2020-2021洛阳市第一高级中学高一数学上期末模拟试题及答案
2020-2021高一数学上期末模拟试卷含答案(2)
2020-2021高一数学上期末模拟试卷含答案(2)一、选择题1.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>2.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .3.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-4.若函数()2log ,?0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1eB .eC .21e D .2e5.函数()2sin f x x x =的图象大致为( )A .B .C .D .6.函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞7.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -8.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .39.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .511.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣112.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______.14.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.15.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.16.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 17.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______. 20.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____三、解答题21.已知函数132()log 2ax f x x-=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当(7,)x ∈+∞时,13()log (2)f x x m +-<恒成立.求实数m 的取值范围. 22.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.23.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B I U ;(2)若()R C C A ⊆,求实数a 的取值范围.24.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x取得最大值2,当23x π=时,()f x取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.25.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为()30030180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,,(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.26.如图,OAB ∆是等腰直角三角形,ABO 90∠=o ,且直角边长为22,记OAB ∆位于直线()0x t t =>左侧的图形面积为()f t ,试求函数()f t 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2.C解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。
2020-2021学年洛阳市高一上学期期末数学试卷(附答案解析)
2020-2021学年洛阳市高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分)1.若集合A={x|−2<x<0},B={x|−1<x<3},则A∪B=()A. {x|−2<x<3}B. {x|−2<x<−1}C. {x|−1<x<0}D. {x|0<x<3}2.f(x)=x2−ax−2有两个零点x1,x2,g(x)=x2−x−1−a有两个零点x3,x4,若x1<x3<x4<x2,则实数a的取值范围是()A. (−1,1)B. (1,+∞)C. (−∞,−54) D. (−54,−1)3.f(x)是定义在R上的偶函数,已知函数f(x)在(−∞,0]上单调递减,且f(2)=0,则使f(x)<0的x的取值范围是()A. (−2,0]∪[2,+∞)B. (−2,2)C. (−2,0)D. (2,+∞)4.已知直线mx+2y−5=0与直线2x+y−1=0垂直,则m的值为()A. −1B. 0C. PADD. 45.设a=log312,b=(13)0.2,c=213,则a,b,c的大小关系为()A. a<b<cB. c<b<aC. c<a<bD. b<a<c6.南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面α所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如右图,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面面积分别为S1,S2,则()A. 如果S1,S2总相等,则V1=V2 B. 如果S1=S2总相等,则V1与V2不一定相等C. 如果V1=V2 ,则S1,S2总相等D. 存在这样一个平面α使S1=S2相等,则V1=V2(e是自然对数的底数),则()7.设x=log52,y=e−12,z=12A. x<y<zB. y<x<zC. z<x<yD. x<z<y8.在空间,下列命题正确的是()A. 平行直线在同一平面内的射影平行或重合B. 垂直于同一平面的两条直线平行C. 垂直于同一平面的两个平面平行D. 平行于同一直线的两个平面平行9.已知等比数列中,,则的值为()A. 4B. 2C. 8D. 16(θ∈R)的位置关系为() 10.直线xcosθ+ysinθ−2=0与圆(x−sinθ)2+(y−2cosθ)2=14A. 相交,相切或相离B. 相切C. 相切或相离D. 相交或相切11.已知各顶点都在一个球面上的正方体的体积为8,则这个球的表面积是()A. 8πB. 12πC. 16πD. 20π12.直线x−√3y+2√3=0被圆x2+y2=4截得的弦长为()A. √2B. 2C. √3D. 4二、单空题(本大题共4小题,共20.0分)13.直线x+y+1=0的纵截距是______ .14.已知函数f(x)=−x2+2|x|+3,则f(x)的单调递增区间为______.15.如图,切圆于,,,则的长为.16.正方体ABCD−A1B1C1D1中,长度为定值的线段EF在线段B1D1上滑动,现有五个命题如下:①AC⊥BE;②EF//平面A1BD;③直线AE与BF所成角为定值;④直线AE与平面BD1所成角为定值;⑤三棱锥A−BEF的体积为定值.其中正确命题序号为______ .三、解答题(本大题共6小题,共70.0分)17.在假期社会实践活动中,小明参观了某博物馆,博物馆的正厅有一幅壁画.刚进入大厅时,他在点A处发现看壁画顶端点C的仰角大小为45∘,往正前方走4米后,在点B处发现看壁画顶端点C 的仰角大小为75∘.(I)求BC的长;(II)若小明身高为1.70米,求这幅壁画顶端点C离地面的高度(精确到0.01米,其中√3≈1.732)..18. 某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减.(1)下列几个模拟函数中:①y=ax2+bx;②y=kx+b;③y=log a x+b;④y=a x+b(x表示人均GDP,单位:千美元,y表示年人均A饮料的销售量,单位:L).用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由;(2)若人均GDP为1千美元时,年人均A饮料的销售量为2L,人均GDP为4千美元时,年人均A饮料的销售量为5L,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均A饮料的销售量最多是多少?19. 如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;(2)求二面角FCDA的余弦值.x3−4x+4;20. 已知函数y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=13(Ⅰ)求函数y=f(x)的单调区间和极值;(Ⅱ)若方程f(x)=kx−4在[−3,3]恰有两个不等实数根,求实数k的取值范围.321. 如图,已知AB⊥平面ACD,DE⊥平面ACD,,点为的中点.求证:(1)(2)22. 已知点P是圆x2+y2=4上的动点,过点P作PD⊥x轴,垂足为D,点M在DP的延长线上,且DM:DP=3:2;求点M的轨迹方程.参考答案及解析1.答案:A解析:解:∵集合A={x|−2<x<0},B={x|−1<x<3},∴A∪B={x|−2<x<3}.故选:A.利用并集定义直接求解.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:A解析:解:由f(x)=x2−ax−2=0得ax=x2−2,则a=x2−2x =x−2x,则方程a=x−2x的两个根为x1,x2,由g(x)=x2−x−1−a=0得a=x2−x−1,则方程的两个根为x3,x4,由a=x−2x=x2−x−1,得2x−2x=x2−1,即2(x2−1)x=x2−1,即(x2−1)(1−2x)=0,得x=±1,或x=2,当x=1时,x−2x =1−2=−1,当x=−1时,x−2x=−1+2=1,当x=2时,x−2x=2−1=1,做出函数y=x−2x和y=x2−x−1的图象如图:要使y=a与y=x−2x的交点横坐标x1,x2和与y=x2−x−1交点的横坐标x3,x4,满足x1<x3<x4<x2,则直线y=a必须在y=−1和y=1之间,即−1<a<1,即实数a的取值范围是(−1,1),故选:A.利用参数分离法分别求出a=x−2x 和a=x2−x−1,作出y=x−2x和y=x2−x−1图象,利用数形结合确定a的位置即可.本题主要考查函数零点的应用,利用参数分离法转化两个图象相交的情况是解决本题的关键.综合性较强,有一定的难度.3.答案:B解析:本题考查函数的奇偶性、单调性及其应用,数形结合解决本题简洁直观,注意体会.由f(x)为偶函数,f(x)在(−∞,0]上的单调性,可判断f(x)在(0,+∞)上的单调性,由f(2)=0,可得f(−2)=0,从而据题意可作出f(x)的草图,由图象即可解得不等式.解:因为f(x)在(−∞,0]上单调递减,又f(x)为R上的偶函数,所以f(x)在(0,+∞)上单调递增,由f(2)=0可得f(−2)=0,作出满足题意的函数f(x)的草图,如图:由图象可得,使得f(x)<0的x的范围为(−2,2).故选B.4.答案:A解析:解:∵直线mx+2y−5=0与直线2x+y−1=0垂直,∴2m+2×1=0,解得m=−1故选:A.由直线的垂直关系可得2m+2×1=0,解方程可得.本题考查直线的一般式方程和垂直关系,属基础题.5.答案:A解析:解:a =log 312<log 31=0,0<b =(13)0.2<(13)0=1,c =213>20=1,所以a <b <c .故选:A .根据对数函数的单调性可判定a <0,根据指数函数的单调性可得0<b <1,c >1,从而可得结论.本题主要考查了对数值的大小关系,解题的关键是利用指数函数单调性、对数函数单调性判断与中间值0和1的大小. 6.答案:A解析:解:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面α所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如右图,夹在两个平行平面之间的两个几何体的体积分别为V 1,V 2,被平行于这两个平面的任意平面截得的两个截面面积分别为S 1,S 2,如果S 1,S 2总相等,则V 1=V 2.故选:A .利用祖暅原理:“幂势既同,则积不容异”直接求解.本题考查命题真假的判断,考查祖暅原理:“幂势既同,则积不容异”等基础知识,考查运算求解能力,是基础题.7.答案:D解析:解:∵x =log 52<log 5√5=12=z ,y =e −12=e lne −12=e ln 1√e >e ln 12=12=z . ∴x <z <y .故选:D .分别利用对数函数的单调性和指数函数的单调性比较log52,e−12与12的大小得答案.本题考查对数的运算性质,考查了指数函数和对数函数的单调性,是基础的计算题.8.答案:B解析:试题分析:解:平行直线在同一平面内的射影平行,或重合,或是两个点,故A不正确;由直线垂直于平面的性质定理知:垂直于同一平面的两条直线平行,故B正确;垂直于同一平面的两个平面平行或相交,故C不正确;平行于同一直线的两个平面平行或相交,故D不正确.故选B考点:空间中直线与直线、直线与平面、平面与平面的位置关系点评:本题考查空间中直线与直线、直线与平面、平面与平面的位置关系的判断,是基础题.解题时要认真审题,仔细解答9.答案:A解析:本题考查了等比数列的通项公式,即首先求得q,再化简,即可得答案.解:,,所以故选A.10.答案:C解析:由圆的标准方程求出圆心和半径,再求得圆心到直线xcosθ+ysinθ−2=0的距离大于或等于半径,从而得出结论.本题主要考查直线和圆的位置关系,点到直线的距离公式,三角函数的二倍角公式,属于中档题.解:∵圆(x−sinθ)2+(y−2cosθ)2=14(θ∈R)的圆心为(sinθ,2cosθ),半径等于12,圆心到直线xcosθ+ysinθ−2=0的距离为d=|sinθcosθ+2cosθsinθ−2|√sin2θ+cos2θ=|2−32sin2θ|≥2−32=12,故直线和圆相切或相离.故选C.11.答案:B解析:解:正方体体积为8,可知其边长为2,正方体的体对角线为√4+4+4=2√3即为球的直径,所以半径为√3,球的表面积为4πR2=12π,故选:B先通过正方体的体积,求出正方体的棱长,然后求出球的半径,然后求出球的表面积.本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.12.答案:B解析:解:圆x2+y2=4的圆心到直线x−√3y+2√3=0的距离d=√3|√1+3=√3,半径r=2,所以弦长为2√4−3=2,故选:B.求出圆心到直线的距离,利用几何法求出弦长即可.考查直线与圆的位置关系,弦长的计算,中档题.13.答案:−1解析:本题主要考查直线的截距式方程,属于基础题.直线x+y+1=0即y=−x−1,由此可得此直线的纵截距.解:直线x+y+1=0即y=−x−1,故此直线的纵截距为−1,故答案为:−1.14.答案:(−∞,−1)和(0,1)解析:解:根据题意,f(x)=−x 2+2|x|+3={−x 2+2x +3,x ≥0−x 2−2x +3,x <0,当x ≥0时,f(x)=−x 2+2x +3,在区间[0,1)上为增函数,在(1,+∞)上为减函数; 当x <0时,f(x)=−x 2−2x +3,在区间(−∞,−1)上为增函数,在(−1,0)上为减函数, 则f(x)的单调递增区间为(−∞,−1)和(0,1); 故答案为:(−∞,−1)和(0,1).根据题意,函数的解析式变形可得f(x)={−x 2+2x +3,x ≥0−x 2−2x +3,x <0,据此结合二次函数的性质分析可得答案.本题考查函数的单调性的判断,涉及分段函数以及二次函数的性质,属于基础题.15.答案:2解析:试题分析:设圆的半径为由切割线定理得:所以16.答案:①②⑤解析:解:①正确.如图1所示,连接BD ,由正方体ABCD −A 1B 1C 1D 1中可得AC ⊥BD ,BB 1⊥AC ,BD ∩BB 1=B ,∴AC ⊥平面BDD 1B 1,∴AC ⊥BE ;②正确.如图图2所示,∵B 1D 1//BD ,B 1D 1⊄平面A 1BD ,而BD ⊂平面A 1BD ,∴EF//平面A 1BD ;③不正确.如图3所示,建立空间直角坐标系,不妨设正方体的棱长为1,|EF|=m ,F(a,b,1),则E(a +√22m,b +√22m,1).又A(1,0,0),B(1,1,0). ∴AE⃗⃗⃗⃗⃗ =(a +√22m −1,b +√22m,1),BF⃗⃗⃗⃗⃗ =(a −1,b −1,1), ∴cos <AE ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >=AE ⃗⃗⃗⃗⃗ ⋅BF⃗⃗⃗⃗⃗|AE ⃗⃗⃗⃗⃗ | |BF ⃗⃗⃗⃗⃗ |=(a+√22m−1)(a−1)+(b+√22m)(b−1)+1√(a+√22m−1)2+(b+√22m)2+1√(a−1)2+(b−1)2+1,与a ,b 的取值有关系.④如图3所示,取对角面BD 1的法向量为AC⃗⃗⃗⃗⃗ =(−1,1,0).设AE 与平面BD 1所成的角为θ,则sinθ=|cos <AE ⃗⃗⃗⃗⃗ ,n ⃗ >|=|AE ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||AE ⃗⃗⃗⃗⃗ | |n ⃗⃗ |=|1−a−√22m+b+√22m|(a+√2m−1)+(b+√2m)a ,b 的取值有关系;⑤正确.由①可知:AC ⊥平面BDD 1B 1,∴点A 到平面BEF 的距离=12|AC|,而△BEF 的面积=12|EF| |BB 1|,∴V A−BEF =13×12|AC| ⋅12|EF| |BB 1|,又|AC|,|EF|,|BB 1|都为定值,因此三棱锥A −BEF的体积为定值.综上可知:正确答案为①②⑤. 故答案为①②⑤.①如图1所示,连接BD ,由正方体ABCD −A 1B 1C 1D 1中可得AC ⊥BD ,BB 1⊥AC ,利用线面垂直的判定定理可得AC ⊥平面BDD 1B 1,利用其性质即可得到AC ⊥BE ;②如图图2所示,利用正方体的对角面的性质可得B 1D 1//BD ,再利用线面的判定定理即可得到EF//平面A 1BD ;③如图3所示,建立空间直角坐标系,不妨设正方体的棱长为1,|EF|=m ,F(a,b,1),则E(a +√22m,b +√22m,1).又A(1,0,0),B(1,1,0).∴AE ⃗⃗⃗⃗⃗ =(a +√22m −1,b +√22m,1),BF ⃗⃗⃗⃗⃗ =(a −1,b −1,1),利用向量的夹角公式即可判断出;④如图3所示,取对角面BD 1的法向量为AC ⃗⃗⃗⃗⃗ =(−1,1,0). 设AE 与平面BD 1所成的角为θ,则sinθ=|cos <AE ⃗⃗⃗⃗⃗ ,n ⃗ >|=|AE ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||AE ⃗⃗⃗⃗⃗ | |n ⃗⃗ |即可判断出; ⑤由①可知:AC ⊥平面BDD 1B 1,可得点A 到平面BEF 的距离=12|AC|,而△BEF 的面积=12|EF| |BB 1|,利用三棱锥的体积计算公式可得V A−BEF =13×12|AC| ⋅12|EF| |BB 1|,又|AC|,|EF|,|BB 1|都为定值,因此三棱锥A −BEF 的体积为定值.熟练掌握空间点线面的位置关系、空间角、空间距离等是解题的关键.17.答案:解:( I )在△ABC 中, ∠CAB =45°,∠DBC =75°,则∠ACB =30°由正弦定理得到, BCsin45°=ABsin30°, 将AB =4代入上式,得到BC =4√2 (米)( II )在△CBD 中, ∠CDB =90°,BC =4√2, 所以DC =4√2sin75° 因为sin75°=sin(45°+30°)=√6+√24,则DC =2+2√3 , 所以DE =3.70+2√3≈7.16(米)答:BC 的长为4√2米;壁画顶端点C 离地面的高度为7.16米解析:本题主要考查正弦定理和余弦定理的应用,两角和的正弦公式,属于中档题. (1)在△ABC 中,由条件求得∠ACB =75°−45°=30°.由正弦定理化简即可求解; (2)利用两角和的正弦公式求得 sin75°,化简即可求解.18.答案:解:(1)用①来模拟比较合适.因为该饮料在人均GDP 处于中等的地区销售量最多,然后向两边递减. 而②,③,④表示的函数在区间[0.5,8]上是单调函数, 所以②,③,④都不合适,故用①来模拟比较合适. (2)因为人均GDP 为1千美元时,年人均A 饮料的销量为2升; 若人均GDP 为4千美元时,年人均A 饮料的销量为5升, 把x =1,y =2;x =4,y =5代入到y =ax 2+bx ,得{2=a +b5=16a +4b,解得a =−14,b =94, 所以函数解析式为y =−14x2+94x.(x ∈[0.5,8])∵y =−14x2+94x =−14(x −92)2+8116, ∴当x =92时,年人均A 饮料的销售量最多是8116L .解析:(1)用①来模拟比较合适.理由是:该饮料在人均GDP 处于中等的地区销售量最多,然后向两边递减.而②,③,④表示的函数在区间[0.5,8]上是单调函数.(2)因为人均GDP 为1千美元时,年人均A 饮料的销量为2升;若人均GDP 为4千美元时,年人均A 饮料的销量为5升,把x =1,y =2;x =4,y =5代入到y =ax 2+bx ,解得a =−14,b =94,所以函数解析式为y =−14x2+94x.(x ∈[0.5,8]),再用配方法能求出当x =92时,年人均A 饮料的销售量最多是8116L .考查学生会根据实际问题选择函数类型,会用不同的自变量取值求二次函数的最值,解题时要认真审题,仔细解答,注意挖掘题设中的隐条件,合理地进行等价转化.19.答案:(1)见解析(2)解析:解:(1)证明:由已知得,BE//AF ,BC//AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE//平面ADF .设平面DFC ∩平面BCE =l ,则l 过点C .∵平面BCE//平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF//l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF//l . (2)∵FA ⊥AB ,FA ⊥CD ,AB 与CD 相交, ∴FA ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D(1,0,0),C(2,2,0),F(0,0,2),∴=(−1,0,2),=(1,2,0).设平面DFC 的一个法向量为n =(x,y,z), 则⇒不妨设z =1.则n =(2,−1,1),不妨设平面ACD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉===,由于二面角FCDA 为锐角, ∴二面角FCDA 的余弦值为.20.答案:解:(Ⅰ)因为当x ≥0时,f(x)=13x 3−4x +4,f′(x)=x 2−4=(x +2)(x −2),当0<x <2时,f′(x)<0,x >2时,f′(x)>0, 即当x ≥0时,f(x)的减区间为[0,2],增区间为[2,+∞),由y =f(x)为偶函数,则当x ≤0时,f(x)的减区间为(−∞,−2],增区间为[−2,0], 又f(−2)=f(2)=−43,f(0)=4.综上可得,f(x)的增区间为:[−2,0],[2,+∞),减区间为:(−∞,−2],[0,2]. 极大值f(0)=4,极小值f(−2)=f(2)=−43,(Ⅱ)由(Ⅰ)得y =f(x)在[0,2]为减函数,在[2,3]为增函数, 又f(2)=−43,f(3)=1,f(x)=kx −43恒过点(0,−43),又f(x)=kx −43过点(3,1)时,k =79,f(x)=kx −43过点(2,−43)时,k =0, 则0≤k ≤79时,集合{xf(x)=kx −43}有两个元素, 又y =f(x)是定义在R 上的偶函数,同理可得−79≤k ≤0时,集合{x|f(x)=kx −43}也有两个元素, 综上得实数k 的取值范围是[−79,79].解析:(Ⅰ)求出函数的导数,令导数大于0,得增区间.导数小于0,得减区间,进而得到极值,注意偶函数的性质;(Ⅱ)由(Ⅰ)得到的单调性和k 的符号,以及直线恒过的定点,即可得到k 的取值范围.本题考查函数的性质和运用,考查导数的运用:求单调区间和极值,考查单调性的运用和其偶性的运用,属于中档题.21.答案:(1)证明:取CE的中点G,连FG、BG,∵AB⊥平面ACD,DE⊥平面ACD,∴AB//DE,∴GF//AB,∴四边形GFAB为平行四边形,则AF//BG,∵AF⊄平面BCE,BG⊂平面BCE,∴AF//平面BCE;(2)∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.又CD∩DE=D,故AF⊥平面CDE.∵BG//AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.解析:解:(1)证明:取CE的中点G,连FG、BG,∵AB⊥平面ACD,DE⊥平面ACD,∴AB//DE,∴GF//AB,∴四边形GFAB为平行四边形,则AF//BG,∵AF⊄平面BCE,BG⊂平面BCE,∴AF//平面BCE;(2)∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.又CD∩DE=D,故AF⊥平面CDE.∵BG//AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.22.答案:解:设M(x,y),),由DM:DP=3:2,得P(x,2y3又∵点P在圆x2+y2=4上,∴x2+(2y3)2=4.∵D坐标为(x,0),当x=±2时,P点和D点坐标相同,即两点重合,此时约束条件中DP垂直于x轴没有意义,故x=±2舍去.∴M的轨迹方程是:x24+y29=1(x=±2).解析:设出M点的坐标,由DM:DP=3:2得到P点的坐标,把P的坐标代入圆x2+y2=4,整理后去掉曲线与x轴的交点得答案.本题考查了轨迹方程,训练了利用代入法求曲线方程,此题往往漏除曲线与x轴的交点,属中档题.。
