磁场区域的最小面积问题
高三物理试卷带答案解析
高三物理试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,相距l的两小球A、B位于同一高度h(l,h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰2.如图为氢原子能级示意图的一部分,则氢原子A.从能级跃迁到能级比从能级跃迁到能级辐射出电磁波的波长长B.从能级跃迁到能级比从能级跃迁到能级辐射出电磁波的速度大C.处于不同能级时,核外电子在各处出现的概率是一样的D.从高能级向低能级跃迁时,氢原子核一定向外放出能量3.如图所示,某段滑雪雪道倾角为300,总质量为m的滑雪运动员从距底端高为h处的雪道上由静止开始匀加速下滑,加速度为。
运动员从上向下滑到底端的过程中( )A.合外力做功为B.增加的动能为C.克服摩擦力做功为D.减少的机械能为水平抛出,不计空气阻力。
则4.如图所示,AB为竖直放置的半圆环ACB的水平直径,C为环上的最低点,环半径为R。
一个小球从A点以速度v下列判断正确的是A.要使小球掉到环上时的竖直分速度最大,小球应该落在BC之间B.即使v取值不同,小球掉到环上时的速度方向和水平方向之间的夹角也相同C.若v取值适当,可以使小球垂直撞击半圆环D.无论v取何值,小球都不可能垂直撞击半圆环5.下列说法中正确的是A.水可以浸润玻璃,水银不能浸润玻璃B.热管是利用升华和汽化传递热量的装置C.布朗运动是指在显微镜下直接观察到的液体分子的无规则运动。
D.一般说来物体的温度和体积变化时它的内能都要随之改变6.如图所示,光滑水平地面上固定一带光滑滑轮的竖直杆,用轻绳系着小滑块绕过滑轮.现用恒力Fl 水平向左拉滑块的同时,用恒力F2拉右侧绳端,使滑块沿水平面从A点起由静止开始向右运动,经过B后至C点.若AB=BC,下列说法不正确的是()A.从A点至B点F2做的功小于从B点至C点F2做的功B.从A点至B点F2做的功大于从B点至C点F2做的功C.从A点至C点F2做的功可能等于滑块克服F1做的功D.从A点至C点F2做的功可能大于滑块克服Fl做的功7.如图所示,长为L的直杆一端可绕固定轴无摩擦转动,另一端靠在表面光滑的竖直挡板上,以水平速度v向左匀速运动。
精准备考(第89期)——波粒二象性-2023届高考物理真题分类整合与培优强基试题精选
精准备考(第89期)——波粒二象性一、真题精选(高考必备)1.(2021·辽宁·高考真题)赫兹在研究电磁波的实验中偶然发现,接收电路的电极如果受到光照,就更容易产生电火花。
此后许多物理学家相继证实了这一现象,即照射到金属表面的光,能使金属中的电子从表面逸出。
最初用量子观点对该现象给予合理解释的科学家是()A.玻尔B.康普顿C.爱因斯坦D.德布罗意2.(2022·湖南·统考高考真题)关于原子结构和微观粒子波粒二象性,下列说法正确的是()A.卢瑟福的核式结构模型解释了原子光谱的分立特征B.玻尔的原子理论完全揭示了微观粒子运动的规律C.光电效应揭示了光的粒子性D.电子束穿过铝箔后的衍射图样揭示了电子的粒子性3.(2011·江苏·高考真题)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是()A.B.C.D.4.(2022·天津·高考真题)(多选)不同波长的电磁波具有不同的特性,在科研、生产和生活中有广泛的应用。
a、b两单色光在电磁波谱中的位置如图所示。
下列说法正确的是()A .若a 、b 光均由氢原子能级跃迁产生,产生a 光的能级能量差大B .若a 、b 光分别照射同一小孔发生衍射,a 光的衍射现象更明显C .若a 、b 光分别照射同一光电管发生光电效应,a 光的遏止电压高D .若a 、b 光分别作为同一双缝干涉装置光源时,a 光的干涉条纹间距大5.(2022·河北·高考真题)如图是密立根于1916年发表的钠金属光电效应的遏止电压c U 与入射光频率ν的实验曲线,该实验直接证明了爱因斯坦光电效应方程,并且第一次利用光电效应实验测定了普朗克常量h 。
由图像可知( )A .钠的逸出功为c h νB .钠的截止频率为148.510Hz ⨯C .图中直线的斜率为普朗克常量hD .遏止电压c U 与入射光频率ν成正比 6.(2020·江苏·统考高考真题)“测温枪”(学名“红外线辐射测温仪”)具有响应快、非接触和操作方便等优点。
圆形磁场中的几个典型问题
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
高考物理二轮总复习课后习题 考前热身练 能力题提分练(一)
能力题提分练(一)一、单项选择题1.(山东临沂二模)如图所示,A、B、C是等边三角形的三个顶点,O为该三角形的中心,在A点和B点分别固定电荷量均为q的正点电荷,在O点固定某未知点电荷q'后,C点的电场强度恰好为零。
则O点处的点电荷q'为( )A.负电荷,电荷量为-qqB.负电荷,电荷量为-√33C.正电荷,电荷量为qD.正电荷,电荷量为√3q2.(山东青岛二模)如图所示,高速公路上一辆速度为90 km/h的汽车紧贴超车道的路基行驶。
驾驶员在A点发现刹车失灵,短暂反应后,控制汽车通过图中两段弧长相等的圆弧从B点紧贴避险车道左侧驶入。
已知汽车速率不变,A、B两点沿道路方向距离为105 m,超车道和行车道宽度均为3.75 m,应急车道宽度为2.5 m,路面提供的最大静摩擦力是车重的12,汽车转弯时恰好不与路面发生相对滑动,重力加速度g取10 m/s2,驾驶员的反应时间为( )A.1.6 sB.1.4 sC.1.2 sD.1.0 s3.如图所示,匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中实线所示,a、b、c、d四点共线,ab=2ac=2ae, fe与ab平行,且ae与ab成60°角。
一粒子束在纸面内从c点垂直于ac射入磁场,粒子质量均为m、电荷量均为q(q>0),具有各种不同速率。
不计重力和粒子之间的相互作用。
在磁场中运动时间最长的粒子,其运动时间为( )A.3πm2qB B.4πm3qBC.5πm4qBD.6πm5qB4.(湖南长沙二模)如图甲所示,曲面为四分之一圆弧、质量为m0的滑块静止在光滑水平地面上,一光滑小球以某一速度水平冲上滑块的圆弧面的最下端,且没有从滑块上端冲出去,若测得在水平方向上小球与滑块的速度大小分别为v1、v2,作出图像如图乙所示,重力加速度为g,不考虑任何阻力,则下列说法错误的是( )A.小球的质量为bam0B.小球运动到最高点时的速度为aba+bC.小球能够上升的最大高度为a 22(a+b)gD.若a>b,小球在与滑块分离后向左做平抛运动二、多项选择题5.(山东临沂二模)如图所示,两个半圆柱A、B紧靠着静置于水平地面上,其上有一光滑圆柱C,三者半径均为R。
专项练习--磁场地最小面积求解
