2019届高中人教A版数学必修4(课时作业与单元测试卷):习题课(四) 含解析
2019-2020学年高中数学人教A版必修4同步作业与测评:学期综合测评 Word版含解析
学期综合测评对应学生用书P101本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边经过点P(4,-3),则2sinα+cosα的值等于()A.-35B.45C.25D.-25答案D解析据三角函数的定义可知sinα=-35,cosα=45,∴2sinα+cosα=-65+45=-25.2.若一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的()A.12B.2倍C.13D.3倍答案D解析设圆弧的半径为r,弧长为l,其弧度数为lr,将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l 12r=3·lr ,即弧度数变为原来的3倍,故选D . 3.已知sin (π+α)=13,则cos 2α=( ) A .79 B .-89 C .-79 D .429 答案 A解析 因为sin (π+α)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×-132=79.4.若|a |=2sin15°,|b |=4cos15°,且a 与b 的夹角为30°,则a ·b 的值为( ) A .12 B .32 C .3 D .23 答案 C解析 a·b =|a ||b |cos30°=2sin15°·4cos15°·cos30°=2sin60°=3. 5.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=( ) A .0 B .-35 C .35 D .-45 答案 B解析 由3a +4b +5c =0,得向量3a ,4b ,5c 能组成三角形,又|a |=|b |=|c |=1,所以三角形的三边长分别是3,4,5,故三角形为直角三角形,且a ⊥b ,所以a ·(b +c )=a ·c =-35.6.函数y =tan ⎝ ⎛⎭⎪⎫π4x -π2的部分图象如图,则(OA →+OB →)·AB→=( )A .6B .4C .-4D .-6 答案 A解析 ∵点B 的纵坐标为1, ∴tan ⎝ ⎛⎭⎪⎫π4x -π2=1,∴π4x -π2=π4,∴x =3,即B (3,1).令tan ⎝ ⎛⎭⎪⎫π4x -π2=0,则π4x -π2=0,解得x =2, ∴A (2,0),∴OA →+OB →=(5,1),AB →=(1,1). ∴(OA →+OB →)·AB→=6. 7.已知函数f (x )=43sin ωx +π3(ω>0)在平面直角坐标系中的部分图象如图所示,若∠ABC =90°,则ω=( )A .π4B .π8C .π6D .π12 答案 B解析 由三角函数图象的对称性知P 为AC 的中点,又∠ABC =90°,故|P A |=|PB |=|PC |=T 2,则|AC |=T .由勾股定理,得T 2=(83)2+T22,解得T =16,所以ω=2πT =π8.8.为了得到函数y =sin3x +cos3x 的图象,可以将函数y =2cos3x 的图象( )A .向右平移π12个单位长度 B .向右平移π4个单位长度 C .向左平移π12个单位长度 D .向左平移π4个单位长度 答案 A解析 因为y =sin3x +cos3x =2cos ⎝ ⎛⎭⎪⎫3x -π4,所以将y =2cos3x 的图象向右平移π12个单位后可得到y =2cos ⎝ ⎛⎭⎪⎫3x -π4的图象.9.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2 C .ω=12,θ=π4 D .ω=2,θ=π4 答案 A解析 因为函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,所以θ=π2,所以y =2cos ωx ,排除C ,D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,所以2πω=π,所以ω=2,排除B .故选A .10.已知|a |=22,|b |=3,a ,b 的夹角为π4,如图所示,若AB →=5a +2b ,AC →=a -3b ,且D 为BC 中点,则AD→的长度为( )A .152B .152 C .7 D .8 答案 A解析 AD→=12(AB →+AC →)=12(5a +2b +a -3b ) =12(6a -b ),∴|AD→|2=14(36a 2-12ab +b 2)=2254, ∴|AD→|=152.故选A .11.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0),若f (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π4,则f (x )的最小正周期为( )A .π3B .π2C .5π6 D .π 答案 C解析 由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,可得函数f (x )的一条对称轴为x =π2+2π32=7π12,则x =π2离最近一条对称轴的距离为7π12-π2=π12.又f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π4,且f (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上具有单调性,故x =π4离最近一条对称轴的距离也为π12,所以T 2=2×π12+⎝ ⎛⎭⎪⎫π2-π4=5π12,所以T =5π6.故选C .12.已知不等式f (x )=32sin x 4·cos x 4+6cos 2x 4-62+m ≤0,对于任意的-5π6≤x ≤π6恒成立,则实数m 的取值范围是( )A .m ≥ 3B .m ≤3C .m ≤- 3D .-3≤m ≤3 答案 C解析 f (x )=32sin x 4·cos x 4+6cos 2x 4-62+m =322sin x 2+62⎝ ⎛⎭⎪⎫1+cos x 2-62+m=322sin x 2+62cos x2+m =6⎝ ⎛⎭⎪⎫32sin x 2+12cos x 2+m=6sin ⎝ ⎛⎭⎪⎫x 2+π6+m ,故要使f (x )≤0对任意的-5π6≤x ≤π6恒成立,只需m ≤-6sin ⎝ ⎛⎭⎪⎫x 2+π6在-5π6≤x ≤π6上恒成立.∵-5π6≤x ≤π6,-π4≤x 2+π6≤π4, ∴⎣⎢⎡⎦⎥⎤-6sin ⎝ ⎛⎭⎪⎫x 2+π6min =-3, ∴m ≤-3.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.函数f (x )=sin 23x +π2+sin 23x 的图象相邻的两条对称轴之间的距离是________.答案 3π2解析 f (x )=cos 23x +sin 23x =2sin 23x +π4,相邻的两条对称轴之间的距离是半个周期,T =2π23=3π,∴T 2=3π2.14.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角的大小为________.答案 120°解析 a +b =(-1,-2),|a |=5,设c =(x ,y ),∵(a +b )·c =52,∴x +2y =-52.设a 与c 的夹角为θ,∵a ·c =x +2y ,∴cosθ=a·c|a||c|=-525=-12.又∵θ∈[0°,180°],∴θ=120°.15.已知函数f(x)=2sin2π4+x-3cos2x-1,x∈π4,π2,则f(x)的最小值为________.答案1解析f(x)=2sin2π4+x-3cos2x-1=1-cos2π4+x-3cos2x-1=-cos π2+2x-3cos2x=sin2x-3cos2x=2sin2x-π3,因为π4≤x≤π2,所以π6≤2x-π3≤2π3.所以12≤sin2x-π3≤1.所以1≤2sin2x-π3≤2.即1≤f(x)≤2,则f(x)的最小值为1.16.关于函数f(x)=sin2x-cos2x,有下列命题:①函数f(x)的最小正周期为π;②直线x =π4是函数f (x )的一条对称轴;③点⎝ ⎛⎭⎪⎫π8,0是函数f (x )的图象的一个对称中心;④将函数f (x )的图象向左平移π4个单位长度,可得到函数y =2sin2x 的图象.其中正确的命题为________(填序号). 答案 ①③解析 f (x )=sin2x -cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,所以最小正周期T =π,①正确;当x =π4时,f ⎝ ⎛⎭⎪⎫π4=2sin2×π4-π4=2sin π4,不是最值,所以②错误;f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫2×π8-π4=0,所以③正确;将f (x )的图象向左平移π4个单位长度,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象,所以④错误.综上,正确的命题为①③. 三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知3π4<α<π,tan α+1tan α=-103. (1)求tan α的值;(2)求5sin 2α2+8sin α2cos α2+11cos 2α2-82sin α-π4的值.解 (1)由tan α+1tan α=-103,整理,得3tan 2α+10tan α+3=0, 即(3tan α+1)(tan α+3)=0.∵3π4<α<π,∴-1<tan α<0,∴tan α=-13.(2)5sin 2α2+8sin α2cos α2+11cos 2α2-82sin α-π4=5sin 2α2+cos 2α2+4sin α+6cos 2α2-82sin α-π4=5sin 2α2+cos 2α2+4sin α+6×1+cos α2-82sin α-π4=4sin α+3cos αsin α-cos α=4tan α+3tan α-1=4×-13+3-13-1=-54.18.(本小题满分12分)已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)在△ABC 中,B =π3,若向量n =(0,-1),p =⎝ ⎛⎭⎪⎫cos A ,2cos 2C 2,求|n +p |的取值范围.解 (1)设n =(x ,y ),由m ·n =-1,得x +y =-1.① 又∵m 与n 的夹角为3π4,∴m ·n =|m ||n |·cos 3π4, ∴x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1,∴n =(-1,0)或n =(0,-1). (2)∵B =π3,∴A +C =2π3,0<A <2π3.若n =(0,-1),则n +p =⎝ ⎛⎭⎪⎫cos A ,2cos 2C 2-1=(cos A ,cos C ).∴|n +p |2=cos 2A +cos 2C =1+cos2A 2+1+cos2C2=1+12·⎣⎢⎡⎦⎥⎤cos2A +cos ⎝ ⎛⎭⎪⎫4π3-2A =1+12cos ⎝ ⎛⎭⎪⎫2A +π3.∵0<A <2π3,∴π3<2A +π3<5π3, ∴-1≤cos ⎝ ⎛⎭⎪⎫2A +π3<12,12≤1+12cos⎝ ⎛⎭⎪⎫2A +π3<54, 即|n +p |2∈⎣⎢⎡⎭⎪⎫12,54,∴|n +p |∈⎣⎢⎡⎭⎪⎫22,52.19.(本小题满分12分)已知函数f (x )=2cos x sin x +π3-3sin 2x +sin x cos x .(1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的值域;(2)用五点法在下图中作出y =f (x )在闭区间⎣⎢⎡⎦⎥⎤-π6,5π6上的简图;(3)说明f (x )的图象可由y =sin x 的图象经过怎样的变化得到?解 f (x )=2cos x sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x=2cos x ⎝ ⎛⎭⎪⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3.(1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,∴当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的值域为[-3,2].(2)由T =2π2,得T =π,列表:图象如下图.(3)解法一:由以下变换可得f (x )的图象:先将y =sin x 的图象向左平移π3个单位,再将图象上各点的横坐标缩短到原来的12,最后将纵坐标伸长为原来的2倍.解法二:由以下变换可得f (x )的图象:先将y =sin x 的图象上各点的横坐标缩短到原来的12,再将图象向左平移π6个单位,最后将纵坐标伸长为原来的2倍.20.(本小题满分12分)某房地产开发商为吸引更多消费者购房,决定在一块闲置的扇形空地中修建一个花园.如图,已知扇形AOB 的圆心角∠AOB =π4,半径为R .现欲修建的花园为▱OMNH ,其中M ,H 分别在OA ,OB 上,N 在AB 上.设∠MON =θ,▱OMNH 的面积为S .(1)将S 表示为关于θ的函数; (2)求S 的最大值及相应的θ值.解 (1)如图,过N 作NP ⊥OA 于点P ,过H 作HE ⊥OA 于点E , ∵∠AOB =π4,∴OE =EH =NP =R sin θ,OP =R cos θ,∴HN =EP =OP -OE =R (cos θ-sin θ), ∴S =HN ·NP =R 2(cos θ-sin θ)sin θ,θ∈⎝ ⎛⎭⎪⎫0,π4.(2)S =R 2(cos θsin θ-sin 2θ) =R 2⎝ ⎛⎭⎪⎫12sin2θ-1-cos2θ2 =12R 2(sin2θ+cos2θ-1) =12R 2⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫2θ+π4-1,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴2θ+π4∈⎝ ⎛⎭⎪⎫π4,3π4,∴当2θ+π4=π2,即θ=π8时,S 取得最大值,且最大值为2-12R 2.21.(本小题满分12分)将射线y =17x (x ≥0)绕着原点逆时针旋转π4后所得的射线经过点A (cos θ,sin θ).(1)求点A 的坐标;(2)若向量m =(sin2x ,2cos θ),n =(3sin θ,2cos2x ),求函数f (x )=m ·n x ∈0,π2的值域.解 (1)设射线y =17x (x ≥0)与x 轴的非负半轴所成的锐角为α, 则tan α=17,α∈0,π2.所以tan α<tan π4,所以α∈0,π4.所以tan θ=tan α+π4=17+11-17×1=43,θ∈π4,π2.所以由⎩⎨⎧sin 2θ+cos 2θ=1,sin θcos θ=43,得⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以点A 的坐标为35,45. (2)f (x )=3sin θ·sin2x +2cos θ·2cos2x =125sin2x +125cos2x =1225sin2x +π4.由x ∈0,π2,得2x +π4∈π4,5π4, 所以sin2x +π4∈-22,1,所以函数f (x )的值域为-125,1225.22.(本小题满分12分)已知向量a =(3sin2x ,cos2x ),b =(cos2x ,-cos2x ). (1)若x ∈⎝ ⎛⎭⎪⎫7π24,5π12时,a ·b +12=-35,求cos4x 的值;(2)cos x ≥12,x ∈(0,π),若关于x 的方程a ·b +12=m 有且仅有一个实根,求实数m 的值.解 (1)∵a =(3sin2x ,cos2x ), b =(cos2x ,-cos2x ),∴a ·b +12=3sin2x cos2x -cos 22x +12 =32sin4x -1+cos4x 2+12=-12+32sin4x -12cos4x +12=sin ⎝ ⎛⎭⎪⎫4x -π6.由a ·b +12=-35,得sin ⎝ ⎛⎭⎪⎫4x -π6=-35.∵x ∈⎝ ⎛⎭⎪⎫7π24,5π12,∴4x -π6∈⎝ ⎛⎭⎪⎫π,3π2.∴cos ⎝ ⎛⎭⎪⎫4x -π6=-45.∴cos4x =cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫4x -π6+π6 =cos ⎝ ⎛⎭⎪⎫4x -π6cos π6-sin ⎝ ⎛⎭⎪⎫4x -π6sin π6=3-4310.(2)∵cos x ≥12,又因为余弦函数在(0,π)上是减函数,∴0<x≤π3.令f(x)=a·b+12=sin⎝⎛⎭⎪⎫4x-π6,g(x)=m,在同一坐标系中作出两个函数的图象,由图可知:m=1或m=-1 2.。
2019学年高一数学人教A版必修4同步练习:2.2.1~2.2.2 向量加法、减法运算及其几何意义(含解析)
第二章 平面向量2.2 平面向量的线性运算2.2.1~2.2.2 向量加法、减法运算及其几何意义1.理解向量的和,掌握向量加法的三角形法则和平行四边形法则,向量加法的运算律及向量减法的三角形法则.2.理解向量模的性质.基础梳理一、向量加法运算1.向量加法的定义:我们把求两个向量a ,b 和的运算,叫做向量的加法,记作:a +b .(1)两个向量的和仍然是一个向量; (2)零向量与任一向量a 有a +0=0+a =a .2.向量加法的三角形法则:向量AB→与BC →相加时,AB →的终点作为BC →的起点,这时起点A 到终点C 的向量AC →就是这两个向量的和向量,即AB→+BC →=AC →.这种求向量和的方法叫三角形法则. 向量加法的三角形法则:“首尾相接,首尾相连” . 3.向量加法的平行四边形法则(对于两个向量共线不适用): 以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB ,则以O 为起点的对角线OC→就是向量的和.这种作两个向量和的方法叫做向量加法的平行四边形法则,如图:特殊情况:4.运算律.(1)向量加法的交换律:a +b =b +a .(2)向量加法的结合律:(a +b )+c =a +(b +c ).练习:三角形法则、平行四边形法则是否对所有向量a ,b 求和都适用?答案:三角形法则适合所有向量,平行四边形法则对于两个向量共线时不适用.思考应用1.由物理上学习的位移的合成,你能否把三角形法则推广到n 多边形的情况?解析:三角形法则能够推广到n 个向量相加的情况:AB →+BC →+CD →+DE→=AE →(注意字母必须首尾顺次连接首尾),位移的合成能够看成是向量加法三角形法则的物理模型.二、向量减法运算1.减法的三角形法则作法:在平面内取一点O ,作OA →=a ,OB →=b ,则BA→=a -b . 即a -b 能够表示为从向量b 的终点指向向量a 的终点的向量. 向量减法的三角形法则:“起点相同,指向被减向量”.2.|a +b |、|a -b |、|a |+|b |、|a |-|b |之间的关系.对于任意的两个向量a 与b ,有||||a -||b ≤||a ±b ≤||a +||b . 注意:当a ,b 共线时(包括同向和反向)上式等号成立.思考应用2.前面讨论的是向量运算,我们还学过那些运算?体会它们的异同.解析:我们学过实数间的运算、集合间的运算、函数间的运算,今天又学到了向量间的运算.对于两个向量,通过三角形法则或平行四边形法则,有唯一的和向量与之对应.一般的,对于两个对象,通过一个法则都有唯一确定的对象与之对应,这就是运算.运算能够协助我们解决很多的问题.自测自评1.下列等式准确的个数是(C )①a +0=a ; ②b +a =a +b ; ③-(-a )=a ; ④a +(-a )=0; ⑤a +(-b )=a -b .A .2个B .3个C .4个D .5个2.如右图,在平行四边形ABCD 中,下列结论错误的是(C )A.AB→=DC → B.AD→+AB →=AC → C.BA→+BC →=AC → D.AD→+CB →=0 解析:∵BA→+BC →=BD →, ∴C 中的结论错误.故选C .3.化简OP→-QP →+PS →+SP →的结果等于(B ) A .QP→ B .OQ → C .SP → D .SQ → 4.a 、b 为非零向量,且|a +b |=|a |+|b |,则(A ) A .a 与b 方向相同 B .a =b C .a =-b D .a 与b 方向相反基础提升1.化简PM→-PN →+MN →所得结果是(C ) A.MP→ B.NP → C .0 D .MN → 2.已知MA →=(-2,4),MB →=(2,6),则12AB →的坐标是(D )A .(0,5)B .(0,1)C .(2,5)D .(2,1)解析:AB→=MB →-MA →=(2,6)-(-2,4)=(4,2), ∴12AB →=(2,1).故选D . 3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向(A ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .与向量b 方向相反4.若O 是△ABC 内的一点,且OA →+OB →+OC →=0.则O 是△ABC 的(B )A .垂心B .重心C .内心D .外心解析:OA→+OB →+OC →=0,∵OA →+OB →是以OA →,OB →为邻边作平行四边形的对角线且过AB 的中点,设点D ,则OA→+OB →=2OD →,∴2OD→+OC →=0.∵D 为AB 的中点,同理E ,F 为AC ,BC 中点,∴满足条件的点O 为△ABC 三边中线交点,故为重心.5.向量(AB→+MB →)+(BO →+BC →)+OM →等于(C ) A .BC→ B .AB → C .AC → D .AM → 解析:(AB→+MB →)+(BO →+BC →)+OM →=(AB →+BC →)+(MB →+BO →)+OM→=AC →+MO →+OM →=AC →.故选C . 巩固提高6.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =120°,则|a +b |=________.答案:37.如图,已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC→=c ,求OD →.解析:∵BA→=CD →,BA →=OA →-OB →,CD →=OD →-OC →, ∴OD→-OC →=OA →-OB →,OD →=OA →-OB →+OC →, ∴OD→=a -b +c . 8.若在正六边形ABCDEF 中,O 为其中心,则FA→+AB →+2BO →+ED→等于(B ) A.FE→ B.AC → C.DC → D.FC → 解析:FA→+AB →+2BO →+ED →=FE →+ED →=FD →=AC →. 9.已知:△ABC 中,D 、E 分别是边AB 、AC 的中点.求证:DE 綊12BC .证明:因为D 、E 分别为AB 、AC 的中点,故AD →=12AB →,AE→=12AC →.DE →=AE→-AD →=12(AC →-AB →)=12BC →.所以DE 綊12BC .掌握两个向量的减法运算能够转化为加法来实行.1.记住常用关系、常用数据:如△ABC 中AB→+BC →+CA →=0;以向量a ,b 为邻边的平行四边形中,a ±b 表示的是两条对角线所在的向量.2.注意向量的三角形法则和平行四边形法则的要点.。
