大学物理分子动理论PPT课件

合集下载

大学物理-气体分子动理论

大学物理-气体分子动理论

v
v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
速率为 vi 的概率为:
Pi
Ni N
长时间“观测”理想气体分子的速率 v :
v
0 ~ +∞ 连续分布
速率为 v → v + dv 的概率为:
Pv~vdv
dNv N
0
???
速率分布函数
Pv~vdv
dNv N
f (v)dv
f (v) dNv Ndv
刚性双原子分子的动能
分子动能
平动动能
t x
t y
t z
转动动能
r
r
t x
t y
t z
r
r
1 kT 2
t x
t y
t z
r
r
5 kT 2
温度较高时,双原子气体分子不能看作刚性分子,分子
平均能量更大,因为振动能量也参与能量均分
理想气体分子的平均能量
分子模型 刚性单原子分子 刚性双原子分子 刚性多原子分子
每个分子频繁地发生碰撞,速度也因此不断变化;
二、压强形成的微观解释
单个分子与器壁碰撞 冲力作用瞬间完成,大小、位置具有 偶然性;
大量分子(整个气体系统)与器壁碰撞 气体作用在器壁上是一个持续的、不 变的压力;
压强是气体分子给容器壁冲量的 统计平均量
三、理想气体的压强公式
建立三维直角坐标系 Oxyz
vz i N
气体处于平衡态时,气体分子沿各个方向运动的机会均等。
vx vy vz
气体分子速率平方的平均值
v v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
v

大学物理第16章气体动理论

大学物理第16章气体动理论
N2
pA
lim N
NA N

1 2
抛硬币的 统计规律
2020/1/15
DUT 余 虹
4
16.1 理想气体的压强
一、分子的作用力与压强
总数N 个,分子质量m ,摩尔质量,
体积V,温度T。
F
气体分子频繁碰撞 容器壁——给容器
壁冲量。大量分子在t 时间内给予I
的冲量,宏观上表现为对器壁的平均
vf
v
d
v

0
f
vd v


0
vf
v d
v
麦克斯韦分布律
v 1.60 RT

2020/1/15
DUT 余 虹
21
(3)方均根速率 v 2
一段速率区间v1~v2的方均速率
f v
v122
v2 v 2 d N N v v2 2 f v d v
v1 v2 d N
作用力
F I t
气体对容器壁的压强
P F I S S t
2020/1/15
DUT 余 虹
5
二、P 与微观量 的关系
分子按速度区 间分组
第i 组: 速度 近vi 似~ 认vi 为 都dv是i v i
分子数N
i ,分子数密度
ni

Ni V
考察这组分子给面元A的冲量
一 碰壁前速度 vix viy viz
一、速率分布函数
处于平衡态的气体,每个分子 朝各个方向运动的概率均等。
可是大量分子速度分 量的方均值相等。
一个分子,某一时刻速度
v
通常 v xv y v z

