开发区中学七年级上第一次月考数学试卷
人教版七年级数学上册第一次月考试卷及答案
人教版七年级数学上册第一次月考试题一、单选题1.在(2)--,|2|--,2(2)--,3(2)--中,正数共有( )A .1个B .2个C .3个D .4个 2.若m 为有理数,则|m|-m 一定是( )A .零B .非负数C .正数D .负数 3.若0ab <,0a b +<,则( )A .0,0a b >>B .0,0a b <<C .a,b 异号,且正数的绝对值较大D .a,b 异号,且负数的绝对值较大4.下列说法中错误的是( )A .正分数、负分数统称分数B .零是整数,但不是分数C .正整数、负整数统称整数D .零既不是正数,也不是负数 5.2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为( )A .73×106B .7.3×103C .7.3×107D .0.73×108 6.若a <c <0<b ,则abc 与0的大小关系是( )A .abc <0B .abc=0C .abc >0D .无法确定 7.若01m <<,m 、2m 、1m 的大小关系是( ). A .21m m m << B .21m m m << C .21m m m << D .21m m m << 8.下列运算正确的个数为( )①(-2)-(-2)=0 ②(-6)+(+4)=-10 ③0-3=3 ④512663⎛⎫+-= ⎪⎝⎭ A .0 B .1 C .2 D .39.已知有理数a,b,c 在数轴上的位置如图所示,下列错误的是( )A .b+c<0B .−a+b+c<0C .|a+b|<|a+c|D .|a+b|>|a+c| 10.若m 是有理数,则下列各数中一定是正数的是( )A .|m|B .m 2C .m 2+1D .|m+1|11.m,n 是有理数,它们在数轴上的对应点的位置如图所示,把m,-m ,n,-n 从小到大的顺序排列是( )A .-n<-m<m<nB .-m<-n<m<nC .-n<m<-m<nD .-n<n<-m<m12.下列说法中:①0是最小的整数;②有理数不是正数就是负数; ③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数; ⑤2π-不仅是有理数,而且是分数; ⑥237是无限不循环小数,所以不是有理数; ⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为( )A .7个B .6个C .5个D .4个13.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 14.如图,25的倒数在数轴上表示的点位于下列两个点之间( )A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I15.一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价( )A .高12.8%B .低12.8%C .高40%D .高28%二、填空题16.|x| = |-2019| ,x=__________。
七年级上册数学第一次月考试卷分析
七年级,上册,数学,第一,次月,考试卷,分析,七年级数学第一次月考试卷分析小薄中学七年级组七年级数学第一次月考试卷分析一、试题特点试卷包括填空题、选择题、解答题三个大题,共120分,以基础知识为主。
对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%,主要考查了七年级上册第一章有理数,这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。
无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。
试卷能从检测学生的学习能力入手,细致、灵活地来抽测每节的数学知识。
打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
二、学生问题分析根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题1、基本概念的考查上灵活、严谨、深刻,主要试题有(1—7、11)题,通过这些试题测试,可反映出学生对基本概念理解的准确程度及领悟能力。
2、基本计算能力有待提高。
计算能力的强弱对数学答题来说,有着举足轻重的地位。
计算能力强就等于成功了一半,如解答题的第23题的(4)、(10),24题的(2),学生在计算的过程中都出现不少错误.3、数学思维能力差这些问题主要表现在填空题的第10题,第15题,第12题和解答题的26题.4、审题能力及解题的综合能力不强。
如16题。
审题在答题中比较关键,如果对题目审得清楚,从某种程度上可以说此题已做对一半,数学不仅是一门科学,也是一种语言,在解题过程中,不仅要要求学生学会如何解决问题,还必须要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达,也就是要有清晰的解题过程。
数学联系生活的能力稍欠。
三、从学生试题解答中,反映出教学中应注意的问题。
1、分层教学过程中,要把握为教学尺度,教学过程要有针对性。
从试卷的选择题、填空题的情况看学生优劣不等,这说明学生在基础知识的掌握上已经两极分化,对普通生而言,必须强化基础知识的教学,不要使学生在基本知识的形成上出现较大差距,要根据学生的情况,有针对性地进行教学。
山西省太原市高新经济开发区多校2024-2025学年上学期第一次月考七年级数学试卷
山西省太原市高新经济开发区多校2024-2025学年上学期第一次月考七年级数学试卷一、单选题1.下面的几何体中,属于棱柱的有( )A .1个B .2个C .3个D .4个2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( ) A .880.1610⨯B .98.01610⨯C .100.801610⨯D .1080.1610⨯3.下列各组数相等的有( ) A .()22-与22- B .()31-与()21-- C .0.3--与0.3D .a 与a4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( ) A .4.4mmB .4.5mmC .4.6mmD .4.8mm5.用一个平面去截以下几何体:圆柱,圆锥,球,三棱柱,长方体,七棱柱;能截得三角形截面的几何体有( )个. A .3B .4C .5D .66.国庆期间,小郑与小州一起去爬山,他们想知道山的高度.小郑提议利用温差测量山峰的高度,小郑在山顶上测得温度是1-℃,小州此时在山脚测得温度为5℃.已知该地区高度每增加100米,气温大约降低0.8℃,则该山的高度大约是( ) A .600米B .800米C .650米D .750米7.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a >-B .0ab >C .a b -<D .a b >8.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是( )A .8B .9C .10D .129.几何图形由点、线、面组成,点动成线、线动成面、面动成体.下列现象中能反映“线动成面”的是( ) A .流星划过夜空 B .笔尖在纸上快速滑动 C .汽车雨刷的转动D .旋转门的旋转10.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A . 1.4-B . 1.6-C . 2.6-D .1.6二、填空题11.“霜降”是秋季的最后一个节气,“霜降”之后气温骤降、昼夜温差更大,今年霜降后的某天,本市清徐、阳曲、娄烦、古交四个县市的最低气温分别是:1℃、1-℃、0℃、2-℃,其中最低温度是℃.12.如图是一个正方体的平面展开图,要使展开图折叠成正方体后,相对面上的两个数互为相反数,则图中x y z ++=.13.如图是一张长12cm ,宽10c m 的长方形铁皮,将其剪去两个完全相同的边长为2cm 的正方形和两个完全相同的长方形,剩余部分(阴影部分)可制成有盖的长方体铁盒,这个铁盒的体积是3cm .14.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.请问这样第次可拉出128根面条.15.一个小正方体的六个面分别标有数字1,2,3,4,5,6.将它按如图所示的方式顺时针滚动,每滚动90°算一次,则滚动第2024次时,小正方体朝下一面标有的数字是三、解答题 16.计算下列各题: (1)(3)15(12)--+-; (2)(3)(2)(16)4-⨯---÷;(3)3135(2)428⎛⎫-⨯-+- ⎪⎝⎭;(4)221510336⎛⎫⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 17.把下面的有理数填在相应的括号里2+,12-,0.3,7-,79+,132-,0,100,23%(1)非负数集合:{ …} (2)负数集合:{ … } (3)分数集合:{ …} (4)非负整数集合:{ …}18.把下列各数表示在数轴上,并用“>”把它们连接起来. ()2122,,, 4.5,0,323⎛⎫-------+ ⎪⎝⎭19.在一个大正方体的角上切去一个小正方体,剩余的几何体如图所示,其中从正面、左面、上面看这个几何体时,看到的形状图如图①②③所示.(1)从正面看到的形状图是图_______,从左面看到的形状图是图_______,从上面看到的形状图是图_______;(填序号)(2)若大正方体的边长为20cm ,小正方体的边长为10cm ,求这个几何体的表面积与体积. 20.快递员小王在某商业大厦乘坐电梯取送快递,假定乘电梯向上一楼记作1+,向下一楼记作1-,小王从1楼出发,电梯上下楼层依次记录如下(单位:层):16+,5-,14+,9-,18+,12-,22-.(1)请通过计算说明小王最后是否回到出发点1楼.(2)该大楼每层高3m ,电梯每向上或向下1m 需要耗电0.2kW h g ,根据小王现在所处位置,请你算算,他取送快递时电梯需要耗电多少千瓦时? 21.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格(2)猜想f v e ,,三个数量间有何关系.(3)一个多面体的面数等于顶点数,且这个多面体有30条棱,求这个多面体的面数. 22.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()222,3333÷÷-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作2的圈3次方,()()()()3333-÷-÷-÷-记作()3-④,读作3-的圈4次方.一般地,把n 个a 相除,记作a ⓝ.【初步探究】(1)直接写出计算结果:5=③______;13⎛⎫-= ⎪⎝⎭④______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,则有理数的除方运算也可以按如图所示的方式转化为乘法运算.【探究应用】(2)试一试:仿照图中算式,将下列运算结果直接写成乘方的形式:()3-=⑤______;5=⑧______;12⎛⎫= ⎪⎝⎭⑩______;(3)算一算:4211195345⎛⎫⎛⎫⎛⎫-÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑤④④.23.已知在纸面上有一数轴,根据给出的数轴,解答下面的问题:(1)已知A 、B 两点相距3.5个单位长度,请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A、B的字母表示),并写出这些点表示的数.(3)折叠纸面,若数轴上1 对应的点与5对应的点重合,回答以下问题:①10对应的点与_______对应的点重合;②若数轴上M、N两点之间的距离为2024(M在N的左侧),且M、N两点经折叠后重合,求M、N两点表示的数.(4)如图,半径为2的圆上有一点Q落在数轴上A点处,求将圆在数轴上向右滚动(无滑动)一周后点Q在数轴上所表示的数.。
人教版2018-2019学年七年级上学期数学第一次月考测试题及答案
2018-2019学年七年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为()A.B.3 C.﹣ D.﹣32.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.43.如果a与2的和为0,那么a是()A.2 B.C.﹣ D.﹣24.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是()A.﹣3>﹣2.4>﹣(﹣2)>﹣0.5 B.﹣(﹣2)>﹣3>﹣2.4>﹣0.5C.﹣(﹣2)>﹣0.5>﹣2.4>﹣3 D.﹣3>﹣(﹣2)>﹣2.4>﹣0.56.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为()A.5.4×102人B.0.54×104人C.5.4×106人D.5.4×107人7.下列各数中互为相反数的是()A.﹣与0.2 B.与﹣0.33 C.﹣2.25与2 D.5与﹣(﹣5)8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是()A.1个B.2个C.3个D.4个9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校 C.书店 D.不在上述地方10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.﹣60米B.﹣80米C.﹣40米D.40米第1页(共13页)。
福建省厦门第一中学2023-2024学年七年级上学期第一次月考数学试题
零件的直径是19.9 mm,该零件
(填“合格”或“不合格”).
16.数轴上的点 A 和点 B 所表示的数互为相反数,且点 A 对应的数是 2 ,P 是到点 A 或
点 B 距离为 3 的数轴上的点,则所有满足条件的点 P 所表示的数的和为
.
三、解答题 17.计算
(1) 3 4 ;
(2)
1 3
4 3
(1)在数轴上描出 a , b , c 对应的点. (2)将 a , b , c , a , b , c 用“ ”号连接起来; (3)化简:| c a | | c b | | a b |. 25.某服装厂一周计划生产 2800 套运动服,计划平均每天生产 400 套,超出计划产量 的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星 期六的记录情况被墨水涂污了.
D. 32 与 23
7.下列四个算式中,其结4)2
D. 42
8.下列计算正确的是( )
A.(﹣16)÷(﹣4)=﹣4
B.﹣|2﹣5|=3
C.(﹣3)2=9
D.(﹣2)3=﹣6
9.若 a a ,则 a 一定是( )
A.正数
B.非正数
C.负数
D.非负数
D.负 44 、正1010 、正 66 、负 55 的和
4. 2 的相反数是( )
A. 2
B. 1 2
5.下列四个数中, 1 的倒数是( ) 3
A.3
B. 1 3
6.下列各组数中,数值相等的是( )
A. 35 与 35
C.
