气体电介质的击穿特性演示文稿

合集下载

2.3-气体电介质的击穿特性(均匀电场中-流注理论)

2.3-气体电介质的击穿特性(均匀电场中-流注理论)
eαd ≥常数 一般认为当αd≈20(或eαd ≥108)便可满足上述条件,
使流注得以形成。
流注理论对放电现象的解释
放电时间: 二次崩的起始电子是光子形成的,而光
子以光速传播,所以流注发展非常快。 放电外形:
二次崩的发展具有不同的方位,所以流 注的推进不可能均匀,而且具有分支。 阴极材料:
大气条件下的气体放电不依赖阴极表面 电离,而是靠空间光电离产生电子维持,因此与 阴极材料无关。
流注理论与汤逊理论的区别与联系: 相同点:
都有电子崩的产生 不同点:
流注的形成过程中有二次崩的形成、二 次电离在气体击穿过程中起了重要作用。
作业
P32 2-2 2-3
分枝的明细通道
因为汤逊理论没有考虑空间电荷对电场的畸变和光游 离对放电的影响,流注理论对标准大气压、一般间隙的 气体放电现象进行了解释。
以自然界的雷电为例,它发生在两块雷云之间或雷 云与大地之间,这时不存在金属阴极,因而与阴极上的二次 电子发射根本无关。因此,必须采用另外一种理论--流注 理论来解释。
流注理论的认识
汤逊理论适用于低气压、短间隙、均匀电场。间 隙的划分:2cm以下的为短间隙、2—100cm为一般间隙、 100cm及以上的为长间隙。 汤逊理论解释不了一般间隙、标准大气压下气隙的放电:
1.按汤逊理论计算的击穿电压比实际值高; 2.按汤逊理论计算的击穿所需时间比实际值长; 3.一般间隙的击穿电压与阴极材料无关; 4.放电外形不同;均匀连续,如辉光放电
本节重点:
流注的形成过程、流注的条件 气体放电流注理论以实验为基础,它考虑了高气压、
长气隙情况下不容忽视的若干因素对气体放电的影响,主 要有以下两方面:
空间电荷对原有电场的畸变作用 空间光游离

气体的击穿优秀PPT资料

气体的击穿优秀PPT资料

的电子,初始电子和新电子继续
极不均匀场放电特点: 游离能 :产生游离需要的能量。 场强较小,则正离子撞击阴极板时从阴极逸出的电子将全
向阳极运动,又会引起新的碰撞
游离,产生更多电子。依此电子 激励态分子回复到正常态释放出光子。
工程实际中,输电线路外绝缘和高压电器的外绝缘都属于极不均匀电场分布,在交流电压下的击穿都发生在正半波;
如果取消外游离因素,电流也将 消失,这类依靠外游离因素的作 用而维持的放电叫非自持放电。
外施电压到达U0后,气隙中游离 过程只靠外施电压已能维持,不 再需要外游离因素的放电称为自 持放电,U0称为起始放电电压。
二、低气压下均匀场自持放电的汤逊理论
(一)电子崩
外界游离因子在阴极附近产生一
空间电荷对原有电场的影响
带电粒子的运动
当气体中存在电场时,粒子同时 进行热运动和沿电场定向运动。
自由行程:一个质点在每两次碰撞 间自由地通过的距离。
平均自由行程:众多质点自由行程的平均值。
1、碰撞游离
电子或离子与气体分子碰撞,将动能传递给气体分子引起游 离的过程。
碰撞游离条件:当电子从电场获得的动能大于或等于气体分
c、光游离子产生的二次游电子离,在能加强时的局,部电就场作可用下能形成使二次气崩;体分子分裂为电子或正离子。
模块五 交流耐压试验
情境一 均匀场气体的击穿
新课引入:
气体的击穿是由什么引起的?
本次课程的目的要求:
1、能说明 (P)、d对击穿电压的影响,会解释
巴申曲线中放电特点 2、能说明均匀场中气体击穿的两个理论及区别。
3、会说明均匀电场中气隙的击穿特性。
(一) 气隙中带电粒子的产生和消失
带电粒子: 正离子、负离子、电子