v

最新《分子动理论》课件课件ppt

最新《分子动理论》课件课件ppt
• 特征: • 1)以合伙协议为基础 • 2)合伙由合伙人共同出资、共同经营 • 3)合伙人对合伙组织的债务承担无限连
带责任
特殊合伙包括隐名合伙与有限合伙
• 隐名合伙:指当事人约定,一方对合伙 所经营的事业出资,不参与合伙的经营 管理,但分享合伙营业所得的收益,分 担合伙所受损失的合伙类型。(大陆法 系所特有) 注意其出资方式的特殊性。
三、分子之间存在着相互作用力
分子在不停地 运动,为什么 液体和固体有 一定的体积?
分子间可 能存在着 引力吧!
为什么被压缩 的橡皮泥能恢 复原状呢?
观察:认识分子间的作用力
1、将一段粗熔丝(俗称保险 丝)用刀斜着切成两段。使两 段粗熔丝的平滑表面紧密接触, 然后把一段悬挂起来,在另一 个挂个较轻的物体,观察两段 熔丝是否会被拉开。
引力 D.蔗糖能溶于水,说明分子做无规则运动
考考你
4、一辆运输液态氨的罐车在途中侧翻,发生泄 漏短时间内,车周围出现“白雾”,这是由于 液氨 汽化吸热 导致空气中的水蒸气
液化 形成的;消防队员赶到后,冒着生命危 险,用湿棉纱堵塞漏口,惊现湿棉纱很快结冰 将漏口堵住.分析其原因是 液氮汽化吸热达到水
今天,通过电 子显微镜,科学家 不仅可以清晰地看 到物质的分子,还 能看到分子的更微 小结构。
用电子显微镜观察到的石 墨表面分子的排列
利用电子显微镜,科学家把铁 原子在铜表面上排列成一个铜环
分子动理论之一:物体是由大量 的分子组成的
1、分子能保持物质原来的性质 2、分子很小,直径大约为10-10米
的凝固点使水凝固ቤተ መጻሕፍቲ ባይዱ
消防队员疏散周边群众,因为氨是有害气 体,它的 扩散 现象,会对人们产生危害.
考考你
5.密闭的房间里打开香水瓶的盖子,一会整

大学物理06分子动理论

大学物理06分子动理论
热物理学
组成物质的分子或粒子都在作永不停息的无规则 运动,称为热运动。大量分子热运动的集体效应在宏 观上表现为物体的热现象和热性质。
研究分子热运动,讨论热现象的规律、分析物体 热性质的理论称为热物理学。 热物理学包括宏观理论和微观理论。 • 宏观理论——热力学:以观察和实验为基础,通过归 纳和推理得出有关热现象的基本规律,因而其结论普 遍而且可靠。 • 微观理论——分子动理论:从分子结构和分子运动出 发,应用力学规律和统计方法,研究大量分子热运动 的集体效应,从微观本质上解释热现象和热性质。
热力学平衡态
三、平衡与涨落 一个与外界没有能量、质量交换的系统,经一定时间后 达到稳定的,不再有宏观状态的变化。此时,系统内各 部分的宏观性质均相同。
处在平衡态的系统的宏观量,如压强,不随时间改变, 但不能保证任何时刻大量分子撞击器壁的情况完全一样, 这称为涨落现象,分子数越多,涨落就越小。 N
t
热力学平衡态
二、温标
确定温度数值的表示方法——温标 (1)选定测温质 (2)选定与温度单调变化的属性
(3)假定测温属性与温度成线性关系
(4)选定温度标准点,将温度计分度 不同测温质或不同测温属性测量同一温度数 值可能不同。
上海交通大学物理系高景jgao@
热力学平衡态
三、理想气体温标和状态方程
LR R R R LR R RRLR RRRL 1 3 4
R R R R 0 4 1
C(n) 1
上海交通大学物理系高景jgao@
C n 某一宏观态出现的几率: pn N 2
热力学平衡态
1 2 3 4 n n’
L L L L 4 0
LLLR LLR L LR LL R LLL 3 1 4