2020-2021高一数学上期末一模试卷(及答案)
2020-2021高一数学上期末一模试卷(及答案)一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-2.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭3.函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞4.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .45.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20226.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x + B .(1)f x -C .()1f x +D .()1f x -7.函数ln x y x=的图象大致是( )A .B .C .D .8.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x10.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .412.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.15.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.16.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________17.已知函数1()41xf x a =+-是奇函数,则的值为________. 18.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.19.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知函数()21log 1x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]2,4x ∈,恒有()2log (1)(7)mf x x x >-⋅-成立,求实数m 的取值范围.22.已知()()()22log 2log 2f x x x =-++. (1)求函数()f x 的定义域; (2)求证:()f x 为偶函数;(3)指出方程()f x x =的实数根个数,并说明理由. 23.已知函数()2log 11m f x x ⎛⎫=+⎪-⎝⎭,其中m 为实数. (1)若1m =,求证:函数()f x 在()1,+∞上为减函数; (2)若()f x 为奇函数,求实数m 的值. 24.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 3332log 27log 2log 36lg 2lg 5-⋅---. 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.3.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.4.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.5.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.【详解】()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.6.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.7.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-<故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 342a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3c ∈, 所以a c b <<,故选B.11.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2.故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.14.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.15.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.16.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .17.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1218.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围.【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.19.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立, 则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)奇函数,证明见解析;(2)015m << 【解析】 【分析】(1)先求出函数定义域,再利用函数奇偶性的定义判断即可; (2)由题意,101(1)(7)x m x x x +>>---对[]2,4x ∀∈恒成立,转化为0(1)(7)m m x x >⎧⎨<+-⎩恒成立,求出函数()()()17g x x x =+-的最小值进而得解. 【详解】 (1)因为101x x +>-,解得1x <-或1x >, 所以函数()f x 为奇函数,证明如下: 由(1)知函数()f x 的定义域关于原点对称,又因为1222111()log log log ()111x x x f x f x x x x --+-+⎛⎫-====- ⎪--+-⎝⎭, 所以函数()f x 为奇函数; (2)若对于[]2,4x ∈,2()log (1)(7)mf x x x >--恒成立,即221log log 1(1)(7)x mx x x +>---对[]2,4x ∈恒成立, 即101(1)(7)x m x x x +>>---对[]2,4x ∈恒成立, 因为[]2,4x ∈,所以107mx x+>>-恒成立, 即0(1)(7)m m x x >⎧⎨<+-⎩恒成立,设函数()()()17g x x x =+-,求得()g x 在[]2,4上的最小值是15, 所以015m <<. 【点睛】本题考查函数奇偶性的判断及不等式的恒成立问题,考查分离变量法的运用,考查分析问题及解决问题的能力,难度不大.22.(1)()2,2-;(2)证明见解析;(3)两个,理由见解析. 【解析】 【分析】(1)根据对数函数的真数大于0,列出不等式组求出x 的取值范围即可; (2)根据奇偶性的定义即可证明函数()f x 是定义域上的偶函数.(3)将方程()f x x =变形为()22log 4x x -=,即242xx-=,设()242xg x x =--(22x -≤≤),再根据零点存在性定理即可判断. 【详解】 解:(1)()()()22log 2log 2f x x x =-++2020x x ->⎧∴⎨+>⎩,解得22x -<<,即函数()f x 的定义域为()2,2-; (2)证明:∵对定义域()2,2-中的任意x , 都有()()()()22log 2log 2f x x x f x -=++-= ∴函数()f x 为偶函数;(3)方程()f x x =有两个实数根, 理由如下:易知方程()f x x =的根在()2,2-内, 方程()f x x =可同解变形为()22log 4x x -=,即242xx-=设()242x gx x =--(22x -≤≤).当[]2,0x ∈-时,()g x 为增函数,且()()20120g g -⋅=-<, 则在()2,0-内,函数()g x 有唯一零点,方程()f x x =有唯一实根,又因为偶函数,在()0,2内,函数()g x 也有唯一零点,方程()f x x =有唯一实根, 所以原方程有两个实数根. 【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题. 23.(1)证明见解析(2)0m =或2m = 【解析】 【分析】(1)对于1x ∀,()21,x ∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据奇函数得到()()0f x f x -+=,代入化简得到()22211x m x --=-,计算得到答案. 【详解】(1)当1m =时,()221log 1log 11x f x x x ⎛⎫⎛⎫=+=⎪ ⎪--⎝⎭⎝⎭, 对于1x ∀,()21,x ∈+∞,且12x x <,()()12122212log log 11x x f x f x x x -=---1212122121221log log 1x x x x x x x x x x ⎛⎫--=⋅= ⎪--⎝⎭因为12x x <,所以12x x ->-,所以121122x x x x x x ->-, 又因1x ,()21,x ∈+∞,且12x x <,所以()1222110x x x x x -=->, 即1211221x x x x x x ->-,所以1212122log 0x x x x x x ⎛⎫-> ⎪-⎝⎭,()()120f x f x ->.所以函数()f x 在()1,+∞上为减函数. (2)()221log 1log 11m x m f x x x +-⎛⎫⎛⎫=+=⎪ ⎪--⎝⎭⎝⎭, 若()f x 为奇函数,则()()f x f x -=-,即()()0f x f x -+=. 所以211log log 11x m x m x x -+-+-⎛⎫⎛⎫+⎪ ⎪---⎝⎭⎝⎭211log 11x m x m x x -+-+-⎛⎫⎛⎫=⋅ ⎪ ⎪---⎝⎭⎝⎭2(1)1log 11x m x m x x --+-⎛⎫⎛⎫= ⎪⎪+-⎝⎭⎝⎭2222(1)log 01x m x ⎛⎫--== ⎪-⎝⎭, 所以()22211x m x --=-,所以()211m -=,0m =或2m =. 【点睛】本题考查了单调性的证明,根据奇偶性求参数,意在考查学生对于函数性质的灵活运用. 24.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出. 【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=.(2)原式323log 313lg 10=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.(1)(,5)-∞;(2)()0,1. 【解析】 【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围. 【详解】 (1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+ 得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,t由图知:(0,1)【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。
2020-2021高一数学上期末模拟试卷及答案(5)
2020-2021高一数学上期末模拟试卷及答案(5)一、选择题1.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞ B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .3.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-154.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .65.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.96.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .37.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10938.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 12.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( )A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________. 16.求值: 233125128100log lg -+= ________ 17.函数()()4log 521x f x x =-+-的定义域为________.18.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.19.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.22.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 23.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t . 24.已知集合,,.(1)若,求的值; (2)若,求的取值范围.25.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在)a 单调递减,在(,)a +∞单调递增) 26.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.B解析:B 【解析】试题分析:设()ln(1)g x x x =+-,则()1xg x x'=-+,∴()g x 在()1,0-上为增函数,在()0,∞+上为减函数,∴()()00g x g <=,1()0()f x g x =<,得0x >或10x -<<均有()0f x <排除选项A ,C ,又1()ln(1)f x x x =+-中,10ln(1)0x x x +>⎧⎨+-≠⎩,得1x >-且0x ≠,故排除D.综上,符合的只有选项B.故选B. 考点:1、函数图象;2、对数函数的性质. 3.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.4.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.5.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.6.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】Q ()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又Q (1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-Q 函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.7.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.10.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.11.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.12.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立, 则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数 ∴−x −1x <−12−2=52-, ∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 14.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩, 解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭.【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.16.【解析】由题意结合对数指数的运算法则有:解析:32-【解析】由题意结合对数、指数的运算法则有:()2log 31532lg 3210022=-+-=-. 17.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.18.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩,故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.19.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】【分析】根据函数的奇偶性,令1x =-即可求解. 【详解】()f x Q 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】 【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围. 【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递减,可得()22222a f x a a +<<++,()f x 的值域为[)3,+∞,可得223a +≥,解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递增,可得()2225f x a a >++>,则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭.故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+- 换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-, 由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值.22.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112*********(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++, Q 12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)Q ()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,Q ()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.23.(1)1,08⎡⎤-⎢⎥⎣⎦(2)()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩【解析】 【分析】(1)令4log m x =,则可利用换元法将题转化为二次函数值域问题求解; (2)根据二次函数的性质,分类讨论即可. 【详解】(1)令4log m x =,则[]2,4x ∈时,1,12m ⎡⎤∈⎢⎥⎣⎦,则()()22131()222312248f x h m m m m m m ⎛⎫⎛⎫==--=-+=-- ⎪ ⎪⎝⎭⎝⎭, 故当34m =时,()f x 有最小值为18-,当12m =或1时,()f x 有最大值为0, ∴该函数的值域为1,08⎡⎤-⎢⎥⎣⎦;(2)由(1)可知()2231()231248f x h m m m m ⎛⎫==-+=-- ⎪⎝⎭, []2,x t ∈Q ,41,log 2m t ⎡⎤∴∈⎢⎥⎣⎦,当413log 24t <<,即222t <<时,函数()h m 在41,log 2t ⎡⎤⎢⎥⎣⎦单调递减, ()()()4min log g t h m h t ==2442log 3log 1t t =-+,当43log 4t ≥,即22t ≥时, 函数()h m 在13,24⎡⎤⎢⎥⎣⎦上单调递减,在43,log 4t ⎛⎤ ⎥⎝⎦上单调递增, ()()min 3148g t h m h ⎛⎫===- ⎪⎝⎭,综上所述:()2442log 3log 1,2221,228t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩. 【点睛】本题考查对数函数综合应用,需结合二次函数相关性质答题,属于中档题. 24.(1) 或;(2) .【解析】 试题分析:(1)由题意结合集合相等的定义分类讨论可得:的值为或. (2)由题意得到关于实数a 的不等式组,求解不等式组可得 .试题解析: (1)若,则,∴. 若,则,,∴.综上,的值为或. (2)∵,∴∴. 25.(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【解析】 【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值. 【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+,()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题. 26.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】 【分析】(1)由()()211,2log 12f f ==解出即可 (2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可(3)()42xxg x =-,令2x t =,转化为二次函数 【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42xxf x =-,令()0f x =得421xx -=,即()22210x x --=,解得2x =,又120,22x x >∴=,解得21log 2x =; (3)由(1)知()42xxg x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈,因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,。