2019年高中数学综合检测试题(含解析)新人教A版必修4
综合检测试题(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.已知向量=(3,1),=(2,4),则向量等于( C )(A)(5,5) (B)(6,4)(C)(-1,3) (D)(1,-3)解析:向量=(3,1),=(2,4),则向量=-=(2,4)-(3,1)=(-1,3),故选C.2.设θ∈(0,),若sin θ=,则cos θ等于( D )(A)(B)(C)(D)解析:因为θ∈(0,),sin θ=,则cos θ===,故选D.3.将函数y=sin 2x的图象向左平移个单位长度,所得图象的函数解析式为( A )(A)y=sin(2x+) (B)y=sin(2x-)(C)y=sin(2x+) (D)y=sin(2x-)解析:依题意将函数y=sin 2x的图象向左平移个单位长度得到y=sin 2(x+)=sin(2x+),故选A.4.已知a,b为两非零向量,若|a+b|=|a-b|,则a与b的夹角的大小是( D )(A)30° (B)45° (C)60° (D)90°解析:若|a+b|=|a-b|,平方得a2+2a·b+b2=a2-2a·b+b2,即a·b=0.又a,b为两非零向量,所以a⊥b,即a与b的夹角的大小是90°.故选D.5.下列函数中,最小正周期为π,且图象关于直线x=对称的是( B )(A)y=sin(x-) (B)y=sin(2x+)(C)y=cos(x+) (D)y=cos(2x+)解析:函数的最小正周期为π,则=π,所以ω=2,据此可得选项A,C错误;考察选项B,D,当x=时,sin(2x+)=sin(2×+)=1,满足题意;当x=时,cos(2x+)=cos(2×+)=0,不满足题意.故选B.6.设两非零向量a,b的夹角为θ,若对任意实数λ,|a+λ·b|的最小值为2,则( B )(A)若|a|确定,则θ唯一确定(B)若θ确定,则|a|唯一确定(C)若|b|确定,则θ唯一确定(D)若θ确定,则|b|唯一确定解析:令g(λ)=(a+λ·b)2=a2+2λa·b+λ2b2,是关于λ的二次函数,当且仅当λ=-=-时,g(λ)取得最小值4,所以b2×()2-2a·b×+a2=4,化为a2sin2θ=4.所以θ确定,则|a|唯一确定.故选B.7.已知等边△ABC的边长为2,P为△ABC内(包括三条边上)一点,则·(+)的最大值是( A )(A)2 (B)(C)0 (D)-解析:建立如图所示的平面直角坐标系,则A(0,),B(-1,0),C(1,0),设点P的坐标为(x,y),则=(-x,-y),+=2(-x,-y).故·(+)=2(-x,-y)·(-x,-y)=2(x2+y2-y)=2[x2+(y-)2-],令t=x2+(y-)2,则t表示△ABC内(包括三条边上)上的一点P与点(0,)间的距离的平方.结合图形可得当点P与点B或C重合时t可取得最大值,且最大值为t max=,故·(+)的最大值为2(-)=2.选A.8.已知函数f(x)=sin(ωx+ϕ)对任意的x∈R都有f(-x)=f(+x),若函数g(x)=2cos(ωx+ϕ)-1,则g()的值为( C )(A)-3 (B)1(C)-1 (D)1或-3解析:由f(-x)=f(+x)知函数f(x)的对称轴为x=,即函数f(x)=sin(ωx+ϕ)在x=时取最大值或最小值,f()=±1,由sin2(ωx+ϕ)+cos2(ωx+ϕ)=1得cos(ω+ϕ)=0,所以有g()=2cos(ω+ϕ)- 1=-1,故选C.9.设α∈(0,),β∈(0,),α>β且tan α=,则( C )(A)2α-β=π(B)2α+β=π(C)2α-β=(D)2α+β=解析:因为tan α=,则=,即sin α-sin αsin β=cos αcos β,所以sin α=cos αcos β+sin αsin β=cos(α-β)=cos(-α).因为α∈(0,),β∈(0,),tan α=,所以-α∈(0,),α-β∈(-,),所以α-β=-α,即2α-β=,故选C.10.已知α∈[-,],β∈[-,0],且sin α-cos 2β等于()-()β,则sin(-β)等于( C )(A)-(B)0(C)(D)解析:因为sin α-cos 2β=()-()β,所以cos(α-)-()=cos 2β-,因为α∈[-,],β∈[-,0],所以α-∈[-π,0],2β∈[-π,0],构造函数f(x)=cos x-,很明显函数f(x)在区间[-π,0]上单调递增,则α-=2β,-β=,据此可得,sin(-β)=sin =.选C.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.已知弧长为π cm2的弧所对的圆心角为,则这条弧所在的扇形面积为cm2,扇形的周长为cm.解析:由=得R=4,S=××42=2π,C=2R+π=(π+8)(cm).答案:2ππ+812.设角α的终边过点P(-3,-4),则tan α= ,= .解析:由三角函数定义r=|OP|==5,tan α===,===-.答案:-13.已知α∈(,π),sin α=,则tan α= ,= .解析:因为α∈(,π),sin α=,所以cos α=-,tan α==-,===-2.答案:--214.= .(用数字作答)解析:====-4.答案:-415.已知cos(α+)=,其中α为锐角,则sin(α-)的值为, cos(α-)的值为.解析:由题cos(α+)=,得sin(α+)=,sin(α-)=sin[(α+)-]=[sin(α+]-cos(α+]]=×(-)=,cos(α-)=cos[(α+)-]=[cos(α+)+sin(α+)]=× (+)=.答案:16.已知f(x)=sin(ωx+)(ω>0),f()=f(),且f(x)在区间(,)上有最小值,无最大值,则ω= .解析:如图所示,因为f(x)=sin(ωx+),且f()=f(),又f(x)在区间(,)内只有最小值、无最大值,所以f(x)在=处取得最小值.所以ω+=2kπ-(k∈Z).所以ω=8k-(k∈Z).因为ω>0,所以当k=1时,ω=8-=;当k=2时,ω=16-=,此时在区间(,)内已存在最大值.故ω=.答案:17.在锐角△ABC中,AC=BC=2,=x+y(其中x+y=1),函数f(λ)=|-λ|的最小值为,则||的最小值为.解析:由函数f(λ)=|-λ|的最小值为可知AB=BC,所以△ABC是等边三角形.当x=y=0.5时,有最小值为.答案:三、解答题(共74分)18.(本小题满分14分)已知平面上三个向量a,b,c,其中a=(1,2).(1)若|c|=2,且a∥c,求c的坐标;(2)若|b|=,且(a+2b)⊥(2a-b),求a与b的夹角θ.解:(1)因为a∥c,设c=λa=(λ,2λ),由|c|==2⇒λ=±2,所以c的坐标为(2,4)或(-2,-4).(2)(a+2b)·(2a-b)=2a2+3a·b-2b2=0,设θ为a,b的夹角,则cos θ=-1,因为θ∈[0,π],所以θ=π.19.(本小题满分15分)已知m=(sin x,cos x)(0<x<),n=(1,-1),且m·n=,(1)求sin(x+)+cos(x+)的值;(2)求的值.解:(1)根据题意,m·n=sin x-cos x=,两边平方得1-2sin xcos x=,即1-sin 2x=,sin 2x=,所以(sin x+cos x)2=(sin x-cos x)2+2sin 2x=,又0<x<,所以sin(x+)+cos(x+)=cos x+sin x=.(2)由(1)可求得sin x=,cos x=,则 ==-.20.(本小题满分15分)已知函数f(x)=2sin x·[cos(x-)+cos x],x∈[0,].(1)求f();(2)求f(x)的最大值与最小值.解:(1)f()=2sin ·[cos(-)+cos ]=2××(+)=.(2)f(x)=2sin x·[cos(x-)+cos x]=2sin x·(cos x+sin x+cos x)=sin 2x+(1-cos 2x)=sin(2x-)+.因为x∈[0,],所以2x-∈[-,].又因为y=sin z在区间[-,]上是递增,在区间[,]上递减.所以,当2x-=,即x=时,f(x)有最大值;当2x-=-,即x=0时,f(x)有最小值0.21.(本小题满分15分)设平面向量a=(sin x,cos2x-),b=(cos x,-1),函数f(x)=a·b.(1)求f(x)的最小正周期,并求出f(x)的单调递增区间;(2)若锐角α满足f()=,求cos(2α+)的值.解:(1)由题意得f(x)=a·b=sin x·cos x+-cos2x=sin 2x- cos 2x=sin(2x-). 所以f(x)的最小正周期为π.由-+2kπ≤2x-≤+2kπ,k∈Z,得kπ-≤x≤kπ+,k∈Z.所以函数f(x)的单调递增区间为[kπ-,kπ+],k∈Z.(2)由(1)可得f()=sin(α-)=,因为α为锐角,所以-<α-<,所以cos(α-)==,所以cos(2α+)=cos[2(α-)+]=-sin 2(α-)=-2sin(α-)·cos(α-)=-.22.(本小题满分15分)设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若=λ,=μ.(1)求+的值;(2)求λ·μ的取值范围.解:(1)连接AG并延长交BC于M,则M是BC的中点,设=b,=c,则=(+)=(b+c),==(b+c),又=λ=λb,=μ·=μc,所以=-=μc-λb,=-=(b+c)-λb=(-λ)b+c,因为P,G,Q三点共线,故存在实数t,使=t,所以(-λ)b+c=tμc-tλb,所以消t得1-3λ=-,即+=3.(2) 因为λ,μ∈(0,1),所以μ=∈(0,1),所以λ∈(,1),即∈(1,2),λμ===,其中=时,-+有最大值,=1或2时,-+有最小值2, 于是λ·μ的取值范围是[,).。
高中人教A版数学必修4(课时习题与单元测试卷):习题课(三)含解析
习题课 (三 )一、选择题1.给出以下六个命题:①两个向量相等,则它们的起点同样、终点同样;②若 |a|= |b|,→ → ABCD 是平行四边形; ④平行四边形→ 则 a = b ;③若 AB = DC ,则四边形 ABCD 中,必定有 AB→ =DC ;⑤若 m = n , n = k ,则 m = k ;⑥若 a ∥ b ,b ∥ c ,则 a ∥ c.此中不正确命题的个数为 ( )A . 2B . 3C .4D . 5答案: C分析: 两个向量起点同样、终点同样,则两个向量相等;但两个向量相等,却不必定有起点同样、 终点同样, 故①不正确; 依据向量相等的定义, 要保证两向量相等, 不单模相等,并且方向同样,而②中方向不必定同样,故不正确;③也不正确,由于 A 、B 、C 、D 可能落在同一条直线上;零向量方向不确立,它与任一直量都平行,故⑥中,若 b =0,则 a 与 c就不必定平行了,所以⑥也不正确.→ → →)2.已知 |AB|= 10, |AC|= 7,则 |BC|的取值范围是 ( A . [3,17] B . (3,17) C .(3,10) D . [3,10] 答案: A分析: 利用三角形两边之和大于第三边,两边之差小于第三边的性质及→ →AB 与 AC 共线时的状况求解.即 → →→ →→→ |AB|- |AC|≤ |BC|≤ |AC|+ |AB|,故 3≤|BC|≤17.3.关于非零向量 a , b ,以下说法不正确的选项是 ( )A .若 a = b ,则 |a|= |b|B .若 a ∥ b ,则 a = b 或 a =- bC .若 a ⊥ b ,则 a ·b = 0D . a ∥ b 与 a , b 共线是等价的 答案: B分析: 依据平面向量的观点和性质,可知a ∥b 只好保证 a 与 b 的方向同样或相反,但模长不确立,所以B 错误.4.设向量 a , b 知足 |a + b|= 10, |a - b|= 6,则 a ·b = ()A .1B .2C .3D . 5 答案: A分析: 将已知两式左右两边分别平方,得a 2+ 2a ·b + b 2= 10,两式相减并除以 4,可a 2- 2a ·b + b 2= 6得 a ·b = 1. 5.设 x , y ∈R ,向量 a =( x,1), b = (1, y),c = (2,- 4),且 a ⊥ c , b ∥ c ,则 |a + b|等于()A. 5B. 10C .2 5D . 10答案: B分析: ∵a ⊥ c ,∴2x - 4= 0,x = 2,又 b ∥c ,∴2y + 4= 0,∴y =- 2,∴a + b =(x +1,1+y)= (3,- 1).∴|a + b|= 10.16.关于非零向量 α,β,定义一种向量积: α°β= α·βπ π.已知非零向量 a ,b 的夹角 θ∈4, ,β·β2且 a °b , b °a 都在会合 n2 n ∈N 中,则 a °b = ( )A.5或3B. 1或 32 2 2 21 C .1D.2 答案: Da ·b |a| |b|cos ·θ |a|cos θ nb ·a |a| |b|cos ·θ |b|cos θ分析:a °b = b ·b =|b|2=|b| = 2,n ∈ N ① .同理可得 b °a = a ·a =|a|2=|a|mπ π 1 = 2 ,m ∈ N ② .再由 a 与 b 的夹角 θ∈ 4,2 ,可得 cos 2θ∈ 0, 2 ,①②两式相乘得cos 2θ=mnn 14 , m , n ∈ N ,∴m = n =1,∴a °b = 2=2,选 D.二、填空题→→→ → →→7.若向量 OA = (1,- 3), |OB|= |OA|, OA ·OB = 0,则 |AB|= ________.答案:2 5分析:由于 → 2 → → 2 → 2 → 2 → →→|AB | = |OB - OA| = |OB| + |OA| - 2OA ·OB = 10+ 10- 0= 20,所以 |AB|= 20 =2 5.8.已知向量 a ,b 知足 |a|= 1,|b|= 3,a + b = (3,1),则向量 a + b 与向量 a -b 的夹角是 ________.2π答案:分析:由于 |a - b|2+ |a + b|2= 2|a|2+ 2|b|2,所以 |a - b|2= 2|a|2+ 2|b|2- |a + b|2= 2+ 6-4= 4,a -b ·a + b 1- 312π 故|a - b|= 2,所以 cos 〈 a -b , a + b 〉= |a - b| |a ·+ b| =4 =- 2,故所求夹角是3.9.设正三角形 ABC 的面积为 2,边 AB , AC 的中点分别为D ,E , M 为线段 DE 上的→ → →动点,则 MB ·MC + BC 2 的最小值为 ________.答案: 5 32分析: 设正三角形 ABC 的边长为 2a ,由于正三角形 ABC 的面积为 2,所以 a 2= 2 33 .→ → → → → → → → → → + 设 MD = x(0≤x ≤ a),则 ME = a - x ,MB ·MC + BC 2= (MD + DB ) ·(ME + EC)+ BC 2 =MD ·ME →→ →→ → → → 2 -x)+ xacos120 2 2 =MD ·EC + DB ·ME + DB ·EC + BC =- x(a +°(a - x)acos120 +°a cos60 °+ 4a 2 2a →→ →2 a 2 a 2 152 53 x - ax + 4a ,当 x =2时, MB ·MC +BC 获得最小值 2 - a ×2+ 4a = 4 a = 2 .三、解答题10.已知 |a|= 4, |b|=8, a 与 b 的夹角是 120 °. (1)求 a ·b 及 |a + b|的值;(2)当 k 为什么值时, (a + 2b)⊥ (ka - b)? 解: (1)a ·b = |a||b|cos120 °=- 16, |a + b|= a + b 2= a 2 +b 2 +2a ·b= 4 3.(2)由题意,知 (a + 2b) ·(ka - b)= ka 2+ (2k - 1)a ·b - 2b 2 =0,即 16k -16(2k - 1)- 2×64= 0,解得 k =- 7.2→ → → 11.如图,在△ OAB 中, P 为线段 AB 上一点,且 OP =xOA +yOB.→ →(1)若 AP = PB ,求 x , y 的值;→ → → → → → → →(2)若 AP = 3PB , |OA|= 4, |OB|= 2,且 OA 与 OB 的夹角为60°,求 OP ·AB 的值.→ → → 1 → 1 →解: (1)若 AP = PB ,则 OP =OA + OB ,故 x = y =1. 2 22→ → →1 →3 →(2)若 AP =3PB ,则 OP = OA +OB ,1 → 3 → 44 → → →→OP ·AB = OA + OB ·(OB - OA)4 4=-1 → 1 → → 3 →OA 2- OA ·OB + OB 242 4=- 1× 42- 1× 4×2× cos60°+ 3× 224 2 4=- 3.能力提高12.已知 A(1,0), B(5,- 2), C(8,4), D (4,6),那么四边形 ABCD 为 ()A .正方形B .菱形C .梯形D .矩形 答案: D→ →. 分析: AB = (4,- 2), BC = (3,6) → →→ → AB ·BC = 4× 3+ (- 2)× 6= 0,故 AB ⊥ BC.→ → → 又 DC = (4,- 2),故 AB = DC .→ → 45= 3 →→ABCD 为矩形. 又 |AB|= 20= 2 5, |BC|= 5,故 |AB|≠ |BC|,所以,四边形 13.在平面直角坐标系中,已知三点 A(4,0), B(t,2), C(6, t), t ∈ R , O 为坐标原点. (1)若△ ABC 是直角三角形,求 t 的值;(2)若四边形 ABCD 是平行四边形,求 →|OD|的最小值.解: (1)由题意得 → → →AB = (t -4,2) , AC = (2, t), BC = (6- t , t -2),→ →若∠ A = 90°,则 AB ·AC = 0,即 2(t - 4)+ 2t = 0,∴ t = 2;→ →若∠ B = 90°,则 AB ·BC = 0,即 (t - 4)(6- t)+ 2(t -2)= 0,∴ t = 6±2 2;→ →若∠ C = 90°,则 AC ·BC = 0,即 2(6- t)+ t( t - 2)= 0,无解, ∴知足条件的 t 的值为 2 或 6±2 2.(2)若四边形 → →ABCD 是平行四边形,则 AD =BC ,设点 D 的坐标为 (x , y),x = 10- t ,即 D(10- t , t - 2), 即 (x - 4, y)= (6-t , t - 2),∴y = t - 23→10- t 2+ t- 2 2∴ |OD |==2t 2- 24t+ 104,→∴当 t= 6 时, |OD |获得最小值 4 2.4。
2019秋人教A版高中数学必修4(课件+课时分层作业):1 (1)