大学物理第三章 分子动理论

大学物理第三章 分子动理论


分子力的形成说明图
Epr
用分子力解释几个物理现象如物 质的三态等。
o
斥力 分子力
r0
r
引力
势能曲线
r
点评 相变与相变理论
物质的相态 固,液,气,等离子体
相变理论 相变温度 相变点 相变能 相变系数
第二节 理想气体的压强
气体对容器壁作用表现为气体的压强,此压强可以用气体动理 论加以微观解释。
本章研究内容:
1 宏观量 P,T与微观量间的统计关系.
2 微观量与微观量间的统计关系. 运用统计方法
名句赏析 小楼一夜听春雨, 深巷明朝卖杏花。
内容提要
宏观量压强和温度的微观解释 物质的内能 理想气体的速率分布规律 几个微观量的统计平均值
第一节 分子热运动的基本概念
一 分子运动论 1 宏观物体是由大量不停息地运动着的分子或原子组成的,称 为分子热运动。如在气体内部一分子一秒遭一百万次碰撞。1827年 被英国植物学家布朗证实:布朗运动,微粒受到周围分子的碰撞的 不平衡引起的。
第二编 热 学
返回
热学是研究热现象的规律。热现象是物质中大量分子热运 动的集体表现。本篇将介绍统计物理的基本概念和气体动理论的 基本内容以及热力学的基本规律。
气体动理论或称分子物理学的系统研究源于十八世纪以后, 伯努利,罗蒙罗索夫,道耳顿等开辟了奠基性的工作。十九世纪 六十年代,麦克斯韦,克劳修斯,玻耳兹曼等人在前人的基础上, 应用统计的方法,探索物质大量分子集体性质的一般统计规律, 从而阐明了热现象的本质。二十世纪初发展的量子理论,对上述 经典统计理论做了重要的修改和补充。
十八世纪初欧洲工业革命,尤其是蒸气机的应用,促进了热 力学的发展,建立了系统的计温学和量热学。经焦耳,迈尔,卡 诺等人系统的总结,建立了热力学第一定律。克劳修斯和开尔文 又独立的发现了热二律。形成了今天的热力学理论。

第二章 分子动理学理论的平衡态理论

第二章  分子动理学理论的平衡态理论
这组数给出了小球在槽内的分
配情况,我们称为一种分布。
实验指出,只要小球的总数足够 大,则每次所得的分布几乎相等, 也即每个槽内的小球的数目与小球 总数之比
N1, N2, N3,,Ni , NNN N
几乎是完全确定的,即具有稳定的特性,只略有一些偏差。
§2.2 概率论的基本知识
由此可见,大量小球 在各槽内的一组分布决不 是偶然的,而是一个必然 规律。这种由大量偶然事 件的总体所服从的规律称
f (v) dN Ndv
f (v)
o
v
§2.3 麦克斯韦速率分布
2、三种统计速率
(1)、最概然速率v p

df (v) 0 dv vvp
f (v)
f max
根据分布函数求得
o vp
v
vp
2kT m
2RT Mm
物理意义
气体在一定温度下分布在最概然速
率 附v p近单位速率间隔内的相对分子
数最多。
二、麦克斯韦速率分布
1、麦克斯韦速率分布
麦克斯韦利用理想气体分子在三个方向上作独立运 动的假设,导出了理想气体分子在平衡态时按速度分布规 律,然后得到理想气体分子按速率分布规律。
在平衡态下,当气体分子间的相互作用可以忽略
时,分布在任意速率区间 v vdv分子数的比率

dN f(v )d v4 π ( m) e vd 32 m 2k v2T2 v
T130K0
f (v)
T2120K0
O2
H2
o v p1 vp2
v
N2 分子在不同温度下的 速率分布
o v p 0 v pH
v
同一温度下不同气体的速 率分布
§2.3 麦克斯韦速率分布

第6章 分子动理论优秀课件

第6章 分子动理论优秀课件

m l1
N
v
2 ix
i 1
N
vi2xv12xv22xvN 2 x
i1
故若令
vx2
v12xv22xvN 2 x N
表示分子在X方向速率平 方的平均值,
N
那么
v2 Nv2
ix
x
i1
于是所有分子在单位时间内施于A1面的冲力为
N
FA1
i1
m l1vi2xm l1 iN 1vi2x
m l
1
N v2 x
在状态图中,一条光滑的曲 P 线代表一个由无穷多个平衡态
所组成的变化过程,如右图所
示。 0
曲线上的箭头表示过程进
行的方向。
AP,V,T 1 11
BP,V,T 2 22 V
由于非平衡态不能用一组确切的状态参量来描述,因此在 状态图中,非平衡态过程也就无法找到相应的过程曲线与之 对应。
§6-2 理想气体压强公式
N
P[m/l(1l2l3)]
i1
Vix23 2nw
在上述四步过程中,哪几步用到了理想气体的假设?哪几步用
到了平衡态的条件?哪几步用到了统计平均的概念?(l1、l2、l3 分别为长方形容器的三个边长)
答:(1),(2),(3) 用到了理想气体的假设,
(2),(4) 用到了平衡态的条件,
(4) 用到了统计平均的概念。
M O 2 3 21 0 3kgmol 氢分子和氧分子的平均平动动能相等,均为
3kT31.381023273
22 5.651021J 3.53102eV
氢分子的方均根速率
v2 H2
3RT
M H2
32 8. 31 1 0 2 3 71 3.8 4130