河南省洛阳市高一上期末数学试卷(有答案)
河南省洛阳市高一(上)期末数学试卷一、本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∩B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}2.在直角坐标系中,下列直线中倾斜角为钝角的是()A.y=3﹣1 B.+2=0 C. +=1 D.2﹣y+1=03.线段﹣2y+1=0(﹣1≤≤3)的垂直平分线方程为()A.+2y﹣3=0 B.2+y﹣3=0 C.2+y﹣1=0 D.2﹣y﹣1=04.函数y=ln与y=﹣2+6的图象有交点P(0,y0),若0∈(,+1),则整数的值为()A.1 B.2 C.3 D.45.已知a、b∈R,且满足0<a<1<b,则下列大小关系正确的是()A.a b<b a<log a b B.b a<log a b<a b C.log a b<b a<a b D.log a b<a b<b a6.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR37.给出下面四个命题(其中m,n,l为空间中不同的三条直线,α,β为空间中不同的两个平面):①m∥n,n∥α⇒m∥α②α⊥β,α∩β=m,l⊥m⇒l⊥β;③l⊥m,l⊥n,m⊂α,n⊂α⇒l⊥α④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.其中错误的命题个数为()A.1个B.2个C.3个D.4个8.若不等式a||>2﹣对任意∈[﹣1,1]都成立,则实数a的取值范围是()A.(,1)∪(1,+∞)B.(0,)∪(1,+∞)C.(,1)∪(1,2)D.(0,)∪(1,2)9.在四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,底面是正方形(如图),在棱PB,PC上各有一点M、N,且四边形AMND的周长最小,点S从A出发依次沿四边形AM,MN,ND运动至点D,记点S行进的路程为,棱锥S﹣ABCD的体积为V(),则函数V()的图象是()A.B.C.D.10.已知函数f()是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(lga)+f(lg)≤2f(1),则a的取值范围是()A.(﹣∞,10]B.[,10]C.(0,10]D.[,1]11.在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为﹣y+1=0和+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M、N的坐标分别为(﹣m,0)(m,0),则m的最大值为()A.4 B.5 C.6 D.712.若关于m、n的二元方程组有两组不同的实数解,则实数的取值范围是()A.(0,)B.(,+∞)C.(,]D.(,]二、填空题:本大题共4小题,每小题5分,共20分.13.在空间直角坐标系中,已知点A(1,0,2),B(1,﹣3,1),若点M在y轴上,且|MA|=|MB|,则M的坐标是.14.若函数y=﹣2+a﹣2在区间(0,3]上既有最大值又有最小值,则实数a的取值范围为.15.已知函数,则满足不等式的实数m的取值范围为.16.一个多面体的直观图和三视图如图,M是A1B的中点,N是棱B1C1上的任意一点(含顶点).①当点N是棱B1C1的中点时,MN∥平面ACC1A1;②MN⊥A1C;=a3;③三棱锥N﹣A1BC的体积为V N﹣A BC④点M是该多面体外接球的球心.其中正确的是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知直线l1:+my+1=0和l2:(m﹣3)﹣2y+(13﹣7m)=0.(1)若l1⊥l2,求实数m的值;(2)若l1∥l2,求l1与l2之间的距离d.18.已知函数f()=log a(﹣﹣1)+log a(+3),其中a>0且a≠1.(1)求函数f()的定义域;(2)求函数f()的值域.19.如图,△PAD与正方形ABCD共用一边AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,点E 是棱PA的中点.(1)求证:PC∥平面BDE;(2)若直线PA与平面ABCD所成角为60°,求点A到平面BDE的距离.20.已知函数f()=(a、b、c∈)是奇函数.(1)若f(1)=1,f(2)﹣4>0,求f();(2)若b=1,且f()>1对任意的∈(1,+∞)都成立,求a的最小值.21.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.(1)若BE=3,求几何体BEC﹣AFD的体积;(2)求三棱锥A﹣CDF的体积的最大值,并求此时二面角A﹣CD﹣E的正切值.22.已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.(1)求点M的轨迹方程;(2)设M的轨迹与y轴的交点为P,过P作斜率为的直线l与M的轨迹交于另一点Q,若C(1,2+2),求△CPQ面积的最大值,并求出此时直线l的方程.河南省洛阳市高一(上)期末数学试卷参考答案与试题解析一、本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∩B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}【考点】交、并、补集的混合运算.【分析】直接利用补集与交集的运算法则求解即可.【解答】解:∵集合A={1,2},B={2,3},∴A∩B={2},由全集U={1,2,3,4},A∩B)={1,3,4}.∴∁U(故选:A.2.在直角坐标系中,下列直线中倾斜角为钝角的是()A.y=3﹣1 B.+2=0 C. +=1 D.2﹣y+1=0【考点】直线的倾斜角.【分析】根据斜率的正负判断其倾斜角的范围即可.【解答】解:对于A:=3,是锐角,对于B:是直角,对于C:=﹣,是钝角,对于D:=2,是锐角,故选:C.3.线段﹣2y+1=0(﹣1≤≤3)的垂直平分线方程为()A.+2y﹣3=0 B.2+y﹣3=0 C.2+y﹣1=0 D.2﹣y﹣1=0【考点】直线的一般式方程与直线的垂直关系.【分析】求出线段的中点坐标,求出线段的垂直平分线的斜率,然后求出垂直平分线方程.【解答】解:=﹣1时,y=0,=3时,y=2,∴(﹣1,0),(3,2)的中点为(1,1),线段﹣2y+1=0的斜率是:==,线段﹣2y+1=0(﹣1≤≤3)的垂直平分线的斜率是:﹣2,故所求直线方程是:y﹣1=﹣2(﹣1),即:2+y﹣3=0,故选:B.4.函数y=ln与y=﹣2+6的图象有交点P(0,y0),若0∈(,+1),则整数的值为()A.1 B.2 C.3 D.4【考点】函数的图象.【分析】可判断函数f()=ln﹣6+2连续,从而由零点的判定定理求解.【解答】解:设f()=ln+2﹣6,因为函数f()=ln﹣6+2连续,且f(2)=ln2﹣6+4=ln2﹣2<0,f(3)=ln3﹣6+6=ln3>0;故函数y=ln﹣6+2的零点在(2,3)之间,故0∈(2,3);∵0∈(,+1),∴=2,故选B.5.已知a、b∈R,且满足0<a<1<b,则下列大小关系正确的是()A.a b<b a<log a b B.b a<log a b<a b C.log a b<b a<a b D.log a b<a b<b a【考点】对数值大小的比较.【分析】利用指数函数、对数函数的单调性求解.【解答】解:∵a、b∈R,且满足0<a<1<b,∴log a b<log a1=0,b a>b0=a0>a b>0,∴log a b<a b<b a.故选:D.6.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR3【考点】旋转体(圆柱、圆锥、圆台).【分析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【解答】解:2πr=πR,所以r=,则h=,所以V=故选A7.给出下面四个命题(其中m,n,l为空间中不同的三条直线,α,β为空间中不同的两个平面):①m∥n,n∥α⇒m∥α②α⊥β,α∩β=m,l⊥m⇒l⊥β;③l⊥m,l⊥n,m⊂α,n⊂α⇒l⊥α④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.其中错误的命题个数为()A.1个B.2个C.3个D.4个【考点】空间中直线与平面之间的位置关系.【分析】①根据线面平行的判定定理进行判断.②根据线面垂直的性质定理进行判断.③根据线面垂直的定义进行判断.④根据面面平行的判定定理进行判断.【解答】解:①m∥n,n∥α,则m∥α或m⊂α,故①错误,②α⊥β,α∩β=m,l⊥m,则l⊥β或l∥β或l⊂β或l与β相交;故②错误,③l⊥m,l⊥n,m⊂α,n⊂α,若m与n相交,则l⊥α,否则不成立,故③错误,④若m∩n=A,设过m,n的平面为γ,若m∥α,n∥α,则α∥γ,若m∥β,n∥β,则γ∥β,则α∥β成立.故④正确,故错误是①②③,故选:C.8.若不等式a||>2﹣对任意∈[﹣1,1]都成立,则实数a的取值范围是()A.(,1)∪(1,+∞)B.(0,)∪(1,+∞)C.(,1)∪(1,2)D.(0,)∪(1,2)【考点】函数恒成立问题.【分析】设f()=a||,g()=2﹣,根据不等式的大小关系转化为两个函数的图象关系,利用分类讨论以及数形结合进行求解即可.【解答】解:设f()=a||,g()=2﹣,当∈[﹣1,1]时,g()∈[﹣,],∵f()和g()都是偶函数,∴只要保证当∈[0,1]时,不等式a||>2﹣恒成立即可.当∈[0,1]时,f()=a,若a>1时,f()=a≥1,此时不等式a||>2﹣恒成立,满足条件.若0<a<1时,f()=a为减函数,而g()为增函数,此时要使不等式a||>2﹣恒成立,则只需要f(1)>g(1)即可,即a>1﹣=,此时<a<1,综上<a<1或a>1,故选:A.9.在四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,底面是正方形(如图),在棱PB,PC上各有一点M、N,且四边形AMND的周长最小,点S从A出发依次沿四边形AM,MN,ND运动至点D,记点S行进的路程为,棱锥S﹣ABCD的体积为V(),则函数V()的图象是()A.B.C.D.【考点】函数的图象.【分析】根据棱锥的体积公式求出函数的解析式,并根据正四棱锥侧面展开图,从A到D最短距离为直角三角形PAD的斜边为4,求出的范围,判断函数的图象即可.【解答】解:四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,∴BC2=PB2+PC2﹣2PB•PCcos30°=16+16﹣2×4×4×=32﹣16,∴底面正方形的面积s=32﹣16,h=tan30°,∴V()=sh=tan30°,为线性函数,∵四边形AMND的周长最小,正四棱锥侧面展开图如图所示,∴正四棱锥侧面展开图,从A到D最短距离为直角三角形PAD的斜边为4,∴≤4故选:C.10.已知函数f()是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(lga)+f(lg)≤2f(1),则a的取值范围是()A.(﹣∞,10]B.[,10]C.(0,10]D.[,1]【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶数和单调性之间的关系,将不等式进行等价转化即可得到结论.【解答】解:∵函数f()是定义在R上的偶函数,∴f(lga)+f(lg)≤2f(1),等价为f(lga)+f(﹣lga)=2f(lga)≤2f(1),即f(lga)≤f(1).∵函数f()是定义在R上的偶函数,且在区间[0,+∞)单调递增,∴f(lga)≤f(1)等价为f(|lga|)≤f(1).即|lga|≤1,∴﹣1≤lga≤1,解得≤a≤10,故选:B.11.在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为﹣y+1=0和+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M、N的坐标分别为(﹣m,0)(m,0),则m的最大值为()A.4 B.5 C.6 D.7【考点】直线与圆的位置关系.【分析】求出⊙C的方程,过P,M,N的圆的方程,两圆外切时,m取得最大值.【解答】解:由题意,∴A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为﹣y+1=0和+y﹣7=0,∴圆上不相同的两点为B(2,4,),D(4,4),∵A(3,3),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(﹣3)2+(y﹣4)2=1.过P,M,N的圆的方程为2+y2=m2,∴两圆外切时,m的最大值为+1=6,故选:C.12.若关于m、n的二元方程组有两组不同的实数解,则实数的取值范围是()A.(0,)B.(,+∞)C.(,]D.(,]【考点】根的存在性及根的个数判断.【分析】由题意作函数n=1+与直线n=(m﹣2)+4的图象,从而化为图象的交点的个数问题,从而解得.【解答】解:由题意作函数n=1+与直线n=(m﹣2)+4的图象如下,直线n=(m﹣2)+4过定点A(2,4),当直线n=(m﹣2)+4过点C时,=2,解得,=,当直线n=(m﹣2)+4过点B时,==,结合图象可知,<≤,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.在空间直角坐标系中,已知点A(1,0,2),B(1,﹣3,1),若点M在y轴上,且|MA|=|MB|,则M的坐标是.【考点】空间两点间的距离公式;空间中的点的坐标.【分析】设出点M(0,y,0),由|MA|=|MB|,建立关于参数y的方程,求y值即可.【解答】解:设设M(0,y,0),由|MA|=|MB|,可得=,即y2+5=(y+3)2+2,解得:y=﹣1.M的坐标是(0,﹣1,0).故答案为:(0,﹣1,0).14.若函数y=﹣2+a﹣2在区间(0,3]上既有最大值又有最小值,则实数a的取值范围为.【考点】二次函数的性质.【分析】先求出函数的对称轴,根据二次函数的性质求出a的范围即可.【解答】解:函数y=﹣2+a﹣2,对称轴=,若函数在区间(0,3]上既有最大值又有最小值,∴0<≤,解得:0<a≤3,故答案为:(0,3].15.已知函数,则满足不等式的实数m的取值范围为.【考点】指、对数不等式的解法;函数单调性的性质.【分析】由函数的解析式求得f()==2,画出函数f()的图象,求得A、B的横坐标,可得满足不等式的实数m的取值范围【解答】解:∵函数,∴f()==2,∴函数f()的图象如图所示:令=2,求得=,故点A的横坐标为,令3﹣3=2,求得=log35,故点B的横坐标为log35.∴不等式,即f(m)≤2.顾满足f(m)≤2的实数m的取值范围为,故答案为.16.一个多面体的直观图和三视图如图,M是A1B的中点,N是棱B1C1上的任意一点(含顶点).①当点N是棱B1C1的中点时,MN∥平面ACC1A1;②MN⊥A1C;=a3;③三棱锥N﹣A1BC的体积为V N﹣A BC④点M是该多面体外接球的球心.其中正确的是.【考点】棱柱的结构特征.【分析】本题是直观图和三视图的综合分析题,要抓住M是A1B的中点,N是棱B1C1上的任意一点(含顶点)就是动点,从三视图抓住直观图的特征,结合下情况分别证明.【解答】解:①M连接AB中点E,N连接BC中点F,得到MNFE平行于平面ACC1A1,面面平行⇒线面平行,①正确;②M连接A1C中点G,连接C1G,A1C⊥平面MNC1G.∴MN⊥A1C;②正确;===a3,③正确;③三棱锥N﹣A1BC的体积为V N﹣A④由三视图可知:此多面体是正方体切割下了的,M是A1B的中点(空间对角线中点),是正方体中心,∴点M是该多面体外接球的球心.故④正确.故答案为:①②③④.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知直线l1:+my+1=0和l2:(m﹣3)﹣2y+(13﹣7m)=0.(1)若l1⊥l2,求实数m的值;(2)若l1∥l2,求l1与l2之间的距离d.【考点】两条平行直线间的距离;直线的一般式方程与直线的垂直关系.【分析】(1)由垂直可得1•(m﹣3)﹣2m=0,解方程可得;(2)由l1∥l2可得m值,可得直线方程,由平行线间的距离公式可得.【解答】解:(1)∵直线l1:+my+1=0和l2:(m﹣3)﹣2y+(13﹣7m)=0,∴当l1⊥l2时,1•(m﹣3)﹣2m=0,解得m=﹣3;(2)由l1∥l2可得m(m﹣3)+2=0,解得m=1或m=﹣2,当m=2时,l1与l2重合,应舍去,当m=1时,可得l1:+y+1=0,l2:﹣2﹣2y+6=0,即+y﹣3=0,由平行线间的距离公式可得d==218.已知函数f()=log a(﹣﹣1)+log a(+3),其中a>0且a≠1.(1)求函数f()的定义域;(2)求函数f()的值域.【考点】对数函数的图象与性质.【分析】(1)根据函数成立的条件即可求函数f()的定义域;(2)根据对数的运算性质,以及符合函数的值域的求法,即可得到答案,需要分类讨论.【解答】解:(1)要使函数有意义,则.解得:﹣3<<﹣1.即f()的为定义域(﹣3,1),(2)f()=log a(﹣﹣1)+log a(+3)=log a[﹣(+1)(+3)],令t=﹣(+1)(+3),∵﹣3<<﹣1,∴0<t≤1,当0<a<1时,值域为[0,+∞),当a>1时,值域为(﹣∞,0].19.如图,△PAD与正方形ABCD共用一边AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,点E 是棱PA的中点.(1)求证:PC∥平面BDE;(2)若直线PA与平面ABCD所成角为60°,求点A到平面BDE的距离.【考点】点、线、面间的距离计算;直线与平面平行的判定.【分析】(1)连接AC,交BD于O,连接EO,证明PC∥OE,即可证明PC∥平面BDE;(2)取AD的中点N,连接PN,证明∠PAN为直线PA与平面ABCD所成角,利用等体积方法求点A 到平面BDE的距离.【解答】(1)证明:连接AC,交BD于O,连接EO,则∵ABCD是正方形,∴O是AC的中点,∵点E是棱PA的中点,∴PC∥OE,∵OE⊂平面BDE,BD⊄平面BDE,∴PC∥平面BDE;(2)解:取AD的中点N,连接PN,则∵PA=PD,∴PN⊥AD,∵平面PAD∩平面ABCD=AD,∴PN⊥平面ABCD,∴∠PAN为直线PA与平面ABCD所成角∴∠PAN=60°∴PA=PD=AD=2,∵AB⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴AB⊥平面PAD,==,∴V B﹣DAERt△EAB中,EA=1,AB=2,BE=,∵,BD=2,∴DE⊥EB,==.∴S△BDE设点A到平面BDE的距离为h.则,∴h=,∴点A到平面BDE的距离为.20.已知函数f()=(a、b、c∈)是奇函数.(1)若f(1)=1,f(2)﹣4>0,求f();(2)若b=1,且f()>1对任意的∈(1,+∞)都成立,求a的最小值.【考点】利用导数求闭区间上函数的最值;函数奇偶性的性质.【分析】(1)根据函数是奇函数求出c=0,根据f(1),f(2)的值求出a,b从而求出f()即可;(2)问题转化为a>=+对任意∈(1,+∞)恒成立,令t=,从而求出a的最小值.【解答】解:(1)∵f()是奇函数,∴f()+f(﹣)=0,即=0,∴c=0,∴f()=,又f(1)==1,∴b=a﹣2,f(2)﹣4=﹣4>0,∴﹣4=>0,∴2<a<,∵a∈,∴a=3,b=1,∴f()=;(2)b=1时,由(1)得:f()=,f ()>1恒成立即>1对任意∈(1,+∞)恒成立,即a >=+对任意∈(1,+∞)恒成立,令t=,∴t ∈(0,1),于是+=2t 2+t ∈(0,3),∴a ≥3,a 的最小值是3.21.如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD=8,BC=6,AB=2,E ,F 分别在BC ,AD 上,EF ∥AB ,现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(1)若BE=3,求几何体BEC ﹣AFD 的体积;(2)求三棱锥A ﹣CDF 的体积的最大值,并求此时二面角A ﹣CD ﹣E 的正切值.【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积.【分析】(1)推导出FD ⊥平面ABEF ,从而AF ⊥平面EFDC ,CE ⊥平面ABEF ,连结FC ,将几何体BEC﹣AFD 分成三棱锥A ﹣CDF 和四棱锥C ﹣ABEF ,由此能求出几何体BEC ﹣AFD 的体积.(2)设BE=,则AF=(0<≤6),FD=8﹣,V 三棱锥A ﹣CDF =,当=4时,V 三棱锥A ﹣CDF 有最大值,∠ACF 为二面角A ﹣CD ﹣E 的平面角,由此能求出二面角A ﹣CD ﹣E 的正切值.【解答】解:(1)∵平面ABEF ⊥平面EFDC ,平面ABEF ∩平面EFDC=EF ,FD ⊥EF ,∴FD ⊥平面ABEF ,又AF ⊂平面ABEF ,∴FD ⊥AF ,又AF ⊥EF ,FD ∩EF=F ,∴AF ⊥平面EFDC ,同理,CE ⊥平面ABEF ,连结FC ,将几何体BEC ﹣AFD 分成三棱锥A ﹣CDF 和四棱锥C ﹣ABEF ,对于三棱锥A ﹣CDF ,棱锥高为AF=BE=3,FD=5,∴V 三棱锥A ﹣CDF ===5,对于四棱锥C ﹣ABEF ,棱锥高为CE=3,∴V 四棱锥C ﹣ABEF ===6,∴几何体BEC ﹣AFD 的体积V=V 三棱锥A ﹣CDF +V 四棱锥C ﹣ABEF =5+6=11.(2)设BE=,∴AF=(0<≤6),FD=8﹣,=,∴V三棱锥A﹣CDF∴当=4时,V有最大值,且最大值为,三棱锥A﹣CDF在直角梯形CDEF中,EF=2,CE=2,DF=4,∴CF=2,CD=2,DF=4,∴CF2+CD2=DF2,∠DCF=90°,∴DC⊥CF,又AF⊥平面EFDC,DC⊂平面EFDC,∴DC⊥AF,又AF∩CF=F,∴DC⊥平面ACF,∴DC⊥AC,∴∠ACF为二面角A﹣CD﹣E的平面角,tan==,∴二面角A﹣CD﹣E的正切值为.22.已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.(1)求点M的轨迹方程;(2)设M的轨迹与y轴的交点为P,过P作斜率为的直线l与M的轨迹交于另一点Q,若C(1,2+2),求△CPQ面积的最大值,并求出此时直线l的方程.【考点】直线与圆锥曲线的综合问题;轨迹方程.【分析】(1)设M(,y),由|MA|=2|MB|,利用两点之间的距离公式即可得出.(2)令=0,可得P(0,2).直线l的方程为:y=+2,(≠0)代入圆的方程可得:(1+2)2﹣4=0,解出可得Q坐标,|PQ|.求出点C到直线l的距离d,△CPQ面积S=|PQ|•d,再利用基本不等式的性质即可得出.【解答】解:(1)设M(,y),∵|MA|=2|MB|,∴=2,化为:(﹣2)2+(y﹣2)2=4.(2)令=0,解得y=2,∴P(0,2).直线l的方程为:y=+2,(≠0)代入圆的方程可得:(1+2)2﹣4=0,解得=0,或=.∴Q.∴|PQ|==.点C到直线l的距离d==.∴△CPQ面积S=|PQ|•d=××==≤=1,当且仅当||=1时取等号.∴△CPQ面积的最大值1时,此时直线l的方程为:y=±+2.。
2023届河南省洛阳市第一高级中学高一上数学期末质量检测试题含解析
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
【详解】函数 , x>0上单调递增,
,
函数f(x)零点所在的大致区间是 ;
故选B
【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若 确定零点所在的区间.