_________. 非负半轴 (2)结论:角的终边在第几象限,就说这个角是_______
_____.
第几象
限角
(3)如果角的终边在 _坐__标__轴__上__,就认为这个角不属于 任何一个象限.
【对点训练】 1.下列说法正确的是 ( ) A.终边相同的角一定相等 B.第一象限的角都是锐角 C.锐角都是第一象限角 D.小于90°的角都是锐角
【解析】选D.因为180°角的终边落在x轴的负半轴上, 故180°是不属于任何象限的角.
主题3 终边相同的角 在条件“角的顶点与坐标原点重合,始边与x轴非
负半轴重合”下,研究下列角:30°,390°,-330°. 1.这三个角的终边位置相同吗?
提示:30°,390°,-330°在同一坐标系内如图所示,由 图可知三个角的终边位置相同,它们两两之间相差 360°的整数倍.
射线
旋转
到另一个位置所成的_____.
图形
(2)角的表示
如图,OA是角α
的_始__边__,OB是角α
的_____,O是角的 终边
_____.角α 可记为“角α ”或“∠α ”或简记为“α ”. 顶点
(3)角的分类 按旋转方向,角可以分为三类:
名称
定义
正角 按_逆__时__针__方向旋转形成的角
负角 按_顺__时__针__方向旋转形成的角
第一章 三 角 函 数 1.1 任意角和弧度制
1.1.1 任 意 角
主题1 任意角的概念 1.当钟表慢了(或快了)一点时,我们会将分针按某个方 向转动,把时间调整准确,在调整的过程中,分针转动的 方向是否相同?
提示:不同,当钟表慢了,要顺时针转动分针,当钟表快 了,要逆时针转动分针.
2.在跳水比赛中,运动员会做出“转体两周”“向前翻 转两周半”等动作,做上述动作时,运动员转体多少度? 转过的度数还能用0°到360°的角表示吗?
高中数学人教A版 必修4 各章节同步练习+章节测试汇编300页含答案
高中数学人教A版必修4 各章节同步练习(AB卷)+章节测试汇编目录【同步练习】人教A版必修4数学《角和弧度制》同步练习(A)含答案【同步练习】人教A版必修4数学《角和弧度制》同步练习(B)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(A)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(B)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(A)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(B)含答案人教A版必修4高中数学第一章三角函数综合测试卷(A)含答案人教A版必修4高中数学第一章三角函数综合测试卷(B)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(A)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(B)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(A)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(B)含答案人教A版必修4高中数学第二章平面向量综合测试卷(A)含答案人教A版必修4高中数学第二章平面向量综合测试卷(B)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(A)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(B)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(A)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(B)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(A)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(B)含答案专题一任意角和弧度制测试卷(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与60-°的终边相相同的角是 ( ) A.3πB. 23πC. 43πD. 53π【答案】D【解析】因为π603o -=-, π5π2π33-=-,所以与60-°的终边相相同的角是5π3;故选D. 2.460是( )A. 第一象限B. 第二象限C. 第三象限D. 第五象限【答案】B【解析】由题意得, 460360100︒=︒+︒,因此460与100︒在同一象限第二象限,故选B. 3.下列角终边位于第二象限的是( )A. 420B. 860C. 1060D. 1260【答案】B【解析】00042036060=+终边位于第一象限, 0008602360140=⨯+终边位于第二象限,选B. 4.已知圆的半径为π,则060圆心角所对的弧长为( )A. 3πB. 23πC. 23πD. 223π【答案】C【解析】60化为弧度制为3π,由弧长公式有233l r ππαπ==⨯=,选C.5.终边在第二象限的角的集合可以表示为( ) A. 00{|90180}αα<<B. 0{|270360180360,}k k k Z αα-+⋅<<-+⋅∈ C. 0{|90180180180,}k k k Z αα+⋅<<+⋅∈ D. 0{|270180180180,}k k k Z αα-+⋅<<-+⋅∈ 【答案】B6.下列说法中, ①与角5π的终边相同的角有有限个; ②圆的半径为6,则15 的圆心角与圆弧围成的扇形面积为23π;正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个 【答案】B【解析】①错;②22113156221802S r ππα==⨯⨯⨯=,对;因而正确的个数为0.选B.7.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )【答案】B【解析】由扇形面积公式12S lr =,则4l =,又422l r α===.故本题答案选B . 8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A. B.C.D. A=B=C【答案】B【解析】 锐角必小于,故选B.9.已知α是锐角,则2α是( )A. 第一象限角B. 第二象限角C. 小于180的正角D. 第一或第二象限角 【答案】C【解析】α是锐角,∴()20απ∈,,∴2α是小于180的正角.10.扇形的圆心角为 )A.54πB. πC. 3D.29 【答案】A【解析】扇形的面积2211552264S R ππθ==⨯⨯=11.终边在直线y x =上的角的集合是( ) A. {|,}4k k Z πααπ=+∈ B. {|2,}4k k Z πααπ=+∈C. 3{|,}4k k Z πααπ=+∈D. 5{|2,}4k k Z πααπ=+∈【答案】A【解析】与α终边在一条直线上的角的集合为{|,}k k Z ββαπ=+∈,∴与4π终边在同一直线上的角的集合是{|,}4a k k Z παπ=+∈.故选A.12.已知α为第三象限角,则2α所在的象限是( )A. 第一或第三象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限 【答案】D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.的角属于第_________象限.【答案】二 【解析】在第二象限,所以的角属于第二象限14.53π-的角化为角度制的结果为__________, 135-的角化为弧度制的结果为__________.【答案】 300- 34π- 【解析】由题意得, 5518030033π-=-⨯︒=-︒, 135- 31351804ππ=-︒⨯=-︒ .15.已知扇形的半径为4cm ,弧长为12cm ,则扇形的圆周角为 ;【答案】3 【解析】3412===r l α 16.已知扇形的周长为10cm ,面积为42cm ,则扇形的中心角等于__________(弧度). 【答案】12【解析】由题意2108{{ 81r l l lr r +==⇒==或2{ 4l r ==,则圆心角是12l r α==,应填答案12.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.写出(0)y x x =±≥所夹区域内的角的集合。
2018-2019学年高中数学(人教A版,选修4-4)课时作业【2】及答案
一、选择题1.函数f(x)=x x +1的最大值为( ) A.25B .12 C.22 D .1【解析】 显然x≥0.当x =0时,f(x)=0;当x>0时,x +1≥2x ,∴f(x)≤12. 当且仅当x =1时,等号成立,∴f(x)max =12. 【答案】 B2.设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2 B .a <ab <a +b 2<b C .a <ab <b <a +b 2 D .ab <a <a +b 2<b 【解析】 取特殊值法.取a =2,b =8,则ab =4,a +b 2=5,所以a <ab <a +b 2<b.故选B. 【答案】 B3.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( ) A .3B .4 C.92 D .112 【解析】 ∵a >0,b >0,a +b =2, ∴y =1a +4b =(1a +4b )·+2=(12+b 2a +2a b +2)≥52+2b 2a ·2a b =92. 当且仅当a =23,b =43时,等号成立.故选C. 【答案】 C4.(2018·福建高考)下列不等式一定成立的是( )A .lg(x 2+14)>lg x(x>0) B .sin x +1sin x ≥2(x≠k π,k ∈Z) C .x 2+1≥2|x|(x∈R)D.1x 2+1>1(x ∈R) 【解析】 当x>0时,x 2+14≥2·x·12=x ,所以lg(x 2+14)≥lg x(x>0),故选项A 不正确;运用基本不等式时需保证一正二定三相等,而当x≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确. 【答案】 C二、填空题5.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________.【解析】 x 2+y 2+xy =(x +y)2-xy≥(x+y)2-+24=34(x +y)2,∴(x +y)2≤43,∴|x +y|≤233. x +y 的最大值为233. 【答案】 23 3 6.(2018·陕西高考)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn)·(bm+an)的最小值为________.【解析】 ∵a ,b ,m ,n ∈R +,且a +b =1,mn =2,∴(am +bn)(bm +an)=abm 2+a 2mn +b 2mn +abn 2=ab(m 2+n 2)+2(a 2+b 2)≥2ab·mn+2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+b 2+2ab)=2(a +b)2=2,当且仅当m =n =2时,取“=”.∴所求最小值为2.【答案】 2三、解答题7.已知a ,b ,x ,y ∈R +,x ,y 为变量,a ,b 为常数,且a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b.【解】 ∵x +y =(x +y)(a x +b y )=a +b +bx y +ay x≥a+b +2ab =(a +b)2, 当且仅当bx y =ay x时取等号. 又(x +y)min =(a +b)2=18,即a +b +2ab =18.① 又a +b =10,② 由①②可得⎩⎪⎨⎪⎧a =2,b =8或⎩⎪⎨⎪⎧ a =8,b =2. 8.已知a ,b ,c 均是正数,求证: (1)a +b 2≤ a 2+b 22; (2)a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c).【证明】 (1)∵a 2+b 2≥2ab,∴2(a 2+b 2)≥(a+b)2, ∴a 2+b 22≥+24.又a>0,b>0,∴a +b 2≤ a 2+b 22. (2)由(1)得a 2+b 2≥22(a +b). 同理:b 2+c 2≥22(b +c),c 2+a 2≥22(a +c). 三式相加得:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c),当且仅当a =b =c 时,取“=”号.9.若对任意x>0,x x 2+3x +1≤a 恒成立,求实数a 的取值范围. 【解】 由x>0,知原不等式等价于0<1a ≤x 2+3x +1x =x +1x+3恒成立. 又x>0时,x +1x ≥2x·1x =2, ∴x +1x+3≥5,当且仅当x =1时,取等号. 因此⎝ ⎛⎭⎪⎫x +1x +3min =5, 从而0<1a ≤5,解得a≥15. 故实数a 的取值范围为[15,+∞).教师备选10.某兴趣小组测量电视塔AE 的高度H(单位:m),如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度,若电视塔实际高度为125 m ,问d 为多少时,α-β最大?【解】 由题设知d =|AB|,得tan α=H d. 由|AB|=|AD|-|BD|=H tan β-h tan β,得tan β=H -h d,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +-d ≤h 2-, 当且仅当d =-d, 即d =-=-=555时,上式取等号.∴当d =555时,tan(α-β)最大. 因为0<β<α<π2,则0<α-β<π2, ∴当d =555时,α-β最大.故所求的d 是55 5 m.。
高中人教A版数学必修4(课时习题与单元测试卷):习题课(二)含解析
习题课 (二 )课时作业一、选择题1. 函数 f(x)= tan2xtanx 的定义域为 ()k πA. xx ∈ R 且 x ≠ 4 , k ∈Zπ B. xx ∈ R 且 x ≠ k π+2, k ∈ Zπ C. xx ∈ R 且 x ≠ k π+4, k ∈ ZπD. xx ∈ R 且 x ≠ k π-4, k ∈ Z 答案: Ax ≠ k π x ≠k ππ分析: 由题意,得x ≠ k π+ 2(k ∈ Z),即2k πk π π (k ∈ Z ),因此 x ≠ 4 (k ∈ Z), πx ≠ 2 + 42x ≠ k π+ 2选 A.2.函数 f(x)= x + sin|x|, x ∈ [ - π, π]的大概图象是 ( )答案: A分析:函数 f(x)是非奇非偶函数, 故清除 B ,D ;又 x ∈ [- π,π]时, x +sin|x|≥ x 恒建立,因此函数 f(x)的图象应在直线 y =x 的上方,故清除 C ,选 A.3.函数 f(x)= Asin(ωx+ ωπ)( A>0, ω>0)在 - 3π3πω 的最大值是,- 上单一递加,则2 4()1B.3A. 2 4 C .1D . 2 答案: Cπ分析: 由于 A>0 , ω>0 ,因此当 ππ2k π- 22k π- ≤ωx+ ωπ≤ 2k π+ 2 (k ∈ Z) 时,有ω -2ππ π2k π+23π3ππ≤ x ≤2k π-2 2k π+ 2ω - π(k ∈ Z ),因此 - 2 ,- 4?- π, ω - π(k ∈ Z),ω2k π- π3π 2- 2 ≥ ω-πω≤ 1- 4k3π3π 3π T π则π ,解得 ω≤ 2+ 8k .又由题意得- 4- - 2 =4 ≤ 2 =ω,3π 2k π+ 2- 4 ≤ ω - π4因此 ω≤ 3,因此 0<ω≤ 1,因此 ω的最大值为 1.3 1 7)4. 三个数 cos , sin10,- cos 的大小关系是 (2 43 17A. cos 2>sin 10>- cos 43 7 1B .cos 2>- cos 4>sin 103 17 C .cos 2<sin 10<- cos 47 3 1 D .- cos 4<cos 2<sin 10答案: C1 π 1分析: sin 10=cos 2- 10 .7 7- cos 4= cos π- 4 .3π 1 ≈ 7,∵ =1.5, -10 1.47, π- ≈ 1.39 22 43 π 1 7∴π>- >π-2>210 4>0.又∵y = cosx 在(0 ,π)上是减函数,3 1 7∴cos 2<sin 10<- cos 4.5.函数 y =log 1 tanx 的定义域是 ()2πA. x 0< x ≤4πB. x 2k π< x ≤2k π+ 4, k ∈Zπ C. x k π< x ≤ k π+ 4, k ∈ Zπ πD. x 2k π- < x ≤ k π+ , k ∈Z2 4答案: Clog 1 tanx 0分析:由2,tanx 0解得 x k π< x ≤ k π+ π,因此选 C., k ∈ Z41 π π6.函数 y =- ≤ x ≤ 且 x ≠ 0 的值域是 ()A . [- 1,1]B .( -∞,- 1]∪ [1,+∞ )C .( -∞, 1]D . [- 1,+∞ ) 答案: Bπ π 分析: 由于- 4≤ x ≤ 4,π π又由于 y = tanx 在 x ∈ -4, 4 时为增函数.因此-1≤ tanx ≤1.又 x ≠ 0,因此- 1≤ tanx< 0 或 0< tanx ≤ 1,因此易求得1∈(-∞,- 1]∪[1,+ ∞).tanx二、填空题7.若 y = cosx 在区间 [ - π, a]上为增函数,则 a 的取值范围是 ________. 答案: (- π, 0]分析: 由 y = cosx 的图象可知, a 的取值范围是- π<a ≤ 0.8.函数 y = 1 的定义域是 ________.log 2tanx答案: xk π<x ≤k π+ π, k ∈Z4 1分析: 要使函数存心义,只要πlog 2≥ 0,∴0<tanx ≤ 1,∴k π<x ≤ k π+,k ∈ Z ,∴该函tanx4数的定义域是x k π<x ≤ k π+ π,k ∈ Z .4ππ的9.函数 f(x)= tan ωx (ω>0) 图象上的相邻两支曲线截直线 y = 1 所得线段长为 ,则 f124值是 ________.答案: 3分析: 由题意可得 T = ππ.∴ω= = 4,4 Tπ π f(x)= tan4x.,因此 f 12 = tan 3= 3.三、解答题1的值域和单一区间.10.求函数 y = tan 2x - 2tanx + 21解:y =tanx - 1 2+ 1,∵(tanx -1)2+ 1≥ 1,∴该函数的值域是 (0,1] .ππ当 tanx<1 时,该函数单一递加,单一递加区间是, k π+4 (k ∈ Z);k π-2ππ当 tanx>1 时,该函数单一递减,单一递减区间是, k π+2 (k ∈ Z).k π+4π11.设函数 f(x)= sin( -2x + φ)(0< φ<π),y = f( x)图象的一条对称轴是直线 x = 8. (1)求 φ;(2)求函数 y = f(x)的单一区间.ππ ,解: (1)令 (- 2)× +φ= k π+ , k ∈ Z82∴ φ=k π+3πφ<π,∴ φ= 3π4 , k ∈ Z ,又 0< 4 .3π(2)由 (1) 得 f(x)= sin - 2x +4 =3π- sin 2x - 4 ,3π令 g(x)= sin 2x - 4 ,π 3π π由- 2+ 2k π≤ 2x - 4≤2+ 2k π,k ∈ Z ,π5π得 + k π≤x ≤+ k π,k ∈ Z ,8 85π即 g(x)的单一增区间为π+k π, +k π, k ∈ Z ;8 8π 3π 3π由 + 2k π≤ 2x - ≤ + 2k π, k ∈ Z ,2 4 2 5π 9π得 8 + k π≤ x ≤ 8 + k π, k ∈ Z ,即 g(x)的单一减区间为 5π 9π+ k π, + k πk ∈ Z ,8 8 故 f(x) 的单一增区间为 5π 9π+ k π, + k πk ∈ Z ;8 8 π 5π 单一减区间为8+ k π, 8 +k πk ∈ Z .能力提高12.若 a = log 1 tan70 °,b = log 1 sin25 ,°c = log 1 cos25 °,则 ()222A . a<b<cB . b<c<aC .c<b<aD . a<c<b答案: D分析: ∵0<sin25 °<sin65 °= cos25°<1= tan45 <tan70° ,°∴log 1 sin25 >log ° 1 cos25 °>log 1 tan70 °.222即 a<c<b.π13.若函数 f(x)=tan 2x - atanx |x|≤ 4 的最小值为- 6,务实数 a 的值.π解: 设 t =tanx ,∵ |x|≤ ,∴ t ∈ [ - 1,1] ,4则原函数化为y =t 2- at = t - a 2 -a 2 ,2 4a对称轴方程为 t = 2,2①若- 1≤ a ≤ 1,则当 t = a 时, y min =- a=- 6,∴ a 2= 24,不切合题意,舍去.2 2 4a时,二次函数在 [- 1,1] 上递加,当 t =- 1 时, y min = 1+ a =- 6,②若 <- 1,即 a<- 22∴a =- 7.a,即 a>2 时,二次函数在 [- 1,1] 上递减,当 t =1 时, y min = 1-a =- 6,∴ a =③若 >127.综上所述, a =- 7 或 a =7.。
人教版高中数学必修4同步训练题及答案全册汇编
