几种常见地图投影各自的特点及其分带方法

合集下载

几种常用地图投影

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的直线,纬距由中心向外扩大。

变形:投影中央部分的长度和面积变形小,向外变形逐渐增大。

用途:主要用于编绘两极地区,国际1∶100万地形图。

二:等距正割圆锥投影概念:圆锥体面割于球面两条纬线。

变形:纬线呈同心圆弧,经线呈辐射的直线束。

各经线和两标纬无长度变形,即其它纬线均有长度变形,在两标纬间角度、长度和面积变形为负,在两标纬外侧变形为正。

离开标纬愈远,变形的绝对值则愈大。

用途:用于编绘东西方向长,南北方向稍宽地区的地图,如前苏联全图等。

三:等积正割圆锥投影概念:满足mn=1条件,即在两标纬间经线长度放大,纬线等倍缩小,两标纬外情况相反。

变形:在标纬上无变形,两标纬间经线长度变形为正,纬线长度变形为负;在两标纬外侧情况相反。

角度变形在标纬附近很小,离标纬愈远,变形则愈大。

用途:编绘东西南北近乎等大的地区,以及要求面积正确的各种自然和社会经济地图。

四:等角正割圆锥投影概念:满足m=n条件,两标纬间经线长度与纬线长度同程度的缩小,两标纬外同程度的放大。

变形:在标纬上无变形,两标纬间变形为负,标纬外变形为正,离标纬愈远,变形绝对值则愈大。

用途:用于要求方向正确的自然地图、风向图、洋流图、航空图,以及要求形状相似的区域地图;并广泛用于制作各种比例尺的地形图的数学基础。

如我国在1949年前测制的1∶5万地形图,法国、比利时、西班牙等国家亦曾用它作地形图数学基础,二次大战后美国用它编制1∶100万航空图。

五:等角正切圆柱投影——墨卡托投影概念:圆柱体面切于赤道,按等角条件,将经纬线投影到圆柱体面上,沿某一母线将圆柱体面剖开,展成平面而形成的投影。

是由荷兰制图学家墨卡托(生于今比利时)于1569年创拟的,故又称(墨卡托投影)。

变形:经线为等间距的平行直线,纬线为非等间距垂直于经线的平行直线。

离赤道愈远,纬线的间距愈大。

纬度60°以上变形急剧增大,极点处为无穷大,面积亦随之增大,且与纬线长度增大倍数的平方成正比,致使原来只有南美洲面积1/9的位于高纬度的格陵兰岛,在图上比南美洲大。

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全2009-09-30 13:20在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。

一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。

1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。

等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。

通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。

从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。

我国绝大部分地区的面积变形在10%以内。

中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。

全国大部分地区的最大角度变形在10º以内。

等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

类似投影还有正切差分纬线多圆锥投影(Polyconic Projectionwith Me ridional Intervals on Decrease Away From Central Meridian by T angent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。

常用地图投影

常用地图投影

常用的几种地图投影世界地图常用投影一、墨卡托投影(等角正切圆柱投影)投影方法:圆柱投影。

经线彼此平行且间距相等。

纬线也彼此平行,但离极点越近,其间距越大。

不能显示极点。

应用:标准海上航线图(方向)。

其他定向使用:航空旅行、风向、洋流。

等角世界地图。

此投影的等角属性最适合用于赤道附近地区,例如,印尼和太平洋部分地区。

特点:形状等角。

由于该投影维持局部角度关系不变,所以能很好地描绘微小形状。

面积明显变形方向保持了方向和相互位置关系的正确距离沿赤道或沿割纬线的比例是真实的。

局限:在墨卡托投影上无法表示极点。

可以对所有经线进行投影,但纬度的上下限约为80° N 和80° S。

大面积变形使得墨卡托投影不适用于常规地理世界地图。

墨卡托投影坐标系:取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

二、桑逊投影(正轴等积伪圆柱投影)应用:除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等特点:该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线,是等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。