气体介质的击穿现象

气体介质的击穿现象

气体介质的击穿现象气体介质的击穿现象是指在一定电压条件下,气体中产生了电击穿现象。

电击穿是指在高电场强度作用下,气体中原本绝缘的状态被突破,导致气体成为导电状态。

本文将从气体击穿的定义、机理、影响因素和应用等方面进行详细论述,并探讨当前相关研究和趋势。

一、气体击穿的定义气体击穿是指当电压达到一定临界值时,气体中的原子或分子被电场加速并与其他粒子碰撞,导致气体发生电离现象,产生局部的导电通道。

这个电离过程可以是从阴极向阳极的电子流(电子击穿)或者从阳极向阴极的离子流(离子击穿)。

二、气体击穿的机理气体击穿是由复杂的物理和化学过程导致的,其机理主要包括以下几个方面:1. 离子化机制:电场加速下,气体中的原子或分子产生离子化,形成自由电子和离子。

2. 碰撞机制:离子与原子、分子碰撞后产生电离级联形成更多的离子和自由电子。

3. 电子减速机制:自由电子与气体分子碰撞后产生电子减速,使其能量转移给其他分子。

4. 穿透机制:产生的离子和自由电子在电场作用下穿越气体并形成导电通道。

三、气体击穿的影响因素气体击穿现象受到多种因素的影响,主要包括以下几个方面:1. 电场强度:电场强度越高,气体击穿越早。

2. 气体性质:不同气体具有不同的击穿电压和击穿场强度。

例如,质子型气体(氢气、氦气)的击穿电压要比电子型气体(氮气、氧气)低。

3. 气体压力:气体的击穿电压随着压力的增加而降低。

当气体压力较低时,击穿电压较高。

4. 温度:温度对气体击穿电压的影响与气体性质有关。

一般情况下,温度越高,击穿电压越低。

四、气体击穿的应用气体击穿现象在科学研究和工程应用中具有重要作用,主要应用于以下领域:1. 电力系统:用于判断电力设备(变压器、绝缘子、电缆等)的耐压性能,以保证电力系统的安全运行。

2. 气体放电灯:例如氖灯、气体放电显示器等,利用气体击穿的特性来产生光电效应。

3. 气体保护:在工业生产过程中,气体击穿可用于保护设备和人员的安全,如气体绝缘断路器等。

气体电介质的绝缘特性演示文稿

气体电介质的绝缘特性演示文稿
气体电介质的绝缘特性演示文稿
1
第一页,共58页。
优选气体电介质的绝缘特性
第二页,共58页。
问题
1.流注理论未考虑( )的现象。
A.碰撞游离
B.表面游离
C.光游离
D.电荷畸变电场
2.先导通道的形成是以( )的出现为特征。
A.碰撞游离
B.表现游离
C.热游离
D.光游离
试对以下极间距离相同的几种气体间隙的直流 击穿电压进行排序:
场,使击穿电压低于无屏蔽的情况。
屏蔽层靠近负棒,强电场作用下电子速度大,可以穿透屏 蔽层,正离子集聚在屏蔽层,屏蔽层总体上带正电荷, 削弱屏蔽层前方电场,击穿电压略有提高。
19
第十九页,共58页。
(三) 极不均匀电场中采用屏障-DC:总结
棒电极为正极性时 正离子聚集在屏障上, 并沿表面均匀分布,削 弱了正棒头部的强电场
最后,第四阶段,电压再升高,滑闪贯通两级 ,形成沿面闪络。
38
第三十八页,共58页。
1.9.2 极不均匀场具有强垂直分量 的沿面放电
滑闪放电在交流和冲 击下表现明显。
随电压增加,滑闪 长度增长变快,因 此单靠加长距离提 高闪络电压效果不 明显。
玻璃管壁变薄,滑 闪电压降低。
39
第三十九页,共58页。
1.9 沿面放电
含义:沿空气与固体介质表面发生的气体放电现 象称为沿面放电。击穿后俗称闪络。
研究意义:一个绝缘装置的实际耐压水平由沿面 放电电压决定。
研究范围:表面干燥、清洁时的沿面放电电压 表面潮湿、污秽时的沿面放电电压
29
第二十九页,共58页。
1.9 沿面放电
电极
固体 介质
电极
固体 介质