人教A版高中数学必修4同步训练目录1-1-1 任意角1-1-2 弧度制1-2-0-1 任意角的三角函数的定义1-2-1 单位圆中的三角函数线1-2-2 同角三角函数的基本关系1-3-1 诱导公式二、三、四1-3-2 诱导公式五、六1-4-1 正弦函数、余弦函数的图象1-4-2-1 周期函数1-4-2-2 正、余弦函数的性质1-4-3 正切函数的性质与图象1-5-1 画函数y=Asinωx+φ的图象1-5-2 函数y=Asinωx+φ的性质及应用1-6 三角函数模型的简单应用第一章综合检测题2-1 平面向量的实际背景及基本概念2-2-1 向量加法运算及其几何意义2-2-2 向量减法运算及其几何意义2-2-3 向量数乘运算及其几何意义2-3-1 平面向量基本定理2-3-2、3 平面向量的正交分解及坐标表示平面向量的坐标运算2-3-4 平面向量共线的坐标表示2-4-1 平面向量数量积的物理背景及其含义2-4-2 平面向量数量积的坐标表示、模、夹角2-5 平面向量应用举例第二章综合检测题3-1-1 两角差的余弦公式3-1-2-1 两角和与差的正弦、余弦3-1-2-2 两角和与差的正切3-1-3 二倍角的正弦、余弦、正切公式3-2-1 三角恒等变换3-2-2 三角恒等式的应用第三章综合检测题高中数学必修四综合能力测试能力提升一、选择题1.给出下列四个命题,其中正确的命题有①-75°是第四象限角②225°是第三象限角③475°是第二象限角④-315°是第一象限角A.1个B.2个C.3个D.4个[答案] D[解析] 由终边相同角的概念知:①②③④都正确,故选D.2.如果角α与x+45°具有同一条终边,角β与x-45°具有同一条终边,则α与β的关系是A.α+β=0B.α-β=0C.α+β=k?360°k∈ZD.α-β=k?360°+90°k∈Z[答案] D[解析] ∵α=x+45°+k?360°k∈Z,β=x-45°+k?360°k∈Z,∴α-β=k?360°+90°k∈Z.3.山东潍坊模块达标已知α与120°角的终边关于x轴对称,则是A.第二或第四象限角B.第一或第三象限角C.第三或第四象限角D.第一或第四象限角[答案] A[解析] 由α与120°角的终边关于x轴对称,可得α=k?360°-120°,k∈Z,∴=k?180°-60°,k∈Z,取k=0,1可确定终边在第二或第四象限.4.若角θ是第四象限角,则90°+θ是A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析] 如图所示,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.5.下列说法中,正确的是A.第二象限的角是钝角B.第二象限的角必大于第一象限的角C.-150°是第二象限角D.-252°16′,467°44′,1187°44′是终边相同的角[答案] D[解析] 第二象限的角中,除包含钝角以外,还包含与钝角相差k?360°k∈Z的角,如460°是第二象限的角但不是钝角,故选项A 错;460°是第二象限的角,730°是第一象限角,显然460°小于730°,故选项B错;选项C中-150°应为第三象限角,故选项C错;选项D中三个角相差360°的整数倍,则它们的终边相同.6.集合A=α|α=k?90°-36°,k∈Z,B=β|-180°β180°,则A∩B等于A.-36°,54°B.-126°,144°C.-126°,-36°,54°,144°D.-126°,54°[答案] C[解析] 当k=-1时,α=-126°∈B;当k=0时,α=-36°∈B;当k=1时,α=54°∈B;当k=2时,α=144°∈B.二、填空题7.2011~2012?黑龙江五校联考与-2013°终边相同的最小正角是________.[答案] 147°8.2011~2012?镇江高一检测将分针拨快10分钟,则分针所转过的度数为________.[答案] -60°9.已知角β的终边在图中阴影所表示的范围内不包括边界,那么β∈________.[答案] α|n?180°+30°αn?180°+150°,n∈Z[解析] 在0°~360°范围内,终边落在阴影内的角α的取值范围为30°α150°与210°α330°,所以所有满足题意的角α的集合为α|k?360°+30°αk?360°+150°,k∈Z∪α|k?360°+210°αk?360°+330°,k∈Z=α|2k?180°+30°α2k?180°+150°,k∈Z∪α|2k+1180°+30°α2k+1180°+150°,k∈Z=α|n?180°+30°αn?180°+150°,n∈Z.三、解答题10.如图,分别写出适合下列条件的角的集合:1终边落在射线OM上;2终边落在直线OM上;3终边落在阴影区域内含边界.[解析] 1终边落在射线OM上的角的集合为A=α|α=45°+k?360°,k∈Z.2终边落在射线OM反向延长线上的角的集合为B=α|α=225°+k?360°,k∈Z,则终边落在直线OM上的角的集合为A∪B=α|α=45°+k?360°,k∈Z∪α|α=225°+k?360°,k ∈Z=α|α=45°+2k?180°,k∈Z∪α|α=45°+2k+1?180°,k∈Z=α|α=45°+n?180°,n∈Z.3同理,得终边落在直线ON上的角的集合为β|β=60°+n?180°,n∈Z,故终边落在阴影区域内含边界的角的集合为α|45°+n?180°≤α≤60°+n?180°,n∈Z.11.如图,已知直线l1:y=x及直线l2:y=-x,请表示出终边落在直线l1或l2上的角.[解析] 由题意知,终边落在直线l1上的角的集合为M1=α|α=30°+k1?360°,k1∈Z∪α|α=210°+k2?360°,k2∈Z=α|α=30°+k?180°,k∈Z;终边落在直线l2上的角的集合为M2=α|α=120°+k1?360°,k1∈Z∪α|α=300°+k2?360°,k2∈Z=α|α=120°+k?180°,k∈Z.所以终边落在直线l1或l2上的角的集合为M=M1∪M2=α|α=30°+k?180°,k∈Z∪α|α=120°+k?180°,k∈Z=α|α=30°+2k?90°,k∈Z∪α|α=30°+2k+1?90°,k∈Z=α|α=30°+n?90°,n∈Z.12.在角的集合α|α=k?90°+45°,k∈Z中,1有几种终边不相同的角?2若-360°α360°,则α共有多少个?[解析] 1在给定的角的集合中,终边不相同的角共有四种,分别是与45°,135°,-135°,-45°终边相同的角.2令-360°k?90°+45°360°,得-k.又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3.∴满足条件的角共有8个.能力提升一、选择题1.α=-,则角α的终边在A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] α=-π=-π×°=-120°,则α的终边在第三象限.2.山东济南一中12-13期中已知α=-3,则角α的终边所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] 由-π-3-知-3是第三象限角.3.下列各对角中,终边相同的是A.和2kπ-k∈ZB.-和C.-和D.π和[答案] C[解析] ∵--=-2π,∴选C.4.圆的半径是6 cm,则圆心角为15°的扇形面积是A.cm2B.cm2C.πcm2D.3πcm2[答案] B[解析] ∵15°=,∴l=×6=cm,∴S=lr=××6=cm2.5.2013山东潍坊高一期末若2弧度的圆心角所对的弧长为4 cm,则这个圆心角所夹的扇形的面积是A.4 cm2B.2 cm2C.4π cm2D.2π cm2[答案] A6.在半径为2cm的圆中,若有一条弧长为cm,则它所对的圆心角为A BC D.[答案] A[解析] 设圆心角为θ,则θ==.二、填空题7.广东高考改编如图所示,点A、B、C是圆O上的点,且AB=4,∠ACB=,则劣弧的长为________.[答案][解析] 连接AO,OB,因为∠ACB=,所以∠AOB=。
新人教A版高中数学必修四全册同步课时练习(附答案)
新人教A 版高中数学必修四全册课时练习任意角(建议用时:45分钟)[基础达标练]一、选择题1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [-870°=-3×360°+210°,∴-870°是第三象限角,故选C .] 2.在-360°~0°范围内与角1 250°终边相同的角是( ) A .170° B .190° C .-190°D .-170°C [与1 250°角的终边相同的角为α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136<k <-12536,因为k ∈Z ,所以k =-4,所以α=-190°.]3.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360°D .315°-5×360°D [∵1 485°÷360°=4.125,∴-1 485°=-4×360°-45°或写成-1 485°=-5×360°+315°.∵0°≤α<360°,故-1 485°=315°-5×360°.] 4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.] 5.已知角α=45°,β=315°,则角α与β的终边( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称A [α是第一象限角,β是第四象限角且45°=0°+45°与360°+45°终边相同,315°=360°-45°.]二、填空题6.若时针走过2小时40分,则分针走过的角是________.-960° [40分=23小时,23×360°=240°,因为时针按顺时针旋转,故形成负角,-360°×2-240°=-960°.]7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是________.213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.]8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.k·360°+60°(k∈Z)[在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]三、解答题9.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出集合S中适合不等式-360°<β<720°的元素.[解](1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.[解](1)角α终边所在区域如图①所示.(2)角β终边所在区域如图②所示.图① 图②(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .[能力提升练]1.角α与角β的终边关于y 轴对称,则α与β的关系为( ) A .α+β=k ·360°,k ∈Z B .α+β=k ·360°+180°,k ∈Z C .α-β=k ·360°+180°,k ∈Z D .α-β=k ·360°,k ∈ZB [法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k ·360°+180°,k ∈Z .法二:(直接法)因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .]2.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.270° [由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k ·360°.又180°<α<360°,令k =3,得α=270°.]弧度制(建议用时:45分钟)[基础达标练]一、选择题1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关D [ 无论是角度制度量角还是弧度制度量角,都与圆的半径没有关系.] 2.29π6是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B [29π6=4π+5π6.∵56π是第二象限角,∴29π6是第二象限角.]3.在0到2π范围内,与角-4π3终边相同的角是( )A .π6B .π3C .2π3D .4π3C [与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C.]4.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈ZD .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+2k π,k ∈ZD [对于A ,终边在x 轴上角的集合是{α|}α=k π,k ∈Z ,故A 正确;对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确;对于C ,终边在x 轴上的角的集合为{α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z , 故合在一起即为{α|}α=k π,k ∈Z ∪⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确;对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确.]5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .2 C .4D .1或4C [因为扇形的弧长为4 cm ,面积为2 cm 2, 所以扇形的面积为12×4×r =2,解得r =1(cm),则扇形的圆心角的弧度数为41=4.故选C.]二、填空题6.把角-274π用角度制表示为________.-1 215° [-274π=-274×180°=-1 215°.]7.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为______________. π5,π3,7π15 [因为A +B +C =π, 又A ∶B ∶C =3∶5∶7,所以A =3π3+5+7=π5,B =5π3+5+7=π3,C =7π15.]8.圆的一段弧长等于该圆外切正三角形的外边,则这段弧所对圆心角的弧度数是________.2 3 [设圆的半径为r ,外切正三角形边长为a ,则32a ×13=r ,则r =36a ,又弧长为a ,所以圆心角为:ar=a36a =63=2 3.]三、解答题9.已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角. [解] (1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.∴在区间[-5π,0)上与α终边相同的角为-296π,-176π,-56π.10.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解] (1)由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎪⎫2π3-3.[能力提升练]1.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=π2+2k π(k ∈Z )D [∵α=2k 1π+x +π4,β=2k 2π+x -π4(k 1,k 2∈Z ),∴α-β=2(k 1-k 2)π+π2,也即α-β=π2+2k π(k ∈Z ).]2.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =________________.[-4,-π]∪[0,π] [如图所示,∴A ∩B =[-4,-π]∪[0,π].]任意角的三角函数(建议用时:60分钟)[基础达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.如果角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A .12 B .-12C .-32D .-33C [sin 30°=12,cos 30°=32,∴P 点坐标为(1,-3),r =12+(-3)2=2,∴sin α=-32.] 3.已知角α的终边在函数y =-|x |的图象上,则cos α的值为( ) A .22B .-22C .22或-22D .12C [由y =-|x |的图象知,α的终边落在第三、四象限的角平分线上,当α终边落在第三象限时,cos α=-22;当α终边落在第四象限时,cos α=22.] 4.θ是第二象限角,则下列选项中一定为正值的是( ) A .sin θ2B .cos θ2C .tan θ2D .cos 2θC [∵θ是第二象限角,则θ2一定是第一或第三象限角,这时tan θ2一定为正值,故选C.]5.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .⎝ ⎛⎭⎪⎫-12,32 B .⎝ ⎛⎭⎪⎫-32,-12 C .⎝ ⎛⎭⎪⎫-12,-32D .⎝⎛⎭⎪⎫-32,12 A [点(1,0)在x 轴正半轴,由题意可知,θ一定在α=2π3的终边上,∵OQ =1,∴Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3即⎝ ⎛⎭⎪⎫-12,32.] 二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β= .-1613[由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,所以sin α·tan β=1213×⎝ ⎛⎭⎪⎫-43=-1613.]7.点P (tan 2 018°,cos 2 018°)位于第 象限. 四 [因为2 018°=5×360°+218°, 所以2 018°与218°终边相同,是第三象限角, 所以tan 2 018°>0,cos 2 018°<0, 所以点P 位于第四象限.]8.已知角α的终边经过点P (x ,-6)且cos α=-45,则x = .-8 [因为|OP |=x 2+(-6)2=x 2+36, 所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[能力提升练]1.函数y =sin x +-cos x 的定义域是( ) A .(2k π,2k π+π),k ∈Z B .⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π,k ∈Z C .⎣⎢⎡⎦⎥⎤k π+π2,k π+π,k ∈Z D .[]2k π,2k π+π,k ∈ZB [由sin x ≥0,-cos x ≥0,得x 为第二象限角或y 轴正半轴上的角或x 轴负半轴上的角,所以2k π+π2≤x ≤2k π+π,k ∈Z .]2.若角α满足sin α·cos α<0,cos α-sin α<0,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限B [由sin α·cos α<0知α是第二或第四象限角,由cos α-sin α<0,得cos α<sin α,所以α是第二象限角.]3.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α= .35 [因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,r =(-3cos θ)2+(4cos θ)2=5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35.]4.函数y =|cos x |cos x +tan x|tan x |的值域为 .{-2,0,2} [已知函数的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z ,即角x 的终边不能落在坐标轴上,当x 是第一象限角时,cos x >0,tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合; (2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z .(2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.三角函数及其应用(建议用时:45分钟)[基础达标练]一、选择题1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在D [终边在y 轴上的角的正切线不存在,故A ,C 错,对任意角都能作正弦线、余弦线,故B 错,因此选D .]2.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( )A .1B .2C .3D .0C [π6和5π6的正弦线关于y 轴对称,长度相等;π3和4π3两角的正切线相同;π4和5π4的余弦线长度相等.故①②③都正确,故选C.]3.角α(0<α<2π)的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么α的值为( )A .π4B .3π4C .7π4D .3π4或7π4D [由已知得角α的终边应落在直线y =-x 上, 又0<α<2π,所以α=3π4或7π4.]4.cos 1,cos 2,cos 3的大小关系是( ) A .cos 1>cos 2>cos 3 B .cos 1>cos 3>cos 2 C .cos 3>cos 2>cos 1D .cos 2>cos 1>cos 3A [作出已知三个角的余弦线(如图),观察图形可知cos 1>0>cos 2>cos 3.] 5.使sin x ≤cos x 成立的x 的一个区间是( )A .⎣⎢⎡⎦⎥⎤-3π4,π4B .⎣⎢⎡⎦⎥⎤-π2,π2C .⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]A [如图,画出三角函数线sin x =MP ,cos x =OM ,由于sin ⎝ ⎛⎭⎪⎫-3π4=cos ⎝ ⎛⎭⎪⎫-3π4, sin π4=cos π4,为使sin x ≤cos x 成立,由图可得在[-π,π]范围内,-3π4≤x ≤π4.]二、填空题6.已知θ∈⎝ ⎛⎭⎪⎫π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为 .AT>MP>OM [如图:因为θ∈⎝ ⎛⎭⎪⎫π4,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .]7.