因此,该投影中心部分变形较小。

三、摩尔维特投影(伪圆柱等积投影)投影方法:伪圆柱等积投影。

所有纬线都是直线,所有经线都是等间距的椭圆弧。

唯一例外的是中央子午线,中央子午线是直线。

极点是点。

应用:适用于绘制世界专题或分布地图,经常采用不连续的形式。

将其与正弦曲线投影组合使用可创造出古蒂等面积和博格斯投影。

属性:形状在中央子午线和40°44' N 与40°44' S 纬线的交点处,形状未发生变形。

向外离这些点越远,变形越严重,在投影边处变形严重。

面积等积。

方向仅在中央子午线和40°44' N 与40°44' S 纬线的交点处,局部角度才是真实的。

地图投影知识点总结

地图投影知识点总结

地图投影知识点总结地图投影是将三维地球表面映射到二维平面上的过程。

由于地球是一个三维的球体,而地图是一个二维平面,因此无法完美地将地球表面映射到地图上。

地图投影是一项复杂的工程,需要考虑到地球的形状、尺寸、方向和角度等因素,以及地球表面的曲率和变形等问题。

地图投影有很多种类,每种投影方法都有其优点和局限性。

以下是地图投影的一些基本知识点总结:地图投影的分类:地图投影可分为等距投影、等角投影和等面积投影。

等距投影是指保持地球表面上任意两点之间的距离比例不变,但方向可能会发生变化。

等角投影是指保持地球表面上任意两点之间的夹角不变,但距离和面积可能会发生变化。

等面积投影是指保持地球表面上任意两个区域的面积比例不变,但方向和角度可能会发生变化。

根据投影面的形状,地图投影可分为圆柱投影、圆锥投影和平面投影。

地图投影的选择:选择适合的地图投影方法需要考虑到所要表达的地理信息、地图的使用目的和范围等因素。

例如,对于航海、航空和导航等领域,需要选用等角投影;而对于地图的变形要求较小的地理信息分析和遥感影像处理等领域,适合使用等面积投影。

地图投影的变形:地图投影会造成三种类型的变形:形状变形、大小变形和方向变形。

形状变形是指地球表面上的形状在地图上可能发生拉伸或压缩;大小变形是指地球表面上的面积在地图上可能会发生增加或减小;方向变形是指地球表面上的方向在地图上可能会发生偏差。

