七上数学《基本的几何图形》

合集下载

七上数学《基本的几何图形》

七上数学《基本的几何图形》

§7.1我们身边的图形世界设计人:宁阳三中李娜【学习目标】1、能从现实世界中抽象出几何体、平面、曲面,并了解其概念的意义,同时初步体会几何体研究的对象、方法。

2、知道正方体、长方体、圆柱、圆锥、球等都是几何体,并能在具体问题中区分他们。

3、会对简单几何体进行正确的分类【学习重点】几何体、平面、曲面的概念,并了解常见的几何体。

【学习难点】几种常见几何体的基本特征【自学过程】一(1):学习课本第4—5页的内容,回答下列问题:1、观察第4页图1—1中的图片,这些图片中的物品各具有怎样的形状?茶叶筒:足球:魔方:漏斗:2、观察第5页图1—2中四对泥人图片中,各对泥人的形状相同吗?大小相同吗?形状:大小:根据上面的学习,总结:几何体:简称3、你熟悉下面几何体吗?用线把几何体和它们的名称连接起来。

球体长方体圆锥体圆柱体正方体思考:你能举出生活中常见的几何体吗?(2):学习课本第5—6页内容,回答下列问题:1、观察课本第5页图1—4,它们都是由面构成的,这些面的特点是:没有没有是向思考:大家想一想在我们平常的生活中,除了上面学习的面外,还有面,如图1—5,都是由面构成的。

2、根据上面学习的内容举出生活中常见图形中表面是平面的例子(至少2个)表面是曲面的例子(至少2个)二、预习检测:1、由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体.铅笔_____ 手机______ 杯子_____ 砖块____ 纸箱_______ 足球_____易拉罐_____ 粉笔盒_____ 一堆沙子_______ 魔方_____ 冰淇淋2.找出生活中与下列几何体形状类似的物体各一个.(1)正方体:_______ (2)圆柱 :_______ (3)长方体 :_______ (4) 圆锥:_______ (5)球 :_______3.判断下列的陈述是否正确:⑴柱体的上、下两个面不一样大()⑵圆柱、圆锥的底面都是圆()(3)圆柱的侧面是平面()§7.1我们身边的图形世界达标题设计人:宁阳三中李娜1、填空:(每空0.5分,共4分)体是由围成的,长方体是由个面围成的,圆柱是由个面和个面围成的,球是由个面围成的。

七年级数学上册第一章基本的几何图形1.1我们身边的图形世界

七年级数学上册第一章基本的几何图形1.1我们身边的图形世界
Image
12/11/2021
第二十六页,共二十六页。
第二十二页,共二十六页。
探究(tànjiū):用下列图形能拼成怎样的立体图形?
棱柱(léngzhù)
圆柱
(yuánzhù)
圆锥
第二十三页,共二十六页。
你有收获吗? 立体图形:长方体、正方体、球、圆柱、圆锥、棱柱
(léngzhù)、棱锥······ 平面(píngmiàn)图形:长方形、正方形、三角形、圆、五边形、 六边形······
三 棱 锥
(léngzhù) (léngzhù)
三 棱 柱
六 棱 柱
第六页,共二十六页。
Байду номын сангаас
常见的立体图形(túxíng)(各部分不在同一个平面内)
长方体
正方体
圆柱(yuánzhù)
圆锥(yuánzhuī)

第七页,共二十六页。
常见立体图形的归类
柱体
圆柱
棱柱
立体(lìtǐ)图形 球体(qiútǐ)
三棱柱
第三页,共二十六页。
生活中你会常见(chánɡ jiàn)很多实物,由下列实物能想象出你熟悉的立体图形(几何体) 吗?

正方体


圆锥(yuánzhuī)


(yuán

tái)
第四页,共二十六页。
找一找:有哪些熟悉(shúxī)的平面图形?
第五页,共二十六页。
下列(xiàliè)实物与给出的哪个立体图形相似?
解:(1)该立体(lìtǐ)图形是长方体,如图:
第十七页,共二十六页。
第十八页,共二十六页。
(2)该立体图形(túxíng)是圆锥, 如图:

七年级数学上册第四章几何图形初步《几何图形:点、线、面、体》

七年级数学上册第四章几何图形初步《几何图形:点、线、面、体》

听课记录:新2024秋季七年级人教版数学上册第四章几何图形初步《几何图形:点、线、面、体》教学目标(核心素养)1.知识与技能:学生能够理解并识别几何图形中的点、线、面、体的基本概念,掌握它们之间的基本关系。

2.过程与方法:通过观察、想象、分类等活动,培养学生的空间想象能力和几何直观能力。

3.情感态度价值观:激发学生对几何学习的兴趣,培养严谨的数学思维习惯,增强对空间形态美的感受。

导入教师行为:1.1 教师利用多媒体展示一组丰富多彩的几何图形图片,包括建筑物、雕塑、自然景物等,引导学生观察并思考:“这些图片中,你能找到哪些几何元素?”1.2 随后,教师提出问题:“在几何学中,最基本的构成元素是什么?”引导学生进入本节课的主题——点、线、面、体。

学生活动:•学生认真观察图片,积极寻找并指出图片中的几何元素,如直线、曲线、平面、球体等。

•听到教师的问题后,学生开始思考并尝试回答,有的学生可能直接说出“点、线、面、体”,有的则可能需要进一步引导。

过程点评:导入环节通过直观的图片展示和贴近生活的问题设置,成功吸引了学生的注意力,激发了他们的学习兴趣,为后续的学习奠定了良好的基础。

教学过程教师行为:2.1 点的教学:•教师首先介绍“点”的概念,强调点是几何图形中最基本的元素,没有大小、形状和方向。

•通过生活中的实例(如地图上的城市标记、屏幕上的像素点等)帮助学生理解点的概念。

学生活动:•学生认真听讲,理解点的概念,并尝试将其与生活中的实例相联系。

过程点评:通过直观的实例和生动的讲解,学生轻松掌握了点的概念。

教师行为:2.2 线的教学:•接着,教师介绍“线”的概念,指出线是由无数个点组成的,有长度但没有宽度和厚度。

•展示直线、射线和线段的定义及区别,通过动画演示帮助学生理解。

学生活动:•学生观看动画演示,认真区分直线、射线和线段的不同之处,并尝试用语言描述它们的特点。

过程点评:动画演示直观生动,有效帮助学生区分了直线、射线和线段的概念。

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计一. 教材分析人教版七年级数学上册第四章《几何图形初步》是学生学习几何的入门章节,主要内容包括:平面图形的性质、相交线、平行线、垂直、角的度量等。