8、C
【解析】首先求平移后的解析式 ,再根据函数关于 轴对称,当 时, ,求 的值.
对于C,f(x)= 在(0,+∞)上单调递减,C正确;
对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.
3、C
【解析】利用分段函数化简函数解析式,再利用函数 图像和性质,从而得出结论.
【详解】
故函数的周期为 ,即 ,故排除A,
显然函数 的值域为 ,故排除B,
在 上,函数 为单调递减,故C正确,
14.若函数f(x)= 的定义域为R,则实数a的取值范围是:_____________.
15.命题 的否定是__________
三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)
16.已知函数
(1)若 是偶函数,求a的值;
17.函数 的定义域 且 ,对定义域D内任意两个实数 , ,都有 成立
(3)根据函数单调性和奇偶性得到 ,考虑 , , 三种情况,得到函数的最值,解不等式得到答案.
2020-2021高一数学上期末一模试卷带答案(3)
2020-2021高一数学上期末一模试卷带答案(3)一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称2.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,13.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.设23a log =,b =23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<6.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .17.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<8.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010 B .2020 C .1011D .202210.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .611.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,212.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .4二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______.14.已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.15.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 16.已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 17.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____. 18.已知函数1()41x f x a =+-是奇函数,则的值为________. 19.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.20.若函数()22xxe a x ef x -=++-有且只有一个零点,则实数a =______.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 23.已知函数()212xxk f x -=+(x ∈R ) (1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围.24.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?25.某支上市股票在30天内每股的交易价格P (单位:元)与时间t (单位:天)组成有序数对(),t P ,点.(),t P 落在..如图所示的两条线段上.该股票在30天内(包括30天)的日交易量Q (单位:万股)与时间t (单位:天)的部分数据如下表所示:(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格P 与时间t 所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量Q 与时间t 的一次函数解析式;(Ⅲ)若用y (万元)表示该股票日交易额,请写出y 关于时间t 的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少? 26.已知函数()()()9log 91xkx R x k f =++∈是偶函数.(1)求k 的值; (2)若不等式()102x a f x --≥对(],0x ∈-∞恒成立,求实数a 的取值范围. (注:如果求解过程中涉及复合函数单调性,可直接用结论,不需证明)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 2.B解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.10x 1.1 1.11=>=Q , 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.6.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =, 因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.7.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x x x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0x t t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.10.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.11.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x-的单调减区间为(]0,1.点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.12.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.二、填空题13.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:()0,1【解析】 【分析】令()0f x =,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案.【详解】由题意,令()10f x mx x =--=,则1mx x =-, 则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点. 故答案为:()0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.14.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++,设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦. 故答案为;3,4⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.15.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】 【分析】令236x y z t ===,将,,x y z 用t 表示,转化为求关于t 函数的最值. 【详解】,,x y z R +∈,令1236x y z t ==>=,则236log ,log ,log ,x t y t z t ===11log 3,log 6t t y z==,21122log log 2t x t z y+-=+≥当且仅当2x =时等号成立.故答案为: 【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.16.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.17.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x > 结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b -=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩,解得:3,3a b =-=所以6b a -= 故答案为:6 【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.18.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x xa a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1219.5【解析】【分析】将化简为同时设可得的函数解析式可得当k 等于8时与的交点的所有根的和的最大可得答案【详解】解:由可得:设由函数的性质与图像可得当k 等于8时与的交点的所有根的和的最大此时根分别为:当时解析:5 【解析】 【分析】将2,01,()1(1),13,2x xf xf x x⎧<≤⎪=⎨-<≤⎪⎩化简为2,01,1()2,12,412,23,16xxxxf x xx⎧⎪<≤⎪⎪=⨯<≤⎨⎪⎪⨯<≤⎪⎩同时设4()()x f x g x=,可得()g x的函数解析式,可得当k等于8时与()g x的交点的所有根的和的最大,可得答案.【详解】解:由2,01,()1(1),13,2x xf xf x x⎧<≤⎪=⎨-<≤⎪⎩可得:2,01,1()2,12,412,23,16xxxxf x xx⎧⎪<≤⎪⎪=⨯<≤⎨⎪⎪⨯<≤⎪⎩设4()()x f x g x=,8,01,1()8,12,418,23,16xxxxg x xx⎧⎪<≤⎪⎪=⨯<≤⎨⎪⎪⨯<≤⎪⎩由()g x函数的性质与图像可得,当k等于8时与()g x的交点的所有根的和的最大,此时根分别为:当01x<≤时,188x=,11x=,当12x<≤时,21848x⨯=,253x=,当23x <≤时,318816x ⨯=,373x =,此时所有根的和的最大值为:1235x x x ++=, 故答案为:5. 【点睛】本题主要考查分段函数的图像与性质,注意分段函数需分对分段区间进行讨论,属于中档题.20.2【解析】【分析】利用复合函数单调性得的单调性得最小值由最小值为0可求出【详解】由题意是偶函数由勾形函数的性质知时单调递增∴时递减∴因为只有一个零点所以故答案为:2【点睛】本题考查函数的零点考查复合解析:2 【解析】 【分析】利用复合函数单调性得()f x 的单调性,得最小值,由最小值为0可求出a . 【详解】由题意()22122xxx x e ex a e x a ef x -=++-=++-是偶函数, 由勾形函数的性质知0x ≥时,()f x 单调递增,∴0x ≤时,()f x 递减. ∴min ()(0)f x f =,因为()f x 只有一个零点,所以(0)20f a =-=,2a =. 故答案为:2. 【点睛】本题考查函数的零点,考查复合函数的单调性与最值.掌握复合函数单调性的性质是解题关键.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N ,故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)1,22⎛⎫- ⎪⎝⎭;(2)1,23⎛⎫ ⎪⎝⎭【解析】 【分析】(1)由真数大于0列出不等式组求解即可; (2)由312f ⎛⎫=-⎪⎝⎭得出14a =,再利用对数函数的单调性解不等式即可得出答案. 【详解】(1)要使函数有意义,则12020x x +>⎧⎨->⎩,即122x -<<,故()h x 的定义域为1,22⎛⎫- ⎪⎝⎭. (2)∵312f ⎛⎫=- ⎪⎝⎭,∴log (13)log 41a a +==-, ∴14a =, ∴1144()log (12)log (2)h x x x =+--,∵()0h x <,∴0212x x <-<+,得123x <<, ∴使()0h x <成立的的集合为1,23⎛⎫⎪⎝⎭.【点睛】本题主要考查了求对数型函数的定义域以及由对数函数的单调性解不等式,属于中档题. 23.(1)1k =(2)30a -≤≤ 【解析】 【分析】(1)根据()00f =计算得到1k =,再验证得到答案.(2)化简得到()()24f x f ax -≥-对[]1,2x ∈-恒成立,确定函数单调递减,利用单调性得到240x ax +-≤对[]1,2x ∈-恒成立,计算得到答案. 【详解】(1)因为()f x 为奇函数且定义域为R ,则()00f =,即002021k -=+,所以1k =.当1k =时因为()f x 为奇函数,()()12212121x x x x f x f x -----===-++,满足条件()f x 为奇函数.(2)不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立即()()24f x f ax -≥-对[]1,2x ∈-恒成立,因为()f x 为奇函数,所以()()24f x f ax -≥-对[]1,2x ∈-恒成立(*)在R 上任取1x ,2x ,且12x x <,则()()()21121212122221212()()12121212x x x x x x x x f x f x ----=-=++++, 因为21x x >,所以1120x +>,2120x +>,21220x x ->, 所以()()120f x f x ->,即()()12f x f x >, 所以函数()f x 在区间(1,)-+∞上单调递减; 所以(*)可化为24x ax -≤-对[]1,2x ∈-恒成立, 即240x ax +-≤对[]1,2x ∈-恒成立. 令()24g x x ax =+-,因为()g x 的图象是开口向上的抛物线,所以由()0g x ≤有对[]1,2x ∈-恒成立可得:()()10,20,g g ⎧-≤⎪⎨≤⎪⎩即140,4240,a a --≤⎧⎨+-≤⎩解得:30a -≤≤,所以实数a 的取值范围是30a -≤≤. 【点睛】本题考查了函数的奇偶性,单调性,恒成立问题,意在考查学生的综合应用能力.24.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元. 【解析】 【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式. (2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值. 【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩, ∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元 当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元. 【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.25.(Ⅰ)12,020518,203010t t P t t ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩;(Ⅱ)40Q t =-+;(Ⅲ)第15天交易额最大,最大值为125万元. 【解析】 【分析】(Ⅰ)由一次函数解析式可得P 与时间t 所满足的函数解析式; (Ⅱ)设Q kt b =+,代入已知数据可得;(Ⅲ)由y QP =可得,再根据分段函数性质分段求得最大值,然后比较即得. 【详解】(Ⅰ)当020t <≤时,设11P k t b =+,则1112206b k b =⎧⎨+=⎩,解得11215b k =⎧⎪⎨=⎪⎩,当2030t ≤≤时,设22P k t b =+,则2222206305k b k b +=⎧⎨+=⎩,解得228110b k =⎧⎪⎨=-⎪⎩所以12,020518,203010t t P t t ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩.(Ⅱ)设Q kt b =+,由题意4361030k b k b +=⎧⎨+=⎩,解得140k b =-⎧⎨=⎩,所以40Q t =-+.(Ⅲ)由(Ⅰ)(Ⅱ)得1(2)(40),02051(8)(40),203010t t t y t t t ⎧+-+<≤⎪⎪=⎨⎪-+-+<≤⎪⎩即221680,0205112320,203010t t t y t t t ⎧-++≤≤⎪⎪=⎨⎪-+<≤⎪⎩,当020t <≤时,2211680(15)12555y t t t =-++=--+,15t =时,max 125y =,当20t 30<≤时,221112320(60)401010y t t t =-+=--,它在(20,30]上是减函数, 所以21(2060)4012010y <⨯--=. 综上,第15天交易额最大,最大值为125万元. 【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得. 26.(1)12k =-(2)(]9,log 2-∞ 【解析】 【分析】(1)由偶函数定义()()f x f x -=,代入解析式求解即可;(2)题设条件可等价转化为()9log 91xa x ≤+-对(],0x ∈-∞恒成立,因此设()()9log 91x g x x =+-,求出其在(],0x ∈-∞上的最小值即可得出结论.【详解】(1)∵函数()()()9log 91xkx R x k f =++∈ 是偶函数.∴()()f x f x -=,∴()()99log 91log 91x x kx kx -+-=++,∴()()999912log 91log 91log 91x x x x kx x --+-=+-+==+, ∴12k =-. (2)由(1)知,()()91log 912x f x x =+-, 不等式1()02f x x a --≥即为()9log 91x a x ≤+-, 令()()9log 91x g x x =+-,(],0x ∈-∞, 则()()()99991log 91log log 199x xx x x g x -+=+-==+, 又函数()g x 在(],0-∞上单调递减,所以()()9min 0log 2g x g ==,∴a 的取值范围是(]9,log 2-∞.【点睛】本题考查函数奇偶性的定义运用以及不等式恒成立问题,属于中档题.解决不等式恒成立问题时,一般首选参变分离法,将恒成立问题转化为最值问题求解.。
2020年洛阳市高一数学上期末一模试卷附答案
2020年洛阳市高一数学上期末一模试卷附答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .13.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>4.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-15.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>6.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .2C .14,2 D .14,4 7.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U8.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y9.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<10.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 11.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.15.函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.16.2()2f x x x =+(0x ≥)的反函数1()fx -=________17.函数()()()310310xx x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______. 18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()a f x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x(130x ≤≤,x +∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少?22.已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.23.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:(1)有下列函数模型:①2016x y a b -=⋅;②sin2016xy a b π=+;③lg()y a x b =+.(0,1)a b >>试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y (万吨)与年份x 的函数关系,并直接写出所选函数模型解析式;(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:lg 20.3010,=lg30.4771=) 24.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭;(2)6log 332log log 2log 36⋅--25.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好. 附:80()f x x x=+在(0,45)单调递减,在(45,)+∞单调递增. 26.某支上市股票在30天内每股的交易价格P (单位:元)与时间t (单位:天)组成有序数对(),t P ,点.(),t P 落在..如图所示的两条线段上.该股票在30天内(包括30天)的日交易量Q (单位:万股)与时间t (单位:天)的部分数据如下表所示: 第t 天4 10 16 22 Q (万股)36302418(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格P 与时间t 所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量Q 与时间t 的一次函数解析式;(Ⅲ)若用y (万元)表示该股票日交易额,请写出y 关于时间t 的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果.由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.D解析:D 【解析】 【分析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+ ,则()g x 是R 上的奇函数,又(2)3f =,所以(2)35g +=, 所以(2)2g =,()22g -=-,所以(2)(2)3231f g -=-+=-+=,故选D. 【点睛】本题主要考查函数的奇偶性的应用,属于中档题.3.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.4.C解析:C 【解析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.5.