地图投影方法的选择要考虑到这些变形问题,以减小变形的影响。

常见的地图投影方法:1. 麦卡托投影:是一种圆柱形等距投影,常用于世界地图,保持了纬线和经线的直角,但是南北两极地区的变形严重。

2. 鲍尔投影:是一种圆柱形等面积投影,保持了地区间的面积比例,但是形状变形较大。

3. 兰伯特等角投影:是一种圆锥形等角投影,保持了地区间的角度比例,但是大小和形状变形较大。

4. 鲁宾逊投影:是一种混合投影,综合了以上投影方法的优点,常用于世界地图,尽量减小了地图的变形。

测绘中常用的地图投影方法介绍

测绘中常用的地图投影方法介绍

测绘中常用的地图投影方法介绍地图投影是地图制作中不可或缺的一部分,它将地球的曲面投影到一个平面上。

在测绘学中,有许多不同的地图投影方法,每一种方法都有自己的特点和适用范围。

本文将介绍一些常用的地图投影方法。

一、正轴等积圆柱投影法正轴等积圆柱投影法是最早出现的地图投影方法之一。

它以一个圆柱体为投影面,将地球的表面投影到圆柱体上,再展开成一个平面地图。

这种投影方法保持了等积性,即相等面积的地图上的面积在实际地球上也是相等的。

这使得正轴等积圆柱投影法在制作区域较大的地图时非常有用。

然而,在投影过程中,经纬度线不再是直线,而是弯曲的。

因此,这种投影方法在导航和航海等领域的应用相对较少。

二、墨卡托投影法墨卡托投影法是目前应用最广泛的地图投影方法之一。

它以一个圆柱体为投影面,将地球的表面投影到圆柱体上,再展开成一个平面地图。

与正轴等积圆柱投影法不同,墨卡托投影法保持了等角性,即相等角度的地图上的角度在实际地球上也是相等的。

这使得墨卡托投影法在导航和地图浏览等领域广受欢迎。

此外,墨卡托投影法也可以用于制作世界地图,因为它能够较为准确地展示各个地区的形状和比例关系。

三、兰勃托投影法兰勃托投影法是一种圆锥投影方法,它以一个圆锥体为投影面,将地球的表面投影到圆锥体上,再展开成一个平面地图。

兰勃托投影法保持了等距性,即相等距离的地图上的距离在实际地球上也是相等的。

这使得兰勃托投影法在制作航空地图和地理信息系统等领域得到广泛应用。

然而,由于地球是一个几乎球体状的物体,圆锥体无法完全覆盖地球的各个地区,因此在使用兰勃托投影法时需要选择合适的投影中心和标准纬度,以确保地图的准确性和正确性。

四、极射赤面投影法极射赤面投影法是一种特殊的地图投影方法,它以地球的南极或北极为投影中心,将地球的表面投影到一个平面上。

在这种投影方法中,赤道直径上的距离得以保持不变,而纬度线则以放射状的形式展开。

极射赤面投影法在制作地图时可以保持地球的真实形状,但是在极地地区附近的区域会有较大的变形。

几种地图投影的特点及分带方法

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。

1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全2009-09-30 13:20在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。