1 2
C. 1 3
B. 22 与 22
D. 2 D. 3
C. 4 23 与 42 3
试卷第 4页,共 4页
七年级数学上学期第一次月考试卷含解析苏科版1
2016-2017学年江苏省徐州市沛县五中七年级(上)第一次月考数学试卷一、选择题:1.下列说法正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数及负数C.0没有相反数D.0的倒数仍为02.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元3.下列是四个地区某天的温度,其中气温最低的是()A.16℃ B.﹣8℃C.2℃D.﹣9℃4.下列各式正确的是()A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣35.下列说法不正确的是()A.0既不是正数,也不是负数B.0是绝对值最小的数C.若|a|=|b|,则a与b互为相反数D.0的相反数是06.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.757.下列各组数中,相等的一组是()A.(﹣3)2与﹣32B.|﹣3|2与﹣32C.(﹣3)3与﹣33D.|﹣3|3与﹣338.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b<0二、填空题9.﹣5的绝对值是,﹣的倒数是,6的相反数是.10.平方得36的数是.11.化简:已知a>3,|a﹣3|= .12.化简:﹣(+)= ,﹣(﹣)= ,﹣|﹣2|= .13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.代数式﹣的系数是.15.|a﹣11|+(b+12)2=0,则(a+b)2017= .16.去年某品牌的彩电售价是m元,今年该品牌的彩电售价下降了15%,则今年的售价为元.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为.18.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为.三、解答题(本大题共有8小题,共86分.请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算.(1)(﹣)+﹣(﹣2)+(﹣)(2)﹣12014﹣×[2×(﹣2)+10](3)(﹣+)×(﹣36)(4)﹣18÷(﹣3)2+5×(﹣)3(5)|﹣2|﹣(﹣)+1﹣|1﹣|(6)﹣24+3×(﹣1)2000﹣(﹣2)2.20.将下列各数填入相应的集合中.﹣7,0,,﹣22,﹣…,,+9,…,+10%,﹣2π.无理数集合:{};负有理数集合:{};正分数集合:{};非负整数集合:{}.21.(8分)在数轴上表示下列各数,并把它们用“<”按照从小到大的顺序排列3,﹣(﹣1),0,﹣|﹣2|,﹣322.若|a+1|+(b﹣2)2=0,试求(a﹣b)×(a+b)与a2﹣b2的值.23.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?24.已知|a|=3,|b|=5,且a>b,求a﹣b的值.25.学校图书馆上周借书记录如下(超过50册的部分记为正,少于50册的部分记为负):星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上星期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上周平均每天借出图书多少册?26.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?2016-2017学年江苏省徐州市沛县五中七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:1.下列说法正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数及负数C.0没有相反数D.0的倒数仍为0【考点】倒数;数轴;相反数.【分析】根据数轴是表示数的一条直线,有理数的分类,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:A、所有的有理数都能用数轴上的点表示,故A正确;B、有理数分为正数、零、负数,故B错误;C、0的相反数是0,故C正确;D、0没有倒数,故D错误;故选:A.【点评】本题考查了倒数,利用数轴、有理数的分类、相反数、倒数是解题关键.2.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.【解答】解:因为正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.故选B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.下列是四个地区某天的温度,其中气温最低的是()A.16℃ B.﹣8℃C.2℃D.﹣9℃【考点】有理数大小比较.【专题】应用题.【分析】将四个选项中的数据逐个进行分析比较.【解答】解:因为﹣9<﹣8<2<16,所以气温最低的是﹣9℃.故选D.【点评】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.下列各式正确的是()A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣3【考点】相反数.【分析】根据相反数的定义和绝对值的性质对各选项分析判断后利用排除法求解.【解答】解:A、﹣|﹣3|=﹣3,故本选项错误;B、+(﹣3)=﹣3,故本选项错误;C、﹣(﹣3)=3,故本选项正确;D、﹣(﹣3)=3,故本选项错误.故选C.【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.5.下列说法不正确的是()A.0既不是正数,也不是负数B.0是绝对值最小的数C.若|a|=|b|,则a与b互为相反数D.0的相反数是0【考点】绝对值;有理数;相反数.【分析】A、0是非负非正的数;B、0也是绝对值最小的数;C、若|a|=|b|,则a=±b;D、0的相反数是0.【解答】解:A、正确,此选项不符合题意;B、正确,此选项不符合题意;C、错误,a、b还有相等的情况,此选项符合题意;D、正确,此选项不符合题意.故选C.【点评】本题考查了绝对值、有理数、相反数,解题的关键是掌握相关概念,并注意考虑问题要全面.6.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75【考点】一元一次方程的应用.【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a ﹣7,下边的数是a+7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【解答】解:日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a﹣7,下边的数是a+7,则三个数的和是3a,因而一定是3的倍数.当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,∴符合题意的三数之和一定在24到72之间,∴符合题意的只有45.故选:C.【点评】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.7.下列各组数中,相等的一组是()A.(﹣3)2与﹣32B.|﹣3|2与﹣32C.(﹣3)3与﹣33D.|﹣3|3与﹣33【考点】有理数的乘方.【专题】计算题.【分析】各项中利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,不相等;B、|﹣3|2=9,﹣32=﹣9,不相等;C、(﹣3)3=﹣27,﹣33=﹣27,相等;D、|﹣3|3=27,﹣33=﹣27,不相等;故选D【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b<0【考点】实数与数轴.【分析】根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用排除法求解.【解答】解:根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选C.【点评】本题考查了实数与数轴的关系,根据数轴确定出a、b的正负情况以及绝对值的大小是解题的关键.二、填空题9.﹣5的绝对值是 5 ,﹣的倒数是﹣,6的相反数是﹣6 .【考点】倒数;相反数;绝对值.【分析】根据负数的绝对值是它的相反数,乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的绝对值是 5,﹣的倒数是﹣,6的相反数是﹣6,故答案为:5,﹣,﹣6.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.10.平方得36的数是±6 .【考点】有理数的乘方.【分析】根据乘方运算,可得一个正数的平方根.【解答】解:∵(±6)2=36,∴±=±6,故答案为:±6.【点评】本题考查了有理数的乘方,乘方与开方互为逆运算,熟练掌握乘方的意义是解本题的关键.11.化简:已知a>3,|a﹣3|= a﹣3 .【考点】绝对值.【分析】根据绝对值的定义,可得出答案.【解答】解:∵a>3,∴a﹣3>0,∴|a﹣3|=a﹣3.故答案为a﹣3.【点评】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出a﹣3的符号,是解答此题的关键.12.化简:﹣(+)= ,﹣(﹣)= ,﹣|﹣2|= ﹣2 .【考点】绝对值;相反数.【分析】利用绝对值的定义和相反数的定义解答即可.【解答】解:﹣(+)=,﹣(﹣)=;,﹣|﹣2|=﹣2,故答案为:;;﹣2.【点评】本题主要考查了绝对值和相反数的定义,理解定义是解答此题的关键.13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=×106万元.故答案为×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).14.代数式﹣的系数是﹣.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,故答案为:﹣.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.|a﹣11|+(b+12)2=0,则(a+b)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣11=0,b+12=0,解得a=11,b=﹣12,所以,(a+b)2017=(11﹣12)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.去年某品牌的彩电售价是m元,今年该品牌的彩电售价下降了15%,则今年的售价为0.85m 元.【考点】列代数式.【分析】根据题意,把去年的售价看作单位“1”,今年比去年降低15%,今年的售价是去年的1﹣15%=85%,已知去年某品牌的彩电售价是m元,求今年的售价用乘法解答即可.【解答】解:根据题意得:m(1﹣15%)=0.85m(元),答:今年的售价为0.85m元;故答案为:0.85m.【点评】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10 .【考点】代数式求值.【专题】图表型.【分析】根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.【点评】本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为﹣5 .【考点】数轴.【分析】若1表示的点与﹣3表示的点重合,则折痕经过﹣1;若数轴上A、B两点之间的距离为8,则两个点与﹣1的距离都是4,再根据点A在B的左侧,即可得出答案.【解答】解:画出数轴如下所示:依题意得:两数是关于1和﹣3的中点对称,即关于(1﹣3)÷2=﹣1对称;∵A、B两点之间的距离为8且折叠后重合,则A、B关于﹣1对称,又A在B的左侧,∴A点坐标为:﹣1﹣8÷2=﹣1﹣4=﹣5.故答案为:﹣5.【点评】本题考查了数轴的知识,注意根据轴对称的性质,可以求得使两个点重合的折痕经过的点所表示的数即是两个数的平均数.三、解答题(本大题共有8小题,共86分.请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(36分)(2016秋•沛县校级月考)计算.(1)(﹣)+﹣(﹣2)+(﹣)(2)﹣12014﹣×[2×(﹣2)+10](3)(﹣+)×(﹣36)(4)﹣18÷(﹣3)2+5×(﹣)3(5)|﹣2|﹣(﹣)+1﹣|1﹣|(6)﹣24+3×(﹣1)2000﹣(﹣2)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣+2+﹣=1;(2)原式=﹣1﹣×6=﹣1﹣1=﹣2;(3)原式=﹣18+20﹣21=﹣19;(4)原式=﹣2﹣=﹣2;(5)原式=2++1﹣=3;(6)原式=﹣16+3﹣4=﹣17.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.将下列各数填入相应的集合中.﹣7,0,,﹣22,﹣…,,+9,…,+10%,﹣2π.无理数集合:{};负有理数集合:{};正分数集合:{};非负整数集合:{}.【考点】实数.【分析】根据实数的分类即可求出答案.【解答】解:故答案为:{…,﹣2π};{﹣7,﹣22,﹣255555…};{,,+10%};{0,+9}【点评】本题考查实数的分类,属于基础题型.21.在数轴上表示下列各数,并把它们用“<”按照从小到大的顺序排列3,﹣(﹣1),0,﹣|﹣2|,﹣3【考点】有理数大小比较;数轴.【专题】常规题型.【分析】规定了原点、正方向、单位长度的直线叫做数轴.原点向右的方向为正半轴,表示的数为正数,原点向左的方向为负半轴表示的数为负;一般来说,当数轴方向朝右时,右边的数总比左边的数大.【解答】解:将各数表示在数轴上如下图所示:∵数轴上从左向右破裂的数一次增大,∴数轴略.﹣3<﹣|﹣2|<0<﹣(﹣1)<3【点评】本题考查了有理数的大小比较、数轴及其应用,解题的关键是掌握数轴的概念、画法及有理数与数轴上的点对应关系.22.若|a+1|+(b﹣2)2=0,试求(a﹣b)×(a+b)与a2﹣b2的值.