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.6.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.7.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26x f x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.8.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.9.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 342a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3c ∈, 所以a c b <<,故选B.10.A解析:A【解析】试题分析:241(22)y x x =-+-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法11.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题 13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3 【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.15.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为 解析:6【解析】 【分析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++, 由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦, ()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++, 即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+, 由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+,即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.16.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对1(0x ≥) 【解析】 【分析】设()22f x y x x ==+(0x ≥),求出x =()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2+20,x x y x -=∴=±因为x≥0,所以-1+1x y =+,所以()111fx x -=+-. 因为x≥0,所以y≥0,所以反函数()111fx x -=+-,0x ()≥. 故答案为11x +-,0x ()≥【点睛】 本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.17.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围.【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.18.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2解析:23【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解【详解】∵函数()()()21xf x x x a =+-为奇函数, ∴f (﹣x )=﹣f (x ),即f (﹣x )()()()()2121x x x x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ),即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a ,∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键. 19.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值.【详解】 因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()a f x x =函数,且在(0,)+∞上递减, a ∴是奇数,且0a <,1a ∴=-.故答案为:1-.【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题 解析:5【解析】【分析】由[]0,2x π∈,求出cos x π的范围,根据正弦函数为零,确定cos x 的值,再由三角函数值确定角即可.【详解】cos x πππ-≤≤Q ,()()sin cos 0f x x π∴==时, cos 0x =,1,1-,当[]0,2x π∈时,cos 0x =的解有3,22ππ,cos 1x =-的解有π,cos 1x =的解有0,2π, 故共有30,,,,222ππππ5个零点, 故答案为:5【点睛】本题主要考查了正弦函数、余弦函数的三角函数值,属于中档题.三、解答题21.(1)40m =;(2)当第10天时,该商品销售收入最高为900元.【解析】【分析】(1)利用分段函数,直接求解(20)(20)600f g =.推出m 的值.(2)利用分段函数分别求解函数的最大值推出结果即可.【详解】(1)销售价格20,115,()50,1530,x x f x x x +<⎧=⎨-⎩…剟第x 天的销售量(单位:件)()(g x m x m =-为常数),当20x =时,由(20)(20)(5020)(20)600f g m =--=,解得40m =.(2)当115x <…时,(20)(40)y x x =+-2220800(10)900x x x =-++=--+,故当10x =时,900max y =,当1530x 剟时,22(50)(40)902000(45)25y x x x x x =--=-+=--, 故当15x =时,875max y =,因为875900<,故当第10天时,该商品销售收入最高为900元.【点睛】本题考查利用函数的方法解决实际问题,分段函数的应用,考查转化思想以及计算能力,是中档题.22.(1)g (x )=22x -2x +2,{x |0≤x ≤1}.(2)最小值-4;最大值-3.【解析】【分析】【详解】(1)f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),因为f(x)的定义域是[0,3],所以,解之得0≤x≤1. 于是 g(x)的定义域为{x|0≤x≤1}.(2)设. ∵x ∈[0,1],即2x ∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4;当2x=1即x=0时,g(x)取得最大值-3. 23.(1)①,2016342x y -⎛⎫=⋅ ⎪⎝⎭;(2)2022年 【解析】【分析】(1)由题意可得函数单调递增,且增长速度越来越快,则选模型①,再结合题设数据求解即可; (2)由题意有201634402x -⎛⎫⋅≥ ⎪⎝⎭,再两边同时取对数求解即可. 【详解】解:(1)依题意,函数单调递增,且增长速度越来越快,故模型①符合, 设2016x y a b -=⋅,将2016x =,4y =和2017x =,6y =代入得201620162017201646a b a b --⎧=⋅⎨=⋅⎩;解得432a b =⎧⎪⎨=⎪⎩. 故函数模型解析式为:2016342x y -⎛⎫=⋅ ⎪⎝⎭. 经检验,2018x =和2019x =也符合. 综上:2016342x y -⎛⎫=⋅ ⎪⎝⎭;(2)令201634402x -⎛⎫⋅≥ ⎪⎝⎭,解得20163102x -⎛⎫≥ ⎪⎝⎭,两边同时取对数得: 20163lg lg102x -⎛⎫≥ ⎪⎝⎭,3(2016)lg 12x ⎛⎫-≥ ⎪⎝⎭, 11(2016)3lg 3lg 2lg 2x -≥=-⎛⎫ ⎪⎝⎭,120162021.7lg3lg 2x ∴≥+≈-. 综上:从2022年开始,该城市的包装垃圾将超过40万吨.【点睛】本题考查了函数的综合应用,重点考查了阅读能力及对数据的处理能力,属中档题.24.(1)99;(2)3-.【解析】【分析】(1)直接根据指数与对数的性质运算即可;(2)直接利用对数运算性质即可得出.【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=. (2)原式323log 313=--- 31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题.25.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天. 【解析】【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ; (2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案.【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克), 所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+, 当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++,所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 设平均每天支付的费用为()f x 元,当06x ≤≤时,2109090()210x f x x x+==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭, 可知()f x在单调递减,在)+∞单调递增,又89<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少.【点睛】本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.26.(Ⅰ)12,020518,203010t t P t t ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩;(Ⅱ)40Q t =-+;(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得P 与时间t 所满足的函数解析式;(Ⅱ)设Q kt b =+,代入已知数据可得;(Ⅲ)由y QP =可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当020t <≤时,设11P k t b =+,则1112206b k b =⎧⎨+=⎩,解得11215b k =⎧⎪⎨=⎪⎩, 当2030t ≤≤时,设22P k t b =+,则2222206305k b k b +=⎧⎨+=⎩,解得228110b k =⎧⎪⎨=-⎪⎩所以12,020518,203010t t P t t ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩.(Ⅱ)设Q kt b =+,由题意4361030k b k b +=⎧⎨+=⎩,解得140k b =-⎧⎨=⎩, 所以40Q t =-+.(Ⅲ)由(Ⅰ)(Ⅱ)得1(2)(40),02051(8)(40),203010t t t y t t t ⎧+-+<≤⎪⎪=⎨⎪-+-+<≤⎪⎩ 即221680,020*******,203010t t t y t t t ⎧-++≤≤⎪⎪=⎨⎪-+<≤⎪⎩, 当020t <≤时,2211680(15)12555y t t t =-++=--+,15t =时,max 125y =,当20t 30<≤时,221112320(60)401010y t t t =-+=--,它在(20,30]上是减函数, 所以21(2060)4012010y <⨯--=. 综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.。
2020-2021高一数学上期末模拟试卷(及答案)
2020-2021高一数学上期末模拟试卷(及答案)一、选择题1.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12BCD .23.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-154.若函数()2log ,?0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1eB .eC .21e D .2e5.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]6.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃7.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C.(D.)28.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,69.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U10.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .11.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3 B .()1,1-C .()()1,01,3-UD .()()1,00,1-U12.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-12二、填空题13.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 14.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑nin i xx x x L ,则1ni i x ==∑__________.15.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.16.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.17.函数()()()310310xx x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.18.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.若集合{}{}2|560|20A x x x B x ax a Z =-+≤=-=∈,,,且B A ⊆,则实数a =_____.三、解答题21.已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围. 23.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82xtf x ≥+对x ∈R 恒成立,求t 的取值范围. 24.已知幂函数()()223mm f x x m --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式;(2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)25.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.4.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.5.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D.该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.6.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 7.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数, 若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解8.D解析:D由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.10.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.11.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<,若10x -≤≤ ,则不等式0xfx ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.12.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 二、填空题13.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .14.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】 【分析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解.【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标 因为lg y x =和10x y =互为反函数,所以函数lg y x =和10x y =图像关于y x =对称 所以函数4y x =-+与函数lg y x =和10xy =图像的两个交点也关于y x =对称 所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b += 所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩ 当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++= 解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x =所以()()12121ni i x ==-+-+=-∑故答案为:1-【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.15.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】 Q ()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增.若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min 111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.16.(-22)【解析】【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<解析:(-2,2)【解析】【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).17.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围.【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.18.【解析】由题意有:则:解析:14【解析】 由题意有:13,29a a =∴=-, 则:()22124a --=-=. 19.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没 解析:{|2m m >或2}3m <-【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >. 当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m---,且 24(2)(2)04m m m m --->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 20.或【解析】【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即①当时满足②当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包 解析:0或1【解析】【分析】先解二次不等式可得{}|23A x x =≤≤,再由B A ⊆,讨论参数0a =,0a ≠两种情况,再结合a Z ∈求解即可.【详解】解:解不等式2560x x -+≤,得23x ≤≤,即{}|23A x x =≤≤,①当0a =时,B φ=,满足B A ⊆,②当0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,则223a ≤≤,解得213a ≤≤,又a Z ∈,则1a =,综上可得0a =或1a =,故答案为:0或1.【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.三、解答题21.(1)g (x )=22x -2x +2,{x |0≤x ≤1}.(2)最小值-4;最大值-3.【解析】【分析】【详解】(1)f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), 因为f(x)的定义域是[0,3],所以,解之得0≤x≤1. 于是 g(x)的定义域为{x|0≤x≤1}.(2)设. ∵x ∈[0,1],即2x ∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4;当2x=1即x=0时,g(x)取得最大值-3. 22.(1)4或1-;(2)()0,1;(3)(]10,11.【解析】【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求.【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=,解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,则210ax bx b ++-=恒有2个不同的实数根(0)a ≠,所以△24(1)0b a b =-->恒成立,即2440b ab a -+>恒成立,∴216160a a ∆=-<,则01a <<,∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解, 令4()h x x x=+,04x <≤, 结合对勾函数的性质可知,465m <-≤,解可得,1011m <≤.故m 的范围为(]10,11.【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题.23.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞当01a <<时,321x -<n ,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥n 恒成立; 令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.24.(1)()4f x x -=(2)见解析 【解析】【分析】(1)由幂函数()f x 在()0,∞+上单调递减,可推出2230m m --<(m Z ∈),再结合()f x 为偶函数,即可确定m ,得出结论;(2)将()f x 代入,即可得到()F x ,再依次讨论参数,a b 是否为0的情况即可.【详解】(1)∵幂函数()()223m m f x x m --=∈Z 在区间()0,∞+上是单调递减函数,∴2230m m --<,解得13m -<<,∵m Z ∈,∴0m =或1m =或2m =.∵函数()()223mm f x x m --=∈Z 为偶函数,∴1m =,∴()4f x x -=;(2)()()4bb F x xf x x x-==⋅23ax bx -=-, 当0a b ==时,()F x 既是奇函数又是偶函数;当0a =,0b ≠时,()F x 是奇函数;当0a ≠,0b =时,()F x 是偶函数;当0a ≠,0b ≠时,()F x 是非偶非偶函数.【点睛】本题主要考查了幂函数单调性与奇偶性的综合应用,学生需要熟练掌握好其定义并灵活应用.25.(1)()3,1.-(2)1-±3 【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值.【详解】(1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.- (2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x ,得223=1x x --+,即222=0x x +-,解得1x =-±∵1(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦, ∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦, ∴()min log 44a f x ==-,∴1442a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