一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。

1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。

等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。

通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。

从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。

我国绝大部分地区的面积变形在10%以内。

中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。

全国大部分地区的最大角度变形在10º以内。

等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。

初中地理教案:了解地球的地图投影方式及特点

初中地理教案:了解地球的地图投影方式及特点

初中地理教案:了解地球的地图投影方式及特点一、了解地球的地图投影方式及特点地图是通过将地球表面的三维空间转化为二维平面,以便于人们观察和使用。

由于地球是一个球体,而纸张和屏幕都是平面,因此不可能完美地将地球的表面展示在平面上,这就导致了不同的投影方式和特点。

本文将介绍常见的地图投影方式及其特点。

二、圆柱投影圆柱投影是最常见也最基本的一种投影方式。

如其名称所示,该投影方式是通过将地球表面展开成一个圆柱形再将其展平而得到的。

圆柱投影可以分为等角圆柱投影和等积圆柱投影。

1. 等角圆柱投影等角圆柱投影保持了真实经纬度之间的角度关系,适用于航海、天文学以及机械制图等领域。

然而,在高纬度区域因为比例变形问题会产生较大误差。

2. 等积圆柱投影等积圆柱投影保持了各个区域之间的相对面积关系,适用于农业、气象及人口统计等领域。

然而,在接近两极区域会有更大的比例变形问题。

三、圆锥投影圆锥投影是将地球展开成一个圆锥然后再将其展平。

由于圆锥形状,该投影方式在赤道附近的地区保持了较好的几何特性。

1. 等角圆锥投影等角圆锥投影能够准确地表现经纬度之间的角度关系,适用于航海及天文学领域。

但是,在大规模地图制作时面积会有较大误差。

2. 等积圆锥投影等积圆锥投影保证各个区域之间的相对面积关系,并且在接近赤道附近能够保持较好的几何特性。

它广泛应用于国家和州级地图上。

四、正轴等距墨卡托投影(Mercator Projection)正轴等距墨卡托投影是最常见也最具争议的一种投影方式。

它具有以下特点:1. 水平方向上完全保留了真实长度比例关系。

2. 面积随着纬度增加而不断膨胀,造成极高纬度区域相对于实际面积的大幅度误差。

3. 聚焦于赤道附近地区,不适合展示整个地球。

因为这些特点,正轴等距墨卡托投影广泛用于航海、导航和地图制作。

尽管它存在一些问题,但由于能够提供具有良好可视性的海洋航线,所以在实际应用中仍然是非常有用的。

五、其他投影方式除了以上介绍的投影方式外,还有一些特殊用途的投影方式。

测绘技术的地图投影方法

测绘技术的地图投影方法

测绘技术的地图投影方法地图是人类为了更好地认识和把握地球而创造的重要工具。

然而,地球作为一个三维球体,如何将其表达在二维平面上,一直是地图制作中的难题。

为了解决这个问题,测绘技术发展出了各种地图投影方法,用于将地球的地理信息转换为平面地图。

本文将讨论几种常用的地图投影方法,并探讨其特点和应用。

一、等经纬度投影法等经纬度投影法又称为柱面投影法,它是最简单也是最直观的地图投影方法之一。

它以地球的经度和纬度为基准,将地球展开成一个长方形或矩形,并将经纬度放置在长方形的边上。

这种投影方法使得纬线和经线在地图上呈现为等间隔的直线,从而方便了对地球上的地理信息进行分析和比较。

等经纬度投影法最著名的应用就是经度和纬度坐标所构成的经纬网。

然而,等经纬度投影法也存在着一些局限性。

首先,它无法完全保留地球表面的面积关系,导致地图上不同区域的面积有所变形。

其次,纬线越接近极地,变形越明显,最终导致了北极的无限大问题。

因此,等经纬度投影法主要适用于小范围的地图制作和一些简单的地理问题分析。

二、圆柱投影法圆柱投影法是一种将球面地图映射到圆柱面上的投影方法。

它使用了一根垂直于地球的柱形,将地球表面的地理信息投影到柱面上,然后再展开成平面地图。

圆柱投影法具有简单、直观的特点,广泛应用于航海、航空和地图编制等领域。

最常见的圆柱投影法就是墨卡托投影。

墨卡托投影将地球表面的地理信息等比例地映射到柱面上,使纬线和经线在地图上呈现为等距直线。