25题练习〔3〕--磁场的最小面积1.如以下图,第四象限内有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为1.5×103 V/m,B 1大小为0.5 T ;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场,磁场的下边界与x 轴重合.一质量m =1×10-14 kg,电荷量q =2×10-10 C 的带正电微粒以某一速度v 沿与y 轴正方向60°角从M 点射入,沿直线运动,经P 点后即进入处于第一象限内的磁场B 2区域.一段时间后,微粒经过y 轴上的N点并与y 轴正方向成60°角的方向飞出.M 点的坐标为<0,-10>,N点的坐标为<0,30>,不计微粒重力,g 取10 m/s 2.如此求:<1>微粒运动速度v 的大小;<2>匀强磁场B 2的大小;<3>B 2磁场区域的最小面积.解析:<1>带正电微粒在电场和磁场复合场中沿直线运动,qE =qvB 1,解得v =E/B 1=3×103 m/s.<2>画出微粒的运动轨迹如图,粒子做圆周运动的半径为R =错误! m.由qvB 2=mv 2/R,解得B 2=3错误!/4 T.<3>由图可知,磁场B 2的最小区域应该分布在图示的矩形PACD 内,由几何关系易得PD =2Rsin 60°=20 cm =0.2 m,PA =R<1-cos60°>=错误!/30 m.所以,所求磁场的最小面积为S =PD ·PA =错误! m 2.答案:<1>3×103 m/s <2>错误! T<3>错误! m 22.如图甲所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xoy 平面内有与y 轴平行的匀强电场,在半径为R 的圆形区域内加有与xoy 平面垂直的匀强磁场.在坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射具有一样质量m 、电荷量q 〔0>q 〕和初速为0v 的带电粒子.重力加速度大小为g.〔1〕当带电微粒发射装置连续不断地沿y 轴正方向发射这种带电微粒时,带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x 轴正方向运动.求电场强度和磁场强度的大小和方向.〔2〕调节坐标原点0处的带电微粒发射装置,使其在xoy 平面内不断地以一样的速率v 0沿不同方向将这种带电微粒射入第1象限,如图乙所示.现要求带电微粒最终都能平行于x 轴正方向运动,如此在保证匀强电场、匀强磁场的强度和方向不变的条件下,应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积.解〔1〕由题目中"带电粒子从坐标原点O 处沿y 轴正方向进入磁场后,最终沿圆形磁场区 域的水平直径离开磁场并继续沿x 轴正方向运动〞可知,带电微粒所受重力与电场力平衡.设电场强度大小为E,由平衡条件得:qE mg =1分 N ∴q mg E =1分 电场方向沿y 轴正方向 带电微粒进入磁场后,做匀速圆周运动,且圆运动半径r=R.设匀强磁场的磁感应强度大小为B.由牛顿第二定律得:R mv B qv 200=1分 ∴qR mv B 0=1分 磁场方向垂直于纸面向外1分〔2〕设由带电微粒发射装置射入第Ⅰ象限的带电微粒的初速度方向与x 轴承夹角θ, 如此θ满足0≤2πθ<,由于带电微粒最终将沿x 轴正方向运动,故B 应垂直于xoy 平面向外,带电微粒在磁场内做半径为qBmv R 0=匀速圆周运动. 由于带电微粒的入射方向不同,假如磁场充满纸面,它们所对应的运动的轨迹如以下图.2分为使带电微粒经磁场偏转后沿x 轴正方向运动.由图可知,它们必须从经O 点作圆运动的各圆的最高点飞离磁场.这样磁场边界上P 点的坐标P 〔x,y 〕应满足方程:θsin R x =,)cos 1(θ-=R y ,所以磁场边界的方程为:222)(R R y x =-+2分由题中0≤2πθ<的条件可知, 以2πθ→的角度射入磁场区域的微粒的运动轨迹即为所求磁场的另一侧的边界.2分因此,符合题目要求的最小磁场的X 围应是圆222)(R R y x =-+与圆222)(R y R x =+-的交集局部〔图影局部〕.1分由几何关系,可以求得符合条件的磁场的最小面积为:22202min )12(B q v m S -=π1分 3.如以下图,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向内的有界圆形匀强磁场区域〔图中未画出〕;在第二象限内存在沿x 轴负方向的匀强电场.一粒子源固定在x 轴上的A 点,A 点坐标为〔-L,0〕.粒子源沿y 轴正方向释放出速度大小为v 的电子,电子恰好能通过y 轴上的C 点,C 点坐标为〔0,2L 〕,电子经过磁场偏转后方向恰好垂直ON,ON 是与x 轴正方向成15°角的射线.〔电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.〕求:〔1〕第二象限内电场强度E 的大小.〔2〕电子离开电场时的速度方向与y 轴正方向的夹角θ.〔3〕圆形磁场的最小半径R min .解:〔1〕22mv EeL〔2〕=45°〔3〕电子的运动轨迹如图,电子在磁场中做匀速圆周运动的半径电子在磁场中偏转120°后垂直于ON射出,如此磁场最小半径:由以上两式可得:4.〔某某适应性测试>在如右图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O 相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m.现从坐标为<-0.2m,-0.2m>的P点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.<1>求该带电粒子射出电场时的位置坐标;<2>为了使该带电粒子能从坐标为<0.1m,-0.05m>的点回到电场后,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.解析:<1>带正电粒子在磁场中做匀速圆周运动,有qv0B=m错误!解得r=0.20m=R根据几何关系可知,带电粒子恰从O点沿x轴进入电场,带电粒子做类平抛运动.设粒子到达电场边缘时,竖直方向的位移为y,有l=v0t,y=错误!·错误!t2联立解得y=0.05m所以粒子射出电场时的位置坐标为<0.1m,0.05m>.<2>粒子飞离电场时,沿电场方向速度v y=at=5.0×103m/s=v0粒子射出电场时速度v=错误!v0由几何关系可知,粒子在正方形区域磁场中做圆周运动半径r′=0.05错误!m由qvB′=m错误!,解得B′=4T正方形区域最小面积S=<2r′>2解得S=0.02m2.答案:<1><0.1m,0.05m> <2>0.02m25.