本章节的目的是让学生掌握一些基本的几何图形和概念,培养学生观察、思考、动手操作的能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形有一定的认识。

但部分学生可能对一些几何概念和性质的理解还不够深入,因此在教学过程中需要注重引导学生从实际操作中理解和掌握知识。

三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用直尺和圆规作图,理解相交线、平行线、垂直的概念。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高空间想象能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.教学重点:平面图形的性质,相交线、平行线、垂直的概念及性质。

2.教学难点:相交线、平行线、垂直的判断和证明。

五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。

2.动手操作法:让学生通过实际操作,加深对几何概念和性质的理解。

3.讨论法:引导学生分组讨论,培养学生的合作精神和沟通能力。

4.讲解法:教师针对重难点进行讲解,帮助学生理解和掌握知识。

六. 教学准备1.教具:直尺、圆规、模型、实物等。

2.课件:制作与本章节内容相关的课件,以便进行直观教学。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如教室里的桌子、窗户等,引导学生关注平面图形,激发学生学习兴趣。

2.呈现(10分钟)教师通过课件展示平面图形的性质,如三角形、矩形的性质,引导学生直观地认识和理解。

3.操练(10分钟)教师布置一些实际操作题,如用直尺和圆规作图,让学生动手操作,加深对几何概念的理解。

4.巩固(10分钟)教师针对本节课的重点知识进行提问,检查学生对知识的理解和掌握程度。

32华东师大版初中数学七年级上册 几何图形(基础)知识讲解

32华东师大版初中数学七年级上册 几何图形(基础)知识讲解

华东师大版初中数学七年级上册几何图形(基础)知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.【典型例题】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、从不同方向看2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】如图所示的工件的主视图是()A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3.已知一个几何体的三视图如图所示,则该几何体是( )A.棱柱 B.圆柱 C.圆锥 D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】右图是某个几何体的三视图,该几何体是()A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D类型三、展开图4.(2016•徐州)下列图形中,不可以作为一个正方体的展开图的是()A.B. C.D.【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【答案】C【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:故选:C.【总结升华】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.举一反三:【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【答案】 A .类型四、点、线、面、体5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).6.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【答案与解析】连线如下:【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是( ).【答案】A。

七年级数学上册《第一章 基本的几何图形》单元测试卷

七年级数学上册《第一章 基本的几何图形》单元测试卷

七年级数学上册《第一章基本的几何图形》单元测试卷(含答案解析)一.选择题1.下列立体图形中,面数相同的是()①正方体;②圆柱;③四棱柱;④圆锥.A.①②B.①③C.②③D.③④2.用圆规画圆的过程中,把圆规的两脚分开,定好两脚间的距离是3cm,则该圆的直径是()cm.A.1.5B.3C.4.5D.63.如图,长方形的长为3cm、宽为2cm,分别以该长方形的长、宽所在直线为轴,将其旋转1周,形成甲、乙两个圆柱,其体积分别记作V甲、V乙,侧面积分别记作S甲、S乙,则下列说法正确的是()A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲>S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙4.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短5.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=BC C.CD=AB﹣BD D.CD=AD﹣BC6.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对7.下列展开图,能折叠成正方体的有()个.A.6B.5C.4D.78.如图是一个长方体包装盒,则它的表面能展开成的平面图形是()A.B.C.D.9.下列说法正确的是()A.延长直线AB到点C B.延长射线AB到点CC.延长线段AB到点C D.射线AB与射线BA是同一条射线10.小红量得一座古代建筑中的大圆柱某个横截面的周长是3.14m,这个横截面的半径是()米.(π取3.14)A.3.14B.2C.1D.二.填空题11.图中共有线段条.12.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.13.如图是一个立体图形的平面展开图,则这个立体图形是.14.如图,已知线段AC=7cm,AD=2cm,C为线段DB的中点,则线段AB=cm.15.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB =1.5cm,则线段MP=cm.16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.17.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.18.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.19.如图,阴影部分的面积为cm².(π取3.14)20.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是.三.解答题21.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)22.两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm,高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?23.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=底面积×高)24.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.25.我们知道,三棱柱的上、下底面都是三角形,那么正三棱柱的上、下底面都是等边三角形.如图,大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱.(1)请写出截面的形状;(2)请直接写出四边形DECB的周长.26.过平面上四点中的任意两点作直线,甲说有一条,乙说有四条,丙说有六条,丁说他们说的都不对,应该是一条、四条或六条,谁说的对?请画图来说明你的看法.27.如图已知点C为AB上一点,AC=18cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.参考答案与试题解析一.选择题1.解:①正方体六个面;②圆柱三个面;③四棱柱六个面;④圆锥两个面,面数相同的是①③,故选:B.2.解:∵把圆规的两脚分开,定好两脚间的距离是3cm,∴该圆的直径是6cm,故选:D.3.解:由题可得,V甲=π•22×3=12π,V乙=π•32×2=18π,∵12π<18π,∴V甲<V乙;∵S甲=2π×2×3=12π,S乙=2π×3×2=12π,∴S甲=S乙,故选:A.4.解:从A到B有①,②,③三条路线,最短的路线是①,其理由是:两点之间,线段最短,故选:D.5.解:∵C是线段AB的中点,∴AC=BC=AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=BC不一定成立;C、CD=AD﹣AC=AD﹣BC,故本选项正确;D、CD=BC﹣BD=AB﹣BD,故本选项正确.故选:B.6.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.7.解:根据正方体展开图的特征可得,①③④⑤⑥可以折叠成正方体,而⑧折叠成三棱柱,故选:B.8.解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.9.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.10.解:设这个横截面的半径是r米,根据题意,得2×3.14r=3.14,解得r=,故选:D.二.填空题11.解:由图得,图中的线段有:AB,BC,CD,DE,AC,BD,CE,BE,AD,AE一共10条.故答案为:10.12.解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.13.解:根据展开图可知,这个几何体两个底面是三角形,三个侧面是长方形的,因此这个几何体是三棱柱,故答案为:三棱柱.14.解:∵AC=7cm,AD=2cm,∴CD=AC﹣AD=5cm,∵C为线段DB的中点,∴BC=CD=5cm,∴AB=AC+BC=7+5=12(cm),答:线段AB=12cm,故答案为:12.15.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.16.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.17.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.18.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.19.解:S阴影=S圆形﹣S正方形=π×()2﹣×2×2=π﹣2≈1.14(cm2),故答案为:1.14.20.解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“守”字一面的相对面上的字是“善”.故答案为:善.三.解答题21.解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这的包装盒需花费1.8元钱.22.解:设倒完以后,第一个容器中的水面离容器口有x cm,则:π×42×(20﹣x)=π×62×8,解得:x=2,答:第一个容器中的水面离容器口有2 cm.23.解:以8cm为轴,得以8cm为轴体积为×π×62×8=96π(cm3),以6cm为轴,得以6cm为轴的体积为×π×82×6=128π(cm3),以10cm为轴,得以10cm为轴的体积为×π()2×10=76.8π(cm3).故几何体的体积为:96πcm3或128πcm3或76.8πcm3.24.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.25.解:(1)由题可得,截面的形状为长方形;(2)∵△ADE是周长为3的等边三角形,∴DE=AD=1,又∵△ABC是周长为10的等边三角形,∴AB=AC=BC=,∴DB=EC=﹣1=,∴四边形DECB的周长=1+×2+=9.26.解:丁说的对.(1)当四点共线时,可画1条,如图(1);(2)当四点中有三点共线时,可画4条,如图(2);(3)当四点中任意三点不共线时,可画6条,如图(3);27.解:∵AC=18cm,CB=AC,∴BC=×18=12cm,则AB=AC+BC=30cm,∵D、E分别为AC、AB的中点,∴AD=AC=9cm,AE=AB=15cm,∴DE=AE﹣AD=15﹣9=6cm,答:DE的长是6cm.。