气体电介质的击穿特性课件

气体电介质的击穿特性课件

初始电子崩转变为 流注瞬间照片
p=273毫米汞柱 E=12千伏/厘米
电子崩在空气中的发展速度约为1.25107cm/s
2024/6/28
32
在电离室中得到的阳极流注发展过段的照片 正流注的发展速度约为11082108cm/s
2024/6/28
33
自持放电条件
形成流注——空间光电离维持放电(自持放电) 如果电场均匀,间隙就将被击穿。所以流注形成的 条件就是自持放电条件,在均匀电场中也就是导致击穿 的条件。
18
三、极不均匀电场中的击穿电压
1. 对电极形状不对称的不均匀电场,有明显的极性效应。
2. 由于存在局部强场区,故间隙击穿前有稳定的电晕发生,间隙的起始
放电电压小于击穿电压。
3. 因间隙距离长,放电发展所需时间长。故外加电压的波形对击穿电压
影响大,击穿电压的分散性大。
极不均匀电场击穿电压的特点:
电场不均匀程度对击穿电压的影响减弱(由于电场已经极不均匀),
二次电子 崩 中的电子+初
始电子崩 的 正空间电荷—
— 注
混合通 道 通道和二
( 次
流 崩


下)的。正流

荷,大大



流注发
展方向 的 电场,产生新电
子崩,从而使流注向前发

(a )
(b)
(c)
2024/6/28
30
(3)间隙的击穿
21
均匀电场的击穿特点 击穿前无电晕、无极性效应、各种电压作
用时其击穿电压(峰值)都相同。 稍不均匀电场的击穿特点
击穿前无稳定电晕、极性效应不明显、各 种电压作用时其击穿电压(峰值)几乎一致。 极不均匀电场的击穿特点

气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

第5章电介质的击穿气体电介质的击穿液体电介质的击穿固体电介质的击穿¾电介质的击穿介质发生击穿时,通过介质的电流剧烈地增加,通常以介质伏安特性斜率趋向于∞(即dI/dU=∞)——击穿发生的标志。

¾击穿电压¾击穿场强:电介质的击穿场强是电介质的基本电性能之一,它决定了电介质在电场作用下保持绝缘性能的极限能力。

5.1 气体电介质的击穿¾正常气体中的载流子(离子和电子)在外电场作用下迁移,形成电流电流随电压增加而增加电离产生的载流子来不及复合,全部到达电极气体中出现碰撞电离,载流子浓度增大,电流不再保持恒定而迅速上升载流子数剧增,气体中的电流无限增大(dI/dU→∞)——丧失绝缘性能。

气体击穿(气体放电):气体由绝缘状态变为良导电状态的过程。

击穿场强:均匀电场中击穿电压与气体间隙距离之比.击穿场强反映了气体耐受电场作用的能力,即气体的电气强度。

平均击穿场强:不均匀电场中击穿电压与间隙距离之比称¾气体发生击穿时除电流剧增外,通常还伴随有发光及发热等现象。

5.1.1 均匀电场中气体击穿的理论1.气体击穿的汤逊(Townsend)理论电子崩形成过程(电子倍增过程)(1)电子崩与电流倍增外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多的电子。

α如电离系数为,则从阴极出发的一个电子,行经单位距离后增加为2α个电子。

类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。

电子崩模型右图所示,在电子崩发展过程中,崩头最前面集中着电子,其后直到崩尾是正离子。

在强电场中出现电子崩α的过程称为过程。

这样的放电依赖于外界条件的,也称为非自持放电.(2)气体的自持放电实验发现,当气隙不太宽时,放电与电极材料有关,因而导致考虑γ过程的作用,由γ过程和过程一起来决定气隙中的电流。