008气体分子运动理论

008气体分子运动理论

讨论 (1)每个气体分子的平均总能量为: (重点)
(2)能量均分定理是平衡态下关于热运动的统计规 律,是对大量分子统计平均的结果。 (3)能量均分的成因是大量分子间无规则的碰撞。
三、理想气体的内能(Internal energy of ideal gas) :(重点) 气体的内能:所有分子的热运动动能和分子间的相互作用 势能的总和。 理想气体的内能:气体中所有分子热运动动能的总和。 1mol 理想气体的内能为:
可知,当压强相同时,在冬天打入轮胎内的空气密度(即 质量)要大些。
思考题
(A)
(B)
(C)
(D)
(D)
(A)温度相同、压强相同。 (B)温度、压强都不同。 (C)温度相同,但氦气的压强大于氮气的压强。 (D)温度相同,但氦气的压强小于氮气的压强。
(C)
解:(1)
(2)气体定一个质点的位置需三个独 立坐标;
再确定两原子连线的方位需两个独 立坐标;
最后确定绕两原子连线的转动的角 坐标,需一个独立坐标;
结论 自由度 平动自由度 转动自由度 振动自由度
刚性分子的自由度
自由度 分子
单原子分子 3
0
3
双原子分子 3
2
5
多原子分子 3
3
6
二、能量按自由度均分定理 椐理想气体温度公式,分子平均平动动能与温度关系为
1
平衡状态 理想气体状态方程
一、状态参量
二、平衡状态(equilibrium state)
1、平衡态 所研究的物体或物体组称为热力学系统,简称系统(system), 其由大量微观粒子所组成。
能够与热力学系统发生相互作用的其它物体称系统的外界 (简称外界)
例:若汽缸内气体为系统,汽缸外的环境为外界

大学物理分子动理论

大学物理分子动理论

xM1M3 (p1p3)V1
M2
p2V2
(1301)0329.6(天 ) 1400
6-2 理想气体压强公式
气体对器壁的压强是大量分子对容器不断碰撞 的统计平均效果。
每个分子对器壁的作用 f t
所有分子对器壁的作用 F f t
t
理想气体的压强公式
p F S
一、理想气体的分子模型 1、分子可以看作质点
说明: •平衡态是一种热动平衡
处在平衡态的大量分子仍在作热运动,而且因 为碰撞, 每个分子的速度经常在变,但是系统的宏 观量不随时间 改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
•平衡态是一种理想状态
对热力学系统的描述:
1. 宏观量——状态参量
解: (1) p1V1 p2V2
T1
T2
由已 :V 1知 2V 2,T 127 2 3 730 K ,0
T227 1 374 75 K0
p2V V 1 2T T 2 1p12 V V 22 3405 00 3p1
(2) w 3kT 2
ww2w123k(T2T1)
31.381 023(45030)03.1 11 021J 2
w 3 kT 2
p nkT
6-4 能量均分定理 理想气体的内能
一、自由度 确定一个物体的空间位置所需要的独立坐标数目。
He
O2
H2O
NH 3
以刚性分子(分子内原子间距离保持不变)为例
z
z
C(x, y,z)
y
C(x, y,z)
y
x
单原子分子
平动自由度t=3
itr3