如以下图,在坐标系第一象限内有正交的匀强电、磁场,电场强度E=1.0×103 V/m,方向未知,磁感应强度B=1.0 T,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B′<图中未画出>.一质量m=1×10-14 kg、电荷量q=1×10-10 C的带正电粒子以某一速度v沿与x轴负方向成60°角的方向从A点进入第一象限,在第一象限内做直线运动,而后从B点进入磁场B′区域.一段时间后,粒子经过x轴上的C点并与x轴负方向成60°角飞出.A点坐标为<10,0>,C点坐标为<-30,0>,不计粒子重力.<1>判断匀强电场E的方向并求出粒子的速度v.<2>画出粒子在第二象限的运动轨迹,并求出磁感应强度B′.<3>求第二象限磁场B′区域的最小面积.解析<1>粒子在第一象限内做直线运动,速度的变化会引起洛伦兹力的变化,所以粒子必做匀速直线运动.这样,电场力和洛伦兹力大小相等,方向相反,电场E的方向与微粒运动的方向垂直,即与x轴正向成30°角斜向右上方.由平衡条件有Eq=Bqv得v=错误!=错误! m/s=103 m/s<2>粒子从B点进入第二象限的磁场B′中,轨迹如图粒子做圆周运动的半径为R,由几何关系可知R=错误! cm=错误! cm由qvB′=m错误!,解得B′=错误!=错误!,代入数据解得B′=错误! T.<3>由图可知,B、D点应分别是粒子进入磁场和离开磁场的点,磁场B′的最小区域应该分布在以BD为直径的圆内.由几何关系得BD=20 cm,即磁场圆的最小半径r=10 cm,所以,所求磁场的最小面积为S=πr2=3.14×10-2 m2答案<1>与x轴正向成30°角斜向右上方103 m/s <2>运动轨迹见解析图错误! T <3>3.14×10-2 m26.如图甲所示,在xOy平面内有足够大的匀强电场,电场方向竖直向上,电场强度E=40 N/C,在y轴左侧平面内有足够大的瞬时磁场,磁感应强度B1随时间t变化的规律如图乙所示,15π s后磁场消失,选定磁场垂直纸面向里为正方向.在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3 m的圆形区域<图中未画出>,且圆的左侧与y轴相切,磁感应强度B2=0.8 T.t=0时刻,一质量m=8×10-4 kg、电荷量q=2×10-4 C的微粒从x轴上x P=-0.8 m处的P点以速度v=0.12 m/s向x轴正方向入射.<g取10 m/s2,计算结果保存两位有效数字><1>求微粒在第二象限运动过程中离y轴、x轴的最大距离.<2>假如微粒穿过y轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标<xy>.解析<1>因为微粒射入电磁场后受到的电场力F=Eq=8×10-3 N,G=mg=8×10-3 N电F=G,所以微粒在洛伦兹力作用下做匀速圆周运动电因为qvB1=m错误!所以R1=错误!=0.6 mT=错误!=10π s从图乙可知在0~5 π s内微粒向左做匀速圆周运动在5π s~10π s内微粒向左匀速运动,运动位移x=v错误!=0.6π m1在10π s~15π s内,微粒又做匀速圆周运动,15π s以后向右匀速运动,之后穿过y轴.所以,离y轴的最大距离s=0.8 m+x+R1=1.4 m+0.6π m≈3.3 m1离x轴的最大距离s′=2R1×2=4R1=2.4 m<2>如图,微粒穿过圆形磁场要求偏转角最大,〔因为R=2r〕入射点A与出射点B的连线必须为磁场圆的直径因为qvB2=错误!所以R2=错误!=0.6 m=2r所以最大偏转角θ=60°所以圆心坐标x=0.30 my=s′-r cos 60°=2.4 m-0.3 m×错误!≈2.3 m,即磁场的圆心坐标为<0.30,2.3>答案<1>3.3 m,2.4 m <2><0.30,2.3>7.如以下图,虚线MO与水平线PQ相较于O点,二者夹角θ=300,在MO右侧某个区域存在着磁感应强度为B、垂直纸面向里的匀强磁场,在MO左侧存在着垂直纸面向里的另一匀强磁场,磁感应强度为B’.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v〔0≤v≤EB〕垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:〔1〕磁场区域的最小面积.〔2〕速度最大的粒子从O开始射入磁场至返回水平线POQ所用的时间.。
18 磁场最小面积问题—高中物理三轮复习重点题型考前突破
一、磁场形状为圆状的最小面积计算1.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。
现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(3l6,-l)射出,速度沿x轴负方向,不计电子重力。
求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?解析(1)设电子在电场中运动的加速度为a,时间为t,离开电场时沿y轴方向的速度大小为v y,则a=eE mv y=atl=v0tv0=v y tan 30°解得E=3m v20 el。
(2)设轨迹与x轴的交点为D,OD距离为x D,则x D=0.5l tan 30°x D=3l 6所以DQ平行于y轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ上,电子运动轨迹如图所示。
设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r , 则v 0=v sin 30° r =m v eB =2m v 0eB r +r sin 30°=l (有r =l3)t =13TT =2πm eB ⎝ ⎛⎭⎪⎫或T =2πr v =πl 3v 0解得B =6m v 0el ,t =πl9v 0。
(3)以切点F 、Q 为直径的圆形有界匀强磁场区域的半径最小,设为r 1,则 r 1=r cos 30°=3r 2=3l6S =πr 21=πl 212。
答案 (1)3m v 20el (2)6m v 0el ,πl 9v 0(3)πl 2122.如图所示,在直角坐标系xoy 中,第Ⅰ象限存在沿y 轴正方向、电场强度为E 的匀强电场,第Ⅳ象限存在一个方向垂直于纸面、磁感应强度为B 的圆形匀强磁场区域。
最小磁场矩形面积问题的再探讨