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先根据非负数的性质求得a、b的数值,进一步代入代数式求得数值即可.【解答】解:∵|a+1|+(b﹣2)2=0,∴a=﹣1,b=2,分别代入得(a﹣b)(a+b)=(﹣1﹣2)(﹣1+2)=﹣3;a2﹣b2=(﹣1)2﹣22=﹣3.【点评】此题考查代数式求值,非负数的性质,利用非负数的性质求得a、b的数值是解决问题的关键.23.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?【考点】有理数的加法.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题求耗油量时,注意要用汽车实际行驶的路程乘以每千米耗油量.【解答】解:(1)约定向东为正,向西为负,8﹣9+4+7﹣2﹣10+18﹣3+7+5=8+4+7+18+7+5﹣9﹣10﹣2﹣3=25千米,故收工时在A地的东边距A地25千米.(2)油耗=行走的路程×每千米耗油0.3升,即|8|+|﹣9|+|4|+|7|+|﹣2|+|﹣10|+|18|+|﹣3|+|7|+|5|=73千米,73×=21.9升,故从出发到收工共耗油21.9升.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.注意耗油量与方向无关,求路程时要把绝对值相加才可以.24.已知|a|=3,|b|=5,且a>b,求a﹣b的值.【考点】有理数的减法;绝对值.【分析】根据绝对值的性质求出a、b的值,再确定出a、b的对应关系,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=3,|b|=5,∴a=±3或b=±5,∵a>b,∴a=3时,b=﹣5,a﹣b=3﹣(﹣5)=3+5=8,a=﹣3时,b=﹣5,a﹣b=﹣3﹣(﹣5)=﹣3+5=2,综上所述,a﹣b的值为8或2.【点评】本题考查了有理数的减法,绝对值的性质,熟记性质与运算法则并确定出a、b的对应关系是解题的关键.25.学校图书馆上周借书记录如下(超过50册的部分记为正,少于50册的部分记为负):星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上星期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上周平均每天借出图书多少册?【考点】有理数的混合运算;正数和负数.【专题】图表型.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.(1)标准数50加上表格中上周五的借书记录﹣7;(2)上星期二的借书记录减去上星期五的借书记录;(3)标准数50加上表格中5个数的平均数.【解答】解:根据题意在此题中:超过50册的部分记为正,少于50册的部分记为负,则(1)上星期五借出图书50﹣7=43册;(2)上星期二比上星期五多借出图书8﹣(﹣7)=15册;(3)平均每天借出图书50+=51册.【点评】此题考查正负数及有理数的运算在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.26.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【考点】数轴;正数和负数.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向右滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是2π;故答案为:无理,2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.。
河南省郑州经济技术开发区第四中学2022-2023学年七年级下学期第一次月考数学试卷(含解析)
2022-2023学年河南省郑州四中七年级(下)第一次月考数学试卷一、选择题(共10小题,满分30分)1.(3分)下列算式结果为﹣2的是( )A.2﹣1B.(﹣2)0C.﹣21D.(﹣2)22.(3分)刻蚀机是芯片制造和微观加工最核心的设备之一,中国自主研发的5纳米刻蚀机已获成功,5纳米就是0.000000005米.数据0.000000005用科学记数法表示为( )A.5×10﹣8B.5×10﹣9C.0.5×10﹣8D.50×10﹣93.(3分)下列各式中,计算正确的是( )A.a3•a n=a3n B.(a3)4=a7C.a6n÷a2n=a3D.(ab)3=a3b34.(3分)如图,有一个破损的扇形零件,小明利用图中的量角器量出这个扇形零件的圆心角度数为60°,你认为小明测量的依据是( )A.垂线段最短B.对顶角相等C.圆的定义D.三角形内角和等于180°5.(3分)已知a﹣b=3,ab=10,那么a2+b2的值为( )A.27B.28C.29D.306.(3分)如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2,AC⊥l1,AB=4,BC=3,则下列说法正确的是( )A.点A到直线l2的距离等于4B.点C到直线l1的距离等于4C.点C到AB的距离等于4D.点B到AC的距离等于37.(3分)如图,两个大小正方形的边长分别是4cm和x cm(0<x<4).用含x的式子表示图中阴影部分的面积为( )cm2.A.B.C.D.8.(3分)如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是( )A.∠BOD B.∠ABO C.∠BOC D.∠BAO9.(3分)已知a=3100,b=475,c=750,则a,b,c的大小关系为( )A.a>b>c B.a>c>b C.c>a>b D.b>c>a10.(3分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于( )A.150°B.80°C.100°D.115°二、填空题(共5小题,满分15分)11.(3分)如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是 .12.(3分)如图,a∥b,若∠1=60°,则∠2= °.13.(3分)已知3x=6,3y=4,则33x﹣2y﹣1的值等于 .14.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值为 .15.(3分)∠AOB=40°,BC∥OA,过点C作直线OA的垂线,点D为垂足,若∠OCD=2∠OCB,则∠COB 为 度.三、解答题(共7小题,满分55分)16.(8分)计算:(1);(2)102×98(用整式乘法公式计算).17.(6分)先化简,再求值:[(x+2y)2﹣(3x+y)(﹣y+3x)﹣5y2]÷(﹣x),其中(2x+1)2=﹣|y﹣2|.18.(6分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠CGD( ),所以∠2=∠CGD(等量代换).所以CE∥BF( ).所以∠ =∠C( ).又因为∠B=∠C(已知),所以∠ =∠B(等量代换).所以AB∥CD( ).19.(8分)如图,∠D=100°,CA平分∠BCD.(1)若∠DCA=40°,求证:AD∥BC;(2)若AD∥BC,求∠DAC的度数.20.(7分)如图,射线OC,OD把∠AOB分成三个角,且度数之比是∠AOC:∠COD:∠DOB=2:3:4,射线OM平分∠AOC,射线ON平分∠DOB,且OM⊥ON,求∠AOB的补角的度数.21.(10分)有若干张正方形和长方形卡片如图①所示,其中A型、B型卡片分别是边长为a,b的正方形,C型卡片是长为a、宽为b的长方形.【操作一】若用A型卡片1张,B型卡片9张,C型卡片6张拼成一个正方形,则这个正方形的面积为 ,正方形的边长为 ;【操作二】将C型卡片沿如图①所示虚线剪开后进行拼图,得到如图②所示的大正方形和小正方形(阴影部分),则选取C型卡片 张,小正方形面积可表示为 ;【操作三】如图③,将2张A型卡片和2张B型卡片无叠合地置于长为2a+b、宽为a+2b的长方形中,若图②中阴影部分的面积为4,图③中阴影部分的面积为15,记每张A型、B型、C型卡片的面积分别为S A,S B,S C,求S A+S B+S C的值.22.(10分)问题情境:在综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.探索发现:“快乐小组”经过探索后发现:(1)当不断改变∠A的度数时,∠CBD与∠A却始终存在某种数量关系.当∠A=40°时,则∠CBD= °;当∠A=x°时,则∠CBD= °.(用含x的代数式表示)操作探究:(2)“智慧小组”利用量角器探究∠APB和∠ADB之间的数量关系,量出二者的度数后.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB之间的数量关系都保持不变,请写出它们的关系,并说明理由.2022-2023学年河南省郑州四中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,满分30分)1.【解答】解:A、2﹣1=,此选项不符合题意;B、(﹣2)0=1,此选项不符合题意;C、﹣21=﹣2,此选项符合题意;D、(﹣2)2=4,此选项不符合题意;故选:C.2.【解答】解:0.000000005=5×10﹣9.故选:B.3.【解答】解:A、a3•a n=a3+n,原式计算错误,故选项不符合题意;B、(a3)4=a12,原式计算错误,故选项不符合题意;C、a6n÷a2n=a4n,原式计算错误,故选项不符合题意;D、(ab)3=a3b3,原式计算正确,故选项符合题意.故选:D.4.【解答】解:由题意可知,小明测量的依据是对顶角相等,故选:B.5.【解答】解:将a﹣b=3两边平方得:(a﹣b)2=a2+b2﹣2ab=9,把ab=10代入得:a2+b2﹣20=9,则a2+b2=29.故选:C.6.【解答】解:在Rt△ABC中,AC==5,根据点到直线的距离的概念可知,点A到直线l2的距离等于4,点C到直线l1的距离等于5,点C到AB的距离等于3,点B到AC的距离等于3×4÷5=2.4.故选:A.7.【解答】解:阴影部分的面积为42+x2﹣(4+x)×4﹣x2﹣×4(4﹣x)=x2(cm2).故选:B.8.【解答】解:∵∠AOD+∠BOD=90°,∠BOC+∠BOD=90°,∴∠AOD、∠BOC都是∠BOD的余角,∴与∠AOD始终相等的角是∠BOC.故选:C.9.【解答】解:a=3100=(34)25=8125,b=475=(43)25=6425,c=750=(72)25=4925,∵49<64<81,∴a>b>c.故选:A.10.【解答】解:∵矩形ABCD沿EF对折,∴∠BFE=∠2,∴∠BFE=(180°﹣∠1)=×(180°﹣50°)=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=180°﹣65°=115°.故选:D.二、填空题(共5小题,满分15分)11.【解答】解:因为PB⊥AD,垂足为点B,所以沿线路PB行走距离最短,依据的几何学原理是垂线段最短.故答案为:垂线段最短.12.【解答】解:如图:∵a∥b,∴∠1=∠3=60°,∴∠2=180°﹣∠3=120°,故答案为:120.13.【解答】解:∵3x=6,3y=4,∴(3x)3=33x=216,(3y)2=y2y=16,∴33x﹣2y﹣1=33x÷32y÷3=216÷16÷3=4.5.故答案为:4.5.14.【解答】解:x2+2(m﹣3)x+16=(x±4)2=x2±8x+16,∴2(m﹣3)=±8,∴m=7或﹣1.故答案为:7或﹣1.15.【解答】解:如图所示,当点D在AO上时,∵BC∥OA,CD⊥AO,∴∠BCD=90°,又∵∠OCD=2∠OCB,∴∠BCO=30°=∠AOC,又∵∠AOB=40°,∴∠COB=40°﹣30°=10°;如图所示,当点D在AO的延长线上时,∵BC∥OA,CD⊥AO,∴∠BCD=90°,又∵∠OCD=2∠OCB,∴∠BCO=30°=∠DOC,又∵∠AOB=40°,∴∠COB=180°﹣40°﹣30°=110°;故答案为:10或110.三、解答题(共7小题,满分55分)16.【解答】解:(1)=﹣1+4﹣1=2;(2)102×98=(100+2)(100﹣2)=1002﹣22=9996.17.【解答】解:原式=[x2+4xy+4y2﹣(9x2﹣y2)﹣5y2]÷(﹣x)=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷(﹣x)=(﹣8x2+4xy)÷(﹣x)=16x﹣8y,∵(2x+1)2=﹣|y﹣2|,∴(2x+1)2+|y﹣2|=0,∴2x+1=0,y﹣2=0,解得,x=﹣,y=2,∴原式=16×(﹣)﹣8×2=﹣24.18.【解答】解:因为∠1=∠2(已知),∠1=∠CGD(对顶角相等),所以∠2=∠CGD(等量代换),所以CE∥BF(同位角相等,两直线平行),所以∠BFD=∠C(两直线平行,同位角相等),因为∠B=∠C(已知),所以∠BFD=∠B(等量代换),所以AB∥CD(内错角相等,两直线平行),故答案为:对顶角相等;同位角相等,两直线平行;BFD;两直线平行,同位角相等;BFD;内错角相等,两直线平行.19.【解答】(1)证明:在△ACD中,∠D=100°,∠DCA=40°,∴∠DAC=180°﹣∠D﹣∠DCA=180°﹣100°﹣40°=40°,∵CA平分∠BCD,∴∠ACB=∠DCA=40°,∴∠DAC=∠ACB,∴AD∥BC;(2)∵AD∥BC,∴∠D+∠BCD=180°,∠DAC=∠ACB,∵∠D=100°,∴∠BCD=180°﹣∠D=80°,又∵CA平分∠BCD,∴∠ACB=∠BCD=40°,∴∠DAC=∠ACB=40°.20.【解答】解:设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵OM⊥ON,∴∠MON=90°,即6x=90°,解得x=15°,∵∠AOB=9×15°=135°,∴∠AOB的补角的度数为45°.21.【解答】解:【操作一】由题意知,正方形的面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴正方形的边长为a+3b,故答案为:a2+6ab+9b2,a+3b;【操作二】由图②知,选取C型卡片2张,小正方形面积为:(a﹣b)2,故答案为:2,(a﹣b)2;【操作三】由图②得,(a﹣b)2=4,即a2﹣2ab+b2=4,①由图③得,(2a+b)(a+2b)﹣2a2﹣2b2=15,化简得,ab=3,②将②代入①得,a2+b2=10,∴.22.【解答】解:(1)当∠A=40°时,∵AM∥BN,∴∠ABN=180°﹣∠A=140°,∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN=×140°=70°;当∠A=x°时,∵AM∥BN,∴∠ABN=180°﹣∠A=(180﹣x)°,∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN=(180﹣x)°=(90﹣x)°;故答案为:70;(90﹣x);(2)∠APB=2∠ADB,理由:∵BD平分∠PBN,∴∠PBN=2∠DBN,∵AM∥BN,∴∠APB=∠PBN,∠BDP=∠DBN,∴∠APB=2∠ADB.。