高电压工程基础(第3章)

高电压工程基础(第3章)

• • • •
3. 采用高气压 • 巴申定律 • 需要设备外壳的密封性和机械强度提出很高的要求 4. 采用高抗电强度的气体 • 在气体电介质中,有一些含卤族元素的强电负件气 体,如六氟化硫(SF6)、氟里昂(CCl2F2)等,因其具有 强烈的吸附效应。所以在相同的压力下具有比空气高 得多的抗电强度.因此被称为高抗电强度的气体。 5. 采用高真空 • 真空间隙的击穿电压大致与间隙距离的平方根成正比
• 3.伏秒特性 • 工程上用气隙击穿期间出现的冲击电压的最大值和放电时 间的关系来表征气隙在冲击电压下的击穿特性,称为伏秒 特性。 • 实际上,由于放电时间的分散性.在每一电压下可得到 一系列放电时间。所以伏秒特性曲线是一个带状区域、通 常使用的是平均伏秒特性曲线。 • 均匀和稍不均匀电场气隙的伏秒特性曲线比较平坦,其放 电形成时延较短,比较稳定, • 极不均匀电场气隙的伏秒特性曲线比较陡峭。 • 保护设备(避雷器或间隙)需要伏秒特性曲线尽可能平坦, 并且位于被保护设备的伏秒特性之下且二者永不相交。
第三章 气体电介质的击穿特性
• 根据气体放电理论,可以说明气体放电的基本物 理过程.有助于分析各种气体间隙在各种高电压 下的放电机理和击穿规律。但由于气体放电的发 展过程比较复杂.影响因素较多,气隙击穿的分 散性较大,所以要想利用理论计算的方法来获取 各种气隙的击穿电压相当困难。因此通常都是采 用试验的方法来得到某些典型电极所构成的气隙 在各种电压下的击穿特性,以满足工程设计的需 要。 • 气隙的电场形式对气隙的击穿特性影响较大。此 外气隙所加电压的类型对气隙的击穿特性也有很 大关系。
三、极不均匀电场气隙在稳态电压下的击穿 特性 • 在极不均匀电场的气隙中,“棒一板”间 隙和“棒一棒”间隙具有典型意义。前者 具有最大的不对称性,后者则具有完全的 对称性。其他类型的极不均匀电场气隙的 击穿特性均介于这两种典型气隙的击穿特 性之间。

气体电介质的击穿特性PPT文档37页

气体电介质的击穿特性PPT文档37页
气体电介质的击穿特性
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头