2020-2021高一数学上期末模拟试卷(附答案)(1)
2020-2021高一数学上期末模拟试卷(附答案)(1)一、选择题1.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 3.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-4.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .75.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-16.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]7.若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π)8.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -9.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .310.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .11.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .412.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.14.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.15.设,,x y z R +∈,满足236x y z==,则112x z y+-的最小值为__________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.18.若幂函数()a f x x =的图象经过点1(3)9,,则2a -=__________.19.设是两个非空集合,定义运算.已知,,则________.20.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题21.已知函数()10()mf x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数. 22.已知函数()(2lg 1x f x x =+.(1)判断函数()f x 的奇偶性;(2)若()()1210f m f m -++≤,求实数m 的取值范围. 23.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t .24.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值322,当23x π=时,()f x 取得最小值22-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.25.已知全集U=R ,集合{}12A x x x =-或 ,{}213U B x x p x p 或=-+ð. (1)若12p =,求A B ⋂; (2)若A B B ⋂=,求实数p 的取值范围.26.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()fx f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈ ⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.3.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行4.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.5.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.6.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.7.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,0.5230.8660.343066f ππ⎛⎫=≈-=-<⎪⎝⎭,20.7850.7070.0780442f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.8.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D.该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.9.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】Q ()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又Q (1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-Q 函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.二、填空题13.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于 解析:-3【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.14.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根 解析:(0,3]【解析】 【分析】由题意根据函数1y mx m =+-在区间(),0-∞上为增函数及分段函数的特征,可求得m 的取值范围. 【详解】∵函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),-∞+∞上单调递增,∴函数1y mx m =+-在区间(),0-∞上为增函数, ∴01212m m >⎧⎨-≤+=⎩,解得03m <≤, ∴实数m 的取值范围是(0,3]. 故答案为(0,3]. 【点睛】解答此类问题时要注意两点:一是根据函数()f x 在(),-∞+∞上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.15.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】 【分析】令236x y z t ===,将,,x y z 用t 表示,转化为求关于t 函数的最值. 【详解】,,x y z R +∈,令1236x y z t ==>=,则236log ,log ,log ,x t y t z t ===11log 3,log 6t t y z==,21122log log 2t x t z y+-=+≥当且仅当x =.故答案为: 【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.16.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得解析:10,2⎡⎫⎪⎢⎣⎭【解析】 【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围. 【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.17.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.18.【解析】由题意有:则:解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 19.01∪2+∞【解析】【分析】分别确定集合AB 然后求解A×B 即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A ∪B=x|x≥0A∩B= 解析:【解析】 【分析】分别确定集合A ,B ,然后求解即可.【详解】 求解函数的定义域可得:,求解函数的值域可得,则,结合新定义的运算可知:,表示为区间形式即.【点睛】本题主要考查集合的表示及其应用,新定义知识的应用等知识,意在考查学生的转化能力和计算求解能力.20.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题21.(1)14m >;(2)当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m <<或104m -<<时,有 3个零点【解析】 【分析】(1)利用不等式恒成立,进行转化求解即可,(2)利用函数与方程的关系进行转化,利用参数分离法结合数形结合进行讨论即可. 【详解】解:(1)由()20f log x >得,2210mlog x log x+-> 当(1,)x ∈+∞时,20logx >变形为()2220log x log x m -+>,即()222m log x log x >-+而()222221412log x log x log x ⎛⎫+ ⎪-⎭--⎝+= 当212log x =即2x =时,()()2ma 22x14log x log x =-+ 所以14m >(2)由()0f x =可得00()x x x m x -+=≠,变为()0m x x x x =-+≠令()222211,024,0,011,024x x x x x g x x x x x x x x x ⎧⎛⎫--+>⎪ ⎪⎧-+>⎪⎝⎭=-==⎨⎨+<⎩⎛⎫⎪+-< ⎪⎪⎝⎭⎩ 作()y g x =的图像及直线y m =,由图像可得:当14m >或14m <-时,()f x 有1个零点.当14m =或0m =或14m =-时,()f x 有2个零点:当104m <<或104m -<<时,()f x 有 3个零点.【点睛】本题考查不等式恒成立以及函数的单调性的应用,考查函数的零点的判断,考查分类讨论的思想方法,考查运算能力,属于中档题. 22.(1)奇函数;(2)(],2-∞- 【解析】【分析】(1)根据函数奇偶性的定义,求出函数的定义域及()f x 与()f x -的关系,可得答案; (2)由(1)知函数()f x 是奇函数,将原不等式化简为()()121f m f m -≤--,判断出()f x 的单调性,可得关于m 的不等式,可得m 的取值范围.【详解】解:(1)函数()f x 的定义域是R ,因为()(lg f x x -=-+,所以()()((lg lg lg10x x f x f x =+-=-=+,即()()f x f x -=-,所以函数()f x 是奇函数.(2)由(1)知函数()f x 是奇函数,所以()()()12121f m f m f m -≤-+=--,设lg y u =,u x =,x ∈R .因为lg y u =是增函数,由定义法可证u x =在R 上是增函数,则函数()f x 是R 上的增函数.所以121m m -≤--,解得2m ≤-,故实数m 的取值范围是(],2-∞-. 【点睛】本题主要考查函数的单调性、奇偶性的综合应用,属于中档题.23.(1)1,08⎡⎤-⎢⎥⎣⎦(2)()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩【解析】 【分析】(1)令4log m x =,则可利用换元法将题转化为二次函数值域问题求解; (2)根据二次函数的性质,分类讨论即可. 【详解】(1)令4log m x =,则[]2,4x ∈时,1,12m ⎡⎤∈⎢⎥⎣⎦,则()()22131()222312248f x h m m m m m m ⎛⎫⎛⎫==--=-+=-- ⎪ ⎪⎝⎭⎝⎭, 故当34m =时,()f x 有最小值为18-,当12m =或1时,()f x 有最大值为0, ∴该函数的值域为1,08⎡⎤-⎢⎥⎣⎦;(2)由(1)可知()2231()231248f x h m m m m ⎛⎫==-+=-- ⎪⎝⎭,[]2,x t ∈Q ,41,log 2m t ⎡⎤∴∈⎢⎥⎣⎦,当413log 24t <<,即2t <<,函数()h m 在41,log 2t ⎡⎤⎢⎥⎣⎦单调递减, ()()()4min log g t h m h t ==2442log 3log 1t t =-+,当43log 4t ≥,即t ≥时, 函数()h m 在13,24⎡⎤⎢⎥⎣⎦上单调递减,在43,log 4t ⎛⎤ ⎥⎝⎦上单调递增,()()min 3148g t h m h ⎛⎫===- ⎪⎝⎭,综上所述:()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩. 【点睛】本题考查对数函数综合应用,需结合二次函数相关性质答题,属于中档题. 24.(1)()26f x x π⎛⎫=++ ⎪⎝⎭06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌;(2)2a ∈⎣ 【解析】 【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式; (2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得. 【详解】(1)由题意知,22A B A B ⎧+=⎪⎪⎨⎪-+=-⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ.所以()262f x x π⎛⎫=++⎪⎝⎭, 由222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌.(2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭.因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减,要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以2a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.25.(1)722⎛⎤⎥⎝⎦,; (2)342p p -或.【解析】 【分析】由题意可得{}213B x p x p =-≤≤+,(1)当12p =时,结合交集的定义计算交集即可; (2)由题意可知B A ⊆.分类讨论B =∅和B ≠∅两种情况即可求得实数p 的取值范围.【详解】因为{}213U B x x p x p =-+,或ð, 所以(){}213UUB B x p x p ==-≤≤+痧,(1)当12p =时,702B ⎡⎤=⎢⎥⎣⎦,,所以7=22A B ⎛⎤⋂ ⎥⎝⎦,, (2)当A B B ⋂=时,可得B A ⊆.当B =∅时,2p -1>p +3,解得p >4,满足题意; 当B ≠∅时,应满足21331p p p -≤+⎧⎨+<-⎩或213212p p p -≤+⎧⎨->⎩解得44p p ≤⎧⎨<-⎩或432p p ≤⎧⎪⎨>⎪⎩; 即4p <-或342p <≤. 综上,实数p 的取值范围342p p -或. 【点睛】本题主要考查交集的定义,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.26.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞- 【解析】 【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x-<,求函数212()xg x x -=的最小值得到答案. 【详解】(1)因为()f x 在定义域R 上是奇函数.所以(0)0f =,即102b a-+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221xx xf x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++,因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <, 所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-, 即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x-<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-,所以1k <-,即k 的取值范围为(,1)-∞-. 【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.。
洛阳市第一高级中学2020_2021学年高一数学12月月考试题
河南省洛阳市第一高级中学2020—2021学年高一数学12月月考试题一、选择题(本题共计12 小题,每小题5分,共计60分)1。
下列命题中正确的有①一个棱柱至少有个面;②正棱锥的侧面都是全等的等腰三角形;③有两个面平行且相似,其他各面都是梯形的多面体是棱台;④正方形的直观图是正方形;A。
个 B.个 C.个D。
个2. 如图,四棱柱ABCD﹣A1B1C1D1中,ABCD为平行四边形,E,F分别在线段DB,DD1上,且,G在CC1上且平面AEF∥平面BD1G,则A.B.C.D.3。
如图所示,已知正三棱柱的所有棱长均为,则四棱锥的体积为A.B。
C.D.4。
我国古代数学名著《九章算术》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量为(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.寸B。
寸 C.寸D。
寸5。
已知一圆锥的侧面展开图是一个中心角为直角的扇形,若该圆锥的侧面积为,则该圆锥的体积为A。
B。
C。
D。
6. 如图,在直三棱柱中,,,若半径为的球与三棱柱的底面和侧面都相切,则三棱柱的体积为A.B。
C。
D.7. 若某几何体的三视图如图所示,则该几何体的最长棱的长为A。
B。
C。
D。
8。
在正三棱柱中,若,则与所成的角的大小为A. B. C. D.9. 《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥为鳖臑,平面,,,且三棱锥的四个顶点都在一个正方体的顶点上,则该正方体的表面积为A. B.C。
D。
10.如图,在四面体中,已知,,,则四面体被截面分得的上下两部分的体积之比为A.B。
C。
D。
11. 如图所示,正方体的棱长为,,分别为,的中点,点是正方形内的动点包括边界,若平面,则动点的轨迹长度为A. B.C。
D.12. 如图,在正方体中,点,,分别是棱的中点,给出下列四个推断:①平面;②平面;③平面;④平面平面; ⑤平面平面。
洛阳市洛一高2020-2021学年高一上学期10月月考数学试卷含答案
洛一高高一月考数学试卷(2020年10月9日)一.选择题(共12小题)1.若集合A ={x ∈N|(x ﹣3)(x ﹣2)<6},则A 中的元素个数为A .3B .4C .5D .62.函数f (x )=+的定义域为 A .[﹣1,1]B .[﹣1,)∪(,1]C .[﹣,)D .(,1]3.若函数f (x )=|2x +a |的单调递减区间是(﹣∞,3],则a 的值为A .﹣3B .3C .﹣6D .64.函数()322--=x x x f 的单调递增区间是 A .(﹣∞,1]B .[3,+∞)C .(﹣∞,﹣1]D .[1,+∞)5.若对任意实数x 不等式|x +1|+|x +3|>m 2+m 恒成立,则实数m 的取值范围是A .(﹣2,1)B .[﹣2,1]C .(﹣1,2)D .[﹣1,2]6.已知f (x )+2f (﹣x )=3x +1,则f (x )=A .B .﹣3xC .﹣3x +1D .7.已知函数()x f 的定义域为[]2,0,则函数()12+x f 的定义域为A .[]2,0B .⎥⎦⎤⎢⎣⎡-21,21C .[]5,1D .[]3,18.已知f(x)=是R上的单调递增函数,求实数a的取值范围是A.(1,8)B.[4,8)C.(4,8)D.(1,4]9.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣4x,则不等式f(x+2)<5的解集为A.(﹣3,7)B.(﹣4,5)C.(﹣7,3)D.(﹣2,6)10.已知函数f(x)=(a+1)x3﹣(a+2)x﹣bx2是定义在[a﹣3,a+1]上的奇函数,则f(a+b)=A.﹣2B.﹣1C.2D.511.化简(2a﹣3)•(﹣3a﹣1b)÷(4a﹣4)(a,b>0)得A.﹣b2B.b2C.﹣D.12.函数的值域为A.B.C.(0,]D.(0,2]二.填空题(共4小题)13.已知f(x)=x2﹣(m+2)x+2在[1,3]上是单调函数,则实数m的取值范围为.14.已知f(x)=,则不等式(x+1)f(x+1)+x≤3的解集是.15.函数f(x)为定义在R上的奇函数,且满足f(x)=f(2﹣x),若f(1)=3,则f(1)+f(2)+…+f (50)=.16.已知定义域为R上的偶函数f(x)在[0,+∞)上单调递增,且f()=0,则不等式f(x﹣2)>0的解集是.三.解答题(共7小题,第17题满分10分,第18—22题每题满分12分)17.设非空集合A={x|a﹣1<x<2a,a∈R},不等式x2﹣2x﹣8<0的解集为B.(1)当a=0时,求集合A,B;(2)当A⊆B时,求实数a的取值范围.18.已知函数.(1)若f(x)的定义域为,求实数a的值;(2)若f(x)的定义域为R,求实数a的取值范围.19.已知函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f(xy)=f(x)+f(y),当x>1时,f(x)>0.(1)判断f(x)的单调性并加以证明;(2)若f(4)=2,解不等式f(x)>f(2x﹣1)+1.20.已知函数f(x)=x2﹣2ax+2a2+2.(1)若a=1,求函数f(x)的单调区间;(2)求函数f(x)在区间的最小值;(3)关于x的方程f(x)=2a2有解,求实数a的取值范围.21.设函数f(x)=ax2+bx+1(a,b∈R).(1)若f(﹣1)=0,且y=﹣2为奇函数,求f(x)的解析式;(2)在(Ⅰ)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.22.若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.(1)求f(x)的解析式;(2)是否存在实数λ,使函数g(x)=f(x)﹣(2λ﹣1)x+2,x∈[﹣1,2]的最小值为2?若存在,求出λ的值;若不存在,说明理由.洛一高高一月考数学试卷(2020年10月9日)参考答案一.选择题BBCBA ABBCB AA二.填空题13.{m|m≤0或m≥4} 14.(﹣∞,1] 15.3 16.{x|x>或x<}三.解答题(共7小题)17.解:(1)当a=0时,A={x|﹣1<x<0},解不等式x2﹣2x﹣8<0得:﹣2<x<4,即B={x|﹣2<x<4},(2)若A⊆B,则有:由于A≠∅,有,解得:﹣1<a≤2,a的取值范围为:(﹣1,2].18.解:(1)f(x)的定义域为,即(1﹣a2)x2﹣(1﹣a)x+2≥0的解集为,故,解得a=2;(2)f(x)的定义域为R,即(1﹣a2)x2﹣(1﹣a)x+2≥0恒成立,当1﹣a2=0时,a=±1,经检验a=1满足条件;当1﹣a2≠0时,解得,综上,.19.解:(1)f(x)在(0,+∞)上为增函数,证明如下:任取x1,x2∈(0,+∞)且x1<x2,则.又因为当x>1时,f(x)>0,而,所以,所以f(x2)>f(x1),所以f(x)在(0,+∞)上为增函数.(2)由定义域可得,解得,由已知可得f(4)=f(2)+f(2)=2,所以f(2)=1,f(2x﹣1)+1=f(2x﹣1)+f(2)=f(4x﹣2),所求不等式可转化为f(x)>f(4x﹣2).由单调性可得x>4x﹣2,解得,综上,不等式解集为.20.解:(1)f(x)=(x﹣a)2+a2+2,∴f(x)关于直线x=a对称,当a=1时,f(x)在区间(﹣∞,1]单调递减,在区间[1,+∞)单调递增.(2)当时,f(x)在区间递增,;当时,f(x)在区间[﹣)递减,在(a,]递增,;当时,f(x)在区间递减,.(3)方程f(x)=2a2有解,即方程x2﹣2ax+2=0有解.∴△=4a2﹣8≥0,∴a的取值范围是.21.解:(1)∵f(﹣1)=0,∴a﹣b+1=0,得b=a+1,y=﹣2=ax+b+﹣2=ax+a﹣1+,若y=﹣2为奇函数,则a﹣1=0,得a=1.(2)在(Ⅰ)的条件下,a=1,b=2,则f(x)=x2+2x+1,则g(x)=f(x)﹣kx=x2+(2﹣k)x+1,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,则对称轴≤﹣2或≥2,得k≥6或k≤﹣2.即实数k的取值范围是(﹣∞,﹣2]∪[6,+∞).22.解:(1)根据题意,设f(x)=ax2+bx+c(a≠0),由f(0)=1,∴c=1,∴f(x)=ax2+bx+1∵f(x+1)﹣f(x)=2ax+a+b=2x,必有,解可得;∴f(x)=x2﹣x+1(2)由(1)可得g(x)=x2﹣x+1﹣(2λ﹣1)x+2=x2﹣2λx+3,x∈[﹣1,2]①当λ≤﹣1时,g(x)在[﹣1,2]上单增,g(x)min=g(﹣1)=4+2λ=2⇒λ=﹣1;②当﹣1<λ<2时,g(x)在[﹣1,λ]上单减,在[λ,2]上单增,,解得λ±1,又﹣1<λ<2,故λ=1③当λ≥2时,g(x)在[﹣1,2]上单减,g(x)min=g(2)=4﹣4λ+3=2,解得,不合题意.综上,存在实数λ=±1符合题意.。