最小磁场矩形面积问题的再探讨作者:叶玉琴丁丹华来源:《中学物理·高中》2013年第05期《物理教师》2012年第3期刊登了一篇题为《怎样处理“题同答异”的问题》(下文称为《怎》文)的文章,文章探讨的问题如下:题如图1,一带电粒子(不计粒子的重力)以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面的磁感应强度为B的匀强磁场区域(图中未画出);粒子飞出磁场后接着沿垂直于电场的方向出入宽度为L的电场中,电场强度的大小为E,方向竖直向上.粒子穿过电场过程中,速度反向改变了60°角.已知带电粒子的质量为m,电荷量为q,粒子进入磁场前的速度方向与水平方向成θ=60°.若磁场区域为矩形,则矩形最小面积为多少?《怎》文开篇提出这样的观点:有些物理问题,因为题目所给的条件不严密,它的答案会随解题者对题目的理解的不同而不同.对于例题中的最小矩形面积问题,《怎》文认为:题目只是确定磁场区域是矩形,并没有要求边界是水平和竖直,留有让学生产生产生歧义的漏洞,因而多数人因为思维定势按图2求磁场区域最小面积为S=Rsinθ·R(1-cosθ)=34R2.【笔者注:此种方法确定的最小矩形的一对对边与粒子进点或出点处半径平行,下文称为“平行半径法”】而事实上有更小的矩形面积区域,如图3,它的面积S′=2Rsin30°·R(1-cos30°)=2-32R2,【笔者注:此种方法确定的最小矩形的一对对边与粒子在磁场中运动的进、出点决定的弦平行,故称之“平行弦法”】鉴于此,笔者认为,第一,关于此类问题的教学处理仅应用“有结果反推原因”的物理方法是不够的,而应给出更严谨、更普遍性的论证,只有这样,才能让学生深刻认识问题、了解问题并掌握解决问题的方法及原理.第二,《怎》文中提出的关于最小矩形磁场区域面积问题的题给条件是严密的,不存在“题同答异”一说,即不存在“答案随解题者对题目的理解的不同而不同”.笔者在教学中确实发现如《怎》文所说的情形:经常有学生拿着题目问,这道题在这里是这个答案,在另一本书上是那个答案.但笔者一点也不烦,因为这正是利用错误资源、澄清认识误区的最好时机!下面笔者对粒子在匀强磁场中做匀速圆周运动中所需的最小矩形磁场区域面积问题作一般性的论证和说明.为方便,令粒子在匀强磁场中做匀速圆周运动的半径为R,圆心角(或曰速度偏向角)为θ,分以下四种情形进行分析论证.21世纪国际社会的竞争归根到底是人才素质的竞争,而创新精神是优秀人才必备的素质.随着新课改的日益全面推行和高考改革的不断深入,近几年来高考试题也越来越突出了对学生能力的考查,主要表现在要求学生在熟练掌握知识的基础上能够灵活地综合运用所学的知识分析问题并寻求最佳的解决方案,这就要求学生具有周密分析、独立思考的能力,因此在教学中如果出现错误资源时,诚如《怎》文所说,这其实正是展现物理教师学术水平和对待问题的态度的最佳时机,同时也是培养中学生的质疑意识和创新精神的最佳时机,教师要积极把握、智慧对待!。
磁场区域的最小面积问题
磁场区域的最小面积问题考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。
其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。
下面我们以实例对此类问题进行分析。
一、磁场范围为树叶形例1.如图所示的直角坐标系第I 、II 象限内存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,处于坐标原点O 的放射源不断地放射出比荷6104⨯=mq C/kg 的正离子,不计离子之间的相互作用。
⑴求离子在匀强磁场中运动周期;⑵若某时刻一群离子自原点O 以不同速率沿x 轴正方向射出,求经过6106-⨯πs 时间这些离子所在位置构成的曲线方程;⑶若离子自原点O 以相同的速率v 0=2.0×106m/s 沿不同方向射入第I 象限,要求这些离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,则题干中的匀强磁场区域应怎样调整(画图说明即可)?并求出调整后磁场区域的最小面积。
15(16分)解:⑴根据牛顿第二定律 有 2mv qvB R=2分运动周期22R mT v qB ππ==610s π-=⨯ 2分 ⑵离子运动时间611066t s T π-=⨯= 2分根据左手定则,离子沿逆时针方向作半径不同的圆周运动, 转过的角度均为1263πθπ⨯== 1分这些离子所在位置均在过坐标原点的同一条直线上, 该直线方程tan2y x x θ==2分⑶离子自原点O 以相同的速率v 0沿不 同方向射入第一象限磁场,均做逆时 针方向的匀速圆周运动 根据牛顿第二定律 有2mvqv B R=00 2分 0mv R qB=1=m 1分这些离子的轨道圆心均在第二象限的四分之一圆弧AC 上,欲使离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,离开磁场时的位置在以点(1,0)为圆心、半径R=1m 的四分之一圆弧(从原点O起顺时针转动90︒)上,磁场区域为两个四分之一圆的交集,如图所示 2分调整后磁场区域的最小面积22min22()422R R S ππ-=⨯-=m22分例2.如图所示的直角坐标系中,在直线x=-2l 0到y 轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。
带电粒子在匀强磁场中运动的临界极值问题(解析版)
带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,轨迹圆心角越大,运动时间越长。
(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。
2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。
(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。
一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。
现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。
带电粒子在磁场中的运动的最小面积问题
30 l
运 动 ,初 速度 为 v,方 向 沿 X正 方 向 。 后
T P
来 .粒 子 经 过 Y轴 上 的 P点 .此 时速 度 方 向 与v轴 的 夹 角 为 30。,P到 0的 距 离 为
J
0
L,如 图所 示 。不 计 重 力 的 影 响 。求 磁 场 的磁 感 应 强 度B的 大 小 和xv平 面上 磁 场 区域 的 半 径 R。
经 过 v轴 上 的 N点 并 与 v轴 正 方 向成 60。 角 的方 向飞 出 。M点 的 坐标 为 (0,一1O),
N点 的 坐标 为 (0,3O),不 计 粒 子 重 力 ,g取 10m/s 。 (1)请 分 析 判 断 匀强 电场 E,的 方 向 并 求 出微 粒 的 运 动 速
度 v: (2)匀 强 磁 场B,的大 小 为 多 大 ?