气体电介质的击穿特性

气体电介质的击穿特性

开始出现电晕时电极表面的场强
输电线路的电晕起始场强与导线半径及空气密度 有关,一般用经验公式来推算,应用最广的是皮克 公式:
Ec3m 0(10r.3 )k( V/cm )
m:导线表面粗糙系数与气象系数的乘 积; δ:空气相对密度; r: 导线半径(cm)
ቤተ መጻሕፍቲ ባይዱ
3、电晕放电的效应 (1)电晕电流具有高频脉冲性质,对无线电通讯产生干扰。 (2)电晕使空气发生化学反应,产生O3、NO、NO2。 (3)产生能量损耗。电晕损耗是超高压输电线路设计时必须考虑的因
降低电晕的方法: 从根本上设法限制和降低导线的表面电场强度。
在极不均匀电场中,放电一定从曲率半径较小的 那个电极表面开始,与该电极极性无关。
对于电极形状不对称的不均匀电场气隙,如棒— —板间隙,棒电极的极性不同时,间隙的起晕电 压和击穿电压的大小也不同。这种现象称为极性 效应。
原因:棒电极的极性不同时,间隙中的空间电荷 对外电场的畸变作用不同。
和主放电三个阶段。 c、长间隙放电时,炽热的导电通道是在放电发展的过程中
建立的,而不是在整个间隙被流注通道贯穿后建立的,先 导过程与主放电过程就发展得越充分,所以长间隙的平均 击穿场强远小于短间隙的平均击穿场强。
持续电压作用下空气的击穿电压
空气间隙的击穿场强主要取决于外加电压的 种类、电场的均匀程度及气体的状态。 电力工程中的空气间隙一般会受到三种电压的作 用:
正棒—负板间隙 当电子崩发展到棒极时,电子进入棒极中和。正离子留在棒 极附近以较慢速度向板极运动,正空间电荷使紧贴棒极附近的 电场减弱,不易形成流注,放电难以自持,故起晕电压高。而 正空间电荷加强了朝向板极的电场,有利于流注向板发展,故 击穿电压较低。
负棒—正板 阴极表面游离产生的电子通过强场区形成电子崩,电子向板极运动进入 弱场区后不再引起游离,并大多形成负离子。因其浓度小,对电场影响小。 正空间电荷加强了棒极附近的电场,易形成自持放电,故起晕电压低。朝 向板极方向的电场被减弱,流注不易发展,故击穿电压较高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原因:棒电极的极性不同时,间隙中的空间电荷 对外电场的畸变作用不同。
2020/11/10
8
正棒—负板间隙
当电子崩发展到棒极时,电子进入棒极中和。正离子留在棒
极附近以较慢速度向板极运动,正空间电荷使紧贴棒极附近的
电场减弱,不易形成流注,放电难以自持,故起晕电压高。而
正空间电荷加强了朝向板极的电场,有利于流注向板发展,故
电四个阶段。 b、短间隙的放电没有先导放电阶段,只分为电子崩、流注
和主放电三个阶段。 c、长间隙放电时,炽热的导电通道是在放电发展的过程中
建立的,而不是在整个间隙被流注通道贯穿后建立的,先击穿场强远小于短间隙的平均击穿场强。
2020/11/10
14
用,其击穿电压(峰值)都相同,且分散性很小。
Ub=24.22 d+6.08 d (kV )
在标准大气条件下(d为1cm左右时),均匀电场
中空气的电气强度约为30kV/cm(峰值)。
2020/11/10
17
二、稍不均匀电场中的击穿电压
不均匀系数:间隙中的最大场强与平均场强之比, 稍不均匀电场<4
稍不均匀电场中各处的场强差异不大,间隙中任何一处若出 现自持放电,必将立即导致整个间隙的击穿。所以对于稍不均 匀电场,任何一处自持放电的条件,就是整个间隙击穿的条件。 1. 电场不对称时,击穿电压有弱极性效应。 2. 击穿前有电晕发生,但不稳定,一旦出现电晕,立即导致整个 间隙击穿。 3. 间隙距离一般不很大,放电发展所需时间短。直流击穿电压、 交流击穿电压、正负50%冲击击穿电压几乎一致,且分散性不 大。
2020/11/10
10
短间隙不均匀电场中的放电过程
指间隙距离不超过1m的间隙,以棒板间隙为 例。
由于正流注所形成的空间电荷总是加强流注 通道头部前方的电场,所以正流注的发展是 连续的,速度很快。
棒极为负时流注的发展实际上是阶段式的, 其平均速度比正棒极流注小得多,击穿同一 间隙所需的外电压要高得多。
降低电晕的方法: 从根本上设法限制和降低导线的表面电场强度。
2020/11/10
7
3 极性效应