大学物理第8章气体分子运动论

大学物理第8章气体分子运动论

23
阿佛伽德罗常数
R=8.31J/mol· 普适气体常数 K
k=R/N =1.38J/K
0
玻尔兹曼常数
四、统计假设
平衡态下: 1、分子数密度相等。 2、分子沿任一方向的运动,机会均等。
那么对于分子的平动速度,有
v v x i v y j vzk
2 2 2 2
vx vy vz
d N Nf ( v ) d v
速率位于 v 1 v 2区间的分子数:
N v N f ( v ) d v 1
v2
C. 速率位于 v 1 v 2 区间的分子数占总数的百分比:
N
N


v2
v1
f ( v )d v
f (v)
N
N
S
o
v1 v2
v
四、 三种速率:
f(v)
1、 最概然速率Vp:
刚体:任意运动时,可分解为质心的平动及绕通 过质心的轴的转动。
y
(x, y, z)
y
b a
(xz
x
刚性双原子: i=5
y
f 刚性多原子: i=6
o
z
x
二、 能量按自由度均分原理
A、 理想气体内能: 分子间相互作 用忽略不计 分子间相互作用势能=0
理想气体的内能=所有分子的热运动动能 之总和。 B、 如果分子有i个自由度,分子的平均 动能: i
2

m 2 x l1
2

m Nx l1
2


i 1
N
m ix
2
l1
第3步:由压强的定义得出结果
y
P
F A1

大学物理-气体动理论

大学物理-气体动理论

dN N
f
(v ) dv
f (v) dN ⑩
Ndv
f(v) 称为速率分布函数,含义:分布在速率v 附近单位速率间
隔内的分子数与总分子数的比率。
第五章 气体分子运动论
三. 麦克斯韦速率分布定律
1. 麦克斯韦速率分布定律 理想气体在平衡态下分子的速率分布函数
f (v ) 4 ( m0 ) v e 3/ 2 2 m0v2 / 2kT ( 麦克斯韦速率分布函数 )
pV m RT M
mV
v2
3p
3 0.011.013105 1.24 102
m s1
494 m s-1
第五章 气体分子运动论
(2)根据物态方程,得
M m RT RT
Vp
p
1.24 102 8.31 273 kg mol -1 0.011.013 105
28 103 kg mol -1
vp
2kT μ
速率
v1 ~ v2 v2 ~ v3 … vi ~ vi +Δv

分子数按速率
的分布
ΔN1
ΔN2

ΔNi

分子数比率 按速率的分布
ΔN1/N
ΔN2/N

ΔNi/N

{ ΔNi }就是分子数按速率的分布
二. 速率分布函数 f(v)
设某系统处于平衡态下, 总分子数为 N ,则在v~v+ dv 区
间内分子数的比率为
y
踪其中一个分子, 某一时刻速 A2
A1
率为 vi与器壁A1碰撞, x 方向
动量的增量
m0 vix m0 vix 2m0 vix
O vi
x