R,由图 中几 何 关 系 可得
R: L
④
例 题 2.如 图所 示 ,第 四象 限 内有 互 相正 交 的 匀 强 电场 E与 匀 强磁 场B ,E的 大 小 为0.5x10 V/m,B.大 小 为0.5T;第 一 象 限 的 某 个 矩形 区域 内 ,有 方 向垂 直 纸 面 向里 的匀 强 磁 场 B,,磁 场
PA:R(1一cos60。): 3O m
所 以 . 所 求 磁 场 的 最 小 面 积 为 S:而 .PA:一1 Xx/3-
—
—
:
、/3 2
—
—
m —
—
150
例题3.一个质量为m,带+q电量 的
粒 子 在 BC边 上 的 M点 以速 度 v垂 直 于
·
/、
, \
BC边 飞入 正 三 角 形ABC。为 了使 该 粒
20版高考物理试题库专题322组合场问题(提高篇)(解析版)
(选修3-1) 第三部分 磁场专题3.22 组合场问题(提高篇)一.选择题1.(2018·东北三校联考)如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离D 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .D 随U 1变化,D 与U 2无关B .D 与U 1无关,D 随U 2变化C .D 随U 1变化,D 随U 2变化 D .D 与U 1无关,D 与U 2无关 【参考答案】A【名师解析】设带电粒子在加速电场中被加速后的速度为v 0,根据动能定理有qU 1=12mv 20.设带电粒子从偏转电场中出来进入磁场时的速度大小为v ,与水平方向的夹角为θ,如图所示,在磁场中有r =mv qB ,v =v 0cos θ,而D =2r Cos θ,联立各式解得D =2mv 0qB,因而选项A 正确.2.(2018广东韶关质检)如图 4 所示,一个静止的质量为 m 、带电荷量为 q 的粒子(不计重力),经电压 U 加速 后垂直进人磁感应强度为 B 的匀强磁场,粒子在磁场中转半个圆周后打在 P 点,设 OP=x ,能够正确反应 x 与 U 之间的函数关系的是( )【参考答案】.B【名师解析】带电粒子经电压U 加速,由动能定理,qU=1 2mv2,粒子垂直进人磁感应强度为B 的匀强磁场,洛伦兹力等于向心力,qvB=m2vR,2R=x,联立解得:x=22mUB q,所以能够正确反应x与U 之间的函数关系的是图B。
二.计算题1.(2019河北唐山一中冲刺卷)如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO右侧存在电场强度为E、方向竖直向上的匀强电场,MO左侧某个区域存在磁感应强度为B、垂直纸面向里的匀强磁场,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤E/B)垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向右,不计粒子的重力和粒子间的相互作用力,求:(1)速度最大的粒子自O开始射入磁场至返回水平线POQ所用的时间.(2)磁场区域的最小面积.【名师解析】(1)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R,周期为T,粒子在匀强磁场中运动时间为t1则qvB=m2vR,,周期T=则设粒子自N点水平飞出磁场,出磁场后应做匀速运动至OM,设匀速运动的距离为s,匀速运动的时间为t2,由几何关系知:S=R cotθ过MO后粒子做类平抛运动,设运动的时间为t3,则:又由题知:v=E/B则速度最大的粒子自O进入磁场至重回水平线POQ所用的时间t=t1+t2+t3解得:(2)由题知速度大小不同的粒子均要水平通过OM,则其飞出磁场的位置均应在ON的连线上,故磁场范围的最小面积△S是速度最大的粒子在磁场中的轨迹与ON所围成的面积.扇形OO′N的面积S=13πR2△OO′N的面积为:S′=R2cos30°sin30°=3R2又△S=S-S'联立得:2.(2017年5月广西五市模拟)如图所示,虚线MN为匀强电场和匀强磁场的分界线,匀强电场场强大小为E方向竖直向下且与边界MN成θ=45°角,匀强磁场的磁感应强度为B,方向垂直纸面向外,在电场中有一点P,P点到边界MN的竖直距离为d。
高中物理磁场经典习题(题型分类)含答案
磁场补充练习题题组一1.如图所示,在平面内,y ≥ 0的区域有垂直于平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。
2.如图所示,是一个正方形的盒子,在边的中点有一小孔e ,盒子中存在着沿方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。
(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何?(2)电场强度E 与磁感应强度B 的比值为多大?题组二3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。
现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平射入,如图所示。
为了使粒子不能飞出磁场,求粒子的速度应满足的条件。
4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B 2。
某时刻一质量m = 2.0×10-8 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m 沿y 轴正方向运动。
试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径;(2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出2应满足的条件。
5.图中左边有一对平行金属板,两板相距为d ,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。
专题04 有界磁场的最小面积模型-高考物理模型(解析版)