七年级数学上册第一章《基本的几何图形》综合训练(青岛版含答案)

七年级数学上册第一章《基本的几何图形》综合训练(青岛版含答案)

第一章基本的几何图形◆阶段性内容回顾一、立体图形与平面图形1.几何图形包括_________图形和________图形.2.长方体、正方体、球、圆柱、圆锥等都是________,此外,棱柱和棱锥也是常见的_________.3.在日常生活中我们会遇到很多________图形,长方形、正方形、三角形、•圆等都是我们十分熟悉的_________.4.对于一些立体图形的问题,常把它们转化成_________图形来研究和处理.5.许多立体图形是由平面图形围成的,将它们适当地展开,•就可以得到它们的________展开图.二、几何图形6.几何图形都是由点、线、面、体组成的,________•是构成几何图形的基本元素,点、线、面、体经过运动变化,就能组成各种各样的________,形成多姿多彩的图形世界.7.几何体简称________,我们学过的______、________、________、•______、________、________、__________都是几何体.包围着体的是_________,•面有________和_________两种,面与面相交的地方形成________,•线和线相交的地方是___________.8.用运动的观点来理解点、线、面、体,点动成_______,_______•动成______,_________动成体.三、直线、射线、线段9.经过两点有______条直线,并且只有_________.10.线段大小的比较可以用________测量出它们的长度来比较,也可以把一条线段________另一条线段上来比较.11.线段上的一点把线段分成_________的线段,这点叫做线段的中点.12.两点的所有连线中,________最短,即为_______,_______最短.13.连接两点间的_______,叫做两点间的距离.◆阶段性巩固训练1.一个物体从不同的方向看,平面图形如图所示,画出该物体的立体图形.2.如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?请画出来.3.如图所示的立方体,如果把它展开,可以是下列图形中的().4.一个长方体被一刀切去一部分,剩下的部分可能是().A.三棱柱 B.四棱柱 C.五棱柱 D.以上都有可能5.如图所示,是三棱柱的表面展开示意图,则AB=______,BC=_______,CD=•______,BD=_______,AE=______.6.在图(1)中的几何体是由图(2)中的()绕线旋转一周得到的.7.如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC不过点A”.乙说:“点A在直线CD外”.丙说:“D在CB的反向延长线上.”丁说:“A,B,C,D两两连结,有5条线段.”戊说:“射线AD与射线CD不相交”.其中说明正确的有().A.3人 B.4人 C.5人 D.2人8.已知线段AB=16厘米,C是线段AB上的一点,且AC=10厘米,D为AC的中点,E•是BC 的中点,求线段DE的长.9.平面上有A,B,C,D四个村庄,为解决当地缺水问题,•政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图4-50所示),你能说明理由吗?10.如图所示,B,C两点把线段AD分成4:5:7三部分,E是线段AD•的中点,•CD=14厘米,求:(1)EC的长;(2)AB:BE的值.11.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.•小刚说:“这还不简单,老师上课时不是讲过了吗?过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标的某一位置看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点又为什么呢?”聪明的你能回答小强的疑问吗?12.如图所示,有一只正方体盒子,一只虫子在顶点A处,一只蜘蛛在顶点B处,蜘蛛沿着盒子准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?13.根据题意,完成下列填空:L1与L2是同一平面内的两直线,它们有一个交点,如果在这个平面内,•再画第三条直线L3,那么这4条直线最多可以有_______个交点;•如果在这个平面内再画第四条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想:在同一平面内,6条直线最多有_______个交点;n(n为大于1的整数)条直线,最多可以有_______个交点(用含n 的代数式表示).参考答案阶段性内容回顾1.立体平面 2.立体图形立体图形3.平面平面图形 4.平面 5.平面6.点几何图形7.体长方体正方体圆柱圆锥球棱柱棱锥面平的曲的 •线点8.线线面面 9.一一条10.刻度尺移到 11.相等12.线段两点之间线段 13.线段的长度阶段性巩固训练1.是一个尖朝上的圆锥,如答图36所示.(点拨:从上面看到的是圆,可想到这是一个圆锥和圆柱,再由左面和正面看到的都是三角形,可想到这是一个圆锥,并且是一个尖朝上的圆锥)2.如图所示:(1)正视图(2)左视图(3)俯视图3.D4.D (点拨:三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置)5.4 5 6 4 8(点拨:要弄清楚展开之前哪两条棱是相对的)6.D (点拨:凡是绕轴旋转得到的图形,只能是球、圆柱、圆锥或它们的一部分或它们组合而成的图形)7.A8.解:因为D是AC的中点,而E是BC的中点,因此有DC=12AC,CE=12BC,而DE=DC+CE,AC+BC=AB,即DE=DC+CE=12AC+12BC=12(AC+BC)=12AB=12×16=8(厘米).9.解:如答图所示,连结AC,BD,它们的交点是H,点H就是修建水池的位置,这一点到A,B,C,D四点的距离之和最小.10.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米.∵CD=7x=14,∴x=2.(2)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=A B+BC+CD=8+10+14=32(厘米).故EC=12AD-CD=12×32-14=2(厘米).(2)∵BC=10厘米,EC=2厘米,∴BE=BC-EC=10-2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.11.解:若将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线,应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即达到看到哪打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.12.如图所示,沿线段AB爬行,根据两点之间,线段最短.13.3 6 15(1)2n n(点拨:这类题往往从小到大,从少到多依次找规律)。