七年级数学上册第一次月考试卷
七年级数学上册第一次月考试卷为好成绩,知识渊博,创造力多,分秒必争,只为成功,祝你七年级数学月考取得好成绩,期待你的成功!小编整理了关于七年级数学上册第一次月考试卷,希望对大家有帮助!七年级数学上册第一次月考试题一、选择题(每小题3分,共36分)1、在下列各数:,,,,,中,负数有( )A.2个B.3个C.4个D.5个2、水池中的水位在某天八个不同时间测得的记录如下:(规定与前一天相比上升为正,单位:cm)+3,-6,-1,+5,-4,+2,-3,-2,那么这天水池中水位的最终变化情况是( )A.上升6cmB.下降6cmC.没升没降D.下降26cm3、下列各式中,一定成立的是( )A. B. C. D.4、下列说法正确的是( )A.有理数包括正整数、零和负分数B. 不一定是整数C.-5和+(-5)互为相反数D.两个有理数的和一定大于每一个加数5、如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数是( )A.7B.3C.-3D.-26、下列结论正确的是( )A.若,则B.若,则C.若,则D. 一定是负数7、若是有理数,则一定是( )A.零B.非负数C.正数D.负数8、小于2014且不小于-2013的所有整数的和是( )A.0B.1C.2013D.20149、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③ ;④(-36)÷(-9)=-4. 其中正确的个数是( )A.1个B.2个C.3个D.4个10、下列各式中的大小关系成立的是( )A. B. C. D.11、按下面的程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件的的不同值最多有( )A.2个B.3个C.4个D.5个12、在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A.1,2B.1,3C.4,2D.4,3二、填空题(每小题3分,共21分)13、的绝对值的倒数是 .14、 = .15、若是-9的相反数,则 = .16、若,则 = .17、若,则在,,,,0这五个数中,最大的数是 .18、已知,化简 = .19、绝对值比2大并且比6小的整数共有个.20、已知,,且,那么 = .21、如图是一个由六个小正方体堆积而成的几何体,每个小正方体的六个面上都分别写着-1,2,3,-4,5,-6六个数字,那么图中所有看不见的面上的数字和是 .22、从-3,-2,-1,4,5中取3个不同的数相乘,可得到的最大乘积为,最小乘积为,则 = .23、在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点的总数为3,三层二叉树的结点总数为7,四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为 .三、解答题24、计算(每小题5分,共15分)(1) (2)25、(6分)把,,4,-3,5分别表示在数轴上,并用“<”号把它们连接起来.26、(4分)(探究题)①若数轴上点AB对应的数分别是-1、-4,则线段AB的中点C对应的数是 ;②若数轴上点AB对应的数分别是2、4,则线段AB的中点C对应的数是 ;③若数轴上点AB对应的数分别是-2、3,则线段AB的中点C对应的数是 ;④若数轴上点AB对应的数分别是a、b,则线段AB的中点C对应的数是 .27、(6分)阅读下列材料并解决有关问题.我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x<-1;(2)-1≤x<2;(3)x≥2.从而化简代数式|x+1|+|x-2|可分以下3种情况:(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x<2时,原式=x+1-(x-2)=3;(3)当x≥2时,原式=x+1+x-2=2x-1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x+3|和|x-5|的零点值;(2)化简|x+3|+|x-5|.七年级数学上册第一次月考试卷参考答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12C B A BD B B A B D C A二、填空题13、14、-815、416、-2717、618、-119、620、-2或-821、-1322、23、127三、解答题24、(1)6 (2)-31 (3)25、-3< < <4<526、①-2.5 ②3 ③0.5 ④27、(1)|x+3|和|x-5|的零点值分别为-3、5.(2)当x<-3时,原式=2x+2;当-3≤x<5时,原式=8;当x≥5时,原式=2x-2.。
辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题
辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15- 2.如果零上5℃记作5+℃,那么零下3℃可记为( )A .3-℃B .3+℃C .2-℃D .2℃3.下列各式正确的是( )A .55=-B .55-=-C .55-=-D .55=-- 4.亚洲、欧洲、非洲和南美洲的最低海拔如下表所示表,其中最低海拔最小的大洲是( )A .亚洲B .欧洲C .非洲D .南美洲 5.在1318,9,0,12%,7.2,,24---π,7中,非负有理数有( ) A .6个 B .5个 C .4个 D .3个6.化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( ) A . B . C . D . 7.数轴上的点A 到原点的距离是5,则点A 表示的数为( )A .-5B .5C .5或-5D .2.5或-2.5 8.某校九年1班期末考试数学的平均成绩是82分,小明得了90分,记作8+分,若小亮的成绩记作4-分,表示小亮得了( )分.A .84B .76C .78D .749.如图,直径为1的圆上有一点A ,且点A 与数轴上表示1-的点重合,将这个圆在数轴上无滑动的滚动,当点A再次与数轴上的某个点重合,那么这个点的位置可能是()A.3与4之间B.6与7之间C.7-与6-之间D.5-与4-之间10.如图,A B C D,,,四个点将数轴上6-与5两点间的线段五等分,这四个等分点位置最靠近原点的是()A.点A B.点B C.点C D.点D二、填空题11.在4-,227,0,2π,3.14159,1.3,0.121121112⋯中,有理数有个.12.比较大小:8-9-(填“>”、“<”或“=”).13.化简14⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦.14.如图,在数轴上,点A表示的数为2,若将点A向左移动5个长度单位后,这时点A表示的数是.15.若式子3|2|4x--有最小值,则该最小值为.三、解答题16.把下列各数填在相应的大括号内:41935,0.1,,0,3,1,π,22,0.3,743----.整数集合{…}分数集合{…}正有理数集合{…}负有理数集合{…}17.画一条数轴,并在数轴上表示下列各数:()112,1, 3.5,22+--+-,并用“<”把这些数连接起来.18.近年来,国家越来越重视新能源汽车的发展,为积极响应国家推广节能减排的政策,王老师家买了一辆新能源汽车.王老师连续一星期记录了每天行驶的路程(每天以20km 为基准,超出记为正,不足记为负),如表:(1)该汽车行驶路程最多的一天是,这一天的实际行驶路程是km .(2)若该新能源汽车每行驶100km 耗电量为15度,每度电约为0.5元,求王老师这一星期开新能源汽车的电费.19.已知23a -与5b -互为相反数,求2b a -的值,20.对于一个数x ,我们用(]x 表示小于x 的最大整数,例如(]2.62=,(]34-=-.(1)填空:(]10=__________;(]202-=__________;17⎛⎤= ⎥⎝⎦___________. (2)若a ,b 都是整数,且(]a 和(]b 互为相反数,求a b +的相反数.21.如图1,电脑显示屏上画出了一条不完整的数轴,并标出了表示6-的点A .小明同学设计了一个电脑程序:点M ,N 分别从点A 同时出发,每按一次键盘,点M 向右平移2个单位长度,点N 向左平移1个单位长度.例如,第一次按键后,屏幕显示点M ,N 的位置如图2.(1)第______次按键后,点 M 正好到达原点;(2)第6次按键后,点M 到达的点表示的数字比点N 到达的点表示的数字大多少?(3)第n 次按键后,点M ,N 到达的点表示的数互为相反数,求n 的值.22.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道,a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A 、B ,分别用数a 、b 表示,那么A ,B 两点之间的距离为||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.若数轴上点A 表示数a ,请回答下列问题:(1)如果||5a =,那么a 的值是_____;(2)如果|3|5a -=,那么a 的值是_____;(3)满足|2||3|5a a ++-=整数a 有____个;(4)如果|2||3|8a a ++-=,那么a 的值是_____;(5)|1||2||3||4||5|a a a a a +++++++++的最小值是_____.23.设有理数a ,b 在数轴上所对应的点为A ,B ,记为()A a ,()B b ,将a b -称为点A ,B 的对称指标,记为(),A B μ,即(),A B a b μ=-.对于定点..A ,若动点..B 在线段MN 上,将(),A B μ的最大值...称为线段MN 关于点A 的对称指标,记为(),A MN μ. (1)点()1A ,()1B -,()3C -,()D d 在数轴上,①(),A B μ=__________,(),A C μ=__________.②若(),1C D μ=,则d =__________.(2)点()5E -,()M m ,()N n 在数轴上,m n <,4MN =,①当1m =时,(),E MN μ=__________.②当线段MN 在数轴上运动时,直接写出(),E MN μ的最小值及此时m 的值.。
人教版七年级上册数学第一次月考试卷含解析
人教版七年级数学测试卷(考试题)2017-2018学年江苏省徐州市丰县XX中学七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分)1.﹣的相反数是()A.B.﹣ C.2 D.﹣22.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104 B.0.11×107C.1.1×106D.1.1×1053.下列计算正确的是()A.23=6 B.﹣42=﹣16 C.﹣8﹣8=0 D.﹣5﹣2=﹣34.有四包洗衣粉,每包以标准克数为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+6 B.﹣7 C.﹣14 D.+185.若a是最小的自然数,b是最大的负整数,c是倒数等于它本身的数,则a+b+c=()A.0 B.﹣2 C.0或﹣2 D.﹣1或16.若|a|+a=0,则a是()A.零B.负数C.非负数D.负数或零7.下列计算正确的是()A.(﹣3)﹣(﹣5)=﹣8 B.(﹣3)+(﹣5)=+8 C.(﹣3)3=﹣9 D.﹣32=﹣98.下列比较大小正确的是()A.﹣<﹣B.﹣(﹣21)<+(﹣21) C.﹣|﹣10|>8 D.﹣|﹣7|=﹣(﹣7)9.下列说法正确的有()(1)任何一个有理数的平方都是正数;(2)两个数比较,绝对值大的反而小;(3)﹣a不一定是负数;(4)符号相反的两个数互为相反数.A.1个 B.2个 C.3个 D.4个10.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.4二、填空题(本题共8小题,每题3分,共计24分)11.在“﹣3,,2π,0.101001”中无理数有个.12.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.13.绝对值小于3的所有整数有.14.甲、乙、丙三地的海拔高度分别是20米、﹣15米、﹣10米,那么最高的地方比最低的地方高米.15.已知|x|=3,|y|=1,且x+y<0,则x﹣y的值是.16.若m、n互为相反数、c、d互为倒数,则m+n﹣2cd=.17.按如图程序计算,如果输入的数是﹣2,那么输出的数是.18.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>0三、解答题19.计算:(1)﹣23﹣(﹣18)﹣1+(﹣15)+23(2)(﹣83)÷2+×(﹣16)(3)(﹣+)÷(﹣)(4)﹣16﹣×[3﹣(﹣3)2]﹣2÷(﹣).20.在数轴上画出表示数﹣|﹣3|,﹣(﹣2)2,﹣的点,把这组数从小到大用“<”号连接起来.21.请把下列各数填入相应的集合中,5.2,0,2π,,﹣22,,2005,﹣0.030030003…正数集合:{…}负数集合:{…}无理数集合:{…}有理数集合:{…}.22.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?23.阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:当|x﹣2|=0时,的值.24.