在极不均匀电场中,放电一定从曲率半径较小的 那个电极表面开始,与该电极极性无关。
对于电极形状不对称的不均匀电场气隙,如棒— —板间隙,棒电极的极性不同时,间隙的起晕电 压和击穿电压的大小也不同。这种现象称为极性 效应。
击穿电压较低。
2020/11/10
9
负棒—正板 阴极表面游离产生的电子通过强场区形成电子崩,电子向板极运动进入 弱场区后不再引起游离,并大多形成负离子。因其浓度小,对电场影响小。 正空间电荷加强了棒极附近的电场,易形成自持放电,故起晕电压低。朝 向板极方向的电场被减弱,流注不易发展,故击穿电压较高。
素,坏天气时电晕损耗要比好天气时大得多。
对于500-750kV的超高压输电线路,在天气好时电晕损耗一般不超
过几个W/km,而在坏天气时,可以达到100 W/km以上。
因此在设计超高压线路时,需要根据不同天气条件下电晕损耗的实测
数据和线路参数,以及沿线路各种气象条件的出现概率等对线路的电晕
损耗进行估算
2020/11/10
15
持续电压指直流电压或工频交流电压
特点:电压变化的速度和间隙中放电发展的速度相比极 小,故放电发展所需的时间可以忽略不计,只要作用于 间隙的电压达到击穿电压,间隙就会发生击穿。
直流电压:直流中所含脉动分类的脉动系数(脉动幅值 与直流电压的平均值之比)不大于3%。直流电压的大型 指直流电压的平均值。
电晕放电的现象
薄薄的发光层;
伴有“咝咝”放电声;
发出臭氧气味。
2 电晕放电的起始电压和起始场强
起始电压
开始出现电晕时的电压
起始场强
开始出现电晕时电极表面的场强
2020/11/10
5
输电线路的电晕起始场强与导线半径及空气密度
有关,一般用经验公式来推算,应用最广的是皮克
公式:
Ec 30m (1
气体电介质的击穿特性演示 文稿
(优选)气体电介质的击穿 特性
知识点
电晕放电 极性效应 先导 主放电 雷击冲击电压的波形 伏秒特性 流注的形成和发展 沿面放电
2020/11/10
3
1 电晕放电
电晕的产生 极不均匀电场中,间隙中的最大场强比平均场强大得多。外加电压比
较低的时候,曲率大(曲率半径较小)的电极附近电场强度已足够大 可引起强烈的游离,在这局部的强场区形成放电。这种仅仅发生在强 场区的局部放电称为电晕放电。 电晕放电是极不均匀电场特有的自持放电形式。
2020/11/10
11
2020/11/10
12
长间隙不均匀电场中的放电过程
(d>1m时) 1.先导放电阶段
具有热游离过程的通道称为先 导通道。
2.主放电阶段
温度更高、电导更大,轴向电
场更小的等离子体火花通道。
此时,间隙接近于短路状态,
气隙完全丧失了绝缘性能。
2020/11/10
13
结论: a、长间隙的放电通常分为电子崩、流注、先导放电和主放
持续电压作用下空气的击穿电压
空气间隙的击穿场强主要取决于外加电压的 种类、电场的均匀程度及气体的状态。 电力工程中的空气间隙一般会受到三种电压的作 用:
持续电压、雷电冲击电压、操作冲击电压
持续电压作用下间隙的击穿电压与放电发展 的时间无关,在电场形式、气体的状态等其他 条件不变的情况下,只取决于间隙的距离
2020/11/10
18
稍不均匀电场的击穿电压与电场均匀度关 系极大,没有能概括各种电极结构的统一的经 验公式。通常是对一些典型的电极结构做出一 批实验数据,实际的电极结构只能从典型电极 中选取类似结构进行估算。 电场越均匀,同样间隙距离下的击穿电压越高, 其极限就是均匀电场中的击穿电压。
交流电压:波形接近正弦波,正、负两半波相同,峰值
与有效值之比为 2,偏差不超过 5%。
2020/11/10
16
一、均匀电场中的击穿电压
1. 因电场对称,所以击穿电压无极性效应。 2. 因击穿前间隙各处场强相等,击穿前无电晕发生,起
始放电电压等于击穿电压。 3. 不论何种电压(直流、交流、正负50%冲击电压)作
0.3 )(kV / cm)
r
m:导线表面粗糙系数与气象系数的乘 积; δ:空气相对密度; r: 导线半径(cm)
2020/11/10
6
3、电晕放电的效应 (1)电晕电流具有高频脉冲性质,对无线电通讯产生干扰。 (2)电晕使空气发生化学反应,产生O3、NO、NO2。 (3)产生能量损耗。电晕损耗是超高压输电线路设计时必须考虑的因
相关文档
最新文档