七年级数学上册 第一章《基本的几何图形》综合练习 (新版)青岛版.doc

七年级数学上册 第一章《基本的几何图形》综合练习 (新版)青岛版.doc

第一章基本的几何图形◆阶段性内容回顾一、立体图形与平面图形1.几何图形包括_________图形和________图形.2.长方体、正方体、球、圆柱、圆锥等都是________,此外,棱柱和棱锥也是常见的_________.3.在日常生活中我们会遇到很多________图形,长方形、正方形、三角形、•圆等都是我们十分熟悉的_________.4.对于一些立体图形的问题,常把它们转化成_________图形来研究和处理.5.许多立体图形是由平面图形围成的,将它们适当地展开,•就可以得到它们的________展开图.二、几何图形6.几何图形都是由点、线、面、体组成的,________•是构成几何图形的基本元素,点、线、面、体经过运动变化,就能组成各种各样的________,形成多姿多彩的图形世界.7.几何体简称________,我们学过的______、________、________、•______、________、________、__________都是几何体.包围着体的是_________,•面有________和_________两种,面与面相交的地方形成________,•线和线相交的地方是___________.8.用运动的观点来理解点、线、面、体,点动成_______,_______•动成______,_________动成体.三、直线、射线、线段9.经过两点有______条直线,并且只有_________.10.线段大小的比较可以用________测量出它们的长度来比较,也可以把一条线段________另一条线段上来比较.11.线段上的一点把线段分成_________的线段,这点叫做线段的中点.12.两点的所有连线中,________最短,即为_______,_______最短.13.连接两点间的_______,叫做两点间的距离.◆阶段性巩固训练1.一个物体从不同的方向看,平面图形如图所示,画出该物体的立体图形.2.如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?请画出来.3.如图所示的立方体,如果把它展开,可以是下列图形中的().4.一个长方体被一刀切去一部分,剩下的部分可能是().A.三棱柱 B.四棱柱 C.五棱柱 D.以上都有可能5.如图所示,是三棱柱的表面展开示意图,则AB=______,BC=_______,CD=•______,BD=_______,AE=______.6.在图(1)中的几何体是由图(2)中的()绕线旋转一周得到的.7.如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC不过点A”.乙说:“点A在直线CD外”.丙说:“D在CB的反向延长线上.”丁说:“A,B,C,D两两连结,有5条线段.”戊说:“射线AD与射线CD不相交”.其中说明正确的有().A.3人 B.4人 C.5人 D.2人8.已知线段AB=16厘米,C是线段AB上的一点,且AC=10厘米,D为AC的中点,E•是BC 的中点,求线段DE的长.9.平面上有A,B,C,D四个村庄,为解决当地缺水问题,•政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图4-50所示),你能说明理由吗?10.如图所示,B,C两点把线段AD分成4:5:7三部分,E是线段AD•的中点,•CD=14厘米,求:(1)EC的长;(2)AB:BE的值.11.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.•小刚说:“这还不简单,老师上课时不是讲过了吗?过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标的某一位置看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点又为什么呢?”聪明的你能回答小强的疑问吗?12.如图所示,有一只正方体盒子,一只虫子在顶点A处,一只蜘蛛在顶点B处,蜘蛛沿着盒子准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?13.根据题意,完成下列填空:L1与L2是同一平面内的两直线,它们有一个交点,如果在这个平面内,•再画第三条直线L3,那么这4条直线最多可以有_______个交点;•如果在这个平面内再画第四条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想:在同一平面内,6条直线最多有_______个交点;n(n为大于1的整数)条直线,最多可以有_______个交点(用含n 的代数式表示).参考答案阶段性内容回顾1.立体平面 2.立体图形立体图形3.平面平面图形 4.平面 5.平面6.点几何图形7.体长方体正方体圆柱圆锥球棱柱棱锥面平的曲的 •线点8.线线面面 9.一一条10.刻度尺移到 11.相等12.线段两点之间线段 13.线段的长度阶段性巩固训练1.是一个尖朝上的圆锥,如答图36所示.(点拨:从上面看到的是圆,可想到这是一个圆锥和圆柱,再由左面和正面看到的都是三角形,可想到这是一个圆锥,并且是一个尖朝上的圆锥)2.如图所示:(1)正视图(2)左视图(3)俯视图3.D4.D (点拨:三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置)5.4 5 6 4 8(点拨:要弄清楚展开之前哪两条棱是相对的)6.D (点拨:凡是绕轴旋转得到的图形,只能是球、圆柱、圆锥或它们的一部分或它们组合而成的图形)7.A8.解:因为D是AC的中点,而E是BC的中点,因此有DC=12AC,CE=12BC,而DE=DC+CE,AC+BC=AB,即DE=DC+CE=12AC+12BC=12(AC+BC)=12AB=12×16=8(厘米).9.解:如答图所示,连结AC,BD,它们的交点是H,点H就是修建水池的位置,这一点到A,B,C,D四点的距离之和最小.10.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米.∵CD=7x=14,∴x=2.(2)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=AB+BC+CD=8+10+14=32(厘米).故EC=12AD-CD=12×32-14=2(厘米).(2)∵BC=10厘米,EC=2厘米,∴BE=BC-EC=10-2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.11.解:若将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线,应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即达到看到哪打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.12.如图所示,沿线段AB爬行,根据两点之间,线段最短.13.3 6 15(1)2n n(点拨:这类题往往从小到大,从少到多依次找规律)。

青岛版七年级上册数学第一章基本的几何图形知识点梳理

青岛版七年级上册数学第一章基本的几何图形知识点梳理

第一章基本的几何图形1.1我们身边的图形世界1.体的概念如果对于我们看到的物体,只研究它们的形状、大小和位置关系,而不考虑颜色、质量、原料等其他性质时,就得到各种几何体,几何体简称体。