观察下列各式:13=1=;13+23=9=;13+23+33=36=;13+23+33+43=100=…回答下面的问题:(1)13+23+33+43+…+103=(写出算式即可);(2)计算13+23+33+…+993+1003的值;(3)计算:113+123+…+993+1003的值.2017-2018学年江苏省徐州市丰县XX中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分)1.﹣的相反数是()A.B.﹣ C.2 D.﹣2【考点】14:相反数.【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104 B.0.11×107C.1.1×106D.1.1×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:110000=1.1×105,故选:D.3.下列计算正确的是()A.23=6 B.﹣42=﹣16 C.﹣8﹣8=0 D.﹣5﹣2=﹣3【考点】1E:有理数的乘方;1A:有理数的减法.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.【解答】解:A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误;故选B.4.有四包洗衣粉,每包以标准克数为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+6 B.﹣7 C.﹣14 D.+18【考点】11:正数和负数.【分析】根据正负数的绝对值越小,越接近标准,可得答案.【解答】解:|6|<|﹣7|<|﹣14|<|18|,A越接近标准,故选:A.5.若a是最小的自然数,b是最大的负整数,c是倒数等于它本身的数,则a+b+c=()A.0 B.﹣2 C.0或﹣2 D.﹣1或1【考点】12:有理数.【分析】找出最大的负整数,最小的自然数,以及倒数等于本身的数,确定出a,b,c的值.【解答】解:根据题意得:a=0,b=﹣1,c=1或﹣1,则原式=﹣1+0+1=0,或原式=﹣1+0﹣1=﹣2,故选C.6.若|a|+a=0,则a是()A.零B.负数C.非负数D.负数或零【考点】15:绝对值.【分析】根据绝对值的性质,对选项进行一一分析,排除错误答案.【解答】解:A、当a为负数时,|a|+a=﹣a+a=0,故错误;B、当a为0时,|a|+a=0,故错误;C、当a为正数时,|a|+a=a+a=2a≠0,故错误;D、正确.故选D.7.下列计算正确的是()A.(﹣3)﹣(﹣5)=﹣8 B.(﹣3)+(﹣5)=+8 C.(﹣3)3=﹣9 D.﹣32=﹣9【考点】1E:有理数的乘方;19:有理数的加法;1A:有理数的减法.【分析】A、根据有理数减法法则:减去一个数等于加上这个数的相反数;B、根据有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;C、D根据有理数乘方含义.【解答】解:A、(﹣3)﹣(﹣5)=(﹣3)+(+5)=2,故本选项错误;B、(﹣3)+(﹣5)=﹣(3+5)=﹣8,故本选项错误;C、(﹣3)3=(﹣3)×(﹣3)×(﹣3)=﹣27,故本选项错误;D、﹣32=﹣3×3=﹣9,正确.故选D8.下列比较大小正确的是()A.﹣<﹣B.﹣(﹣21)<+(﹣21) C.﹣|﹣10|>8 D.﹣|﹣7|=﹣(﹣7)【考点】18:有理数大小比较.【分析】先化简各数,再根据有理数大小的比较法则进行判断.【解答】解:A、﹣<﹣;B、﹣(﹣21)=21>+(﹣21)=﹣21;C、﹣|﹣10|=﹣10<8;D、﹣|﹣7|=﹣7<﹣(﹣7)=7.故选A.9.下列说法正确的有()(1)任何一个有理数的平方都是正数;(2)两个数比较,绝对值大的反而小;(3)﹣a不一定是负数;(4)符号相反的两个数互为相反数.A.1个 B.2个 C.3个 D.4个【考点】1E:有理数的乘方;11:正数和负数;14:相反数;18:有理数大小比较.【分析】根据有理数的乘方、有理数比较大小的法则、正负数的定义、相反数的定义回答即可.【解答】解:(1)0的平方是0,故A错误;(2)两个负数比较,绝对值大的反而小,故B错误;(3)当a为负数时,﹣a表示正数,故C正确;(4)只有符号不同的两个数互为相反数,故D错误.故选:A.10.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.4【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】本题考查了非负数的性质:若两个非负数的和为0,则两个非负数都为0.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0且n+2=0,∴m=3,n=﹣2.则m+2n=3+2×(﹣2)=﹣1.故选:B.二、填空题(本题共8小题,每题3分,共计24分)11.在“﹣3,,2π,0.101001”中无理数有1个.【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有2π,只有1个.故答案是:1.12.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是﹣3.【考点】13:数轴.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣313.绝对值小于3的所有整数有﹣2,﹣1,0,1,2.【考点】15:绝对值.【分析】根据绝对值的含义和求法,可得绝对值小于3的所有整数有5个:﹣2,﹣1,0,1,2,据此解答即可.【解答】解:绝对值小于3的所有整数有:﹣2,﹣1,0,1,2.故答案为:﹣2,﹣1,0,1,2.14.甲、乙、丙三地的海拔高度分别是20米、﹣15米、﹣10米,那么最高的地方比最低的地方高35米.【考点】1A:有理数的减法;18:有理数大小比较.【分析】用最高的甲地减去最低的乙地,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:20﹣(﹣15),=20+15,=35米.故答案为:35.15.已知|x|=3,|y|=1,且x+y<0,则x﹣y的值是﹣4或﹣2.【考点】1A:有理数的减法;15:绝对值;19:有理数的加法.【分析】根据绝对值的性质求出x、y的值,再根据有理数的加法运算法则判断出x、y的对应情况,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:∵|x|=3,|y|=1,∴x=±3,y=±1,∵x+y<0,∴x=﹣3,y=±1,∴x﹣y=﹣3﹣1=﹣4,或x﹣y=﹣3﹣(﹣1)=﹣3+1=﹣2.故答案为:﹣4或﹣2.16.若m、n互为相反数、c、d互为倒数,则m+n﹣2cd=﹣2.【考点】33:代数式求值;14:相反数;17:倒数.【分析】根据题意可知:m+n=0,cd=1,然后代入计算即可.【解答】解:∵m、n互为相反数、c、d互为倒数,∴m+n=0,cd=1.∴原式=0﹣2×1=0﹣2=﹣2.故答案为:﹣2.17.按如图程序计算,如果输入的数是﹣2,那么输出的数是﹣162.【考点】1C:有理数的乘法;15:绝对值.【分析】根据有理数的乘法,可得答案.【解答】解:﹣2×(﹣3)=6,6×(﹣3)=﹣18,﹣18×(﹣3)=54,54×(﹣3)=﹣162,故答案为:﹣162.18.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>0【考点】18:有理数大小比较;13:数轴;19:有理数的加法;1A:有理数的减法;1C:有理数的乘法.【分析】首先得到b<a<0,再结合有理数的运算法则进行判断.【解答】解:根据数轴,得b<a<0.A、正确;B、两个数相乘,同号得正,错误;C、较小的数减去较大的数,差是负数,错误;D、同号的两个数相加,取原来的符号,错误.故选A.三、解答题19.计算:(1)﹣23﹣(﹣18)﹣1+(﹣15)+23(2)(﹣83)÷2+×(﹣16)(3)(﹣+)÷(﹣)(4)﹣16﹣×[3﹣(﹣3)2]﹣2÷(﹣).【考点】1G:有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣23+18﹣1﹣15+23=﹣23+23+18﹣16=2;(2)原式=﹣83×﹣=﹣=﹣44;(3)原式=(﹣+)×(﹣36)=﹣18+24﹣16=﹣10;(4)原式=﹣1﹣×(﹣6)+4=﹣1+1+4=4.20.在数轴上画出表示数﹣|﹣3|,﹣(﹣2)2,﹣的点,把这组数从小到大用“<”号连接起来.【考点】18:有理数大小比较;13:数轴;15:绝对值.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣(﹣2)2<﹣|﹣3|<﹣1.21.请把下列各数填入相应的集合中,5.2,0,2π,,﹣22,,2005,﹣0.030030003…正数集合:{…}负数集合:{…}无理数集合:{…}有理数集合:{…}.【考点】27:实数.【分析】利用实数的分类判定即可.【解答】解:正数集合{}负数集合{}无理数集合{2π,﹣0.030030003…}有理数集合{}故答案为:{},{},{2π,﹣0.030030003…},{}22.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】11:正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.23.阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:当|x﹣2|=0时,的值.【考点】45:整式的加减—化简求值;1G:有理数的混合运算.【分析】(1)原式利用已知的新定义计算即可求出值;(2)利用绝对值的代数意义求出x的值,原式利用题中新定义计算,将x的值代入计算即可求出值.【解答】解:(1)原式=5×(﹣2)﹣(﹣3)×(﹣4)=﹣10﹣12=﹣22;(2)∵|x﹣2|=0,∴x﹣2=0,解得:x=2,则原式=3×(﹣2)﹣2×14=﹣34.24.观察下列各式:13=1=;13+23=9=;13+23+33=36=;13+23+33+43=100=…回答下面的问题:(1)13+23+33+43+…+103=×102×112(写出算式即可);(2)计算13+23+33+…+993+1003的值;(3)计算:113+123+…+993+1003的值.【考点】37:规律型:数字的变化类.【分析】(1)(2)由题意可知:从1开始连续自然数的立方和,等于最后一个自然数的平方乘这个自然数加1的平方的,由此规律计算得出答案即可;(3)由(2)的结果减去(1)的结果即可.【解答】解:(1)13+23+33+43+…+103=×102×112;(2)13+23+33+…+993+1003=×1002×1012=25502500;(3)×1002×1012﹣×102×112=25502500﹣3025=25499475.附赠材料:怎样提高做题效率一读二画三抠怎样“快而不乱”做好阅读题阅读是一个获取信息的过程,阅读质量的高低取决于捕捉信息的多少。
七年级上册数学第一次月考试卷及答案
城关中学七年级2014~2015学年度上期第一次月考数学试题(时间 90分,满分120分)一.选择题(每题3分,共30分)–4的绝对值是( ) A 、4 B 、–4 C 、41 D 、41- 2. 在–2,+,0,32-,–,12中.负分数有( ) A 、l 个 B 、2个 C 、3个 D 、4个 3. 下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数 4. -a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数 5.一个数和它的倒数相等,则这个数是( )A 、1B 、1-C 、±1D 、±1和0 6. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a7. 小华今年在银行中办理了7笔储蓄业务:取出元,存进5元,取出8元,存进12无,存进25元,取出元,取出2元,这时银行现款增加了( )A 、元B 、-元C 、10元D 、-12元 8. 绝对值不大于的整数有( )A 、10个B 、11个C 、20个D 、21个9.设a 是最小的自然数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( ) A 、-1 B 、0 C 、1 D 、2 10. l00米长的小棒,第1次截去一半,第2次截去剩下的31,第三次截去剩下的41,如此下去,直到截去剩下的1001,则剩下的小棒长为( )米 。
A 、 20B 、15C 、 1D 、50 二、境空题(每题4分,共40分)11.若︱a-1︱=2,则a=___________________。
12如果a 、b 互为倒数,c 、d 互为相反数,且m=1,则代数式2ab-(c+d )+m 2=13.31-的倒数是____;322的相反数是____;的倒数的绝对值是___________。
七年级数学上册第一次月考试卷(青岛版)
班级:__________________姓名:__________________考号:__________________☆☆☆☆☆☆☆☆☆☆○密☆☆☆☆☆☆☆☆☆☆☆☆○封☆☆☆☆☆☆☆☆☆☆☆○线☆☆☆☆☆☆☆2012-2013学年上学期七年级数学第一次月考试卷(满分120分,考试时间100分钟)一.选择题(每小题3分,共36分)1.下列说法中,正确的是( ) A.有理数就是正数和负数的统称 B. 零不是自然数,但是正数C.一个有理数不是整数就是分数D. 正分数、零、负分数统称分数2.下列各式中正确的是( )A.4-<0B.4-<9-C.160.-<660.-D.21-<1-3.下列各组数中,互为相反数的是( )A.)(2121+--和 B.33-++-和)( C.)()(33++--和 D.)(44+--和 4.有理数中绝对值等于它本身的数是( )A.0B.正数C.负数D.非负数 5.若2=a ,5=b ,则b a +的值应该是( ) A.7 B.77和- C.3 D.以上都不对6.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ). A .CD=AC-BD B .CD=21BC C .CD=21AB-BD D .CD=AD-BC7.下列说法不正确的是( )A.最小的整数是0B.最小的非负整数是0C.相反数是它本身的数是0D.任何数的绝对值都不小于08.绝对值小于3的整数的个数是( ) A.2 B.3 C.4 D.59.-6的相反数与比5的相反数小1的数的和是( )A .1 B. 0 C. 2 D. 1110.在23, 4.01-, 3-- , ()2--,中,负数共有( )个。