2020-2021高一数学上期末模拟试题带答案(3)
2020-2021高一数学上期末模拟试题带答案(3)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ).A .b a c <<B .c b a <<C .c a b <<D .a b c <<3.函数()()212log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞D .()1,+∞4.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10935.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 6.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C.(D.)27.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .48.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( )A .[]3,5B .()3,5C .[]4,6D .()4,69.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .11.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.15.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________. 16.求值:2312100log lg += ________ 17.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______.18.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.19.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.20.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x取得最大值2,当23x π=时,()f x取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.23.已知函数2,,()lg 1,,x x m f x x x m ⎧⎪=⎨+>⎪⎩…其中01m <….(Ⅰ)当0m =时,求函数()2y f x =-的零点个数;(Ⅱ)当函数2()3()y f x f x =-的零点恰有3个时,求实数m 的取值范围.24.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围. 25.已知集合,,.(1)若,求的值; (2)若,求的取值范围.26.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好. 附:80()f x x x=+在5)单调递减,在(45,)+∞单调递增.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-.令2()2log 10x x h x =-=,则22log 1x x =,21log 22xx x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞U . 内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞.故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.4.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.5.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.6.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解7.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y x a a -[0,1]上单调递减,值域是[0,1], 所以f (0)1a -1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.8.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn ne e ==,由此解得5m =,应选答案D 。
2020-2021高一数学上期末一模试卷(带答案)(6)
2020-2021高一数学上期末一模试卷(带答案)(6)一、选择题1.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .b a c >>D .c a b >>2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .2 3.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦4.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010 B .2020 C .1011D .20225.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .36.函数ln x y x=的图象大致是( )A .B .C .D .7.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .9.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .11.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1} B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5} 12.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.14.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______.15.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.16.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.17.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________. 18.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =I ______. 19.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.20.已知二次函数()f x ,对任意的x ∈R ,恒有()()244f x f x x +-=-+成立,且()00f =.设函数()()()g x f x m m =+∈R .若函数()g x 的零点都是函数()()()h x f f x m =+的零点,则()h x 的最大零点为________. 三、解答题21.已知定义在R 上的函数()f x 是奇函数,且当(),0x ∈-∞时,()11xf x x+=-. ()1求函数()f x 在R 上的解析式;()2判断函数()f x 在()0,+∞上的单调性,并用单调性的定义证明你的结论.22.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:(1)有下列函数模型:①2016x y a b -=⋅;②sin2016xy a b π=+;③lg()y a x b =+.(0,1)a b >>试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y (万吨)与年份x 的函数关系,并直接写出所选函数模型解析式;(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:lg 20.3010,=lg30.4771=)23.已知函数21()f x x x=-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围. 24.已知全集U=R ,集合{}12A x x x =-或 ,{}213U B x x p x p 或=-+ð. (1)若12p =,求A B ⋂; (2)若A B B ⋂=,求实数p 的取值范围.25.已知函数()224x x a f x =-+,()()log 0,1a g x x a a =>≠. (1)若函数()f x 在区间[]1,m -上不具有单调性,求实数m 的取值范围; (2)若()()11f g =,设()112t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小. 26.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.2.A解析:A【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.4.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称,()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.5.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】Q ()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又Q (1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-Q 函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.6.C解析:C 【解析】分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .10.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.11.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.12.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象 解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<Q ,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.14.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:()0,1【解析】 【分析】令()0f x =,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案. 【详解】由题意,令()10f x mx x =--=,则1mx x =-, 则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点. 故答案为:()0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.15.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221xf x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13, ∴()221xf x ++=a 恒成立,且f (a )=13, 即f (x )=﹣x 221++a ,f (a )=﹣x221++a =13, 解得:a =1,∴f (x )=﹣x221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.16.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c---⎤+++=-++∈⎦,由于42e y x x -=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.17.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值 解析:(]0,1【解析】 【分析】分别求出(),()f x g x 的值域,对a 分类讨论,即可求解. 【详解】()()222,log log a R f x x a a +∈=+≥,()f x 的值域为2[log ,)a +∞,()()22log ([()])g x f f x f x a ==+⎡⎤⎣⎦, 当22201,log 0,[()]0,()log a a f x g x a <≤<≥≥,函数()g x 值域为2[log ,)a +∞, 此时(),()f x g x 的值域相同;当1a >时,2222log 0,[()](log )a f x a >≥,222()log [(log )]g x a a ≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+ 当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同, 故a 的取值范围为(]0,1. 故答案为:(]0,1. 【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.18.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】 【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B I 的结果.【详解】因为12x -<,所以13x -<<,所以()1,3A =-; 又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2A B =-I . 故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.19.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2解析:23【解析】 【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解 【详解】 ∵函数()()()21xf x x x a =+-为奇函数,∴f (﹣x )=﹣f (x ), 即f (﹣x )()()()()2121x xx x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ), 即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a , ∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.20.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点解析:4 【解析】 【分析】采用待定系数法可根据已知等式构造方程求得,a b ,代入()00f =求得c ,从而得到()f x 解析式,进而得到()(),g x h x ;设0x 为()g x 的零点,得到()()0000g x h x ⎧=⎪⎨=⎪⎩,由此构造关于m 的方程,求得m ;分别在0m =和3m =-两种情况下求得()h x 所有零点,从而得到结果. 【详解】设()2f x ax bx c =++()()()()2222244244f x f x a x b x c ax bx c ax a b x ∴+-=++++---=++=-+ 44424a a b =-⎧∴⎨+=⎩,解得:14a b =-⎧⎨=⎩又()00f = 0c ∴= ()24f x x x ∴=-+()24g x x x m ∴=-++,()()()222444h x x x x x m =--++-++设0x 为()g x 的零点,则()()0000g x h x ⎧=⎪⎨=⎪⎩,即()()2002220000404440x x m x x x x m ⎧-++=⎪⎨--++-++=⎪⎩ 即240m m m --+=,解得:0m =或3m =- ①当0m =时()()()()()()()22222244444442h x x x x x x x x x x x x =--++-+=-+-+=---()h x ∴的所有零点为0,2,4②当3m =-时()()()()()2222244434341h x x x x x x x x x =--++-+-=--+--+-()h x ∴的所有零点为1,3,2综上所述:()h x 的最大零点为4 故答案为:4 【点睛】本题考查函数零点的求解问题,涉及到待定系数法求解二次函数解析式、函数零点定义的应用等知识;解题关键是能够准确求解二次函数解析式;对于函数类型已知的函数解析式的求解,采用待定系数法,利用已知等量关系构造方程求得未知量.三、解答题21.(1)()1,010,01,01xx x f x x x x x+⎧<⎪-⎪==⎨⎪-⎪->+⎩(2)函数()f x 在()0,+∞上为增函数,详见解析【解析】 【分析】()1根据题意,由奇函数的性质可得()00f =,设0x >,则0x -<,结合函数的奇偶性与奇偶性分析可得()f x 在()0,+∞上的解析式,综合可得答案; ()2根据题意,设120x x <<,由作差法分析可得答案.【详解】解:()1根据题意,()f x 为定义在R 上的函数()f x 是奇函数,则()00f =, 设0x >,则0x -<,则()11xf x x--=+, 又由()f x 为R 上的奇函数,则()()11xf x f x x-=-=-+, 则()1,010,01,01xx x f x x x x x+⎧<⎪-⎪==⎨⎪-⎪->+⎩;()2函数()f x 在()0,+∞上为增函数;证明:根据题意,设120x x <<, 则()()()()()1212211212211221111111111x x x x x x f x f x x x x x x x -⎛⎫⎛⎫-----=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 又由120x x <<,则()120x x -<,且()110x +>,()210x +>; 则()()120f x f x ->,即函数()f x 在()0,+∞上为增函数. 【点睛】本题考查函数的奇偶性与单调性的判断以及应用,涉及掌握函数奇偶性、单调性的定义.22.(1)①,2016342x y -⎛⎫=⋅ ⎪⎝⎭;(2)2022年【解析】 【分析】(1)由题意可得函数单调递增,且增长速度越来越快,则选模型①,再结合题设数据求解即可;(2)由题意有201634402x -⎛⎫⋅≥ ⎪⎝⎭,再两边同时取对数求解即可.【详解】解:(1)依题意,函数单调递增,且增长速度越来越快,故模型①符合,设2016x y a b-=⋅,将2016x =,4y =和2017x =,6y =代入得201620162017201646a b a b --⎧=⋅⎨=⋅⎩;解得432a b =⎧⎪⎨=⎪⎩. 故函数模型解析式为:2016342x y -⎛⎫=⋅ ⎪⎝⎭.经检验,2018x =和2019x =也符合.综上:2016342x y -⎛⎫=⋅ ⎪⎝⎭;(2)令201634402x -⎛⎫⋅≥ ⎪⎝⎭,解得20163102x -⎛⎫≥ ⎪⎝⎭,两边同时取对数得:20163lg lg102x -⎛⎫≥ ⎪⎝⎭,3(2016)lg 12x ⎛⎫-≥ ⎪⎝⎭,11(2016)3lg 3lg 2lg 2x -≥=-⎛⎫ ⎪⎝⎭, 120162021.7lg3lg 2x ∴≥+≈-.综上:从2022年开始,该城市的包装垃圾将超过40万吨. 【点睛】本题考查了函数的综合应用,重点考查了阅读能力及对数据的处理能力,属中档题. 23.(1)证明见解析(2)m 1≥ 【解析】 【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案. 【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭ ∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x >∴12()()f x f x >,∴()f x 在(0,)+∞单调递减; (2)()()2201f x x m f ++<=,故221x x m ++>,()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用.24.(1)722⎛⎤ ⎥⎝⎦,; (2)342p p -或. 【解析】 【分析】由题意可得{}213B x p x p =-≤≤+,(1)当12p =时,结合交集的定义计算交集即可; (2)由题意可知B A ⊆.分类讨论B =∅和B ≠∅两种情况即可求得实数p 的取值范围.【详解】因为{}213U B x x p x p =-+,或ð, 所以(){}213UUB B x p x p ==-≤≤+痧,(1)当12p =时,702B ⎡⎤=⎢⎥⎣⎦,,所以7=22A B ⎛⎤⋂ ⎥⎝⎦,, (2)当A B B ⋂=时,可得B A ⊆.当B =∅时,2p -1>p +3,解得p >4,满足题意;当B ≠∅时,应满足21331p p p -≤+⎧⎨+<-⎩或213212p p p -≤+⎧⎨->⎩解得44p p ≤⎧⎨<-⎩或432p p ≤⎧⎪⎨>⎪⎩; 即4p <-或342p <≤.综上,实数p 的取值范围342p p -或. 【点睛】本题主要考查交集的定义,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.25.(1)()1,+∞;(2)12t t >【解析】 【分析】(1)根据二次函数的单调性得到答案.(2)计算得到2a =,再计算()2110x t ->=,22log 0t x =<,得到答案. 【详解】(1)函数()224x x a f x =-+的对称轴为1x =,函数()f x 在区间[]1,m -上不具有单调性,故1m >,即()1,m ∈+∞. (2)()()11f g =,即24log 10a a -+==,故2a =. 当()0,1x ∈时,()()212212110x x x t f x -+=-=>=;()22log 0t g x x ==<. 故12t t > 【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综合应用. 26.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得。