平面与曲面平面:平的面,(1)没有厚薄,(2)没有边界,(3)向四周无限延展。

曲面:曲的面2.几何体的分类常见的几何体通常分为三类:柱体,锥体和球体。

柱体包括圆柱和棱柱,结构特征是上下底面是两个平行且形状相同,大小相等的面,圆柱的底面是圆,棱柱的底面是多边形。

锥体包括圆锥和棱锥,圆锥的底面是圆,底面是多边形。

3.体与面的关系体是由面围成的。

包括只含有平面的几何体(如长方体,正方体等棱柱,棱锥)与只含有曲面的几何体(如球),既含有平面又含有曲面的几何体,(如圆柱,圆锥)习题:1.说出下列几何体的名称:(1)2.下列实物形状类似于哪种几何体?茶叶桶——(),蛋糕帽——(),足球——(),漏斗——()3.圆柱由几个面组成?有几个曲面?有几个平面?4.圆锥由几个面组成?有几个曲面?有几个平面?1.2几何图形1.几何图形:点、线、面、体以及它们的组合都是几何图形。

2.点:线与线的交接处是点,点是组成几何图形的基本元素。

在长方体或正方体中,棱与棱的公共点叫做长方体或正方体的顶点。

3.线:一般地,两个面的交接处是一条线,线可以是直的,也可以是曲的。

(1)长方体和正方体中,相邻两个面的交接处是一段直的线,叫做棱。

(2)圆柱和圆锥中,侧面与底面的交接处都是圆,圆是一条封闭的曲线。

4.在数学上,点无大小,线无粗细,面无厚薄。

5.点、线、面、体之间的关系:点动成线,线动成面,面动成体。

6.几何图形的分类:平面图形与立体图形(1)立体图形:如果一个几何图形上的点不都在同一平面内,那么这样的几何图形叫做立体图形(2)平面图形:如果一个几何图形上所有的点都在同一个正方体的表面展开图:11种(1)一四一型:中间四连方,两侧各一个共6种(2)二三一型:中间三连方,二一两侧放共3种(3)二二二型:中间二连方,台阶逐级上共1种(4)三三型:两排三连方,一日放光芒共1种8.正方体表面展开图折成正方体时,相对的面有以下规律:“隔一相对法”(1)若正方体中相对的两个面在展开图的同行或同列中,则它们中间一定隔着一个正方形;(2)若展开图中正方形A在同行或同列中隔正方形C 的位置是空白的,则与该空白位置相邻的正方形B与正方形A是相对面习题:1.正方体有几个面?几个顶点?几条棱?2.五棱柱有几个面?几个顶点?几条棱?3.流星划过夜空留下的痕迹可用什么定理解释?风扇旋转的过程运用什么定理解释?硬币在桌面快速旋转,形成一个球的印象,运用了什么定理?4.正方体的平面展开图都分几种类型?5.找出下列正方体平面展开图的对立面?1.3线段、射线和直线1.线段(1)特征:①有两个端点;②有长短(即可度量);③无方向(2)表示方法:①用表示线段端点的两个大写字母表示,如线段AB或线段BA(字母无序)②用一个小写字母表示,如线段a2.射线:将线段向一个方向无限延伸就得到射线(1)特征:①有一个端点;②无长短(即可度量);③有方向(只向一个方向无限延伸)(2)表示方法:①用两个大写字母表示,第一个字母表示射线的端点,第二个字母是射线上任意一点,与字母排序有关②用一个小写字母表示,如射线a3.直线:将线段向两个方向无限延伸就得到直线(1)特征:①无端点;②无长短(即可度量);③无方向(2)表示方法:①用直线上任意两个点的大写字母表示,与字母排序无关②用一个小写字母表示,如直线a4.直线、射线、与线段的关系:射线、线段都是直线的一部分,线段向一个方向无限延伸就得到射线,向两个方向无限延伸就得到直线5.点与直线的位置关系:(1)点在直线上(或直线经过点);(2)点在直线外(或直线不经过点)6.直线的确定:两点确定一条直线7.两条直线的关系:平面上的两条直线有相交(有一个交点)与不相交(无交点)两种位置关系如果两条直线经过同一个点,就称这两条直线相交。

七年级数学上册-第一章《基本的几何图形》-知识点

七年级数学上册-第一章《基本的几何图形》-知识点

七年级数学上册-第一章《基本的几何图形》-知识点用心爱心专心 2用心爱心专心 3用心爱心专心 4用心 爱心 专心 5的形象.几何图形是由_____、______、______、______组成的.2.一个正方体共有______个面,______条棱,______个顶点.同步测试:1.将三角形绕直线l 旋转一周,可以得到图1所示的立体图形的是( ).2.五棱柱的棱数和侧面数分别是( )A .5,5B .15,5C .10,7D .5,7 知识点四:线段、直线、射线1. “拔河时,拉直的绳子给我们以________的形象.”把线段向两方无限延伸,就得到________;将线段向一个方向无限延伸就形成了__________;射线有____个端点,线段有____个端点,而直线________端点.A .B . 图2. 线段、直线、射线都可以用两个大写的字母或一个小写的字母表示,而表示射线时表示端点的大写字母必须写在________.同步测试:1.下列说法中,错误的是().A.经过一点的直线可以有无数条 B.经过两点的直线只有一条C.一条直线只能用一个字母表示 D.线段CD 和线段DC是同一条线段2.下列图形中,能够相交的是( ).知识点四:线段的基本性质,线段的度量与比较1.经过一点可以画______条直线,经过两点能且只能画_______条直线,也就是说_______确定一条直线.如果两条直线经过同一个点,那么这两条直线________,这个点叫做这两条直线的________.用心爱心专心 6用心 爱心 专心 72. 两点之间的所有连线中,_______最短;两点之间的线段的长度叫做这两点之间的________.3.如图2,如果点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 叫做这条线段AB 的________,记作AM = BM = 21AB .同步测试: 1. 如图3,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).A .A →C →D →B B .A →C →F →BC .A →C →E →F →BD . A →C →M →B2. 如图4所示,线段AB 的长为8cm ,点C为线段图4图用心 爱心 专心 8AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.3.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm 例题讲解:例1. 下列几何体中是圆柱的为( ).例2.下面4个图均由6个小正方形组成,若以每个小正方形为面,则可以折叠成正方体的是( ).例3.如图,直线a 和射线OA 能相交的是______?为什么?A. B. C. D.用心 爱心 专心9例4.下列说法正确的是( )A .线段AB 和线段BA 表示的是同一条线段;B .射线AB 和射线BA 表示的是同一条射线;C .直线AB 和直线BA 表示的是两条直线;D .如右图5,点M 在直线AB 上,则点M 在射线AB 上.随堂检测:1. 圆柱是由下列哪一种图形绕虚线旋转一周得到的( )2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )A. B. C. D.3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④4.已知A、B、C是同一直线上的三个点,且AB=5cm,BC=4cm,,则AC的长为( )A.1cmB.9cmC.1cm或9cmD.不能确定5.观察下列图形,并阅读图形下面的相关文字:用心爱心专心10两条直线相交,三条直线相交,四条直线相交,最多有1个交点;最多有3个交点;最多有6个交点;……像这样,十条直线相交,最多交点的个数是().(A) 40 (B) 45 (C) 50 (D) 55同步练习1.正方形纸片绕它的一边旋转一周所得到的几何体是()A.正方体B.圆锥C.圆柱D.球2.如图7的几何体中,属于棱柱的有()A.6个B.5个C.4人D.3个图73.圆柱是由下列哪一种图形绕虚线旋转一周得到的()4.下列平面图形中,不能折叠成几何体的是( )5.下面的两个图形都是由两个圆、两个三角形、两条线段组合而成的.请你用两个圆、两个三角形、两条线段再设计出几幅新奇、有趣的图形,并给出文字说明.6.如下左图中共有_____条直线,_____条射线,______条线段.A .B .C . A . B .C .D .7.要在墙上固定一根直木条,至少要钉______个钉子8. 如图,点C 是线段AB 内任意一点,M 、N 分别是线段AC 、BC 的中点,如果AB =8厘米,那么,MN =_______厘米.9. 从哈尔滨开往A 市的特快列车途中要停靠于两个站点,•如果任意两站之间的票价都不同,那么有________种不同的票价.10.如图8所示是一个几何体的展开图,每个面上都标有相应的字母.(1)如果A 面有几何体的底部,上面的是哪一面?(2)若F 面在前面,B 面在左面,上面是哪一面?(3)C 面在右面,D 面在后面,上面是哪一面?11. 已知线段AB=7cm ,在直线AB 上画线段图BC=3cm,则线段AC=_______.12.在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?图9。