这种投影方法主要用于大范围和中等纬度区域的地图制作,例如世界地图。

然而,墨卡托投影无法完全保留地球表面的形状和角度关系,尤其是靠近两极的地区。

因此,在导航和导航等对地球形状和角度要求较高的应用中,圆柱投影法并不是最佳选择。

三、圆锥投影法圆锥投影法是一种将球面地图映射到圆锥面上的投影方法。

与圆柱投影法相比,圆锥投影法更适用于大范围和高纬度地区的地图制作。

圆锥投影法将地球表面的地理信息投影到一根垂直于地球的圆锥上,然后再展开成平面地图。

世界常用投影

世界常用投影

世界地图常用地图投影知识大全在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。

一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。

1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。

等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。

通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。

从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。

我国绝大部分地区的面积变形在10%以内。

中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。

全国大部分地区的最大角度变形在10º以内。

等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。

介绍几种常用的地图投影

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|)一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”)1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

地图投影转换的方法及注意事项

地图投影转换的方法及注意事项

地图投影转换的方法及注意事项一、引言地图投影是将地球上的曲面表示为平面投影的一种方式,在地理信息领域发挥着重要作用。

然而,由于地球的曲面无法完美地映射到二维平面上,所以在进行地图投影时,我们需要选择合适的方法并注意一些事项,以确保地图的准确性和可用性。

二、地图投影方法1. 圆柱投影法圆柱投影法是最常见的一种地图投影方法。

它将地球表面投影到一个切割的圆柱体上,再将圆柱体展开成平面。

常见的圆柱投影法包括墨卡托投影、兰勃托投影和正轴等距圆柱投影。

这种投影方法适用于大范围地图,但在高纬度地区会存在形变问题。

2. 锥形投影法锥形投影法也是一种常用的地图投影方法。

它将地球表面投影到一个切割的锥体上,再将锥体展开成平面。

兰勃托锥形投影和兰勃托等面积投影是常见的锥形投影方法。

锥形投影法适用于较小范围的地图,地图形状比较真实,但在地图边缘会存在形变。

3. 平面投影法平面投影法将地球表面投影到一个切割的平面上。

根据投影中心的不同,平面投影法可分为正轴等距圆盘投影、兰勃托投影和阿波洛尼奥斯投影等。

平面投影法适用于小范围地图,投影中心附近形状准确,但离中心越远,形变越大。

三、地图投影注意事项1. 选择合适的投影方法根据地图的范围和用途选择合适的投影方法非常重要。

对于大范围的地图,圆柱投影法是不错的选择,而对于小范围的地图,平面投影法可能更适合。

考虑地图的形变和准确度,综合评估不同投影方法的优劣,选择最合适的方法。

2. 避免形变问题无论选择哪种投影方法,都无法避免地图形变的问题。

为了尽可能地减小形变,可以选择等面积投影方法,保持地区间的面积比例一致。

此外,在制作地图时,还可以通过引入坐标转换或插值的方法来修正形变。

3. 注意地图投影中心地图投影中心的选择对于地图的可用性和准确性至关重要。

选择合适的中心点可以在特定区域内确保地图形状的准确性。

同时,投影中心还影响到地图的距离和方向,因此在选择地图投影中心时要谨慎考虑。

4. 考虑投影带如果地图跨越多个经度带,应根据各经度范围的不同,选择不同的投影带,以确保地图的准确性。

比较常用的坐标几种投影

比较常用的坐标几种投影

只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(G erhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25 万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