A .1个 B.3个 C.4个 D.2个11.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm 12.有理数a 、b 在数轴上的表示如图所示,那么( )A.-b >aB.-a <bC.b >aD.∣a ∣>∣b ∣ 二.填空题(每小题3分,共15分)13.如果收入50元记作50元,那么支出20元记作 。
七年级数学上学期第一次月考试卷 试题_1
二中七年级上学期数学第一次月考试卷制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
一.选择题〔本大题一一共6小题,每一小题3分,一共18分〕每一小题只有一个正确答案。
1.21-的倒数是〔 〕 A .21 B .2- C .2 D .21- 2.以下说法正确的选项是〔 〕A .整式是多项式B .31-是单项式 C .342x x +是七次二项式 D .513-x 是单项式3.以下计算:①5)5(0-=--; ②12)9()3(-=-+-; ③23)49(32-=-⨯; ④4)9()36(-=-÷-,其中正确的个数是〔 〕 A .1个 B .2个 C .3个 D .4个4.由几个一样的小正方体搭成的几何体的正面图与左面图如下图,那么该几何体最少由几个小正方体搭成?〔 〕 A .4个 B .5个 C .6个 D .7个5.假设b a M 22=,23ab N =,b a P 24-=,那么以下各式正确的选项是〔 〕 A .335b a N M =+ B .ab P N -=+ C .b a P M 22-=+ D .b a P M 22=- 6.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是〔 〕二.填空题〔本大题一一共8小题,每一小题3分,一共24分〕 7.比1-小2的数是________8.我深化施行环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨。
将167000用科学记数法表示为________ 9.0≠ab ,那么=+||||b b a a ________ 10.用一个平面去截一个正方体,图中画有阴影的局部是截面,下面有关截面画法正确的序号有________11.0122=--a a ,那么 代数式2011422+-a a 的值是________ 12.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如下图的零件,那么这个零件的外表积是________13.如图是用一样的小棒摆成的一组有规律的图案,图案〔1〕需要4根小棒,图案〔2〕需要10根小棒 ,按此规律摆下去,第n 个图案需要小棒________根〔用含n 的代数式表示〕14.假设3||=x ,2||=y ,且x y y x -=-||,那么y x +的所有值可能是________ 三.(本大题一一共2个小题,每一小题5分,一共10分〕 15、1452-+=x x A ,332+--=x x B ,求B A -的值16、计算:)7(|)3(2|31)5.01(124-÷--⨯⨯-+-四.〔本大题一一共2个小题,每一小题6分,一共12分〕 17、图为一几何体从不同方向看的图形;〔1〕写出这个几何体的名称;〔2〕任意画出这个几何体的一种外表展开图; 〔3〕假设长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积。
人教版七年级上册数学0第一次月考试卷(含答案)
七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个C.4 个D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33B.﹣24=(﹣2)4C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a等于﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B.【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有()A.最大的数B.最小的数C.绝对值最小的数D.不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个C.4 个D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33B.﹣24=(﹣2)4C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
河南省安阳市第八中学2023-2024学年七年级上学期第一次月考数学试卷(含解析)
2023-2024学年河南省安阳八中七年级(上)第一次月考数学试卷一、选择题(每题3分共36分)1.(3分)如果收入90元记作+90 元,则﹣50元表示( )A.收入50元B.收入40元C.支出50元D.支出40元2.(3分)下列各数中,相反数为﹣1的数是( )A.B.﹣C.D.﹣3.(3分)下列语句错误的是( )A.相反数是它本身的数是0B.负数的绝对值是正数C.0是最小的有理数D.绝对值等于它本身的数是非负数4.(3分)下列各数中,比﹣2小3的数是( )A.1B.﹣1C.﹣5D.﹣65.(3分)在数轴上与﹣3的距离等于4的点表示的数是( )A.1B.﹣7C.1或﹣7D.无数个6.(3分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是( )A.B.C.D.7.(3分)下列各组数中,互为相反数的是( )A.(﹣5)2和﹣52B.+(﹣6)和﹣(+6)C.(﹣4)3和﹣43D.﹣|﹣2|和+(﹣2)8.(3分)下列运算正确的是( )A.23=6B.﹣22=﹣4C.(﹣1)5=1D.()2=9.(3分)已知|a+13|+|b﹣10|=0,则a+b的值是( )A.﹣3B.3C.23D.﹣2310.(3分)设a=(﹣3)2,b=﹣32,c=|﹣3|,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.b>a>c D.c>a>b 11.(3分)若ab≠0,则的取值不可能是( )A.0B.1C.2D.﹣212.(3分)已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<b<c;②﹣a<b;③a+b>0;④c﹣a>0中,正确的个数是( )A.1B.2C.3D.4二、填空题(每题3分共18分)13.(3分)的相反数是 ,绝对值是 ,倒数是 .14.(3分)绝对值小于4.3的所有整数的积是 .15.(3分)计算×3÷×3的结果是 .16.(3分)若|x|=2,则x= .17.(3分)定义a⊗b=2a+b,则﹣2⊗3= .18.(3分)观察下列计算的结果:请用你发现的结论计算:= (直接填写计算结果).三、解答题(共7小题)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣(﹣4),|﹣3.5|,,0,+(+2.5)20.(24分)计算:(1)26+(﹣15)+8﹣(﹣13);(2);(3);(4).21.(6分)已知|a|=3,|b|=2,且a<b,求a+b的值.22.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a +b ,cd ,m 的值;(2)求m +cd +的值.23.(6分)计算与解释.小杨同学做一道计算题的解题过程如下:解:原式=①=②=6+4﹣6③=4④根据小杨同学的计算过程,回答下列问题:(1)他的计算过程是否正确? (填写“正确”或“错误”);(2)如有错误,他在第 步出错了(只填写序号),并请写出正确的解答过程.24.(8分)有20筐白菜,以每筐25kg 为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg )﹣3﹣2﹣1.5012.5筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,购进这批白菜一共花了1000元,则售出这20筐白菜可赚多少元?25.(8分)操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则表示﹣3的点与表示 的点重合;操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 的点重合;②若数轴上A、B两点之间距离为12,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.2023-2024学年河南省安阳八中七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分共36分)1.(3分)如果收入90元记作+90 元,则﹣50元表示( )A.收入50元B.收入40元C.支出50元D.支出40元【解答】解:收入90元记作+90 元,则﹣50元表示支出50元,故选:C.2.(3分)下列各数中,相反数为﹣1的数是( )A.B.﹣C.D.﹣【解答】解:﹣1的相反数是1=,故选:A.3.(3分)下列语句错误的是( )A.相反数是它本身的数是0B.负数的绝对值是正数C.0是最小的有理数D.绝对值等于它本身的数是非负数【解答】解:A、0的相反数是0,故A正确;B、负数的绝对值是它的相反数,故B正确;C、没有最小的有理数,故C错误;D、非负数的绝对值等于它本身,故D正确.故选:C.4.(3分)下列各数中,比﹣2小3的数是( )A.1B.﹣1C.﹣5D.﹣6【解答】解:根据题意得:﹣2﹣3=﹣5,故选:C.5.(3分)在数轴上与﹣3的距离等于4的点表示的数是( )A.1B.﹣7C.1或﹣7D.无数个【解答】解:根据数轴的意义可知,在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:C.6.(3分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是( )A.B.C.D.【解答】解:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,故选:C.7.(3分)下列各组数中,互为相反数的是( )A.(﹣5)2和﹣52B.+(﹣6)和﹣(+6)C.(﹣4)3和﹣43D.﹣|﹣2|和+(﹣2)【解答】解:A:(﹣5)2=25,﹣52=﹣25,∴符合题意B:+(﹣6)=﹣6,﹣(+6)=﹣6,∴不符合题意;C:(﹣4)3=﹣64,﹣43=﹣64,∴不符合题意;D:﹣|﹣2|=﹣2,+(﹣2)=﹣2,∴不符合题意;故选:A.8.(3分)下列运算正确的是( )A.23=6B.﹣22=﹣4C.(﹣1)5=1D.()2=【解答】解:A.23=8,故本选项错误;B.﹣22=﹣4,故本选项正确;C.(﹣1)5=﹣1,故本选项错误;D.=,故本选项错误;故选:B.9.(3分)已知|a+13|+|b﹣10|=0,则a+b的值是( )A.﹣3B.3C.23D.﹣23【解答】解:根据题意得:,解得:,则a+b=﹣13+10=﹣3.故选:A.10.(3分)设a=(﹣3)2,b=﹣32,c=|﹣3|,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.b>a>c D.c>a>b【解答】解:∵a=(﹣3)2=9,b=﹣32=﹣9,c=|﹣3|=3,∵9>3>﹣9,∴a>c>b,故选:B.11.(3分)若ab≠0,则的取值不可能是( )A.0B.1C.2D.﹣2【解答】解:若ab≠0,当a>0,b>0时,原式=1+1=2;当a<0,b<0时,原式=﹣1﹣1=﹣2;当a>0,b<0时,原式=1﹣1=0;当a<0,b>0时,原式=﹣1+1=0,∴若ab≠0,则的值为0或±2,故选:B.12.(3分)已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<b<c;②﹣a<b;③a+b>0;④c﹣a>0中,正确的个数是( )A.1B.2C.3D.4【解答】解:由图可知:a<b<c,故①正确;∵a<b<0,∴b<0<﹣a,故②不正确;a+b<0,故③不正确;∵a<0,c>0,∴c﹣a>0,故④正确,∴正确的由①④,故选:B.二、填空题(每题3分共18分)13.(3分)的相反数是 ﹣ ,绝对值是 ,倒数是 .【解答】解:因为+(﹣)=0,所以的相反数为﹣,因为正数的绝对值等于它本身,所以的绝对值是,因此×=1,所以的倒数是,故答案为:﹣,,.14.(3分)绝对值小于4.3的所有整数的积是 0 .【解答】解:绝对值小于4.3的所有整数为:±4,±3,±2,±1,0,所有整数的积为:(﹣4)×(﹣3)×(﹣2)×(﹣1)×0×1×2×3×4=0.故答案为:0.15.(3分)计算×3÷×3的结果是 9 .【解答】解:原式=×3×3×3=9.故答案为:916.(3分)若|x|=2,则x= ±2 .【解答】解:因为|x|=2代表与原点的距离为2,而与原点距离为2的点有两个:2与﹣2,所以x=±2,故答案为:±2.17.(3分)定义a⊗b=2a+b,则﹣2⊗3= ﹣1 .【解答】解:∵a⊗b=2a+b,∴﹣2⊗3=2×(﹣2)+3=﹣4+3=﹣1,故答案为:﹣1.18.(3分)观察下列计算的结果:请用你发现的结论计算:= (直接填写计算结果).【解答】解:,=1﹣+﹣+﹣+﹣+﹣+﹣+﹣,=1﹣,=.故答案为:.三、解答题(共7小题)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣(﹣4),|﹣3.5|,,0,+(+2.5)【解答】解:如图所示:.20.(24分)计算:(1)26+(﹣15)+8﹣(﹣13);(2);(3);(4).【解答】解:(1)26+(﹣15)+8﹣(﹣13)=26﹣15+8+13=32;(2)=﹣5﹣2﹣2+3=﹣7;(3)=2﹣5×4×(﹣4)=2+80=82;(4)=﹣1+(1﹣2)2×()2=﹣1+(﹣)2×()2=﹣1+×=﹣1+1=0.21.(6分)已知|a|=3,|b|=2,且a<b,求a+b的值.【解答】解:∵|a|=3,|b|=2,且a<b,∴a=﹣3,b=2或﹣2,则a+b=﹣1或﹣5.22.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.23.(6分)计算与解释.小杨同学做一道计算题的解题过程如下:解:原式=①=②=6+4﹣6③=4④根据小杨同学的计算过程,回答下列问题:(1)他的计算过程是否正确? 错误 (填写“正确”或“错误”);(2)如有错误,他在第 ① 步出错了(只填写序号),并请写出正确的解答过程.【解答】解:(1)由小杨的解答过程可知,他的计算过程是错误的,故答案为:错误;(2)由小杨的解答过程可知,他在第①步出错了,正确解答过程:=24×+2÷=6+2×6=6+12=18,故答案为:①.24.(8分)有20筐白菜,以每筐25kg 为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg )﹣3﹣2﹣1.501 2.5筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,购进这批白菜一共花了1000元,则售出这20筐白菜可赚多少元?【解答】解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20筐白菜总计超过8千克;(3)[25×20+8]×2.6=508×2.6=1016(元),答:售出这20筐白菜可赚1016元.25.(8分)操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则表示﹣3的点与表示 3 的点重合;操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 ﹣3 的点重合;②若数轴上A、B两点之间距离为12,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.【解答】解:(1)根据题意,得对称中心是原点,则﹣3示的点与数3表示的点重合,故答案为:3;(2)∵﹣1表示的点与3表示的点重合,∴①5表示的点与数﹣3表示的点重合,故答案为:﹣3;②若数轴上A、B两点之间的距离为11(A在B的左侧),则点A表示的数是1﹣6=﹣5,点B表示的数是1+5=7.所以A、B两点表示的数分别是﹣5,7.。