2024届高考一轮复习物理课件(新教材鲁科版):分子动理论 内能

2024届高考一轮复习物理课件(新教材鲁科版):分子动理论 内能
1 2 3 4 5 6 7 8 9 10 11 12
2.(2023·江苏省昆山中学模拟)把墨汁用水稀释后取出一滴放在高倍显微镜下观 察,可以看到悬浮在液体中的小炭粒在不同时刻的位置,每隔一定时间把炭 粒的位置记录下来,最后按时间先后顺序把这些点进行连线,得到如图所示 的图像,对于这一现象,下列说法正确的是 A.炭粒的无规则运动,说明碳分子运动也是无规则的 B.越小的炭粒,受到撞击的分子越少,作用力越小,
炭粒的不平衡性表现得越不明显
√C.观察炭粒运动时,可能有水分子扩散到载物片的玻
例5 关于内能,下列说法正确的是 A.1克100 ℃的水的内能等于1克100 ℃的水蒸气的内能
B.质量、温度、体积都相等的物体的内能一定相等
√C.内能不同的物体,它们分子热运动的平均动能可能相等
D.一个木块被举高,组成该木块的所有分子的分子势能都增大
1克100 ℃ 的水需要吸收热量才能变为1克100 ℃的水蒸气,故1克 100 ℃的水的内能小于1克100 ℃的水蒸气的内能,选项A错误; 物体的内能与物质的量、温度、体积等因素有关,质量、温度、体积 都相等的物体其物质的量不一定相等,内能不一定相等,选项B错误; 内能不同的物体,其温度可能相等,它们分子热运动的平均动能可 能相等,选项C正确; 一个木块被举高,木块的重力势能增大,但木块的分子间距不变, 组成该木块的所有分子的分子势能不变,选项D错误.
(3)1 mol 物体的体积:Vmol=Mρ .
考向1 微观量估算的球体模型
例 1 (2023·宁夏银川二中质检)浙江大学高分子系高超教授的课题组制备出了 一种超轻气凝胶,它刷新了目前世界上最轻材料的记录,弹性和吸油能力令
人惊喜.这种固态材料密度仅为空气密度的61,设气凝胶的密度为 ρ,摩尔质量 为 M,阿伏加德罗常数为 NA,则下列说法不正确的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想气体的分子模型是弹性的自由运动的质点。
二、理想气体的分子性质 平衡态下:
1、平均而言,沿各个方向运动的分子数相同。 2、气体的性质与方向无关,
即在各个方向上速率的各种平均值相等。
vx vy vz vx2 vy2 vz2
3、不因碰撞而丢失具有某一速度的分子。
三.理想气体的压强公式
y l1
(V,N,m )
A2 O viy viz
A1 l2 vi
vix l3 x
z
vi vixi viy j vizk
平衡态 下器壁各 处压强相 同,选A1 面求其所 受压强。
y
A2 O
mv ix
mvix A1
x l1
i 分子动量增量
pix 2mv ix
i分子对器壁的冲量 2mv ix
i分子相继与A1面碰撞的时间间隔
原有 x 每天用量 剩余
p1 V1 M1 T
p2 V2 M 2 T
p3 V3 M 3 T
分别对它们列出状态方程,有
p1 V1
M1 M mol
RT
p2 V2
M2 M mol
RT
p3 V3
M3 M mol
RT
V1 V3 M1 M3 xM2
x M1 M3 ( p1 p3 )V1
M2
p2V2
i 1
l1l2l3 N
N
vix2
i 1
N
vix 2
N n
l1l2l3
p nmvix2
平衡态下
vx2
vy2
vz2
1 v2 3
p
nmvx 2
1 3
nmv 2
w 1 mv 2 ——分子的平均平动动能 2
p 2 nw 3
气体动理论第一基本方程
6-3 温度的统计解释
一、温度的统计解释
pV M RT M mol
•平衡态是一种理想状态
对热力学系统的描述:
1. 宏观量——状态参量
平衡态下描述宏观属性的相互独立的物理量。
如 压强 p、体积 V、温度 T 等。
2. 微观量
描述系统内个别微观粒子特征的物理量。 如分子 的质量、 直径、速度、动量、能量 等。
微观量与宏观量有一定的内在联系。
二、温度 表征物体的冷热程度
T t 273.15
三、理想气体状态方程 当系统处于平衡态时,各个状态参量之间的关系式。
理想气体
M
pV
RT
M mol
M 气体质量
p
M mol 气体的摩尔质量
I ( p1,V1,T1)