河南省洛阳市2020-2021学年高一上学期期末考试数学试卷
洛阳市2020———2021学年第一学期期末考试高一数学试卷参考答案一、选择题1-5ABADD 6-10BBCAB 11-12CA二、填空题13.狓-3狔=0 14.60° 15.(-∞,4] 16.178π三、解答题17.(1)由点到直线的距离公式知:狘1-犪狘1+犪槡2=狘3犪+3狘1+犪槡2,……2分即狘1-犪狘=狘3犪+3狘,∴ 1-犪=3犪+3或1-犪=-(3犪+3),∴ 犪=-12或犪=-2.……4分(2)由犪>-2知,犪=-12,直线犾:狓-2狔-2=0,直角三角形犃犅犆的直角顶点犆是以犃犅为直径的圆与直线犾的交点.以犃犅为直径的圆的方程为(狓-1)2+(狔-1)2=5,……5分联立方程狓-2狔-2=0,(狓-1)2+(狔-1)2=5{.……6分消去狓得:5狔2+2狔-3=0,∴ 狔=-1或狔=35.……8分∴ 狓=0,狔=-1{.或狓=165,狔=35烅烄烆.……9分犆点的坐标为(0,-1)或(165,35).……10分18.(1)证明:连接犅1犇1,设犅1犇1∩犃1犆1=犗1,连接犇犗1.∵ 犗1犅1∥犇犗且犗1犅1=犇犗,∴ 犅1犗1犇犗是平行四边形.∴ 犅1犗∥犇犗1.……4分又∵ 犇犗1 平面犇犃1犆1,犅1犗 平面犇犃1犆1,∴ 犅1犗∥平面犇犃1犆1.……6分(2)∵ 犃1犆1⊥犅1犇1,犃1犆1⊥犅犅1,且犅犅1∩犅1犇1=犅1,高一数学答案 第1页 (共4页) (2021.01)∴ 犃1犆1⊥平面犅1犇1犇犅.∴ 平面犇犃1犆1⊥平面犅1犇1犇犅,且交线为犇犗1.……8分在平面犅1犇1犇犅内,过点犗作犗犎⊥犇犗1于犎,则犗犎⊥平面犇犃1犆1,即犗犎的长就是点犗到平面犇犃1犆1的距离.……9分在矩形犅1犇1犇犅中,连接犗犗1,△犗1犗犇∽△犗犎犇,则犗1犇犗1犗=犗犇犗犎,∴ 犗犎=2×槡2槡6=槡233.即点犗到平面犇犃1犆1的距离为槡233.……12分注:也可以用等体积法.19.(1)当犪>0,犳(犪)=1即犪2-3犪+2=1,解得犪=3±槡52,均满足条件.……2分当犪≤0时, ∵ 犲犪>0,犲犪+1>1, ∴ 犳(犪)=1无解.……3分故犪=3±槡52.……4分(2)画出函数犳(狓)的图象,……6分当狓≤0时,犳(狓)单调递增,1<犳(狓)≤2;……8分当狓>0时,犳(狓)在(0,32]上递减,在[32,+∞)上递增,犳(32)=-14.……10分故当1<犿<2时,方程犳(狓)-犿=0恰有三个解,即实数的取值范围是(1,2).……12分20.(1)证明:∵ 犘犃⊥平面犃犅犆,犅犆 平面犃犅犆∴ 犅犆⊥犘犃.又∵ 犅犆⊥犃犆,犘犃∩犃犆=犃,∴ 犅犆⊥平面犘犃犆.……2分∴ 平面犘犅犆⊥平面犘犃犆.……4分又∵ 平面犘犅犆∩平面犘犃犆=犘犆,犃犉 平面犘犃犆,犃犉⊥犘犆,∴ 犃犉⊥平面犘犅犆.……6分又∵犘犅 平面犘犅犆,∴ 犃犉⊥犘犅.……7分(2)由(1)知犃犉⊥平面犘犅犆,连结犈犉,高一数学答案 第2页 (共4页) (2021.01)则犈犉就是犃犈在平面犘犅犆内的射影.∴ ∠犃犈犉就是犃犈与平面犘犅犆所成的角.……9分犘犅=槡22,犅犆=槡2,犃犆=槡2,犃犉=槡22槡6=槡233.……10分犃犈=槡2.在犚狋△犃犉犈中,sin∠犃犈犉=犃犉犃犈=槡63.……11分∴ 犃犈与平面犘犅犆所成角的正弦值为槡63.……12分21.(1)用-狓代替狓代入犳(狓)-犵(狓)=2狓+1中,得犳(-狓)-犵(-狓)=21-狓,∵ 犳(狓)是奇函数,犵(狓)是偶函数, ∴ -犳(狓)-犵(狓)=21-狓.……3分上式与犳(狓)-犵(狓)=2狓+1联立,可得犳(狓)=2狓-2-狓,犵(狓)=-(2狓+2-狓).……5分(2)犳(狓)-犿犵(狓)>0即2狓-2-狓>犿(2狓+2-狓),犿<22狓-122狓+1.……8分令犺(狓)=22狓-122狓+1,则犺(狓)=1-222狓+1.∵ 狓∈犚, ∴ 22狓+1>1,0<122狓+1<1,-2<-222狓+1<0,-1<1-222狓+1<1.……11分∴ 犿≤-1,即实数犿的取值范围是(∞,-1].……12分22.(1)由题意知狘犗犙狘=12狘犘犅狘=2,则点犙的轨迹犈是以犗为圆心,2为半径的圆,其方程为狓2+狔2=4.……4分(2)设犗到直线犾的距离为犱,则狘犛犜狘=24-犱槡2,……5分由△犗犛犜的面积为槡3,得12·犱·24-犱槡2=槡3,解得犱=槡3或1.当犱=1时,∠犛犗犜为钝角,舍去,故犱=槡3.……7分∴ 2犽2+槡1=槡3,解得犽=±槡33.……8分(3)当犽=1时,犾:狔=狓+2.∵ 犆犕⊥犗犕,犆犖⊥犗犖, ∴ 犆,犕,犗,犖四点在以犗犆为直径的圆上.设犆(狓0,狓0+2),则以犗犆为直径的圆的方程为(狓-狓02)2+(狔-狓0+22)2=狓02+(狓0+2)24,即狓2+狔2-狓0狓-(狓0+2)狔=0.……9分高一数学答案 第3页 (共4页) (2021.01)狓2+狔2-狓0狓-(狓0+2)狔=0,狓2+狔2=4烅烄烆. 狓0狓+(狓0+2)狔-4=0.设犕(狓1,狔1),犖(狓2,狔2),则狓0狓1+(狓0+2)狔1-4=0,狓0狓2+(狓0+2)狔2-4=0.犕,犖的坐标都适合方程狓0狓+(狓0+2)狔-4=0,……11分即直线犕犖的方程为狓0狓+(狓0+2)狔-4=0,可整理为狔-2=-狓0狓0+2(狓+2),∴ 直线犕犖过定点(-2,2).……12分高一数学答案 第4页 (共4页) (2021.01)。
2020-2021学年河南省洛阳市高一数学上学期期末考试数学试题含解析
则直线 与直线 垂直,直线 的斜率是 ,
所以 ,得 .
线段 的中点 在直线 上,则 ,得
A. 2B. C. 4D.
10.已知函数 为偶函数,那么函数 的定义域为()
A. B. C. D.
11.已知圆 ,圆 ,两圆公切线的条数为()
A. 1B.2C. 3D. 4
12.已知 是边长为2的正方形,点 , 在平面 的同侧,AE⊥平面 , 平面 ,且 .点Q为DF的中点,点P是CE上的动点,则PQ长的最小值为()
A. B.2C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:本题共4个小题,每小题5分,共20分.
13.已知三角形的三个顶点是 , , ,则此三角形 边上的中线所在直线的方程为______.
14.四棱锥 中,底面 是正方形,各条棱长均为2.则异面直线 与 所成角的大小为______.
15.已知定义在 上的函数 满足 ,当 时, ,则不等式 的解集为______.
① ② ③ ④ .
其中正确命题的个数是()
A. 1B.2C. 3D. 4
7.已知点 与 关于直线 对称,则 的值分别为()
A 1,3B. , C. -2,0D. ,
8.已知函数 在区间 内有零点,则实数 的取值范围是()
A. B. C. D.
9.如图网格中是某几何体的三视图(网格中每个小正方形的边长为1),则该几何体的体积为()
1.已知集合 , ,则()
A. B. C. D.
〖答 案〗A
〖解 析〗
〖分析〗
可根据特殊元素与集合的关系作答.
〖详 解〗A. 为偶数,故 ,故
B. ,故B错
C. ,故 错
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021洛阳市第一高级中学高一数学上期末模拟试题及答案一、选择题1.已知函数22log ,0()2,0.x x fx x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .3.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>4.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .36.已知131log 4a =,154b=,136c =,则( ) A .a b c >>B .a c b >>C .c a b >>D .b c a >>7.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭8.函数21y x x =-++的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)9.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,610.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =11.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.已知log log log 22a a ax yx y +-=,则x y的值为_________________. 14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.函数22log (56)y x x =--单调递减区间是 .16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.已知函数1()41x f x a =+-是奇函数,则的值为________. 18.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()a f x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______.19.若函数()()22f x x x a x a =+--在区间[]3,0-上不是单调函数,则实数a 的取值范围是______.20.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________. 三、解答题21.计算221(1).log 24lglog 27lg 2log 32+-- 32603132)(8)9⎛⎫--- ⎪⎝⎭- 22.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 23.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.24.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 25.已知()()122x x f x a a R +-=+∈n .(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围. 26.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.C解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。
3.A解析:A 【解析】【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.10x 1.1 1.11=>=Q , 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.4.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.5.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫=⎪⎝⎭,∴()1(())21010f f f =, 又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.6.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.7.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.8.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.9.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A11.C解析:C 【解析】【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.12.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题13.【解析】【分析】首先根据对数的运算性质化简可知:即解方程即可【详解】因为且所以即整理得:所以或因为所以所以故答案为:【点睛】本题主要考查对数的运算性质同时考查了学生的计算能力属于中档题解析:3+【解析】 【分析】首先根据对数的运算性质化简可知:2()2x y xy -=,即2()6()10x x y y -+=,解方程即可.【详解】 因为log log log 22a a ax yx y +-=,且x y >, 所以2log log ()2aa x y xy -=,即2()2x y xy -=. 整理得:2260x y xy +-=,2()6()10x x y y-+=.26432∆=-=,所以3x y =-3x y =+因为0x y >>,所以1x y >.所以322x y=+.故答案为:322+【点睛】本题主要考查对数的运算性质,同时考查了学生的计算能力,属于中档题. 14.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可.【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩, 解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭. 【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】先求出函数的定义域找出内外函数根据同增异减即可求出【详解】由解得或所以函数的定义域为令则函数在上单调递减在上单调递增又为增函数则根据同增异减得函数单调递减区间为【点睛】复合函数法:复 解析:(,1)-∞-【解析】【分析】先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由2560x x -->,解得6x >或1x <-,所以函数22log (56)y x x =--的定义域为(,1)(6,)-∞-+∞U .令256u x x =--,则函数256u x x =--在(),1-∞-上单调递减,在()6,+∞上单调递增,又2log y u =为增函数,则根据同增异减得,函数22log (56)y x x =--单调递减区间为(,1)-∞-.【点睛】复合函数法:复合函数[]()y f g x =的单调性规律是“同则增,异则减”,即()y f u =与()u g x =若具有相同的单调性,则[]()y f g x =为增函数,若具有不同的单调性,则[]()y f g x =必为减函数.16.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得 解析:10,2⎡⎫⎪⎢⎣⎭【解析】【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围.【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1 即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.17.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 18.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值.【详解】 因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()a f x x =函数,且在(0,)+∞上递减, a ∴是奇数,且0a <,1a ∴=-.故答案为:1-.【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.19.【解析】【分析】将函数转化为分段函数对参数分类讨论【详解】转化为分段函数:为更好说明问题不妨设:其对称轴为;其对称轴为①当时因为的对称轴显然不在则只需的对称轴位于该区间即解得:满足题意②当时此时函数 解析:()()9,00,3-⋃【解析】【分析】将函数转化为分段函数,对参数a 分类讨论.【详解】()()22f x x x a x a =+--,转化为分段函数:()222232,2,x ax a x a f x x ax a x a ⎧-+≥=⎨+-<⎩.为更好说明问题,不妨设:()2232h x x ax a =-+,其对称轴为3a x =; ()222g x x ax a =+-,其对称轴为x a =-.①当0a >时,因为()h x 的对称轴3a x =显然不在[]3,0-,则 只需()g x 的对称轴位于该区间,即()3,0a -∈-,解得:()0,3a ∈,满足题意.②当0a =时,()223,0,0x x f x x x ⎧≥=⎨<⎩,此时 函数在区间[]3,0-是单调函数,不满足题意.③当0a <时,因为()g x 的对称轴x a =-显然不在[]3,0-只需()h x 的对称轴位于该区间即可,即()3,03a ∈- 解得:()9,0a ∈-,满足题意.综上所述:()()9,00,3a ∈-⋃.故答案为:()()9,00,3-⋃.【点睛】本题考查分段函数的单调性,难点在于对参数a 进行分类讨论. 20.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2【解析】【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值.【详解】由题意得:()00323f =+=,()23331103f a a =-+=-, 所以由()()01032f f a a =-=, 解得2a =.故答案为:2.【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.三、解答题21.(1)32.(2)44. 【解析】【分析】【详解】试题分析:(1)底数相同的对数先加减运算,根号化为分数指数.(2)根号化为分数指数,再用积的乘方运算.试题解析:223222321(1).log 24lg log lg 2log 321(log 24log 3)(lg lg 2)log 32333log 8lg13222+--=-++-=+-=-=32601(-8)9⎛⎫-- ⎪⎝⎭- 11362322(32()3)1--=⨯--9827144=⨯--=考点:1.对数运算,指数运算.2.分数指数,零指数等运算.22.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m ≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m ≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值,当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =.【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.23.(Ⅰ)2()f x x =(Ⅱ)3,4⎛⎫-∞-⎪⎝⎭ 【解析】【分析】(I )根据幂函数的奇偶性和在区间(0,)+∞上的单调性,求得m 的值,进而求得()f x 的解析式.(II )先求得()g x 的解析式,由不等式()0<g x 分离常数λ得到122x x λ<-,结合函数122x y x =-在区间[]1,2上的单调性,求得λ的取值范围. 【详解】 (Ⅰ)∵幂函数35()()m f x x m -+=∈N 为偶函数,且在区间(0,)+∞上单调递增, 350m ∴-+>,且35m -+为偶数.又N m ∈,解得1m =,2()f x x ∴=.(Ⅱ)由(Ⅰ)可知2()()2121g x f x x x x λλ=+-=+-.当[1,2]x ∈时,由()0<g x 得122x x λ<-. 易知函数122x y x =-在[1,2]上单调递减, min 1123222224x x λ⎛⎫∴<-=-=- ⎪⨯⎝⎭. ∴实数λ的取值范围是3,4⎛⎫-∞-⎪⎝⎭. 【点睛】本小题主要考查幂函数的单调性和奇偶性,考查不等式在给定区间上恒成立问题的求解策略,属于中档题. 24.(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【解析】【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值.【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+, ()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题.25.(1)答案见解析;(2)253,8⎛⎫ ⎪⎝⎭. 【解析】试题分析:(1)函数为奇函数,则()()0f x f x -+=,据此可得2a =-,且函数()f x 在R 上单调递增;(2)原问题等价于22252x x a =-⋅+⋅在区间(0,1)上有两个不同的根,换元令2x t =,结合二次函数的性质可得a 的取值范围是253,8⎛⎫ ⎪⎝⎭. 试题解析:(1)因为是奇函数,所以()()()()1122222220x x x x x x f x f x a a a -++---+=+⋅++⋅=++=, 所以; 在上是单调递增函数; (2)在区间(0,1)上有两个不同的零点, 等价于方程在区间(0,1)上有两个不同的根, 即方程在区间(0,1)上有两个不同的根,所以方程在区间上有两个不同的根, 画出函数在(1,2)上的图象,如下图,由图知,当直线y =a 与函数的图象有2个交点时, 所以的取值范围为. 点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.26.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克 【解析】【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =;当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+, 故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩. (2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩, 当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=;当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克.【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题.。