一模型界定带电粒子在有界磁场中运动时,要完成题目要求的运动过程,空间中有粒子必须经过的一个磁场区域,按照题目要求的边界形状或由粒子临界状态下的运动轨迹所决定的有界磁场区域,其面积存在着一个最小值,此模型着重归纳有界磁场最小面积的确定与计算方法.二模型破解在涉及最小磁场面积的题目中,主要有两种类型,一种是单一粒子的运动中所经过磁场的最小面积,这种类型的题目通常对磁场区域的形状有明确的要求,如矩形、圆形、三角形;另一种类型是大量粒子经过磁场的运动,由临界状态下的粒子运动轨迹及对粒子的特定运动形式要求所产生的对磁场边界形状的特定要求,从而形成有界磁场的面积的极值问题.(i)确定粒子在磁场运动的轨迹半径粒子在磁场运动的轨迹半径通常是已知的或是能够由题目中条件计算得出的,也可在未知时先将半径假设出来.(ii)确定粒子在有界磁场中的入射方向和出射方向粒子在有界磁场中的入射方向和出射方向通常也是由题目给出或能够从题目中条件分析得出.(iii)确定粒子在有界磁场中运动时的入射点与出射点的位置当题目中没有给定粒子在进出磁场的位置时,先延长粒子的入射方向与出射方向所在的直线得到一个交点,粒子在磁场中运动的轨迹圆心必在这两条直线所形成的两对夹角中的其中一条夹角平分线上,由粒子经过磁场前后的运动要求确定圆心所在的夹角平分线;再在此夹角平分线上取一点O,过该点作粒子入射方向、出射方向所在直线的垂线,使O点到两直线的垂直距离等于粒子的运动轨迹半径,则两垂足即分别为粒子进出磁场时的入射点与出射点.(iv)确定有界磁场的边界连接入射点与出射点得到一条线段或直线,并作出粒子在磁场处于入射点与出射点之间的一段运动轨迹圆,再由题目对磁场边界形状的要求确定磁场边界线的位置或圆形磁场的最小半径.①圆形有界磁场(I)当题目对圆形磁场区域的圆心位置有规定时,连接圆心与粒子在磁场中的出射点即得到磁场区域的半径.但是这种情况下磁场区域的大小是固定的.(II)当题目对圆形磁场区域的圆心位置无规定时,若粒子在磁场中转过的圆弧为一段劣弧时,将连接入射点a与出射点b所得的线段作为磁场区域的直径,则所得圆即为最小面积的圆形磁场区域,如图1所示.图中几何关系为θsin R r=②半圆形有界磁场(I)当粒子在磁场中运动轨迹是一段劣弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以ab 为直径作出的半圆弧即为所求,如图2甲所示.图中几何关系为θsin R r =(II)当粒子在磁场中运动轨迹是一段优弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以其中点为圆心作出与粒子运动轨迹相切的圆弧,此圆弧即为半圆形磁场区域的曲线边界,如图2乙所示.图中几何关系为)cos 1(θ+=R r(III)当粒子在磁场中运动轨迹是一个半圆弧时,磁场圆形边界与粒子运动轨迹重合.③矩形有界磁场(I)当题目对矩形磁场区域边界某个边有规定时,过入射点或过出射点作已知边界线的平行线或垂线,再作与已知边界线平行或垂直的、与粒子在磁场中运动轨迹相切的直线,则所得矩形即为题目要求的最小矩形.(II)当题目对矩形磁场区域边界无规定时,第一步:连接入射点a 与出射点b 得一条直线ab;第二步:作ab 的平行线且使其与粒子运动轨迹圆相切;图2 图1第三步:作ab 的两条垂线,若粒子在磁场中转过的是一个优弧时,应使这两条垂线也与粒子运动轨迹圆弧相切,如图3甲所示;若粒子在磁场转过的是一段劣弧时,两条垂线应分别过入射点a 和出射点b,如图3乙所示.所得矩形即为题目要求的最小矩形.甲图中几何关系为)cos 1(1θ+=R L 、R L 22=乙图中几何关系为)cos 1(1θ-=R L 、θsin 22R L =○4正三角形有界磁场 当粒子在磁场中转过的圆心角超过1200时,先作入射点a 、出射点b 连线的中垂线,再从中垂线上某点作粒子运动轨迹圆的两条切线,且使两切线间的夹角为600,则此三条直线所组成的三角形即为题目所要求的最小三角形,如图4甲所示.当粒子在磁场中转过的圆心角不超过1200时,也是先作入射点a 、出射点b 连线的中垂线,再从中垂线上某点连接入射点a 与出射点b,使其与ab 组成一正三角形,此正三角形即为所示如图4乙所示.甲图中几何关系为θcos30sin30cos 00R R L +=;乙图中几何关系为θsin 2R L =. 例1.一质量为m 、带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强大小为大小为E ,方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方c 点,如图所示,已知 b 到O 的距离为L ,粒子的重力不计,试求:图4 图3⑴磁感应强度B⑵圆形匀强磁场区域的最小面积;⑶c 点到b 点的距离【答案】(1)qL mv B3=(2)22min 12L S r ππ==(3)Eq mv s 2034=30° v obcv 0x yyEO 例1题图例2.如图所示,在直角坐标xOy 平面y 轴左侧(含y 轴)有一沿y 轴负方向的匀强电场,一质量为m ,电荷量为q 的带正电的粒子从x 轴上P 处发速度v0沿x 轴正方向进入电场,从y轴上Q 点离开电场时速度方向与y轴负方向间夹角θ=300,Q 点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小qd mv B 0=,粒子能从坐标原点O 沿x轴负方向再进入电场,不计粒子重力,求:(1)电场强度大小E(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积(3)粒子从P 点运动到O 点的总时间【答案】(1)qdmv E 2320=(2)24.5d π(3)0(1338d π+) 学*科网 【解析】:(1)设粒子从Q 点离开电场时速度大小v 由粒子在匀强电场中做类平抛运动得:02v v = 由动能定理得 2022121mv mv qEd -= (2分) 例2题图解得qd mv E 2320=(1分)学*科网(3)设粒子在匀强电场中运动时间为1t粒子从Q 点离开电场时沿y 轴负向速度大小为y v 有03v v y =例2答图例3.如图所示,第三象限内存在互相垂直的匀强电场和匀强磁场,匀强磁场方向向里,大小为B 0,匀强电场场强为E 。
磁场区域的最小面积问题(公开课)
四、 解题方法小结
1、根据题意,分析物体的运动过程和运动 形式,扣住运动过程中的临界点或转折点, 特别注意轨迹的对称性。
2、应用几何知识,找出粒子运动的轨迹圆 心,画出粒子运动的部分轨迹,确定半径。
3、用题目中规定形状的最小磁场覆盖粒子 圆周运动部分的轨迹,然后应用数学工具 和相应物理规律分析求解最小面积即可。
为矩形的匀强磁场区域后,可使所有粒子在磁场中经过一
段半径为a的圆周运动后到达N点,且粒子的运动轨迹关
于y轴对称,不计粒子间的相
互作用和粒子重力。求:(1)匀
强磁场的磁感应强度B的大小和方
v
向。(2)矩形匀强磁场的最小面
积S.
2a
思考:若匀强磁场为圆形边界,最小面积又为多少?
例2、如图,一个质量为m,带电量为+q的粒子在
BC边上的M点以速度v垂直于BC边飞入正三角形ABC 区域。为了使该粒子以速度v从AC边上的N点垂直AC 边飞出该三角形,可在空间加上一个平行于纸面的匀 强电场,也可在适当的位置加上一个垂直于纸面向里 的匀强磁场,不计粒子的重力。(1)如果加的是匀 强电场,求电场强度的方向。(2)如果加的是垂直 于纸面向里的匀强磁场,且此磁场也是分布在一个 正三角形区域内,已知粒子在磁 场中的运动时间为t,求 磁感应强度B的大小 及该正三角形区域磁场的最小边长。
带电粒子在磁场中的运动之
磁场区域 最小面积问题
相关知识回顾:
1、若不计粒子重力,带电粒子在无场区
怎样运动?
做匀速直线运动
2、如图,带电粒子从M点以v射出,要改
变带电粒子的前进方向,使粒子击中N点,
有哪些可行的方法?