吉林省吉林市第七中学校2024-2025学年七年级上学期第一次月考数学试题
吉林省吉林市第七中学校2024-2025学年七年级上学期第一次月考数学试题一、单选题1.﹣15的绝对值是( )A .﹣15B .15C .﹣5D .52.下列说法正确的是( ) A .所有的整数都是正数 B .整数和分数统称有理数C .0是最小的有理数D .零既可以是正整数,也可以是负整数3.下列互为相反数的是( ) A .()2-+与()2+- B .13与0.33-C .5--与5D .()4--与44.2024年春节期间,吉林省凭借滑雪、度假、雾凇、冰雕等特色冰雪旅游元素,接待国内游客约20517000人次,同比增长55.48%,将20517000用科学记数法表示为( ) A .52.051710⨯B .62.051710⨯C .72.051710⨯D .82.051710⨯5.按括号内的要求用四舍五入法取近似数,其中正确的是( ) A .0.01360.013≈(精确到0.001) B .2.706 2.71≈(精确到十分位) C .0.1520.2≈(精确到0.1) D .104.58105.0≈(精确到个位)6.有理数a 、b 、c 在数轴上的位置如图所示,则下列选项正确的是( )A .a b a b -=-B .0abc >C .110a b+>D .110a c->二、填空题7.李白出生于公元701 年,我们记作+701 年,那么秦始皇出生于公元前 259 年,可记作年.8.比较大小:103-227-(填“<”或“>”或“=”) 9.若a ,b 互为倒数,则()2024ab -=.10.在数轴上,如果点A 所表示的数是2-,点B 到点A 的距离等于3个单位长度,且点B 位于原点右侧,那么点B 所表示的数是.11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2C ︒,用了退烧药后,以每15分钟下降0.2C ︒的速度退烧,则2h 后,欢欢的体温是. 12.若320a b ++-=,则b a 的值为.13.如图是一个有理数运算程序的流程图,请根据这个程序回答问题,当输入x 为2-时,最后输出的结果y 是.14.若规定:a △+b =(﹣1a )÷2b ,例如2△+3=(﹣12)÷32=﹣13,(2△+7)△+4的值为.三、解答题 15.化简下列各数: (1)()8--=______; (2)()3.8-+-=⎡⎤⎣⎦______. 16.计算:()22024315364⎛⎫⎡⎤-⨯--+÷- ⎪⎣⎦⎝⎭. 17.计算:()15993417⨯-. 18.请把下面不完整的数轴补充完整,把下列各数:2-,32,0,132-在数轴上表示出来,并用“<”连接起来.19.把下列各数分类,并填在表示相应集合的大括号内:39,,0, 6.2,,11,4%5π---(1)整数集合{ } (2)分数集合{ } (3)非负数集合{ } 20.阅读以下材料,完成相关的填空和计算.(1)根据倒数的定义我们知道,若()2a b c +÷=-,则()c a b ÷+=________.(2)计算:5721129336⎛⎫-+÷ ⎪⎝⎭.(3)根据以上信息可知:1572361293⎛⎫⎛⎫-÷-+= ⎪ ⎪⎝⎭⎝⎭________.21.阅读下面的解题过程:计算()1115632⎛⎫-÷-⨯ ⎪⎝⎭.解:原式()11566⎛⎫=-÷-⨯ ⎪⎝⎭(第一步)()()151=-÷-(第二步)15=-(第三步). 回答:(1)上面解题过程中有两处错误,第一处是第______步,错误的原因是______,第二处是第______步,错误的原因是______; (2)把正确的解题过程写出来.22.某公司7天内货品进出仓库的吨数如下(“+”表示进库,“-”表示出库):31311638142025+---+-+,,,,,,.(1)经过这7天,仓库管理员结算发现仓库还有货品400吨,那么7天前仓库里有货品多少吨?(2)如果进出的装卸费都是每吨8元,那么这7天要付多少元装卸费?23.在学习完《有理数》后,小明对运算产生了浓厚的兴趣,借助有理数的运算,定义了一种新运算“⊕”,规则如下:2a b a b a ⊕=⨯+⨯. (1)求()21⊕-的值; (2)求1342⎛⎫-⊕-⊕ ⎪⎝⎭的值.24.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是3,y 是最大的负整数.求2024-++-的值.26()x cd a b y25.某果农把自家果园的柑橘包装后放到网上销售,原计划每天卖10箱,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某个星期的销售情况(超额记为正,不足记为负,单位:箱).(1)根据记录的数据求前五天共卖出多少箱;(2)本周实际销售总量是否达到了计划销售总量,请通过计算说明理由;(3)若每箱柑橘售价为80元,同时需要支付运费9元/箱,求该果农本周共收入多少元.26.如图,已知数轴上点A表示的数为6,B是数轴上在点A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运t t>秒.动时间为()0(1)数轴上点B表示的数是______;(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?。
福建省泉州市第七中学2023-2024学年七年级上学期第一次月考数学试题
福建省泉州市第七中学2023-2024学年七年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .59.如图,Rt ABC △C 逆时针旋转至△的面积为()A .3210.22a =,33b =,A .a b c d<<<二、填空题11.比较大小:712.如图,在ACD 和那么ADB =∠︒13.计算:()10100.254⨯-=14.已知227x x +=-,则代数式15.如图,六边形ABCDEF 的六个内角都等于则这个六边形的周长等于16.如图,在Rt ABC △中,ABC ∠为BC 上一点,连接AE ,BAE ∠是.(填序号)①AC DE ⊥;②ADE ACB ∠=∠三、解答题17.计算:31664|13+-+-18.先化简,再求值:()(23x y +19.如图,在△ABC 和△ADE 中,20.我们已经学习过三角形内角和定理:角形的内角和定理“三角形三个内角的和等于CD AB ∥,请你帮他完成解答过程.已知:如图,在ABC 中,求证:(3)想一想:如图3,ABC 中,20A ∠=︒,50B ∠=︒,过顶点C 作一条直线交线段AB 于点P ,直线CP 能把ABC 分割出一个等腰三角形,直接写出APC ∠的度数.25.(1)如图1,将含30︒的三角板DEF 的直角顶点D 放置在含45︒的直角三角板ABC 的斜边AC 的中点位置上,两直角边分别交AB 、BC 于M 、N ,利用三角形的全等,发现DM 与DN 数量关系是_____;若5AB =,BM x =,BN y =,y 与x 的关系式为________;(2)若将三角板DEF 绕顶点D 旋转,两直角边分别与AB 、BC 的延长线交于M 、N ,如图2,(1)中的DM 与DN 数量关系是否改变?并说明理由;(3)若将三角板DEF 的顶点D 从中点处沿CA 方向平移、旋转至ADB CND △≌△,如图3,其余条件不变,求证:BM BN =.。
山西省太原成成中学2024-2025学年七年级上学期第一次月考数学试题
山西省太原成成中学2024-2025学年七年级上学期第一次月考数学试题一、单选题1.代数式a 表示的数一定是() A .正数B .负数C .正数或负数D .以上全部不对2.如图,数轴上点A ,B 表示的数为a ,b ,且OA OB >,则下列结论不正确的是( )A .22a b <B .0a b +>C .0b a ->D .0ab <3.已知室外温度为3C -o ,室内温度比室外温度高9C o ,则室内温度为( ) A .9C oB .6C -oC .6C oD .12C o4.下列运算正确的是( ) A .()()134-++=- B .()()231-+-= C .()()253+--=- D .()()352---=5.下列说法正确的是( ) A .a -可能是正数 B .a 一定是正数C .两个有理数相加,和一定大于加数D .两个有理数相减,差一定小于被减数6.计算21212135656-++-,最适当的方法是( )A .21212135656⎛⎫-+++- ⎪⎝⎭B .21212135656⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭C .21122135665⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭D .22112135566⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭7.若3,6x y ==,且x y >,则x y -的值是( ) A .3-和9-B .3和6-C .3-和9D .3和98.如图,则下列判断正确( )A .a+b >0B .a <-1C .a-b >0D .ab >09.如图,A ,B 两点在数轴上表示的数分别是a ,b ,下列结论中正确的是( )A .0ab >B .0a b +>C .b a >D .0b a ->10.下列各说法中,正确的个数有( )①若x x =-,则x 一定是负数;②一个正数一定大于它的倒数;③除以一个数,等于乘以这个数的倒数;④若a b =,则a b =±;⑤若0ab ≥,则0a ≥且0b ≥;A .1个B .2个C .3个D .4个二、填空题 11.比较大小:98-89-(填“<”或“>”). 12.在415,π,9.3-,0,32-,113-这六个数中,分数有.13.若(){}3x ⎡⎤----=-⎣⎦,则x 的相反数是. 14.已知2x =-,4y =,则xy =. 15.如果5,6m n -==,那么mn -=.三、解答题16.如图是一个不完整的数轴,已知下列各数:3-,3.5,122⎛⎫-- ⎪⎝⎭,1--.(1)请将数轴补充完整,并将各数表示在数轴上; (2)将各数按从小到大的顺序用“<”号连接起来. 17.将下列各数填入表示它所在集合的圈里.5,1-,2023+,0.101001-,122,0.98%, 1.7-,65-.18.计算:(1)()13244-÷⨯;(2)()124215⎛⎫÷-÷- ⎪⎝⎭.19.列式并计算:(1) 3.2-与 1.7+的绝对值的差.(2)3-加上3与4-的积所得的和是多少?20.已知数a ,b 表示的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数的位置;(2)若数b 与其相反数相距20个单位长度,则b 表示的数是多少?(3)在(2)的条件下,若数a 表示的点与数b 的相反数表示的点相距5个单位长度,求a 表示的数是多少?21.阅读下列材料:计算:111503412⎛⎫÷-+ ⎪⎝⎭.解法1思路:原式11150505050350450123412=÷-÷+÷=⨯-⨯+⨯;对吗?答:____________. 解法2提示:先计算原式的倒数:11111111115034123504501250300⎛⎫-+÷=⨯-⨯+⨯= ⎪⎝⎭,故原式等于300.(1)请你用解法2的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭;(2)37777377114812884812⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-÷-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭现在这个题简单了吧!来吧!试试吧! 22.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正、减产记为负):(1)该厂本周星期一生产工艺品的数量为______个;(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每日..计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元,试求该工艺厂在这一周应付出的工资总额.23.某路公交车从起点经过A、B、C、D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)(1)到终点下车还有________人;(2)车行驶在那两站之间车上的乘客最多?________站和________站;(3)若每人乘坐一站需买票1元,问该车出车一次能收入多少钱?