利用三角函数线写出满足tan x <3且x ∈(0,2π)的x 的取值范围为 . ⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3 [由tanx <3得k π-π2<x <k π+π3(k ∈Z ),又∵x ∈(0,2π), ∴x 的取值范围为⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3.]8.函数y =2cos x -1的定义域为 .⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ) [因为2cos x -1≥0,所以cos x ≥12.如图:作出余弦值等于12的角:-π3和π3,在图中所示的阴影区域内的每一个角x ,其余弦值均大于或等于12,因而满足cos x ≥12的角的集合为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).所以函数定义域为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).]三、解答题9.已知-12≤sin θ<32,利用单位圆中的三角函数线,确定角θ的范围.[解] 画出三角函数线如图.由图可知角θ的范围是⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6≤θ<2k π+π3或2k π+2π3<α≤2k π+7π6,k ∈Z . 10.求下列函数的定义域: (1)f (x )=sin x ·tan x ; (2)f (x )=lg sin x +9-x 2. [解] (1)∵要使函数f (x )有意义,∴sin x ·tan x ≥0,∴sin x 与tan x 同号或sin x ·tan x =0, 故x 是第一、四象限的角或终边在x 轴上的角. ∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π-π2<x <2k π+π2或x =(2k +1)π,k ∈Z .(2)由题意,要使f (x )有意义,则⎩⎪⎨⎪⎧sin x >0,9-x 2≥0. 由sin x >0得2k π<x <2k π+π(k ∈Z ), ① 由9-x 2≥0得-3≤x ≤3,②由①②得:f (x )的定义域为{x |0<x ≤3}.[能力提升练]1.在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4B .⎝ ⎛⎭⎪⎫π4,πC .⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫5π4,3π2C [|sin x |>|cos x |可转化为x 的正弦线的长度大于余弦线的长度,观察图形可知:在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4.]2.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0. 因为|MP |<|OM |,即|a |<|b |, 所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.]同角三角函数的基本关系(建议用时:45分钟)[基础达标练]一、选择题1.已知α是第三象限角,且sin α=-13,则3cos α+4tan α=( )A .- 2B . 2C .- 3D . 3A [因为α是第三象限角,且sin α=-13,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223, 所以tan α=sin αcos α=122=24,所以3cos α+4tan α=-22+2=- 2.] 2.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A .14 B .12 C .1 D .32C [原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.]3.若α是三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形D [sin α+cos α=23得1+2sin αcos α=49,所以sin αcos α=-518<0,又因α∈(0,π),所以α为钝角,故三角形为钝角三角形.]4.⎝ ⎛⎭⎪⎫tan x +1tan x cos 2x 等于( ) A .tan x B .sin x C .cos x D .1tan xD [原式=⎝⎛⎭⎪⎫sin x cos x +cos x sin x ·cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x.]5.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( )A .23B .-23C .13D .-13B [因为sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,所以两边平方可得:1+2sin θcos θ=169,即sin θ·cos θ=718,所以(sin θ-cos θ)2=1-2sin θcos θ=1-79=29,又因为0<θ<π4,所以sin θ<cos θ,所以sin θ-cos θ<0,所以sin θ-cos θ=-23,故应选B .]二、填空题 6.化简11+tan 220°的结果是 .cos 20° [11+tan 220°=11+sin 220°cos 220°=1cos 220°+sin 220°cos 220°=11cos 220°=|cos 20°|=cos 20°.] 7.已知sin αcos α=12,则sin α-cos α= .0 [(sin α-cos α)2=1-2sin αcos α=1-2×12=0,∴sin α-cos α=0.]8.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α= . 1 [4sin 2α-3sin αcos α-5cos 2α =4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α =4tan 2α-3tan α-5tan 2α+1 =4×4-3×2-54+1=55=1.]三、解答题 9.化简下列各式: (1)sin α1+sin α-sin α1-sin α; (2)⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α).[解] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α.(2)原式=⎝⎛⎭⎪⎫1sin α+cos αsin α(1-cos α) =1+cos αsin α(1-cos α)=sin 2αsin α=sin α.10.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α. [解] (1)2cos 2α+3cos αsin α-3sin 2α =2cos 2α+3cos αsin α-3sin 2αsin 2α+cos 2α=2+3tan α-3tan 2αtan 2α+1=1, 即4tan 2α-3tan α-1=0, 解得tan α=-14或tan α=1.∵α∈⎝ ⎛⎭⎪⎫-3π2,-π,∴α为第二象限角, ∴tan α<0,∴tan α=-14.(2)原式=2tan α-34tan α-9=720.[能力提升练]1.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°B [1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.]2.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ= .±2 [sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=12,则(sin θ+cos θ)2=1+2sinθcos θ=2,所以sin θ+cos θ=± 2.]三角函数的诱导公式(1)(建议用时:45分钟)[基础达标练]一、选择题1.已知sin(π+θ)=45,则角θ的终边在( )A .第一或第二象限B .第二或第三象限C .第一或第四象限D .第三或第四象限D [sin(π+θ)=-sin θ=45,∴sin θ=-45<0,所以θ为第三或第四象限角.]2.sin 2(2π-α)+cos(π+α)cos(π-α)+1的值是( ) A .1 B .2 C .0 D .-1 B [原式=sin 2α+(-cos α)·(-cos α)+1 =sin 2α+cos 2α+1=1+1=2.]3.已知600°角的终边上有一点P (a ,-3),则a 的值为( ) A . 3 B .- 3 C.33 D .-33B [由题意得tan 600°=-3a,又因为tan 600°=tan(360°+240°) =tan 240°=tan(180°+60°) =tan 60°=3,所以-3a=3,所以a =- 3.]4.已知点(-4,3)是角α终边上的一点,则sin(π-α)=( ) A .35 B .-35 C .-45 D .45A [x =-4,y =3,∴r =(-4)2+32=5,∴sin(π-α)=sin α=y r =35.故选A.]5.已知sin ⎝ ⎛⎭⎪⎫α-π4=32,则sin ⎝ ⎛⎭⎪⎫5π4-α的值为( ) A .12 B .-12 C .32 D .-32 C [sin ⎝⎛⎭⎪⎫5π4-α=sin ⎝ ⎛⎭⎪⎫π+π4-α=-sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎝ ⎛⎭⎪⎫α-π4=32.]二、填空题6.若P (-4,3)是角α终边上一点,则cos (α-3π)·tan (α-2π)sin 2(π-α)的值为________. -53 [由条件可知sin α=35,cos α=-45,tan α=-34, ∴cos (α-3π)·tan (α-2π)sin 2(π-α)=-cos α·tan αsin 2α=-sin αsin 2α=-1sin α=-53.] 7.已知cos(508°-α)=1213,则cos(212°+α)=________.1213[由于cos(508°-α)=cos(360°+148°-α) =cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°) =cos(α-148°)=cos(148°-α)=1213.]8.已知sin(α+π)=45,且sin αcos α<0,则2sin (α-π)+3tan (3π-α)4cos (α-3π)=________.-73 [因为sin(α+π)=-sin α=45, 且sin αcos α<0,所以sin α=-45,cos α=35,tan α=-43,所以2sin (α-π)+3tan (3π-α)4cos (α-3π)=-2sin α-3tan α-4cos α=85+4-4×35=-73.] 三、解答题 9.化简下列各式:(1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π;(2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).[解] (1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π=-sin ⎝⎛⎭⎪⎫6π+π3cos ⎝ ⎛⎭⎪⎫π+π6=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°)+ cos(180°+60°)sin(180°+30°) =sin 60°cos 30°+cos 60°sin 30°=1.10.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[解] (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α.(2)∵sin(α-π)=-sin α=15,∴sin α=-15.又α是第三象限角,∴cos α=-265,∴f (α)=265.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫-6×2π+5π3=-cos 5π3=-cos π3=-12.[能力提升练]1.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .b >c >aD .c >a >bB [a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =-sin33π4=-sin π4=-22, ∴b >a >c .]2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.-2 [f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-11π6=sin ⎝⎛⎭⎪⎫-2π+π6=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝⎛⎭⎪⎫116-1-1=f ⎝ ⎛⎭⎪⎫56-1=f ⎝⎛⎭⎪⎫56-1-2 =f ⎝ ⎛⎭⎪⎫-16-2 =sin ⎝ ⎛⎭⎪⎫-π6-2=-sin π6-2=-12-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2.]三角函数的诱导公式(2)(建议用时:45分钟)[基础达标练]一、选择题1.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0, ∴θ为第二象限角.]2.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12B .12C .32D .-32A [∵sin(3π+α)=-sin α=-12,∴sin α=12.∴cos ⎝⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫3π2-α=-cos ⎝ ⎛⎭⎪⎫π2-α =-sin α=-12.]3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α等于( ) A .-13 B .13 C .223 D .-223A [cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫α-π4+π2=-sin ⎝⎛⎭⎪⎫α-π4=-13.故选A.]4.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( )A .-2a 3B .-3a 2C .2a 3D .3a2B [由sin(180°+α)+cos(90°+α)=-a , 得-sin α-sin α=-a ,即sin α=a2,cos(270°-α)+2sin(360°-α) =-sin α-2sin α=-3sin α=-32a .]5.化简:sin (θ-5π)cos ⎝ ⎛⎭⎪⎫-π2-θcos (8π-θ)sin ⎝⎛⎭⎪⎫θ-3π2sin (-θ-4π)=( )A .-sin θB .sin θC .cos θD .-cos θA [原式=sin (θ-π)cos ⎝ ⎛⎭⎪⎫π2+θcos (-θ)cos θsin (-θ)=(-sin θ)(-sin θ)cos θcos θ(-sin θ)=-sin θ.]二、填空题6.(2019·天一大联考)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝ ⎛⎭⎪⎫α-2 019π2=________. 35 [∵角α的终边经过点P (3,4),∴sin α=45,cos α=35,∴sin ⎝ ⎛⎭⎪⎫α-2 019π2=sin ⎝ ⎛⎭⎪⎫π2-α=cos α=35.]7.化简sin(π+α)cos ⎝⎛⎭⎪⎫3π2+α+sin ⎝ ⎛⎭⎪⎫π2+αcos(π+α)=________.-1 [原式=(-sin α)·sin α+cos α·(-cos α) =-sin 2α-cos 2α=-1.]8.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,则f ⎝ ⎛⎭⎪⎫θ-5π12=________.-425 [由f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12得f ⎝⎛⎭⎪⎫θ-5π12=2cos ⎝ ⎛⎭⎪⎫θ-5π12-π12=2cos ⎝⎛⎭⎪⎫θ-π2=2sin θ.又∵cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,∴sin θ=-45,故f ⎝ ⎛⎭⎪⎫θ-5π12=-425.]三、解答题9.已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求sin ⎝ ⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α)的值.[解] (1)因为点P ⎝ ⎛⎭⎪⎫45,-35,所以|OP |=1,sin α=-35.(2)sin ⎝⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α) =cos αtan α-sin α(-cos α)=1cos α,由三角函数定义知cos α=45,故所求式子的值为54.10.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2θ=tan (9π+θ)+1tan (π+θ)-1. [证明] 左边=-2cos θ·sin θ-1sin 2θ+cos 2θ-2sin 2θ =-(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ) =sin θ+cos θsin θ-cos θ,右边=tan ·(8π+π+θ)+1tan (π+θ)-1=tan (π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θcos θ+1sin θcos θ-1=sin θ+cos θsin θ-cos θ, 所以左边=右边, 所以等式成立.[能力提升练]1.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89 B .90 C .892D .45C [原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892.]2.已知f (α)=cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-αcos (-π-α)tan (π-α),则f ⎝ ⎛⎭⎪⎫-26π3的值为________.-12 [f (α)=(-sin α)·(-cos α)(-cos α)·(-tan α)=sin αcos αsin α=cos α,所以f ⎝ ⎛⎭⎪⎫-26π3=cos ⎝ ⎛⎭⎪⎫-263π=cos 263π=cos ⎝ ⎛⎭⎪⎫9π-π3=-cos π3=-12.]正弦函数余弦函数的图像(建议用时:60分钟)[基础达标练]一、选择题1.用“五点法”作y =sin 2x 的图象时,首先描出的五个点的横坐标是( ) A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π3B [令2x =0,π2,π,3π2,2π可得x =0,π4,π2,3π4,π,故选B.]2.若点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 C [当x =π2时,y =sin π2=1,故-m =1,m =-1.]3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则f (x )的图象( )A .与g (x )的图象相同B .与g (x )的图象关于y 轴对称C .向左平移π2个单位,得g (x )的图象D .向右平移π2个单位,得g (x )的图象D [f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sin x , f (x )图象向右平移π2个单位得到g (x )图象.]4.如图是下列哪个函数的图象( )A .y =1+sin x ,x ∈[0,2π]B .y =1+2sin x ,x ∈[0,2π]C .y =1-sin x ,x ∈[0,2π]D .y =1-2sin x ,x ∈[0,2π]C [根据图象上特殊点进行验证,可知C 正确.]5.将余弦函数y =cos x 的图象向右至少平移m 个单位,可以得到函数y =-sin x 的图象,则m =( )A .π2B .πC .3π2D .3π4C [根据诱导公式得,y =-sin x =cos ⎝⎛⎭⎪⎫3π2-x =cos ⎝ ⎛⎭⎪⎫x -3π2,故欲得到y =-sin x的图象,需将y =cos x 的图象向右至少平移3π2个单位长度.]二、填空题6.用“五点法”作函数y =1-cos x ,x ∈[0,2π]的图象时,应取的五个关键点分别是______________.(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0) [x 依次取0,π2,π,3π2,2π得五个关键点(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0).]7.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32的交点个数是________.2 [在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.]8.