测绘中常用的地图投影方法

测绘中常用的地图投影方法

测绘中常用的地图投影方法地图作为一种常见的信息呈现方式,在测绘工作中扮演着重要的角色。

而地图投影方法则是地图制作过程中不可或缺的一环。

地图投影是将地球表面的三维信息投射到二维平面上的过程,由于地球是一个近似于椭球体的三维地理模型,所以将其表现在平面上会引起一些形状、大小和方向的失真。

本文将介绍一些测绘中常用的地图投影方法。

一、等距投影法等距投影法是一种保持地球表面上各点距离不变的地图投影方法。

其中最著名的等距投影法是墨卡托投影法。

墨卡托投影法是一种圆柱投影法,即将地球投影到一个接触地球表面的圆柱体上,再展开成平面图。

墨卡托投影法具有以下特点:1. 在赤道附近地图形状保持几乎不变,适合用来制作大尺寸地图。

2. 北纬高于赤道的地区会呈现出纵向拉长的形状,而南纬高于赤道的地区则是纵向收缩。

二、等面积投影法等面积投影法是一种保持地球表面上各个区域面积比例不变的地图投影方法。

其中最常见的等面积投影法是兰勃托投影法。

该投影法将地球投影到一个接触地球表面的圆锥体上,再展开成平面图。

兰勃托投影法具有以下特点:1. 在地图上,各个区域的面积比例与实际相符,适合用来制作区域面积比例重要的地图。

2. 高纬度地区形状会发生压缩和形变。

三、正轴等距投影法正轴等距投影法是一种使某一点保持在地图上的位置与实际相符的地图投影方法。

其中最常见的正轴等距投影法是汇卢卓投影法。

该投影法将地球投影到一个接触地球表面的切平面上,再展开成平面图。

汇卢卓投影法具有以下特点:1. 在地图上,特定地点的位置保持不变。

2. 地图整体形状会产生扭曲和拉伸。

四、等经纬度投影法等经纬度投影法是一种直接将地球经纬线映射到平面图上的地图投影方法。

其中最常见的等经纬度投影法是正投影法。

该投影法将地球投影到一个与地球相切的平面上,使得地图上经纬线直线简单。

正投影法具有以下特点:1. 经纬线在地图上表现为直线。

2. 不同纬度上的东西向距离不同,形成等经线。

综上所述,地图投影方法在测绘工作中起到至关重要的作用。

测绘技术中的地图投影类型与选择

测绘技术中的地图投影类型与选择

测绘技术中的地图投影类型与选择在日常生活中,地图是我们获取空间信息的重要工具之一。

然而,地球是一个球体,而地图是平面的,这就需要使用地图投影来将球面上的地理信息转换到平面上。

地图投影类型的选择对地图的准确性和可视化效果具有重要影响。

本文将介绍测绘技术中常用的地图投影类型,并讨论选择合适的地图投影的方法。

1. 地图投影类型的分类地图投影类型可以根据其投影方式、形状变形特点等进行分类。

按照投影方式,常见的地图投影类型有圆柱投影、球面投影和锥面投影。

圆柱投影是通过将地球的经纬线投影到一个垂直于地球轴线的圆柱面上。

球面投影则是将地球表面投影到一个球面上。

锥面投影则是将地球投影到一个锥面上。

2. 常见地图投影类型的特点不同的地图投影类型各有其特点,适用于不同的地理区域和测绘需求。

接下来,我们将介绍一些常见的地图投影类型及其特点。

2.1 正射投影正射投影是一种常见的等角投影,其特点是保持方向性,即保持从地球上的任何点到地图上的连线与真实地面上的方向一致。

这使得正射投影在航空摄影和遥感影像处理中广泛应用。

然而,正射投影在大范围地图上存在面积失真的问题。

2.2 麦卡托投影麦卡托投影是一种圆柱投影,其特点是纬线等间距,经线等角度分布。

这使得麦卡托投影在海洋和大陆等大范围地图中具有较好的可视化效果。

然而,麦卡托投影在高纬度地区会出现形状失真和面积失真的问题。

2.3 兰勃托投影兰勃托投影是一种球面等面积投影,其特点是保持地球上的面积比例不变。

兰勃托投影在大范围地图绘制中常用,尤其适用于对地理统计分析进行准确度量的场景。

然而,兰勃托投影在极地地区会出现形状和方位失真的问题。

3. 地图投影的选择方法选择合适的地图投影类型需要考虑多方面因素。

以下是一些选择地图投影的方法。

3.1 地理区域根据绘制地图的地理区域的特点,选择适合该区域的地图投影类型。

例如,如果绘制的地图是涵盖极地地区的,则应选择适合极地地区的地图投影类型,以减小形状和方位的失真。

各种地图投影的特点

各种地图投影的特点

平射方位投影(球面投影)此投影在投影中心点附近变形较小,离开中心点越远变形越大,等变形线为以投影中心为圆心的同心圆。

故适宜制作圆形区域的投影。

被广泛使用。

如欧洲一些国家波兰、希腊等曾用它周围大比例尺地形图投影。

美国提出的“通用极球面投影”即是等角割圆柱投影。

等角方位无角度变形,长度和面积的变形在中心点附近较小,离中心点越远越大,其等变形线是以极点为圆心的同心圆.适于圆形的小的制图区域,正轴常用于两级地区的航空或海图.常用于南北半球气象气候图. 斜轴用于世界某一大陆或大区域的小比例尺地图等积方位保持面积正确,适用于表示具有面积对比关系的地图.地图集,横轴东西半球图.也适于非洲大陆.斜轴非洲以外的各大陆图,常用于我国政区图的数学基础,反映我国版图全貌,同四邻关系位置以及正确的面积对比都较好等距方位变形大小介于等角和等积之间,应用广泛.正轴两极地图,横轴东西半球.斜轴更为广泛,陆半球和水半球,集中显示水域和陆机.由于这投影具有从中心到周围任一点保持方位角和距离都相等,对于航空中心,气象中心,地震观测站等为中心,编制一定范围的地图具有重要意义.正轴圆柱投影的各种变形都是纬度的函数,即长度、面积和角度的等变形线都与纬线平行。