R 普适气体常量

8.31J / mol
o
II ( p2 ,V2 ,VT2 )
例:氧气瓶的压强降到106 Pa即应重新充气,以免混 入其他气体而需洗瓶。今有一瓶氧气,容积为32 l,
p 1 N RT n R T
V NA
NA
k R N A 1.38 1023 J K 1玻尔兹曼常量
p nkT
p 2 nw 3
w 1 mv 2 3 kT
2
2
气体动理论第二基本方程
温度是气体分子平均平动动能大小的量度
例题:下列各式中哪一式表示气体分子的平均
平动动能?(式中M为气体的质量,m为气体
t 2l / vix
单位时间内i分子对A1面的冲量 2mvix vix / 2l1
则 i分子对A1面的平均冲力 Fix 2mvix vix / 2l1
所有分子对A1面的平均作用力
压强
Fx
N
Fix
i 1
m l1
N
vix 2
i 1Leabharlann Np Fx l2l3
m l1l2l3
N
vix 2
i 1
mN vix 2
例:(1)在一个具有活塞的容器中盛有一定的气体。 如果压缩气体并对它加热,使它的温度从270C升到 1770C,体积减少一半,求气体压强变化多少? (2)这时气体分子的平均平动动能变化多少?
平衡条件: (1) 系统与外界在宏观上无能量和物质的交换, (2) 系统的宏观性质不随时间改变。
非平衡态: 不具备两个平衡条件之一的系统。
说明: •平衡态是一种热动平衡
处在平衡态的大量分子仍在作热运动,而且因 为碰撞, 每个分子的速度经常在变,但是系统的宏 观量不随时间 改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
压强为1.3107 Pa,若每天用105 Pa的氧气400 l ,问此 瓶氧气可供多少天使用?设使用时温度不变。
解: 根据题意,可确定研究对象为原来气体、用去气 体和剩余气体,设这三部分气体的状态参量分别为
p1 V1 M1 p2 V2 M 2 p3 V3 M 3 使用时的温度为T 设可供 x 天使用
系统分类(按系统与外界交换特点):
孤立系统:与外界既无能量又无物质交换 封闭系统:与外界只有能量交换而无物质交换 开放系统:与外界既有能量交换又有物质交换
平衡态系统 系统分类(按系统所处状态):
非平衡态系统 热平衡态: 在无外界的影响下,不论系统初始状态如 何,经过足够长的时间后,系统的宏观性质不随时间 改变的稳定状态。

A
绝热板
A、B 两体系互不影响

B
各自达到平衡态

A
导热板
A、B 两体系达到共同

的热平衡状态
B
A
C
若 A 和 B、B 和 C 分别热平衡,
则 A 和 C 一定热平衡。(比如C
B
是测温计)
(热力学第零定律)
处在相互热平衡状态的系统拥有某一共同的宏
观物理性质——温度
温标:温度的数值表示方法。
热力学温标 T 与摄氏温标 t 的关系
分子质量,N为气体分子总数目,n为气体分子
数密度,NA为阿伏加得罗常量)

(A) 3m pV (B) 3M pV
2M
2 M mol
(C)
3 2
npV
(D)
3 M mol 2M
N A pV
解:w 3 kT 3R T
2
2N A
3 pVMmol 3 pVmN A 3 pVm 2 MN A 2 MN A 2M
(130 10) 32 9.6(天) 1 400
6-2 理想气体压强公式
气体对器壁的压强是大量分子对容器不断碰撞 的统计平均效果。
每个分子对器壁的作用 f t
所有分子对器壁的作用 F f t
t
理想气体的压强公式
p F S
一、理想气体的分子模型 1、分子可以看作质点
本身的大小比起它们之间的平均距离可忽略不计。 2、除碰撞外,分子之间的作用可忽略不计。 3、分子间的碰撞是完全弹性的。
第三篇 热 学
研究物质各种热现象的性质和变化规律
热力学
热力学第一定律 热力学第二定律
气体动理论
统计方法 宏观量是微观量的统计平均
统计物理
玻耳兹曼
麦克斯韦
6-1 平衡态 温度 理想气体状态方程
一、平衡态
热力学系统(热力学研究的对象): 大量微观粒子(分子、原子等)组成的宏观物体。 外界:热力学系统以外的物体。
相关文档
最新文档