函数y =lg(2-2cos x )的定义域是________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z [由2-2cos x >0得cos x <22,作出y =cos x 的图象和直线y =22,由图象可知cos x <22的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z .] 三、解答题9.用“五点法”画出y =-2cos x +3(0≤x ≤2π)的简图. [解] 列表:10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形(如图),求这个封闭图形的面积.[解] 观察图形可知:图形S 1与S 2,S 3与S 4都是两个对称图形,有S 1=S 2,S 3=S 4. 因此函数y =2cos x 的图象与直线y =2所围成的图形面积,可以等价转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π, ∴S 矩形OABC =2×2π=4π, ∴所求封闭图形的面积为4π.[能力提升练]1.若sin θ=1-log 2x ,则实数x 的取值范围是( )A .[1,4]B .⎣⎢⎡⎦⎥⎤14,1C .[2,4]D .⎣⎢⎡⎦⎥⎤14,4A [由sin θ∈[-1,1]得-1≤1-log 2x ≤1,解得0≤log 2x ≤2,即1≤x ≤4.]2.方程sin x =x10的根的个数是( )A .7B .8C .9D .10A [在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.]3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.⎝⎛⎭⎪⎫π4,5π4 [在同一坐标系中画出y =sin x ,x ∈(0,2π)与y =cos x ,x ∈(0,2π)的图象如图所示,由图象可观察出当x ∈⎝ ⎛⎭⎪⎫π4,5π4时,sin x >cos x .]4.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4 [由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0, 当x ∈[0,2π]时,x =π2或3π2,∴交点为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4.]5.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.[解] f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).正弦余弦函数的周期性与奇偶性(建议用时:60分钟)[基础达标练]一、选择题1.函数f (x )=x +sin x ,x ∈R ( ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数,又是偶函数 D .既不是奇函数,又不是偶函数A [函数y =x 为奇函数且y =sin x 也是奇函数,故f (x )=x +sin x ,x ∈R 是奇函数.] 2.下列函数中最小正周期为π的偶函数是( ) A .y =sin x2B .y =cos x2C .y =cos xD .y =cos 2xD [A 中函数是奇函数,B 、C 中函数的周期不是π,只有D 符合题目要求.] 3.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20 B [由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.]4.函数y =-x cos x 的部分图象是下图中的( )A B C DD [y =cos x 为偶函数,y =x 为奇函数,∴y =-x cos x 为奇函数,排除A 、C ,又x ∈⎝⎛⎭⎪⎫0,π2时cos x >0,x >0,∴y <0,故排除B ,选D.]5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .2B [由已知得f (x +π)=f (x ),f (-x )=-f (x ), 所以f ⎝⎛⎭⎪⎫3π4=f ⎝ ⎛⎭⎪⎫3π4-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1.]二、填空题6.关于x 的函数f (x )=sin(x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数; ③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数. 其中错误的是________(填序号).①④ [φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数.]7.若函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________.6 [T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.]8.函数y =sin x 的图象关于原点对称,观察正弦曲线的形状,结合正弦函数的周期性可知,正弦曲线的对称中心为________.(k π,0)(k ∈Z ) [∵y =sin x 是奇函数,∴(0,0)是其对称中心,又正弦函数的周期为2k π,结合正弦曲线可知,对称中心为(k π,0)(k ∈Z ).]三、解答题9.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期. [解] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π.[能力提升练]1.函数f (x )=sin x1+cos x 的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数A [首先1+cos x ≠0,即x ≠2k π+π(k ∈Z ),定义域关于原点对称,又y =sin x 是奇函数,y =1+cos x 是偶函数,所以f (x )=sin x1+cos x是奇函数.]2.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 018)=( )A .32 B .-32C .0D . 3 D [∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 018)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018) =336⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)=336×0+f (1)+f (2)=sin π3+sin 23π= 3.]3.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是________.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 [∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cosx 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.]4.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x≤π,则f ⎝⎛⎭⎪⎫-15π4的值等于________.22 [因为函数f (x )的周期为3π2,∴f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-154π+3π2×3=f ⎝ ⎛⎭⎪⎫3π4,又∵3π4∈(0,π],∴f ⎝ ⎛⎭⎪⎫-154π=sin 3π4=22.]5.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.[解] 当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时, g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3. 因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6. 又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π-π2或x =k π-π6,k ∈Z .正弦余弦函数的单调性与最值(建议用时:60分钟)[基础达标练]一、选择题1.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2A [对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函。
高中人教A版数学必修4(课时习题与单元测试卷):第三章 章末检测 含解析
第三章章末检测班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.sin68°sin67°-sin23°cos68°的值为( )A .-22 B.22C.32D .1 答案:B解析:原式=sin68°cos23°-cos68°sin23°=sin(68°-23°)=sin45°=22.2.已知sin α=23,则cos(π-2α)等于( )A .-53B .-19C.19D.53 答案:B解析:cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.3.已知M =⎩⎨⎧⎭⎬⎫x ⎪⎪ sin x =12,N =⎩⎨⎧⎭⎬⎫x ⎪⎪cos2x =12,则( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅ 答案:B解析:由cos2x =1-2sin 2x =12,得sin x =±12,故选B.4.已知sin θ2=-45,cos θ2=35,则角θ终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:C解析:∵sin θ=2sin θ2cos θ2=-2425<0,cos θ=cos 2θ2-sin 2θ2=-725<0,∴θ终边在第三象限.5.函数f (x )=lg (sin 2x -cos 2x )的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π-3π4<x <2k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4<x <2k π+5π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4<x <k π+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4<x <k π+3π4,k ∈Z 答案:D解析:∵f (x )=lg (sin 2x -cos 2x )=lg (-cos2x ),∴-cos2x >0,∴cos2x <0,∴2k π+π2<2x <2k π+3π2,k ∈Z ,∴k π+π4<x <k π+3π4,k ∈Z . 6.若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B .(0,0) C.⎝⎛⎭⎫-18,0 D.⎝⎛⎭⎫18,0 答案:C解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎫2πx +π4.将x =-18代入得函数值为0. 7.tan20°+tan40°+3(tan20°+tan40°)等于( )A.33B .1 C. 3 D. 6 答案:C解析:tan60°=tan20°+tan40°1-tan20°·tan40°,∴3-3tan20°tan40°=tan20°+tan40°, ∴tan20°+tan40°+3tan20°tan40°= 3.8.关于x 的方程sin x +3cos x -a =0有实数解,则实数a 的范围是( )A .[-2,2]B .(-2,2)C .(-2,0)D .(0,2) 答案:A解析:sin x +3cos x -a =0,∴a =sin x +3cos x=2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3,-1≤sin ⎝⎛⎭⎫x +π3≤1,∴-2≤a ≤2. 9.若α,β为锐角,sin α=2 55,sin(α+β)=35,则cos β等于( )A.2 55B.2 525C.2 55或2 525 D .-2 525答案:B解析:cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α,∵α为锐角cos α=1-2025=55, ∴sin(α+β)=35<sin α,∴α+β>π2.∴cos(α+β)=- 1-925=-45,∴cos β=-45×55+2 55×35=2 525.10.函数y =sin x 2+3cos x2的图象的一条对称轴方程为( )A .x =113πB .x =53πC .x =-53πD .x =-π3答案:C解析:y =sin x 2+3cos x2=2sin ⎝⎛⎭⎫x 2+π3, 又f ⎝⎛⎭⎫-53π=2sin ⎝⎛⎭⎫-56π+π3 =2sin ⎝⎛⎭⎫-π2=-2, ∴x =-53π为函数的一条对称轴.11.已知θ为第三象限角,若sin 4θ+cos 4θ=59,则sin2θ等于( )A.2 23 B .-2 23C.23 D .-23 答案:A解析:由sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,知sin 2θcos 2θ=29,又θ为第三象限角,∴sin θ·cos θ=23,sin2θ=2 23. 12.设动直线x =a 与函数f (x )=2sin 2⎝⎛⎭⎫π4+x 和g (x )=3cos2x 的图象分别交于M ,N 两点,则|MN |的最大值为( ) A. 2 B. 3 C .2 D .3 答案:D解析:f (x )=1-cos ⎝⎛⎭⎫π2+2x =1+sin2x .|MN |=|f (a )-g (a )|=|1+sin2a -3cos2a |=|2sin ⎝⎛⎭⎫2a -π3+1|≤3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.cos π5cos 25π的值是________.答案:14解析:原式=12sin π5·2sin π5cos π5·cos 2π5=14sin π5·2sin 2π5cos 25π=14sinπ5sin 45π=14.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 答案:-142解析:∵sin 2α+cos 2α=1,sin α=12+cos α,∴⎝⎛⎭⎫12+cos α2+cos 2α=1,∴2cos 2α+cos α-34=0, ∴cos α=-1±74,∵α∈⎝⎛⎭⎫0,π2,∴cos α>0,∴cos α=7-14,∴sin α=12+cos α=7+14,∴cos2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-2⎝ ⎛⎭⎪⎫7+14+7-14=-142. 15.已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,则cos(α-β)的值为________. 答案:2327解析:∵cos α=13,α∈⎝⎛⎭⎫0,π2, ∴sin α=2 23,∴sin2α=4 29,cos2α=-79.又cos(α+β)=-13,α+β∈(0,π),∴sin(α+β)=2 23.∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=⎝⎛⎭⎫-79×⎝⎛⎭⎫-13+4 29×2 23=2327. 16.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 答案:- 3解析:∵f (x )是奇函数,∴f (0)=0,∴3cos(-θ)-sin(-θ)=0,∴3cos θ+sin θ=0,∴tan θ=- 3.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知sin α+cos αsin α-cos α=3,tan(α-β)=2,求tan(β-2α)的值.解:∵sin α+cos αsin α-cos α=tan α+1tan α-1=3,∴tan α=2,∵tan(α-β)=2,∴tan(β-α)=-2,∴tan(β-2α)=tan[(β-α)-α]=tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.18.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=2 55,求cos(α-β)的值.解:∵a =(cos α,sin α),b =(cos β,sin β), ∴a -b =(cos α-cos β,sin α-sin β), ∴|a -b |=(cos α-cos β)2+(sin α-sin β)2=2-2cos (α-β)=2 55,∴cos(α-β)=35.19.(12分)已知函数f (x )=-2 3sin 2x +sin2x + 3.(1)求函数f (x )的最小正周期和最小值;(2)在给出的直角坐标系中,画出函数y =f (x )在区间[0,π]上的图象. 解:(1)f (x )=3(1-2sin 2x )+sin2x=sin2x +3cos2x =2sin ⎝⎛⎭⎫2x +π3, 所以f (x )的最小正周期T =2π2=π,最小值为-2.(2)列表:x 0 π12 π3 7π12 5π6π 2x +π3 π3 π2 π 3π2 2π 7π3f (x ) 3 2 0 -2 0 320.(12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎫0,π2. (1)求sin θ和cos θ的值;(2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值.解:(1)∵a ⊥b ,∴sin θ×1+(-2)×cos θ=0⇒sin θ=2cos θ.∵sin 2θ+cos 2θ=1,∴4cos 2θ+cos 2θ=1⇒cos 2θ=15.∵θ∈⎝⎛⎭⎫0,π2,∴cos θ=55,sin θ=2 55. (2)解法一:由sin(θ-φ)=1010得,sin θcos φ-cos θsin φ=1010⇒sin φ=2cos φ-22,∴sin 2φ+cos 2φ=5cos 2φ-2 2cos φ+12=1⇒5cos 2φ-2 2cos φ-12=0.解得cos φ=22或cos φ=-210,∵0<φ<π2,∴cos φ=22.解法二:∵0<θ,φ<π2,∴-π2<θ-φ<π2.所以cos(θ-φ)=1-sin 2(θ-φ)=31010. 故cos φ=cos[(θ-(θ-φ)]=cos θcos(θ-φ)+sin θsin(θ-φ)=55×3 1010+2 55×1010=22. 21.(12分)已知函数f (x )=2sin x +2cos(x -π). (1)求函数f (x )的最小正周期和值域;(2)若函数f (x )的图象过点⎝⎛⎭⎫α,65,π4<α<3π4,求f ⎝⎛⎭⎫π4+α的值. 解:(1)由题意得,f (x )=2sin x +2cos(x -π)=2sin x -2cos x =2sin ⎝⎛⎭⎫x -π4,因为-1≤sin ⎝⎛⎭⎫x -π4≤1,所以函数f (x )的值域为[-2,2],函数f (x )的周期为2π. (2)因为函数f (x )过点⎝⎛⎭⎫α,65, 所以f (α)=65⇒2sin ⎝⎛⎭⎫α-π4=65⇒ sin ⎝⎛⎭⎫α-π4=35,因为π4<α<3π4, 所以0<α-π4<π2⇒cos ⎝⎛⎭⎫α-π4>0⇒cos ⎝⎛⎭⎫α-π4=1-sin 2⎝⎛⎭⎫α-π4=45, 所以f ⎝⎛⎭⎫π4+α=2sin α=2sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =2sin ⎝⎛⎭⎫α-π4cos π4+2cos ⎝⎛⎭⎫α-π4sin π4⇒f ⎝⎛⎭⎫π4+α=725.22.(12分)在△ABC 中,f (B )=4cos B ·sin 2⎝⎛⎭⎫π4+B 2+3cos2B -2cos B . (1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解:(1)f (B )=4cos B ·1-cos ⎝⎛⎭⎫π2+B 2+3cos2B -2cos B =2cos B (1+sin B )+3cos2B -2cos B=sin2B +3cos2B =2sin ⎝⎛⎭⎫2B +π3. ∵f (B )=2,∴2sin ⎝⎛⎭⎫2B +π3=2. ∵B 是△ABC 的内角,∴2B +π3=π2,则B =π12.(2)若f (B )-m >2恒成立,即2sin ⎝⎛⎭⎫2B +π3>2+m 恒成立. ∵0<B <π,∴π3<2B +π3<73π,∴2sin ⎝⎛⎭⎫2B +π3∈[-2,2], ∴2+m <-2,即m <-4.。
2019秋人教A版高中数学必修4(课件+课时分层作业):2 (4)
所以当| |最小时值最小,此时| |为圆心到直线AB的
距离,由O于C∠AOB=120°,所以圆心OC到直线的距离为1·
sin 30°= ,故最小值为 -1=- .
1
1
3
2
4
4
2.设非零向量a和b,它们的夹角为θ . (1)若|a|=5,|b|=4,θ=150°,求a在b方向上的投 影和a与b的数量积. (2)若a·b=9,|a|=6,|b|=3,求b在a方向上的投影和 a与b的夹角θ .