故正轴圆柱投影适合于制作在赤道附近向东西延伸地区的地图。

斜轴与横轴圆柱投影的各种变形都是天顶距的函数,即长度、面积和角度的等变形线都与等高圈平行。

故横轴圆柱投影适合于制向南北延伸的狭长地区的地图,斜轴圆柱投影适合于制作任意方向延伸的狭长地区的地图。

单标准纬线等角圆柱投影适合于制作赤道附近的地图,双标准纬线等角圆柱投影适合于制作和赤道对称的沿纬线延伸的地图。

另外,此投影经常用于制作世界图,如时区图、卫星轨迹图。

等角航线表现为直线对航海具有重要意义。

这意味着只要在海图上将起点和终点连成一直线,再量出它与经线的交角,航行时一直保持这个角度,便可达到终点。

实际上,两点间的最短距离是大圆航线,故沿等角航线航行是不经济的。

测量测绘学中的常用地图投影方法

测量测绘学中的常用地图投影方法

测量测绘学中的常用地图投影方法地图是人类认识地球的重要工具之一,而地图投影则是将三维地球表面投影到二维平面上的过程。

在测量测绘学中,有许多常用的地图投影方法,每种方法都有其独特的特点和应用领域。

本文将介绍一些常见的地图投影方法,并简要探讨它们的优缺点。

一、等角地图投影方法等角地图投影方法是指在地图上体现出任意两点之间的角度等于真实地球上两点之间的角度。

常见的等角地图投影方法包括兰勃托投影、平展投影和乌德尔斯坦投影等。

这些方法在保持地图上各地点角度关系准确的同时,会出现面积、形状的变形。

例如,兰勃托投影是一种常见的等角地图投影方法,它以正圆柱面作为投影面,使得地球表面的经线和纬线在地图上呈现为直线。

然而,由于纬线的扩展,兰勃托投影在高纬度地区表现出了较大的形状变形。

因此在高纬度地区使用兰勃托投影时,需要注意形状变形对地图分析的影响。

二、等面积地图投影方法等面积地图投影方法是指在地图上面积比例与真实地球上相对应的区域面积比例相等。

根据等面积地图投影方法的不同,地图上的面积变形程度不同。

该类投影方法常用于需要准确表示地理区域面积的工作,如人口统计、土地利用等。

其中,墨卡托投影是一种常见的等面积地图投影方法,它以圆柱面作为投影面,使得地球表面上的每个小区域在地图上面积保持不变。

墨卡托投影在赤道附近呈现出较好的面积保持性,但随着纬度的增加,面积变形逐渐增大。

因此,在高纬度地区使用墨卡托投影时需要注意面积变形对数据分析的影响。

三、等距地图投影方法等距地图投影方法是指在地图上任意两点之间距离与真实地球上两点之间距离相等。

等距地图投影方法常用于海洋导航、飞行路径规划等应用领域,其优点在于能够准确表示地球上的距离。

兰托慧逊投影是一种常见的等距地图投影方法,它以正四面体作为投影体,使得地球上的大圆弧在地图上成为直线。

这使得兰托慧逊投影在导航、航海等领域具有重要的应用价值。

但由于等距投影方法的特点,形状和面积在兰托慧逊投影中会发生较大的变形。

初中地理教案:了解地球的地图投影方式及特点

初中地理教案:了解地球的地图投影方式及特点

初中地理教案:了解地球的地图投影方式及特点地球是我们生活的家园,了解地球的地图投影方式及其特点对于我们认识世界、学习地理知识非常重要。

本文将详细介绍地球的地图投影方式以及它们各自的特点。

一、平面投影平面投影是将地球表面上的各种信息投影到一个平面上形成地图。

它是最简单、最直观的一种投影方式。

平面投影可以分为三种类型:正轴射投影、斜轴射投影和等距离圆柱投影。

1. 正轴射投影:这种投影方式保持了一个方向不变,让该方向上的线段长度缩比与实际长度相同。

正轴射是指从北极或南极出发直接做正常视线垂直照射到复原表面上。

2. 斜轴射投影:只能在两个标准子午线上缩小踪迹得到多边形转角标度,在其他地方都失去坐标比例关系。

3. 等距离圆柱投影:通过将一个经纬网从中心展开,使得大圆弧映象成顾切圆弧,使得同样大小和间隔,并且保持方向角不变。

但当靠近两个相对的极点时,会产生明显的形变。

二、圆柱投影圆柱投影将地球表面投影为一个圆柱体上,再将该圆柱面展开成平面形成地图。

它是最常用的一种地图投影方式。

1. 等角圆柱投影:该投影方式保持了角度的等比例关系,即任何两条曲线之间的夹角在地球上被保持不变。

然而,在纬线方向上,距离逐渐增加。

2. 直角圆柱投影:这种投影方式使得地球表面上每个经纬度的位置在平面坐标中具有与其在地球上位置相同的直角坐标位置关系。

但是,在大范围内会出现形变问题。

三、柱面投影柱面投影是将地球表面放置到一个横切剖成半滚筒形状平行于一个子午线的曲面上,再展开成平面形成地图。

1. 米勒圆柱投影:该方法通过椭圆而非直线表示纬线。

以赤道为标准线分别计算各纬线与品特点等精密耕辨度加以绘制,在北导航区民之使用率得名为合世界绘影文件。

2. 麦卡托投影:麦卡托投影是指在位于中心的标准子午线上得到正确度纬线的比例,并且由于锥形得思想而使其天平从而解决角度失真,但依然还需要做出重大方向上的变形。

四、其他地图投影方式除了以上介绍的主要地图投影方式之外,还有许多其他特殊用途的地图投影方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。

设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。

然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影”
1.墨卡托(Mercator)投影
1.1 墨卡托投影简介
墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系
取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal
Transverse Mercator)投影
2.1 高斯-克吕格投影简介
高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。

设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。

然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。

高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。

由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。

分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

通常按经差6度或3度分为六度带或三度带。

六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。

三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第1、2…120带。

我国的经度范围西起 73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。

我国大于等于50万的大中比例尺地形图多采用六度带高斯-克吕格投影,三度带高斯-克吕格投影多用于大比例尺测图,如城建坐标多采用三度带的高斯-克吕格投影。

2.2 UTM投影简介
UTM投影全称为“通用横轴墨卡托投影”,是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。

UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。

与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。

UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。

我国的卫星影像资料常采用UTM投影。

2.3 高斯-克吕格投影与UTM投影异同
高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。

从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。

从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1, UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用 X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。

从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。

此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。

2.4 高斯-克吕格投影与UTM投影坐标系
高斯- 克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。

以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即为各带的坐标原点。

为了避免横坐标出现负值,高斯-克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。

由于高斯-克吕格投影与UTM投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,
21655933m),其中21即为带号。

二、分带方法
1.我国采用6度分带和3度分带:
1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。

1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为20345486,其中20即为带号,345486为横坐标值。

2.当地中央经线经度的计算
六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。

三度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)。

相关文档
最新文档