青岛版七年级上册数学第1章 基本的几何图形含答案

青岛版七年级上册数学第1章 基本的几何图形含答案

青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.两点确定一条直线B.不相交的两条直线叫做平行线C.过一点有且只有一条直线与已知直线平行D.两点间的距离是指连接两点间的线段2、平面上A、B两点间的距离是指()A.经过A,B两点的直线B.射线ABC.A,B两点间的线段 D.A,B两点间线段长度3、用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱体C.圆柱D.圆锥4、将一个正方体沿某些棱展开后,能够得到的平面图形是()A. B. C. D.5、把如图所示的平面图形绕直线L旋转一周,得到的立体图形是()A.圆柱B.圆锥C.球D.棱锥6、C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为( )A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm7、图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A. B. C. D.8、如图,下列各式中错误的是()A.AB=AD+DBB.CB=AB﹣ACC.CD=CB﹣DBD.AC=CB﹣DB9、下列说法中正确的有()①同位角相等. ②凡直角都相等. ③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长. ⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个10、下列说法中,正确的个数有().(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连结两点的线段叫做两点间的距离A.1B.2C.3D.411、下列说法正确的是 ( )A.两点的所有连线中,直线最短B.连接两点之间的线段,叫做这两点之间的距离C.锐角的补角一定是钝角D.一个角的补角一定大于这个角12、如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信13、如图为正方体的一种平面展开图,各面都标有数字,则数字为-2的面与其对面上的数字之和是()A.2B.0C.4D.-214、下列说法正确的个数为()(1)柱体的上、下两个面一样大;(2)圆柱的侧面展开图是长方形;(3)正方体有6个顶点;(4)圆锥有2个面,且都是曲面;(5)球仅由1个面围成,这个面是平面;(6)三棱柱有5个面,且都是平面.A.1B.2C.3D.415、如图,是一个正方体的表面展开图,则原正方体中“伟”字所在的面相对的面上标的字是()A.大B.梦C.国D.的二、填空题(共10题,共计30分)16、如图,用一个平面从正方体的三个顶点处截去正方体的一角变成一个新的多面体,这个多面体共有________ 条棱.17、如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是________.18、若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画________ 条直线.19、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长为________.20、随着我国的发展与强大,中国文化与世界各国文化的交流和融合进一步加强,各国学校之间的交流活动逐年增加,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字,如图是她设计的礼盒平面展开图,那么“礼”字对面的字是________.21、小明为自己是重庆一中的学子感到很自豪,他特制了一个写有“我爱重庆一中”的正方体盒子,其展开图如图所示,则原正方体中与“重”字所在的面相对的面上的字是________ .22、已知点P在直线上,且到原点的距离为4,则点P的坐标________23、用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径长为________cm.24、如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是选项中的________(填序号)25、平面直角坐标系中,点A(0,﹣1)与点B(3,3)之间的距离是________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、分别画出下列平面图形:长方形,正方形,三角形,圆.28、.如图,某玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,已知喷涂1dm2需用油漆59g,求喷涂这个玩具共需多少g油漆?29、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?30、如图,已知B、C是线段AD上任意两点,M、N分别是线段AB、CD的中点.若MN=a,BC=b,求AD的长.参考答案一、单选题(共15题,共计45分)1、A2、D4、C5、B6、B7、C8、D9、D10、A11、C12、A13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版七年级数学上册《几何图形》课件

人教版七年级数学上册《几何图形》课件

巩固练习
展开
链接中考
1.如图是某个几何体的展开图,该几何体是( A ) A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
2.小明从正面观察如图所示的两个物体,看到的是( C )
A.
B.
C.
D.
课堂检测
基础巩固题
1. 右图是一块带有圆形空洞和方形空洞的小木板,则下 列物体中既可以堵住圆形空洞,又可以堵住方形空洞的 是( B )
以上立体图形都是几何体,简称体.
1. 你知道这些几何体是由什么围成的吗? 2. 下图中的图形分别有哪些面?这些面有什么不同吗?
探究新知
1. 几何体是由面围成的. 2. 面分为平的面和曲的面.
探究新知
实际生活中的平面与曲面
平平面面
曲面ቤተ መጻሕፍቲ ባይዱ曲面
探究新知
说一说
如下图,围成这些立体图形的各个面中哪 些面是平的?哪些面是曲的?
A.
B.
C.
D.
课堂小结
几 何 图 形

交动 成成
线
交动 成成

围动 成成

构成图形的基本元素 无大小
直线 无粗细 曲线 平面 无厚薄 曲面
物体的图形
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看 从上面看
探究新知 试一试 下面的五幅图分别是从什么方向看的?
1
背面
2
顶部
3
4
正面
素养目标
2.了解几何图形构成的基本元素是点、线、面、 体及其关系,能正确判定由点、线、面、体经 过运动变化形成的简单的几何图形.