(3)一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2, (a+b)·(a-b)=a2-b2等.
【跟踪训练】
1.(2019·厦门高一检测)已知向量a,b满足|a|=1,|b|=
2,且a在b方向上的投影与b在a方向上的投影相等,则
|a-b|等于 ( )
A.1
B.
C.
D.3
3
5
【解析】选C.因为a在b方向上的投影与b在a方向上的 投影相等,所以 a b a b ,又因为|a|=1,|b|=2,所以 a·b=0,所以a,b垂b 直,a所以|a-b|=
(3)力F在位移s方向上的分力大小是多少? 提示:由图知力F在位移s方向上的分力是|F|cos θ . (4)力和位移均可看作是数学上的向量,那么可否把 “功”看作是向量间的新运算呢? 提示:可把“功”看作向量的数量积运算.
结论:数量积的定义及其几何意义
定义 投影
已知两个非零向量a和b,它们的夹角 为θ ,把|a||b|cos θ 叫做a与b的数 量积(或内积),记作a·b,即a·b= _____________. _|_a_|_|_b_|_c_o_s_(θ|b|cos θ )叫做向量a在b 方|a向|c上os(向θ 量b在a方向上)的投影
2019秋人教A版高中数学必修4(课件+课时分层作业):2 (1)
所以水O流A 速度tan大30小 为5 3 kmO/Ch,船s实in际30速 度为10 km/h.
3
【知识思维导图】
EG+C=G0+. DA+EB=EG+GD+DA+AE=ED+DA+AE= uur uur EA+AE
【方法总结】向量运算中化简的两种方法 (1)代数法:借助向量加法的交换律和结合律,将向量转 化为“首尾相接”,向量的和即为第一个向量的起点指 向最后一个向量终点的向量. (2)几何法:通过作图,根据“三角形法则”或“平行四 边形法则”化简.
|
uur uur AB+BC
|
=______.
【解析】因为 uur uur uuur ,且AC=
AB+BC=AC
所以 uur uur
.
| AB+BC |= 13
答案:
, AB2 BC2= 13
13
主题2 向量加法的运算律 实数的加法运算律有哪些?向量的加法是否也有相似的 运算律? 提示:实数加法的运算律有:交换律与结合律,向量的加 法也有类似的运算律.
2.应用平行四边形法则求向量和的基本步骤 (1)平移两个不共线的向量使之共起点. (2)以这两个已知向量为邻边作平行四边形. (3)在平行四边形中,与两向量共起点的对角线表示的 向量为两个向量的和.
【跟踪训练】
一艘军舰从基地A出发向东航行了200海里到达基地B,
然后改变航线向北偏东30°航行了400海里到达C岛,最
【对点训练】
1. uuur uur uur 等于 ( )
AO+BC+OB
A.uur
B.uuur
C.0
D. uuur
【A解B析】选B. AC
AO
.
uuur uur uur uuur uur uur uur uur uuur
2019-2020学年高中数学人教A版必修4同步作业与测评:第三章 单元质量测评 Word版含解析
第三章 单元质量测评对应学生用书P97 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2sin 275°-1的值是( ) A .12 B .-12 C .32 D .-32 答案 C解析 2sin 275°-1=2cos 215°-1=cos30°=32.2.函数f (x )=2sin ωx cos φ+2cos ωx sin φω>0,-π2<φ<π2的部分图象如图所示,则φ的值是( )A .-π3B .-π6C .π6D .π3 答案 A解析 f (x )=2sin ωx cos φ+2cos ωx sin φ=2sin(ωx +φ).由图象,得34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,所以ω=2.因为图象过点⎝ ⎛⎭⎪⎫5π12,2,且-π2<φ<π2,所以2×5π12+φ=π2,所以φ=-π3,故选A .3.设a =12cos6°-32sin6°,b =2tan13°1-tan 213°,c =1-cos50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 ∵a =sin30°cos6°-cos30°sin6°=sin(30°-6°)=sin24°,b =tan(2×13°)=tan26°,c =sin 50°2=sin25°,∴a <c <b .4.2cos10°-sin20°cos20°的值为( )A . 3B .62C .1D .12 答案 A解析 原式=2cos (30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20°cos20°=3cos20°cos20°=3.5.已知θ是锐角,那么下列各值中,sin θ+cos θ能取得的值是( ) A .43 B .34 C .53 D .12 答案 A解析 ∵0<θ<π2,∴θ+π4∈π4,3π4, 又sin θ+cos θ=2sin θ+π4, 所以22<sin θ+π4≤1, 所以1<sin θ+cos θ≤2.6.函数y =sin2x +π3·cos x -π6+cos2x +π3·sin π6-x 的图象的一条对称轴方程是( )A .x =π4B .x =π2C .x =πD .x =3π2 答案 C解析 y =sin ⎣⎢⎡⎦⎥⎤2x +π3-x -π6=sin π2+x =cos x ,当x =π时,y =-1.故x =π是图象的一条对称轴方程.7.sin163°sin223°+sin253°sin313°等于( ) A .-12 B .12 C .-32 D .32 答案 B解析 sin163°sin223°+sin253°sin313°=sin163°sin223°+sin(90°+163°)sin(90°+223°) =sin163°sin223°+cos163°cos223° =cos(223°-163°) =cos60°=12.8.函数f (x )=3sin2x -cos2x 的图象可以由函数g (x )=4sin x cos x 的图象________得到.( )A .向右移动π12个单位B .向左移动π12个单位 C .向右移动π6个单位 D .向左移动π6个单位 答案 A解析 ∵g (x )=4sin x cos x =2sin2x ,f (x )=3sin2x -cos2x =2sin2x -π6=2sin2x -π12,∴f (x )可以由g (x )向右移动π12个单位得到.9.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于( ) A .22 B .12 C .0 D .-1 答案 C解析 a =(1,cos θ),b =(-1,2cos θ). ∵a ⊥b ,∴a ·b =-1+2cos 2θ=0, ∴cos2θ=2cos 2θ-1=0.10.设函数f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-4,则a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin2x +a =1+cos2x +3sin2x +a =2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.当x ∈0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴f (x )min=2×⎝ ⎛⎭⎪⎫-12+a +1=-4.∴a =-4.故选C .11.已知1-cos x +sin x1+cos x +sin x=-2,则sin x 的值为( )A .45B .-45C .-35D .-155 答案 B 解析 原式=(1-cos x )+sin x(1+cos x )+sin x=2sin 2x 2+2sin x 2cos x 22cos 2x 2+2sin x 2cos x 2=tan x2=-2,∴sin x =2sin x 2cos x 2sin 2x 2+cos 2x 2=2tan x 21+tan2x 2=2×(-2)1+4=-45,故选B . 12.已知方程x 2+4ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则tanα+β2的值是( ) A .12 B .-2 C .43 D .12或-2 答案 B解析 由题意知:⎩⎨⎧tan α+tan β=-4a ,tan α·tan β=3a +1,∴tan(α+β)=tan α+tan β1-tan αtan β=-4a 1-3a -1=43,tan(α+β)=2tan α+β21-tan 2α+β2=43,∴tan α+β2=12或tan α+β2=-2. 由a >1,可得 tan α+tan β=-4a <0, tan α·tan β=3a +1>0, ∴tan α<0,tan β<0, 结合α,β∈⎝ ⎛⎭⎪⎫-π2,π2,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0,α+β2∈⎝ ⎛⎭⎪⎫-π2,0,∴tan α+β2<0,故tan α+β2=-2,故选B .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 因为向量a ∥b ,所以sin2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.14.若(tan α-1)(tan β-1)=2,则α+β=________. 答案 k π-π4,k ∈Z解析 (tan α-1)(tan β-1)=2⇒tan αtan β-tan α-tan β+1=2⇒tan α+tan β=tan αtan β-1⇒tan α+tan β1-tan αtan β=-1.即tan(α+β)=-1,∴α+β=k π-π4,k ∈Z .15.已知sin ⎝ ⎛⎭⎪⎫x +π6=33,则sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2π3-x =________.答案2+33解析 sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2⎝ ⎛⎭⎪⎫π3-x =sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫5π6-x +cos 2⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π3-x =sin ⎝ ⎛⎭⎪⎫x +π6+1-sin 2⎝ ⎛⎭⎪⎫x +π6=33+1-13=2+33.16.关于函数f (x )=cos2x -23sin x cos x ,下列命题: ①存在x 1,x 2,当x 1-x 2=π时,f (x 1)=f (x 2)成立; ②f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上是单调递增;③函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形;④将函数f (x )的图象向左平移5π12个单位长度后将与y =2sin2x 的图象重合.其中正确命题的序号是________(注:把你认为正确命题的序号都填上).答案 ①③解析 ∵f (x )=2sin ⎝ ⎛⎭⎪⎫π6-2x =2sin ⎝ ⎛⎭⎪⎫2x +5π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +5π12,∴周期T =π,故①正确;∵π2≤2x +5π6≤3π2,解之得x ∈⎣⎢⎡⎦⎥⎤-π6,π3,是其递减区间,故②错误;∵对称中心的横坐标满足2x +5π6=k π⇒x =k π2-5π12,当k =1时,x =π12,故③正确;④中应该是向右平移,故④不正确.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知cos α-sin α=325,且π<α<3π2,求sin2α+2sin 2α1-tan α的值.解 因为cos α-sin α=325,所以1-2sin αcos α=1825.所以2sin αcos α=725.又α∈π,3π2,故sin α+cos α=-1+2sin αcos α=-425. 所以sin2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×-425325=-2875.18.(本小题满分12分)已知向量a =cos x ,-12,b =(3sin x ,cos2x ),x ∈R ,设函数f (x )=a ·b .(1)求f(x)的最小正周期;(2)求f(x)在0,π2上的最大值和最小值.解f(x)=cos x,-12·(3sin x,cos2x)=3cos x sin x-12cos2x=32sin2x-12cos2x=cos π6sin2x-sin π6cos2x=sin2x-π6.(1)T=2π2=π,即函数f(x)的最小正周期为π.(2)∵0≤x≤π2,∴-π6≤2x-π6≤5π6.由正弦函数的性质知,当2x-π6=π2,即x=π3时,f(x)取得最大值1;当2x-π6=-π6,即x=0时,f(x)取得最小值-12.因此,f(x)在0,π2上的最大值是1,最小值是-12.19.(本小题满分12分)在斜△ABC中,sin A=-cos B·cos C,且tan B tan C=1-3,求角A.解在△ABC中,有A+B+C=π,所以sin A=sin(B+C).所以-cos B cos C=sin B cos C+cos B sin C.上式两边同时除以cos B cos C,得tan B+tan C=-1.又tan(B+C)=tan B+tan C1-tan B tan C=-11-(1-3)=-33=-tan A . 所以tan A =33. 又0<A <π,所以A =π6.20.(本小题满分12分)函数f (x )=3sin ωx ·cos ωx +sin 2ωx +k ,ω>0. (1)若f (x )图象中相邻两条对称轴间的距离不小于π2,求ω的取值范围; (2)若f (x )的最小正周期为π,且当x ∈-π6,π6时,f (x )的最大值是12,求f (x )最小值,并说明如何由y =sin2x 的图象变换得到y =f (x )的图象.解 f (x )=32sin2ωx +1-cos2ωx 2+k =32sin2ωx -12cos2ωx +12+k =sin ⎝ ⎛⎭⎪⎫2ωx -π6+k +12. (1)由题意可知T 2=π2ω≥π2,∴ω≤1.又ω>0, ∴0<ω≤1.(2)∵T =πω=π,∴ω=1. ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+k +12.∵x ∈⎣⎢⎡⎦⎥⎤-π6,π6,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π2,π6.从而当2x -π6=π6,即x =π6时, f (x )max =f ⎝ ⎛⎭⎪⎫π6=sin π6+k +12=k +1=12,∴k =-12,故f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,∴当2x -π6=-π2,即x =-π6时f (x )取最小值-1.把y =sin2x 的图象向右平移π12个单位得到y =sin (2x -π6 )的图象. 21.(本小题满分12分)已知函数f (x )=2cos x -π3+2sin ⎝ ⎛⎭⎪⎫3π2-x . (1)求函数f (x )的单调减区间;(2)求函数f (x )的最大值并求f (x )取得最大值时的x 的取值集合;(3)若f (x )=65,求cos ⎝ ⎛⎭⎪⎫2x -π3的值. 解 (1)f (x )=2cos x cos π3+2sin x sin π3-2cos x=cos x +3sin x -2cos x =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6. 令2k π+π2≤x -π6≤2k π+3π2(k ∈Z ),∴2k π+2π3≤x ≤2k π+5π3(k ∈Z ),∴单调递减区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ). (2)f (x )取最大值2时,x -π6=2k π+π2(k ∈Z ),则x =2k π+2π3(k ∈Z ).∴f (x )的最大值是2,取得最大值时的x的取值集合是⎩⎨⎧⎭⎬⎫xx =2k π+2π3,k ∈Z . (3)f (x )=65,即2sin ⎝ ⎛⎭⎪⎫x -π6=65,∴sin ⎝ ⎛⎭⎪⎫x -π6=35. ∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝ ⎛⎭⎪⎫x -π6=1-2×⎝ ⎛⎭⎪⎫352=725. 22.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且2sin 2A +B 2+cos2C =1.(1)求角C 的大小;(2)若sin 2A -sin 2B =12sin 2C ,试求sin2A +π3的值.解 (1)由2sin 2A +B 2+cos2C =1,得1-cos(A +B )+2cos 2C -1=1.又由A +B +C =π,将上式整理,得2cos 2C +cos C -1=0,即(2cos C -1)(cos C +1)=0.∴cos C =12或cos C =-1(舍去).由0<C <π,得C =π3.(2)由sin 2A -sin 2B =12sin 2C ,得2sin 2A -2sin 2B =sin 2C ,即1-cos2A -1+cos2B =34,cos2B -cos2A =34,∵A +B =2π3,∴B =2π3-A .∴cos ⎝ ⎛⎭⎪⎫4π3-2A -cos2A =34,∴-32cos2A -32sin2A =34. 得32cos2A +12sin2A =-34,∴sin ⎝ ⎛⎭⎪⎫2A +π3=-34.。
高中人教A版数学必修4(课时习题与单元测试卷):第一章 章末检测 含解析
第一章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( )A .终边相同的角一定相等B .锐角都是第一象限角C .第一象限角都是锐角D .小于90°的角都是锐角答案:B2.已知sin(2π-α)=45,α∈⎝⎛⎭⎫3π2,2π,则sin α+cos αsin α-cos α等于( ) A.17 B .-17C .-7D .7答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45, ∴sin α=-45. ∵α∈⎝⎛⎭⎫3π2,2π,∴cos α=1-sin 2α=35. ∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π. 4.若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( ) A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎭⎫ω×2π3=1,cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 5.sin(-1740°)的值是( )A .-32B .-12C.12D.32答案:D解析:sin(-1740°)=sin60°=32. 6.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 答案:B解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1,故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 7.下列函数中,在⎝⎛⎭⎫0,π2上是增函数的偶函数是( ) A .y =|sin x | B .y =|sin2x |C .y =|cos x |D .y =tan x答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移23个单位 D .向右平移23个单位 答案:C解析:∵y =cos(3x +2)=cos3⎝⎛⎭⎫x +23, ∴只要将函数y =cos3x 的图象向左平移23个单位即可. 9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫π3=sin π3=32. 10.若函数f (x )=2sin ⎝⎛⎭⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax (x <0)g (x -1)(x ≥0),则g ⎝⎛⎭⎫56等于( )A .-12 B.12C .-32 D.32答案:C解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,∴g ⎝⎛⎭⎫56=g ⎝⎛⎭⎫-16=sin ⎝⎛⎭⎫-a 6= sin ⎝⎛⎭⎫-π3=-32. 11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,所以ωπ2+π4≤ωx +π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A. 12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α=________. 答案:m解析:cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α=m . 14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________.