威 式 离 心 萃 取 器
三、液-液萃取操作要点
1、选择合适的分散相 2、选择合适的各相流速,使各相能够充分
分散 3、开车前,应先确认系统密闭性良好 4、开车后,一般先开启连续相,后开启分
散相 5、萃取设备应定期检查,直接接触腐蚀性
100%
1 100% E 1
理论收率:
1 1 1 100% E 100%
E 1
E 1
例如:
林可霉素在20℃和pH10.0时分配系数(丁醇/水)
为18。用等量的丁醇萃取料液中的林可霉素,计
算可得理论收率
1
18
100% 94.7%
18 1
若改用1/3体积丁醇萃取, E 18 1/ 3 6
(四)分离设备
1、离心分离设备
高速离心机:碟片式,4000~6000rpm 超速离心机:管式,>10000rpm 三相倾析式:固体、重液、轻液
2、离心萃取设备(萃取分离同设备)
重液、轻液两相快速充分混合并快速分 离
分为逐级接触式和微分接触式两类
优点:结构紧凑,生产强度高,物料停 留时间短、分离效果好
液体的部件应及时更换。
第2节 液-液萃取过程的计算
一、萃取方法和理论收率的计算
①混合:将料液和萃取剂在混合设备中充分 混合,使溶质自料液转入萃取剂中。
②分离:将混合液通过离心分离设备或其他 方法分成萃取相和萃余相。
③溶剂回收。
工业萃取的流程:
分离器(如碟片式离心机)
混合 分离 溶剂回收
混合器 (如搅拌混合器)
溶剂回收装置 (如蒸馏塔)
工业上的萃取过程按操作方式分类,可 分为: 单级萃取: 多级萃取:又可分为错流萃取和逆流萃取。
(一)单级萃取
一个混合器、 一个分离器
使用一个混合器和一个分离器的萃取操作:
料液F与萃取剂S一起加入混合器内搅拌混合萃取; 达到平衡后的溶液送到分离器内分离得到萃取相L和萃余相R; 萃取相送到回收器,萃余相R为废液; 在回收器内产物与溶剂分离(如蒸馏、反萃取等),溶剂则 可循环使用。
2、喷射式混合器
(1)类型及作用
弯头交错喷嘴混合器、同向射流混合器、 孔板射流混合器
弯头交错喷嘴混合器
同向射流混合器
两液相已在器外汇合, 然后进入器内经喷嘴或 孔板后,加强了湍流程 度,从而提高了萃取效 率。
孔板射流混合器
(2)特点
喷射式混合器是一种体积小效率高的 混合装置,特别适用于低黏度、易分 散的料液。这种设备投资小,但需要 料液在较高的压力下进入混合器。
理论收率:
1
1 6 100% 85.7%
6 1
可见:当分配系数相同而萃取剂用量减少时,其萃取率 下降。
(二)多级错流萃取
料液经萃取后,萃余液再与新鲜萃取剂 接触,再进行萃取。
第一级的萃余液进入第二级作为料液, 并加入新鲜萃取剂进行萃取;第二级的 萃余液再作为第三级的料液,以此类推。