七年级数学上册 第一章 基本的几何图形 1.1 我们身边的图形世界同步课件

七年级数学上册 第一章 基本的几何图形 1.1 我们身边的图形世界同步课件
第三十八页,共三十八页。
第十七页,共三十八页。
3.下列(xiàliè)几何体从三个方向看到的都是长方形的是( )
第十八页,共三十八页。
【解析(jiě xī)】选B.圆柱从正面和左面看到的均是长方形,从上面看 到的是圆;长方体从三个方向看到的均是长方形;选项C从正面和左 面看到的均是梯形,从上面看到的是圆环;选项D从正面和左面看到的 均是三角形,从上面看到的是“ ”.
1.观察(guānchá)下面三幅图片中的几何图形
第三页,共三十八页。
(1)图中的长方体、正方体都有___个六面,它们的所有面_____同不一个在平
面内.
(2)圆柱有__2个平面和__1个曲面,圆锥(yuánzhu1ī)有__个平面和1__个曲面,
球有1曲个_面__(q_ū_m.ià它n) 们的所有面____不_同在一个平面内.
第二十一页,共三十八页。
变式备选:下列几何体中,从上面(shàng miɑn)看相同
的是( C)
A.①② B.①③ C.②③ D.②④
【解析】选C.从上面看 ①是 ,②是 ,③是 ,④是 .
第二十二页,共三十八页。
6.从正面、左面、上面观察如图所示的几何体,分别 (fēnbié)画出你所看到的平面图形.
第二十三页,共三十八页。
【答案(dáàn)】
第二十四页,共三十八页。
7.如图是一个由若干个棱长相等的正方体构成(gòuchéng)的几何体的从 三个方向看到的平面图形. (1)请写出构成这个几何体的正方体个数. (2)请根据图中所标的尺寸,计算这个几何体的表面积.
第二十五页,共三十八页。
【答案(dáàn)】(1)观察可知共有5个正方体. (2)S表=5×6a2-10a2=20a2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7.1我们身边的图形世界设计人:宁阳三中娜【学习目标】1、能从现实世界中抽象出几何体、平面、曲面,并了解其概念的意义,同时初步体会几何体研究的对象、方法。

2、知道正方体、长方体、圆柱、圆锥、球等都是几何体,并能在具体问题中区分他们。

3、会对简单几何体进行正确的分类【学习重点】几何体、平面、曲面的概念,并了解常见的几何体。

【学习难点】几种常见几何体的基本特征【自学过程】一(1):学习课本第4—5页的容,回答下列问题:1、观察第4页图1—1中的图片,这些图片中的物品各具有怎样的形状?茶叶筒:足球:魔方:漏斗:2、观察第5页图1—2中四对泥人图片中,各对泥人的形状相同吗?大小相同吗?形状:大小:根据上面的学习,总结:几何体:简称3、你熟悉下面几何体吗?用线把几何体和它们的名称连接起来。

球体长方体圆锥体圆柱体正方体思考:你能举出生活中常见的几何体吗?(2):学习课本第5—6页容,回答下列问题:1、观察课本第5页图1—4,它们都是由面构成的,这些面的特点是:没有没有是向思考:大家想一想在我们平常的生活中,除了上面学习的面外,还有面,如图1—5,都是由面构成的。

2、根据上面学习的容举出生活中常见图形中表面是平面的例子(至少2个)表面是曲面的例子(至少2个)二、预习检测:1、由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体.铅笔_____手机______杯子_____砖块____纸箱_______足球_____易拉罐_____粉笔盒_____一堆沙子_______魔方_____冰淇淋2.找出生活中与下列几何体形状类似的物体各一个.(1)正方体:_______(2)圆柱:_______(3)长方体:_______(4)圆锥:_______(5)球:_______3.判断下列的述是否正确:⑴柱体的上、下两个面不一样大()⑵圆柱、圆锥的底面都是圆()(3)圆柱的侧面是平面()§7.1我们身边的图形世界达标题设计人:宁阳三中娜1、填空:(每空0.5分,共4分)体是由围成的,长方体是由个面围成的,圆柱是由个面和个面围成的,球是由个面围成的。

2、(1分)下列几何体中,是圆柱的是()第3题图3.(2分)下列几何体不属于柱体的有()A.正方体B.长方体C.圆锥D.圆柱4.(1分)下面所列举的物体,与圆柱形状类似的是()A.篮球B.字典C.易拉罐D.标枪尖头5、我们看到的物体,只研究它们的、和,而不考虑颜色、质量、原料等其他性质时,就得到各种几何体,几何体简称。

(2分)§7.2几何图形(1)设计人:宁阳三中娜【学习目标】1、会从实物中抽象出点、线,知道长方体的侧棱、顶点及围成长方体的各个面。

2、知道几何图形、立体图形和平面图形的意义,并感受点、线、面、体之间的关系。

【学习重点】知道长方体的侧棱、顶点及围成长方体的各个面,并感受点、线、面、体之间的关系。

【学习难点】知道几何图形、立体图形和平面图形的意义,理解点、线、面、体之间的关系。

【自学过程】一:学习课本P7—8页的容,回答下列问题:1、观察图1—6回答第7页(1)(2)(1),,(2)相邻两个面的交接处的形状是什么?结合上面问题回答“棱”概念即棱特别地,在圆锥和圆柱中,侧面与底面的交接处都是,圆是一条封闭的一般地,两个面的交接处都是,线可以是,也可以是,数学上所说的线是没有(3)棱与棱的交接处是什么图形?回答下列概念:点:顶点:思考:(1)组成几何图形的基本元素是(2)一个长方体有多少条棱?多少个顶点?总结:几何图形的概念是:2、观察图1—6思考:长方体各个顶点都在同一平面上吗?回答下列概念:(1)立体图形:(2)平面图形: 举例:生活中常见的立体图形有: 平面图形有:2、 学习课本第8页图1—7思考:点、线、面之间的关系是什么?预习检测:1、“点动成 , 动成 , 动成 。