答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ).15.函数y =sin x +cos x -12的定义域为________. 答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x ≥0cos x ≥12, 如图,结合三角函数线知: ⎩⎪⎨⎪⎧2k π≤x ≤2k π+π (k ∈Z )2k π-π3≤x ≤2k π+π3 (k ∈Z ), 解得2k π≤x ≤2k π+π3(k ∈Z ), ∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }. 16.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题,其中正确的是________. ①y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ②y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6. 答案:①②解析:4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6,故①②正确,③④错误. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值. 解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35. (2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α. 由余弦函数的定义得cos α=45,故所求式子的值为54. 18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝⎛⎭⎫-π2,0,求sin θ-cos θ的值. 解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1, 又∵⎩⎨⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a , ∴a =12或a =-14,经检验Δ≥0都成立, ∴a =12或a =-14.(2)∵θ∈⎝⎛⎭⎫-π2,0,∴a <0, ∴a =-14且sin θ-cos θ<0, ∴sin θ-cos θ=-62. 19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧ a +b =52a -b =-12⇒⎩⎪⎨⎪⎧ a =1,b =32, g (x )=-4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. 当b <0时,⎩⎨⎧ a -b =52a +b =-12⇒⎩⎪⎨⎪⎧a =1,b =-32, g (x )=-4sin(-32x )=4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3. 20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT=2π. 又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π, ∵φ∈⎝⎛⎭⎫0,π2. 所以φ=π6.又因为当t =0时,s =3, 所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝⎛⎭⎫2πt +π6. (2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm.(3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎫ω×0+π6=3sin π6=32. (2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6). (3)由f ⎝⎛⎭⎫α4+π12=95得3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6=95,即sin ⎝⎛⎭⎫α+π2=35,∴cos α=35, ∴sin α=±1-cos 2α=± 1-⎝⎛⎭⎫352=±45. 22.(12分)已知函数f (x )=2cos ⎝⎛⎭⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围; (3)将函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝⎛⎭⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π, 由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ); (2)因为f (x )=2cos ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤-π8,π8上为增函数,在区间⎣⎡⎦⎤π8,π2上为减函数 又f ⎝⎛⎭⎫-π8=0,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=2cos ⎝⎛⎭⎫π-π4=-2cos π4=-1, ∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根.(3)∵f (x )=2sin ⎝⎛⎭⎫-2x +3π4=2sin ⎝⎛⎭⎫2x +π4=2sin2⎝⎛⎭⎫x +π8 ∴g (x )=2sin2⎝⎛⎭⎫x +π8-m = 2sin ⎝⎛⎭⎫2x +π4-2m 由题意得π4-2m =2k π,∴m =-k π+π8,k ∈Z 当k =0时,m =π8,此时g (x )=2sin2x 关于原点中心对称.。
2019-2020年高中数学 2.2.1向量加法运算及其几何意义课时作业 新人教A版必修4
2019-2020年高中数学 2.2.1向量加法运算及其几何意义课时作业新人教A 版必修4一、选择题1.下列等式中不正确的是( ) A .a +0=a B .a +b =b +a C .|a +b |=|a |+|b | D .AC →=DC →+AB →+BD →[答案] C[解析] 当a 与b 方向不同时,|a +b |≠|a |+|b |. 2.在△ABC 中,AB →=a ,BC →=b ,则a +b 等于( ) A.CA → B .BC → C.AB → D .AC → [答案] D[解析] AB →+BC →=AC →.3.(xx·山东师大附中期中),如图,正六边ABCDEF 中,BA →+CD →+FE →=( )A .0B .BE → C.AD → D .CF → [答案] B[解析] 连结CF ,取CF 中点O ,连结OE ,CE . 则BA →+CD →+FE →=(BA →+AF →)+FE →=BE →.4.在△ABC 中,|AB →|=|BC →|=|AB →+BC →|,则△ABC 是( ) A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形 [答案] B[解析] AB →+BC →=AC →,则|AB →|=|BC →|=|AC →|, 则△ABC 是等边三角形.5.a 、b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同B .a 、b 是共线向量C .a =-bD .a 、b 无论什么关系均可 [答案] A[解析] 当两个非零向量a 与b 不共线时,a +b 的方向与a 、b 的方向都不相同,且|a +b |<|a |+|b |;向量a 与b 同向时,a +b 的方向与a 、b 的方向都相同,且|a +b |=|a |+|b |;向量a 与b 反向且|a |<|b |时,a +b 的方向与b 的方向相同(与a 方向相反),且|a +b |=|b |-|a |.6.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.P A →+PB →=0 B .PB →+PC →=0 C.PC →+P A →=0 D .P A →+PB →+PC →=0[答案] C[解析] ∵BC →+BA →=2BP →,∴由平行四边形法则,点P 为线段AC 的中点, ∴PC →+P A →=0.故选C. 二、填空题 7.化简下列各式:(1)AB →+BC →+CA →=________; (2)OA →+OC →+BO →+CO →=________;(3)化简(AB →+MB →)+(BO →+BC →)+OM →=________. [答案] (1)O → (2)BA → (3)AC →[解析] (1)AB →+BC →+CA →=AC →+CA →=0;(2)OA →+OC →+BO →+CO →=(CO →+OA →)+(BO →+OC →)=CA →+BC →=BA →. (3)AC →.8.如图所示,四边形ABCD 是梯形,AD ∥BC ,则OA →+BC →+AB →=________. [答案] OC →[解析] OA →+BC →+AB →=OA →+AB →+BC →=OC →. 三、解答题9.如图所示,求: (1)a +d ; (2)c +b ; (3)e +c +b ; (4)c +f +b .[解析] (1)a +d =d +a =DO →+OA →=DA →; (2)c +b =CO →+OB →=CB →;(3)e +c +b =e +(c +b )=e +CB →=DC →+CB →=DB →; (4)c +f +b =CO →+OB →+BA →=CA →.10.如右图所示,两个力F 1和F 2同时作用在一个质点O 上,且F 1的大小为3 N ,F 2的大小为4 N ,且∠AOB =90°,试作出F 1和F 2的合力,并求出合力的大小.[解析] 如图所示,OA →表示力F 1,OB →表示力F 2,以OA ,OB 为邻边作▱OACB ,则OC →是力F 1和F 2的合力.在△OAC 中,|OA →|=3,|AC →|=|OB →|=4,且OA ⊥AC , 则|OC →|=|OA →|2+|AC →|2=5,即合力的大小为5 N.能力提升一、选择题1.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a ∥b ②a +b =a ③a +b =b ④|a +b |<|a |+|b | ⑤|a +b |=|a |+|b | ⑥|a +b |>|a |+|b |A .①②⑥B .①③⑥C .①③⑤D .②③④⑤[答案] C[解析] ∵a =(AB →+CD →)+(BC →+DA →) =AB →+BC →+CD →+DA →=AC →+CD →+DA→∴①③⑤均正确.2.已知|AB →|=10,|AC →|=7,则|BC →|的取值范围是( ) A .[3,17] B .(3,17) C .(3,10) D .[3,10][答案] A[解析] 利用三角形两边之和大于第三边,两边之差小于第三边的性质及AB →与AC →共线时的情况求解.即|AB →|-|AC →|≤|BC →|≤|AC →|+|AB →|,故3≤|BC →|≤17.3.向量a 、b 均为非零向量,下列说法中不正确的是( ) A .向量a 与b 反向,且|a |>|b |,则向量a +b 与a 的方向相同 B .向量a 与b 反向,且|a |<|b |,则向量a +b 与a 的方向相同 C .向量a 与b 同向,则向量a +b 与a 的方向相同 D .向量a 与b 同向,则向量a +b 与b 的方向相同 [答案] B[解析] 当a 与b 反向,且|a |<|b |时,向量a +b 与b 的方向相同. 4.若M 为△ABC 的重心,则下列各向量中与AB →共线的是( ) A.AB →+BC →+AC → B .AM →+MB →+BC →C.AM →+BM →+CM → D .3AM →+AC → [答案] C[解析] 由三角形重心性质得AM →+BM →+CM →=0. 二、填空题5.某人在静水中游泳,速度为4 3 km/h.如要他向垂直于河对岸的方向游向河对岸,水的流速为4 km/h ,他实际沿________方向前进,速度为________.[答案] 沿与水流方向成60°的方向前进(答案不唯一) 速度为8 km/h [解析] ∵OB =43,OA =4, ∴OC =8,∴∠COA =60°.6.在菱形ABCD 中,∠DAB =60°,向量|AB →|=1,则|BC →+CD →|=________. [答案] 1[解析] 在△ABD 中,AD =AB =1,∠DAB =60°,△ABC 是等边三角形,则BD =1,则|三、解答题7.如图所示,∠AOB =∠BOC =120°,|OA →|=|OB →|=|OC →|,求OA →+OB →+OC →.[解析] 如图所示,以OA ,OB 为邻边作平行四这形OADB ,由向量加法的平行四边形法则知OA →+OB →=OD →.由|OA →|=|OB →|,∠AOB =120°, 知∠BOD =60°,|OB →|=|OD →|. 又∠COB =120°,且|OB →|=|OC →|. ∴OD →+OC →=0, 故OA →+OB →+OC →=0.8.如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小(绳子的重量忽略不计).[解析] 如图,设CE →、CF →分别表示A ,B 所受的力,10 N 的重力用CG →表示,则CE →+CF →=CG →.易得∠ECG =180°-150°=30°, ∠FCG =180°-120°=60°, ∴|CE →|=|CG →|cos30° =10×32=5 3.|CF →|=|CG →|cos60°=10×12=5.∴A 处所受的力的大小为53N ,B 处所受的力的大小为5 N..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届数学人教版精品资料
习题课(四)
一、选择题
1.若α∈(0,π),且cos α+sin α=-1
3
,则cos2α=( )
A.179 B .-1710
C .-179 D.17
10
答案:A
解析:因为cos α+sin α=-13,α∈(0,π),所以sin2α=-8
9,cos α<0,且α∈⎝⎛⎭⎫3π4,π,所以2α∈⎝⎛⎭⎫3π2,2π,所以cos2α=1-sin 22α=179
.故选A. 2.已知sin(α-β)cos α-cos(β-α)sin α=3
5
,β是第三象限角,则sin(2β+7π)=( )
A.2425 B .-2425
C .-1225 D.1225
答案:B 解析:∵sin(α-β)cos α-cos(β-α)sin α=sin(α-β)cos α-cos(α-β)sin α=sin[(α-β)-α]=
sin(-β)=-sin β=35,∴sin β=-35.又β是第三象限角,∴cos β=-4
5
,∴sin(2β+7π)=-sin2β
=-2sin βcos β=-2×⎝⎛⎭⎫-35×⎝⎛⎭⎫-45=-2425
. 3.已知角α,β均为锐角,且cos α=35,tan(α-β)=-1
3
,则tan β=( )
A.13
B.913
C.13
9
D .3 答案:D
解析:由于α,β均为锐角,cos α=35,则sin α=45,tan α=43.又tan(α-β)=-1
3,所以tan β
=tan[α-(α-β)]=tan α-tan (α-β)1+tan αtan (α-β)=43+13
1-43×1
3
=3.故选D.
4.函数f (x )=cos2x +sin 2
x +2(x ∈R )的值域是( )
A .[2,3] B.⎣⎡⎦⎤
52,3 C .[1,4] D .[2,4] 答案:A
解析:因为f (x )=cos2x +sin 2x +2=3-2sin 2x +sin 2x =3-sin 2x ,sin x ∈[-1,1],所以f (x )∈[2,3].故选A.
5.已知tan α,tan β是方程x 2+3 3x +4=0的两根,且α,β∈⎝⎛⎭⎫-π2,π
2,则α+β等于( )
A.π3 B .-2π3 C.π3或-2π3 D .-π3或2π3 答案:B
解析:由题意,得tan α+tan β=-3 3,tan αtan β=4,∴tan α<0且tan β<0.又∵α,β∈⎝⎛⎭⎫-π2,π2,∴α,β∈(-π2,0).tan(α+β)=tan α+tan β1-tan αtan β=-3 31-4
=3,又知α+β∈(-π,0),∴α+β=-2π
3.
6.化简2+cos2-sin 21的结果是( ) A .-cos1 B .cos1
C.3cos1 D .-3cos1 答案:C 解析:原式=1+cos 21+2cos 21-1=3cos 21=3cos1.
二、填空题
7.已知sin ⎝⎛⎭⎫x +π4=3
5,则sin2x =________. 答案:-7
25
解析:∵sin ⎝⎛⎭⎫x +π4=35,∴sin x +cos x =325,两边平方,得1+sin2x =1825,∴sin2x =-725
. 8.已知cos ⎝⎛⎭⎫α-π6+cos ⎝⎛⎭⎫π2-α=435,且α∈⎝⎛⎭⎫0,π3,则sin ⎝⎛⎭
⎫α+5π12=________. 答案:7210
解析:因为cos ⎝⎛⎭⎫α-π6+cos ⎝⎛⎭⎫π2-α=435,所以cos ⎝⎛⎭⎫α-π6+sin α=435,所以32cos α+12
sin α+sin α=435,所以3⎝⎛⎭⎫12cos α+3
2sin α=435
,得sin ⎝⎛⎭⎫α+π6=45.因为α∈⎝⎛⎭⎫0,π3,故α+π6∈⎝⎛⎭⎫π6,π2,所以cos ⎝⎛⎭⎫α+π6=35,所以sin ⎝⎛⎭⎫α+5π12=sin ⎝⎛⎭⎫α+π6+π4=sin ⎝⎛⎭⎫α+π6cos π4+cos ⎝⎛⎭⎫α+π6sin π4=45×22+35×22=7210
. 9.已知θ为第二象限角,tan2θ=-22,则2cos 2θ2-sin θ-tan
5π4
2sin ⎝⎛⎭
⎫θ+π4=________.
答案:3+2 2 解析:∵tan2θ=2tan θ
1-tan 2θ=-22,∴tan θ=-22或tan θ= 2.∵π
2+2k π<θ<π+2k π,k ∈Z ,
∴tan θ<0,∴tan θ=-
2
2
, 2cos 2θ2-sin θ-tan
5π4
2sin ⎝⎛⎭⎫θ+π4 =2cos 2θ
2
-sin θ-12sin ⎝⎛⎭
⎫θ+π4=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=
1+
2
2
1-22
=3+2 2.
三、解答题
10.已知函数f (x )=2sin ⎝⎛⎭⎫
13x -π6,x ∈R . (1)求f (0)的值;
(2)设α、β∈⎣⎡⎦⎤0,π2, f (3α+π2)=1013, f (3β+2π)=6
5
,求sin(α+β)的值. 解:(1)f (0)=2sin ⎝⎛⎭⎫13×0-π6=-2sin π
6
=-1. (2)f ⎝⎛⎭⎫3α+π2=2sin ⎣⎡⎦⎤13(3α+π2)-π6=2sin α=1013,∴sin α=513
. 又α∈⎣⎡⎦⎤0,π2,∴cos α=1213
. 同理f (3β+2π)=2sin ⎣⎡⎦⎤13
(3β+2π)-π6 =2sin ⎝⎛⎭⎫β+π2=2cos β=65
, ∴cos β=35,又β∈⎣⎡⎦⎤0,π2,∴sin β=45
. ∴sin(α+β)=sin αcos β+cos αsin β =513×35+1213×45=6365
. 11.已知α是第一象限的角,且cos α=5
13
,
求sin ⎝⎛⎭⎫α+π4cos (2α+4π)
的值. 解:sin ⎝⎛⎭
⎫α+π4cos (2α+4π)
=22(cos α+sin α)cos2α
=2
2(cos α+sin α)cos 2α-sin 2
α
=22·1cos α-sin α. 由已知可得sin α=12
13
,
∴原式=22×1513-1213
=-13 2
14
.
12.向量a =(2cos α,2sin α),b =(3cos β,3sin β),a 与b 的夹角为60°,则直线x cos α-y sin α=12与圆(x -cos β)2+(y +sin β)2=1
2的位置关系是( )
A .相切
B .相交
C .相离
D .随α、β的值而定 答案:B
解析:cos60°=a ·b |a ||b |=6cos αcos β+6sin αsin β
2×3
=cos(α-β)=1
2
.
圆心(cos β,-sin β)到直线x cos α-y sin α=1
2的距离为
⎪
⎪⎪⎪
cos αcos β+sin αsin β-12cos 2
α+(-sin α)
2
=0,
所以圆心在直线上,圆与直线相交.
13.已知向量m =(3sin x,1-3cos x ),n =(1-sin x ,cos x ),函数f (x )=m ·n + 3.
(1)求函数f (x )的零点;
(2)若f (α)=8
5
,且α∈⎝⎛⎭⎫π2,π,求cos α的值. 解:(1)f (x )=m ·n +3=3sin x -3sin 2x +cos x -3cos 2x +3=3sin x +cos x =
2sin ⎝⎛⎭
⎫x +π6. 由2sin ⎝⎛⎭⎫x +π6=0,得x +π6=k π(k ∈Z ),所以x =k π-π
6
(k ∈Z ), 所以函数f (x )的零点为x =k π-π
6(k ∈Z ).
(2)由(1),知f (α)=2sin ⎝⎛⎫α+π6=85,所以sin ⎝⎛⎫α+π6=45
, 因为α∈⎝⎛⎭⎫π2,π,所以2π3<α+π6<7π6, 则cos ⎝⎛⎭⎫α+π6=-35
, 所以cos α=cos ⎣⎡⎦
⎤⎝⎛⎭⎫α+π6-π6= cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=-35×32+45×12=4-3310
.。