方法一、加与速度方向垂直
的匀强电场。(电偏转)
高考回归复习—电磁学之带电粒子在磁场中运动求磁场面积模型 (word 含答案)
高考回归复习—电磁场之带电粒子在磁场中运动求磁场面积问题模型1.如图,xoy为平面直角坐标系,y>0的区域内有一个底边与x轴重合的等腰直角三角形,在该等腰直角三角形区域内存在着垂直于坐标平面向里的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场。
一v沿x轴正方向运动,由质量为m、电荷量为+q(q >0)的带电粒子(不计重力)从电场中P(0,-h)点以速度v通过P点并重复上述运动。
求:Q(2h,0)点进入磁场,经磁场偏转后再次射人电场,恰能以同样的速度(1)电场强度的大小;(2)磁感应强度的大小;(3)粒子连续两次通过P点的时间间隔;(4)等腰三角形磁场区域的最小面积。
2.在如图所示的平面直角坐标系中存在一个半径R=0.2 m的圆形匀强磁场区域,磁感应强度B=1.0 T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度L=0.1 m.现从坐标为(-0.2 m,-0.2 m)的P 点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.(1)求该带电粒子射出电场时的位置坐标;(2)为了使该带电粒子能从坐标为(0.1 m,-0.05 m)的点回到电场,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.3.电子对湮灭是指电子e-和正电子e+碰撞后湮灭,产生伽马射线的过程,电子对湮灭是正电子发射计算机断层扫描(PET)及正电子湮灭能谱学(PAS)的物理基础。
如图所示,在平面直角坐标系xOy上,P点在x 轴上,且OP=2L,Q点在负y轴上某处。
在第Ⅰ象限内有平行于y轴的匀强电场,在第Ⅰ象限内有一圆形区域,与x、y轴分别相切于A、C两点,OA=L,在第Ⅰ象限内有一未知的矩形区域(图中未画出),未知矩形区域和圆形区域内有完全相同的匀强磁场,磁场方向垂直于xOy平面向里。
磁场区域的最小面积问题201409
(2)磁场区域的最小面积.
(3)根据你以上的计算可求出粒子射到PQ上的最远点离O的距离,请写出该距离的大小(只要写出最远距离的最终结果,不要求写出解题过程)
【答案】(1) 或 (2) 或 (3)d= (
【解析】(1)(11分)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R,周期为T,粒子在匀强磁场中运动时间为t1
(3)设在坐标(x,y)的点进入磁场,由相似三角形得到:
圆的方程为:
消去(y+b),磁场边界的方程为:
11、(揭阳二模1304)(18分)直角坐标系xoy界线OM两侧区域分别有如图所示电、磁场(第三象限除外),匀强磁场磁感应强度为B、方向垂直纸面向外,匀强电场场强 、方向沿x轴负方向。一不计重力的带正电的粒子,从坐标原点O以速度为v、沿x轴负方向射入磁场,随后从界线上的P点垂直电场方向进入电场,并最终飞离电、磁场区域。已知粒子的电荷量为q,质量为m,求:
3、一质量为m、带电量为q的粒子以速度v0从O点沿y轴的正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角为30°,如图所示,粒子的重力不计,试求:
⑴圆形磁场区域的最小面积。
⑵粒子从O点进入磁场区域到达b点所经历的时间。
⑶b点的坐标。
磁场区域的最小面积问题
考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。下面我们以实例对此类问题进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场区域的最小面积问题考题中多次出现求磁场的最小围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。
其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。
下面我们以实例对此类问题进行分析。
一、磁场围为树叶形例1.如图所示的直角坐标系第I 、II 象限存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,处于坐标原点O 的放射源不断地放射出比荷6104⨯=mq C/kg 的正离子,不计离子之间的相互作用。
⑴求离子在匀强磁场中运动周期;⑵若某时刻一群离子自原点O 以不同速率沿x 轴正方向射出,求经过6106-⨯πs 时间这些离子所在位置构成的曲线方程;⑶若离子自原点O 以相同的速率v 0=2.0×106m/s 沿不同方向射入第I 象限,要求这些离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,则题干中的匀强磁场区域应怎样调整(画图说明即可)?并求出调整后磁场区域的最小面积。
15(16分)解:⑴根据牛顿第二定律 有 2mv qvB R=2分运动周期22R mT v qB ππ==610s π-=⨯ 2分 ⑵离子运动时间611066t s T π-=⨯= 2分根据左手定则,离子沿逆时针方向作半径不同的圆周运动, 转过的角度均为1263πθπ⨯== 1分这些离子所在位置均在过坐标原点的同一条直线上, 该直线方程tan2y x x θ==2分⑶离子自原点O 以相同的速率v 0沿不 同方向射入第一象限磁场,均做逆时 针方向的匀速圆周运动 根据牛顿第二定律 有2mvqv B R=00 2分 0mv R qB=1=m 1分这些离子的轨道圆心均在第二象限的四分之一圆弧AC 上,欲使离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,离开磁场时的位置在以点(1,0)为圆心、半径R=1m 的四分之一圆弧(从原点O起顺时针转动90︒)上,磁场区域为两个四分之一圆的交集,如图所示 2分调整后磁场区域的最小面积22min22()422R R S ππ-=⨯-=m22分例2.如图所示的直角坐标系中,在直线x=-2l 0到y 轴区域存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。
在电场左边界上A (-2l 0,-l 0)到C (-2l 0,0)区域的某些位置,分布着电荷量+q .质量为m 的粒子。
从某时刻起A 点到C 点间的粒子,xOy依次以相同的速度v0沿x轴正方向射入电场。
若从A点射入的粒子,恰好从y轴上的A′(0,l0)沿x轴正方向射出电场,其轨迹如图所示。
不计粒子的重力及它们间的相互作用。
(1)求匀强电场的电场强度E:(2)若带电粒子通过电场后都能沿x轴正方向运动,请推测带电粒子在AC间的初始位置到C点的距离。
(3)若以直线x=2l0上的某点为圆心的圆形区域,分布着垂直于xOy平面向里的匀强磁场,使沿x轴正方向射出电场的粒子,经磁场偏转后,都能通过直线x=2l0与圆形磁场边界的一个交点处,而便于被收集,求磁场区域的最小半径及相应的磁感应强度B的大小。
【解析】二、磁场围为圆形例1.如图所示,在真空室中平面直角坐标系的y 轴竖直向上,x 轴上的P 点与Q 点关于坐标原点O 对称,PQ 间的距离d =30cm 。
坐标系所在空间存在一匀强电场,场强的大小E =1.0N/C 。