” 是组成图形的基本元素。

2、几何图形是由什么组成的?平面图形与立体图形之间的关系是什么3、左边的图形绕着虚线旋转一周形成的几何体是由右边的( ).§7.2几何图形(1) 达标题设计人: 宁阳三中 娜1、判断:(共2分,每个0.5分)⑴在宇宙中可以把织女星看作一个点。

( )⑵子弹从枪膛中射出去的轨迹可以看作线。

( )⑶火柴盒是正方体。

( )⑷球是由一个曲面围成的。

( )2、棱是由 和 相交而成的,顶点是由 和 相交而成的。

圆柱是由 个面围成的,圆柱的侧面和底面相交成 线。

(3分)3、长方体有 个面,有 个顶点,过每个顶点有 条棱,长方体共有 条棱。

(2分)4、用我们学过的数学语言说明下列事实:一只乌龟在沙滩上爬行属于 ;自行车的辐条运动是 ;一个圆沿着它的一条直径旋转是 。

(3分)A B C D§7.2几何图形(2)设计人:宁阳三中霞【学习目标】1、知道正方体的表面展开图可以是不同的平面图形。

2、会判断一个图形是不是正方体的展开图,并体验空间图形和平面图形之间的转化。

3、经历展开、折叠、制作等活动,体验空间图形和平面图形的相互转化,丰富数学活动经验。

【学习重点】会判断一个图形是不是正方体的展开图,并会把正方体展开。

【学习难点】运用空间思维,理解正方体的展开图【自学过程】一、学习课本P9—10页的“实验与探究”,观察课本图1—8回答:1、正方体由几个面围成的?各个面的形状是什么?这些图形的大小和形状相同吗?2、正方体有几个顶点?几条棱?这些棱的长短一样吗?3、正方体每个顶点处有几条棱?它们在同一平面上吗?思考:1、把一个正方体剪开,从一个顶点出发,至少剪开几条就可以把正方体的各个面铺在同一个平面上?2、如果把各个面上标有1、2、3、4、5、6数字的正方体展开,观察图形的形状,它们有哪些相同点和不同点。

3、观察图1—10中哪些图形能围成正方体。

二、学习课本P10页的“交流与发现”,观察课本图1—11回答:1、写出1、2、3号数字的面所对的面上的数字分别是、、。

2、思考:正方体的各个相对的面之间与原平面图形的各个正方形之间的位置排列存在什么规律?预习检测:1、如图所示,截去正方体一角变成一个新的多面体,这个多面体有_____个面,_____条棱,_________个顶点;截去的几何______个面。

2、思考:(1)用剪刀将一正方形的纸片剪去一个角,还剩 个角。

(2)剪一刀后,能使纸上剩6个角吗?试一试。

(3)一个立方体共有6个面,如果将这个立方体用刀切成两块,被分成的两个几何体共有 个面?如果切成的两块共有10个面,怎样切?§7.2几何图形(2) 达标题设计人: 宁阳三中 霞1、将一个正方体沿某些棱剪开,展成一个平面图形,至少需要剪开 条棱。

A 、5B 、6C 、7D 、82、下列平面图形不能够围成正方体的是( )3、一个正方体沿它的某些棱展开后,如图所示。

(1)在原来的正方体中,标有“★”的面所对的面上标的汉字是(2)如果正方体中“学”所在的面在前面,从左边看到的字是“我”,那么从上面看到的字是A BC D§7.3线段射线直线(1)设计人:宁阳三中霞【学习目标】1、知道线段、射线、直线的概念,能说出它们的区别和联系。

2、能按要求画出线段、射线、直线,并能用字母正确表示这些图形,感受符号在描述图形中的重要作用。

【学习重点】线段、射线和直线的表示方法及它们之间的区别【学习难点】理解直线、射线和线段的区别与联系【自学过程】一、阅读课本P13--14,回答下列问题:1、线段、射线、直线的特征线段:_______________________________________________________________射线:_______________________________________________________________直线:_______________________________________________________________思考:线段、射线、直线之间的区别与联系?二:学习课本P13—14会按要求画图并会用字母表示线段、射线、直线:线段图像①大写字母表示:②小写字母表示:射线图像①大写字母表示:②小写字母表示:直线图像①大写字母表示:②小写字母表示:三:学习课本第14页例1,并在下面独立做一遍四、思考:射线OA与射线AO相同吗?区别在哪里?1、预习检测:如图,平面的线段AB,BC,CD,DA首尾相接,按照下列要求画图:(1)连接AC,BD相交于点O; A(2)分别延长线段AD,BC相交于点P;(3)分别延长线段BA,CD相交于点Q。

(4)分别表示线段AC上的所有线段名称。

§7.3线段射线直线(1)达标测评:设计人:宁阳三中霞1、(5分)填空:如图,有()条直线,有()条线段,有()条射线,其中,以点O为端点的射线共有()条,它们是()2、(2分)用直尺按要求画图:延长线段AB,得到射线AB。

延长线段AB,得到直线AB。

3、(3分)如图,点A,B,C,D在同一条直线上,以这四个点中的任意两个点为端点的线段有几条?请写出这些线段。

写出以B为端点的射线我们可以怎样表示这条直线?CBA B C D§7.3线段射线直线(2)设计人:宁阳三中立刚【学习目标】1、知道点与线的位置关系,熟记两点确定一条直线的基本性质2、知道平面上两直线之间的关系,掌握相交的定义及交点的意义。

【学习重点】熟记点与直线的位置关系及直线的性质,相交、交点的意义。

【学习难点】点与直线的位置关系及直线的性质【学习过程】一、自学课本P15“观察与思考”及P16“实验与探究”,认识点与直线的位置关系,理解直线的性质。

(1)看图1-20,你认为点与直线有几种位置关系(2)过一点能画几条直线?(3)过两点能画几条直线?总结直线_______________________________________________________________思考:举出生活中“两点确定一条直线”的实际例子。

二:自学课本P16“实验与探究”,写出下列概念。

1、相交_________________________________________________________________2、交点_________________________________________________________________思考:2条直线相交有个交点,3条直线两两相交,最多有个交点。

三、思考1、根据二中思考,想一想平面上有4条直线,最多有几个交点?画一画。

如果平面上有5条直线,最多有几个交点?你发现了什么规律?2、工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直。

相关文档
最新文档