一带电油滴在xOy 平面,从P 点与x 轴成30°的夹角射出,该油滴将做匀速直线运动,已知油滴的速度v =2.0m/s 射出,所带电荷量q =1.0×10-7C ,重力加速度为g=10m/s 2。
(1)求油滴的质量m 。
(2)若在空间叠加一个垂直于xOy 平面的圆形有界匀强磁场,使油滴通过Q 点,且其运动轨迹关于y 轴对称。
已知磁场的磁感应强度大小为B=2.0T ,求:a .油滴在磁场中运动的时间t ;b .圆形磁场区域的最小面积S 。
【 解析】(1)对带电油滴进行受力分析,根据牛顿运动定律有0qE mg -= 所以81.010qEm g-==⨯kg ……(4分)(2)带电油滴进入匀强磁场,其轨迹如图所示,设其做匀速圆周运动设圆周运动的半径为R 、运动周期为T 、油滴在磁场中运动的时间为t ,根据牛顿第二定律: 所以 20.10mv mvqvB R R qB =⇒==m所以 20.1RT v==ππs设带电油滴从M 点进入磁场,从N 点射出磁场,由于油滴的运动轨迹关于y 轴对称,如图所示,根据几何关系可知60MO N '∠=,所以,带电油滴在磁场中运动的时间20.166T t ==πs 由题意可知,油滴在P 到M 和N 到Q 的过程中做匀速直线运动,且运动时间相等。
根据几何关系可知,sin 300.223m cos303dR PM NQ -===所以 油滴在P 到M 和N 到Q 过程中的运动时间130.133PM t t v ===s则油滴从P 到Q 运动的时间1230.20.1(3)s 36t t t t π=++=+0.17≈s ……(8分)(3)连接MN ,当MN 为圆形磁场的直径时,圆形磁场面积最小,如图所示。
根据几何关系圆形磁场的半径sin 300.05r R ==m其面积为20.0025S r ==ππm 2827.910m -≈⨯ m 2………………(6分) 三、磁场围为矩形例1:如图所示,直线OA 与y 轴成30θ︒=角。
在AO y 围有沿y 轴负方向的匀强电场,在AOx 围有一个矩形区域的匀强磁场,该磁场区域的磁感应强度0.2T B =,方向垂直纸面向里。
一带电微粒电荷量14210C q -=+⨯,质量20410kg m -=⨯,微粒在y 轴上的某点以速度o v 垂直于y 轴进入匀强电场,并以速度4v 310m/s =⨯垂直穿过直线OA ,运动中经过矩形磁场区域后,最终又垂直穿过x 轴。
不计微粒重力,求:(结果保留两位有效数字)(1)带电微粒进入电场时的初速度o v 多大?(2)带电微粒在磁场中做圆周运动的半径r(3)画出粒子运动轨迹图并求出最小矩形磁场区域的长和宽。
解析:带电微粒做类平抛运动4cos30 2.610m/s o v v ︒==⨯ ①(2)洛仑兹力提供向心力,有2v qvB m r = ②0.30m mv r qB== ③(3)画出粒子的运动轨迹如图所示 ④ 设最小矩磁场区域的长为a 、宽为b ,由数学知识可知 20.60m a R == ⑤cos30b r r ︒=+ ⑥ 0.56m b = ⑦例2:如图所示,第四象限有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为0.5×103V/m ,B 1大小为0.5T ;第一象限的某个矩形区域,有方向垂直于纸面向里的匀强磁场B 2,磁场的下边界与x 轴重合。
一个质量m =1×10-14kg 、电荷量q =1×10-10C 的带正电的微粒以某一速度v 沿与y 轴正方向成60°角从M 点沿直线运动,经P 点进入第一象限的磁场B 2区域。
一段时间后,小球经过y 轴上的N 点并沿与y 轴正方向成60°角的方向飞出。
M 点的坐标为(0,-10),N 点的坐标为(0,30),不计粒子重力,取g =10m/s 2。
(1)请分析判断匀强电场E 的方向并求出微粒的运动速度v ; (2)匀强磁场B 2为多大?(3)B 2磁场区域的最小面积为多少? 解析:(1)1q B qE =v ,所以311.010EB ==⨯v m/s E 方向如图(2)230.23r OM ==,由2m r qB =v,得23B =T(3)最小面积如图阴影部分:330.20.13150S =⨯⨯=m 2四、磁场围为三角形及其他形状 例1.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10- 20kg ,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B=0.2T 、方向垂直纸面向里的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求: (1)粒子在磁场中做圆周运动的半径; (2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小面积.(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长。
解析:(1)由r v m qvB 2=,vrT π2=得:m qB mv r 3.0== (2)画出粒子的运动轨迹如图,可知T t 65=,得: s s qB m t 551023.5103535--⨯=⨯==ππ(3)无确定解,圆形面积只能无限接近)(09.022m r s ππ== (4)由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=例2.如图所示,虚线MO 与水平线PQ 相交于O ,二者夹角θ=30°,在MO 左侧存在电场强度为E 、方向竖直向下的匀强电场,MO 右侧某个区域存在磁感应强度为B 、垂直纸面向里的匀强磁场,O 点处在磁场的边界上.现有一群质量为m 、电量为+q 的带电粒子在纸面以速度v(0Ev B≤≤)垂直于MO 从O 点射入磁场,所有粒子通过直线MO 时,速度方向均平行于PQ 向左.不计粒子的重力和粒子间的相互作用力,求: (1)速度最大的粒子自O 点射入磁场至返回水平线POQ 所用的时间.(2)磁场区域的最小面积. (3)根据你以上的计算可求出粒子射到PQ 上的最远点离O 的距离,请写出该距离的大小(只要写出最远距离的最终结果,不要求写出解题过程)【答案】(1) 2(33)m t π+= 或 qBm3236π+(2) 2224433()m E S q B π-∆=或22243()3m E q B π-(3)d=2)2134(qB mE + (qBmv 2134+ 30°PAv 0a bco 160°e gf30P Av【解析】(1)(11分)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R ,周期为T ,粒子在匀强磁场中运动时间为t 1则 2mv qBv R = 即mvR qB= 2m T qB π= 113t T =最大速度v m 的粒子自N 点水平飞出磁场,出磁场后做匀速运动至OM ,设匀速运动的时间为t 2, 有:θtan v m 2Rt =过MO 后粒子做类平抛运动,设运动的时间为3t , 则:233122qE R t m =又由题知最大速度v m=BE则速度最大的粒子自O 进入磁场至重回水平线POQ 所用的时间123t t t t =++ (1分)解以上各式得:2(33)m t π+= 或 qBm3236π+(2)由题知速度大小不同的粒子均要水平通过OM ,则其飞出磁场的位置均应在ON 的连线上,故磁场围的最小面积S ∆是速度最大的粒子在磁场中的轨迹与ON 所围成的面积。