请列出算式并写出计算过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开发区中学七年级上第一次月考数学试卷一、选择题(每小题3分,总计24分)1.下面说法正确的是()A.有理数是正数和负数的统称 B.有理数是整数C.整数一定是正数 D.有理数包括整数和分数2.下列说法正确的是()A.绝对值较大的数较大 B.绝对值较大的数较小C.绝对值相等的两数相等 D.相等两数的绝对值相等3.下列说法正确的是()A.正数和负数互为相反数B. a的相反数是负数C.相反数等于它本身的数只有0D.﹣a的相反数是正数4.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430 B. 530 C. 570 D. 4705.两个有理数的和比其中任何一个加数都大,那么这两个有理数()A.都是正数 B.都是负数C.一正数,一负数 D.以上答案都不对6.有理数a,b在数轴上的对应点的位置如图所示,则()A. a+b<0 B. a+b>0 C. a﹣b=0 D. a﹣b<07.如果三个有理数a+b+c=0,则()A.三个数一定都是0B.一定有一个数是另外两个数的和的相反数C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和8.若|a|=5,b=﹣3,则a﹣b=()A. 2或8 B.﹣2或8 C. 2或﹣8 D.﹣2或﹣8二、填空题(每小题3分,共36分)9.在数﹣8、+4.3、﹣|﹣2|、0、50、﹣、3中是负数,是正整数.10.如果节约10千瓦•时电记作+10千瓦•时,那么浪费10千瓦•时电记作千瓦•时.11.﹣|﹣3|的相反数是.12.比较大小:﹣﹣(填“>”或“<”).13.数轴上表示数﹣4和表示数4的两点之间的距离是.14.数轴上,与表示﹣2的点距离为3的点所表示的数为.15.绝对值大于3且小于8的负整数有.16.若家中鱼缸里的温度是30℃,室内的温度比鱼缸里的温度低8℃,则室内的温度是℃.17.若a<0,b<0,则a+b 0(填“>”或“<”).18.如图所示,黑珠、白珠共126个,穿成一串,这串珠子中最后一个珠子是颜色的,这种颜色的珠子共有个.19.若a,b互为相反数,x,y互为倒数,则a﹣xy+b= .20.甲、乙、丙三位同学进行数字游戏:甲说一个数a的相反数就是它本身,乙说一个数b 的倒数也等于它本身,丙说一个数c的绝对值等于2,请你猜一猜|a﹣b+c|= .三、计算题(每小题20分,总计20分)21.(1)33+(﹣32)+7﹣(﹣3)(2)(﹣8)×(﹣5)×(﹣0.125)(3)﹣0.5﹣(﹣3)+2.75﹣(+7)(4)(﹣56)×(﹣+)(5)3.1416×6.4955+3.1416×(﹣5.4955)四、解答题(每小题6分,总计24分)22.已知|x﹣4|+|y+2|=0,求y﹣x的值.23.已知有理数a,b在数轴上的位置如图所示,请比较 a,b,|a|,|b|的大小(用<连接起来).24.若a﹣5和﹣7互为相反数,求a的值.25.正式足球比赛对所用足球的质量有严格的规定,标准质量为400克.下面是5个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数):﹣25,+10,﹣20,+30,+15.(1)写出每个足球的质量;(2)请指出哪个足球的质量好一些,并用绝对值的知识进行判断.五、解答题(每题8分,共16分)26.上午6点水箱里的温度是68℃,此后每小时下降4.5℃,求下午2点水箱内的温度.27.某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?开发区中学七年级上第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,总计24分)1.下面说法正确的是()A.有理数是正数和负数的统称 B.有理数是整数C.整数一定是正数 D.有理数包括整数和分数考点:有理数.分析:根据有理数相关概念对各选项分析判断后利用排除法求解.解答:解:A、应为有理数是正数、负数和零的统称,故本选项错误;B、应为有理数是整数和分数的统称,故本选项错误;C、整数一定是正数错误,故本选项错误;D、有理数包括整数和分数,故本选项正确.故选D.点评:本题考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.2.下列说法正确的是()A.绝对值较大的数较大 B.绝对值较大的数较小C.绝对值相等的两数相等 D.相等两数的绝对值相等考点:有理数大小比较;绝对值.分析:针对每个选项举出反例,即可得出答案.解答:解:A、如|﹣3|=3,|1|=1,3>1,但是﹣3<1,故本选项错误;B、如|3|=3,|1|=1,3>1,且3>1,故本选项错误;C、如图|﹣2|=|2|,但是﹣2和2不相等,故本选项错误;D、如2=2,且|2|=|2|,故本选项正确;故选D.点评:本题考查了有理数的大小比较和绝对值的应用,注意:正数都有大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.3.下列说法正确的是()A.正数和负数互为相反数B. a的相反数是负数C.相反数等于它本身的数只有0D.﹣a的相反数是正数考点:相反数.分析:根据相反数的定义,只有符号不同的两个数互为相反数,0的相反数是0.解答:解:A中,符号不同,绝对值相等的数互为相反数,故错误;B中,如果a是非正数,则a的相反数是非负数,错误;C中,根据相反数的概念,显然正确;D中,如果a是非正数,则﹣a的相反数是a,即为非正数,故错误.故选C.点评:理解相反数的概念,能够正确求一个数的相反数.4.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430 B. 530 C. 570 D. 470考点:正数和负数;有理数的加减混合运算.专题:应用题.分析:下降200米用﹣200米表示,上升130米用+130米表示,根据题意可以列式为:(﹣500)+(﹣200)+130.解答:解:(﹣500)+(﹣200)+130=﹣500﹣200+130=﹣570米,即这时潜水艇停在海面下570米.故选C.点评:本题是把实际问题转化为有理数的加减法计算题.5.两个有理数的和比其中任何一个加数都大,那么这两个有理数()A.都是正数 B.都是负数C.一正数,一负数 D.以上答案都不对考点:有理数的加法.分析:利用同号及异号两数相加的法则判断即可得到结果.解答:解:A、当两个正数相加时,和大于其中的任意一个加数,本选项正确;B、当两个负数相加时,和小于其中的任意一个加数,本选项错误;C、当一个正数,一个负数相加时,判断正数与负数绝对值的大小才能确定和的正负,本选项错误;D、以上说法都不对,本选项错误.故选A.点评:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.6.有理数a,b在数轴上的对应点的位置如图所示,则()A. a+b<0 B. a+b>0 C. a﹣b=0 D. a﹣b<0考点:有理数的减法;数轴;有理数大小比较;有理数的加法.分析:由图可知a>0,b<0,且|a|>|b|,再根据有理数的加减法法则进行判断.解答:解:由数轴得:a>0,b<0,且|a|>|b|,∴a+b>0,a﹣b>0.故选B.点评:解答此题,需要用到绝对值不相等的异号两数相加的法则:取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.7.如果三个有理数a+b+c=0,则()A.三个数一定都是0B.一定有一个数是另外两个数的和的相反数C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和考点:相反数.分析:三个数相加得0,那么可先让其中的任意两个数相加,结果为一个数;就变成了两个数相加.解答:解:两个数相加为0,则这两个数互为相反数.∴一定有一个数是另外两个数的和的相反数.故选B.点评:本题考查的知识点是:两个数相加为0,则这两个数互为相反数.8.若|a|=5,b=﹣3,则a﹣b=()A. 2或8 B.﹣2或8 C. 2或﹣8 D.﹣2或﹣8考点:有理数的减法;绝对值.分析:首先由绝对值的性质,求得a的值,然后利用有理数的减法法则计算即可.解答:解:∵|a|=5,∴a=±5.当a=5时,a﹣b=5﹣(﹣3)=5+3=8;当=﹣5时,a﹣b=﹣5﹣(﹣3)=﹣5+3=﹣2.故选:B.点评:本题主要考查的是绝对值的性质和有理数的减法法则的应用,掌握有理数的减法法则是解题的关键.二、填空题(每小题3分,共36分)9.在数﹣8、+4.3、﹣|﹣2|、0、50、﹣、3中﹣8、﹣|﹣2|、﹣是负数,+4.3、3、50 是正整数.考点:正数和负数.分析:小于0的数为负数,大于0的数为正数,0既不是正数也不是负数,据此可得出答案.解答:解:由题意得:﹣8<0,、﹣|﹣2|=﹣2<0,﹣<0,+4.3=4.3>0,50>0,3>0,故可知﹣8、﹣|﹣2|、﹣为负数;3、50、+4.3为正数.点评:本题考查正数和负数的判断,属于比较简单的题目,但要细心的寻找,避免出错.10.如果节约10千瓦•时电记作+10千瓦•时,那么浪费10千瓦•时电记作﹣10 千瓦•时.考点:正数和负数.专题:应用题.分析:正数和负数可以表示一对相反意义的量,在本题中“节约”和“浪费”就是一对相反意义的量,既然节约用正数表示,那么浪费就用负数来表示,后面的数值不变.解答:解:“浪费”和“节约”相对,若节约10千瓦•时电记作+10千瓦•时,那么浪费10千瓦•时电应记作﹣10千瓦•时.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.11.﹣|﹣3|的相反数是 3 .考点:相反数;绝对值.专题:计算题.分析:首先把﹣|﹣3|化简,再根据相反数的定义;只有符号不同的两个数叫相反数,得到答案.解答:解:﹣|﹣3|=﹣3,﹣3的相反数是:3,故答案为:3.点评:此题主要考查了绝对值与相反数,关键是把握相反数和绝对值的定义.12.比较大小:﹣>﹣(填“>”或“<”).考点:有理数大小比较.分析:比较两个负分数的大小,按法则,先要求出它们的绝对值,并比较绝对值的大小.这两个分数的绝对值是两个异分母的正分数,要比较它们的大小,需通分.解答:解:∵|﹣|==,|﹣|==,且<;∴﹣>﹣.点评:两个负数相比较,绝对值大的数反而小.13.数轴上表示数﹣4和表示数4的两点之间的距离是8 .考点:数轴.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:|﹣4﹣4|=|﹣8|=8.故答案为:8.点评:此题考查了数轴,熟练掌握绝对值的代数意义是解本题的关键.14.数轴上,与表示﹣2的点距离为3的点所表示的数为﹣5或1 .考点:数轴.分析:数轴上,与表示﹣2的点距离为3的点可能在﹣2的左边,也可能在﹣2的右边,再根据左减右加进行计算.解答:解:若要求的点在﹣2的左边,则有﹣2﹣3=﹣5;若要求的点在﹣2的右边,则有﹣2+3=1.故答案为﹣5或1.点评:此题考查了数轴上的点和数的对应关系,注意“左减右加”.15.绝对值大于3且小于8的负整数有﹣4,﹣5,﹣6,﹣7 .考点:有理数大小比较;绝对值.分析:根据绝对值的性质写出所有的数.解答:解:绝对值大于3且小于8的负整数有:﹣4,﹣5,﹣6,﹣7.故答案为:﹣4,﹣5,﹣6,﹣7.点评:本题考查了绝对值的性质,是基础题,熟记绝对值的性质是解题的关键.16.若家中鱼缸里的温度是30℃,室内的温度比鱼缸里的温度低8℃,则室内的温度是22 ℃.考点:有理数的减法.专题:应用题.分析:用鱼缸温度减室内温度,再根据减法运算法则计算.解答:解:30﹣8=22℃.点评:本题主要考查有理数的减法运算,熟练掌握运算法则是解题的关键.17.若a<0,b<0,则a+b <0(填“>”或“<”).考点:有理数的加法.专题:计算题.分析:利用同号两数相加的法则判断即可得到结果.解答:解:∵a<0,b<0,∴a+b<0.故答案为:<.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.18.如图所示,黑珠、白珠共126个,穿成一串,这串珠子中最后一个珠子是白颜色的,这种颜色的珠子共有32 个.考点:规律型:图形的变化类.分析:除了第一个黑珠外,后边的黑珠和白珠有一定的规律,即是一个白珠和三个黑珠.解答:解:因为这串珠总共有126个,(126﹣1)÷4=31…1,则最后一个珠子为白颜色.白颜色的珠子共有31+1=32个.故这串珠子中最后一个珠子是白颜色的,共有32个.点评:关键是通过归纳与总结,得到其中的规律.19.若a,b互为相反数,x,y互为倒数,则a﹣xy+b= ﹣1 .考点:代数式求值;相反数;倒数.分析:利用相反数和倒数的定义可得a+b=0,xy=1,整体代入可得结果.解答:解:∵a,b互为相反数,x,y互为倒数,∴a+b=0,xy=1,∴a﹣xy+b=a+b﹣xy=0﹣1=﹣1,故答案为:﹣1.点评:本题主要考查了相反数和倒数的定义,由已知得出a+b=0,xy=1,整体代入是解答此题的关键.20.甲、乙、丙三位同学进行数字游戏:甲说一个数a的相反数就是它本身,乙说一个数b 的倒数也等于它本身,丙说一个数c的绝对值等于2,请你猜一猜|a﹣b+c|= 1或3 .考点:有理数的减法;相反数;绝对值;倒数;有理数的加法.专题:应用题.分析:根据相反数的定义,相反数是它本身的是0;倒数是它本身的数是±1;绝对值等于2的数是±2,再代入可求出|a﹣b+c|=的值.解答:解:依题意,有a=0,b=±1,c=±2.①当a=0,b=1,c=2时,|a﹣b+c|=|0﹣1+2|=1;②当a=0,b=1,c=﹣2时,|a﹣b+c|=|0﹣1﹣2|=3;③当a=0,b=﹣1,c=2时,|a﹣b+c|=|0+1+2|=3;④当a=0,b=﹣1,c=﹣2时,|a﹣b+c|=|0+1﹣2|=1.故|a﹣b+c|=1或3.点评:本题主要考查了相反数、倒数、绝对值的定义及有理数的加减运算.要记住几个特殊的数,相反数是它本身的是0,倒数是它本身的数是±1.三、计算题(每小题20分,总计20分)21.(1)33+(﹣32)+7﹣(﹣3)(2)(﹣8)×(﹣5)×(﹣0.125)(3)﹣0.5﹣(﹣3)+2.75﹣(+7)(4)(﹣56)×(﹣+)(5)3.1416×6.4955+3.1416×(﹣5.4955)考点:有理数的混合运算.分析:(1)先化简,再根据有理数加减法的计算法则计算即可求解;(2)根据乘法的交换律和结合律计算即可求解;(3)根据加法的交换律和结合律计算即可求解;(4)(5)直接运用乘法的分配律计算.解答:解:(1)33+(﹣32)+7﹣(﹣3)=33﹣32+7+3=11;(2)(﹣8)×(﹣5)×(﹣0.125)=﹣8×0.125×5=﹣1×5=﹣5;(3)﹣0.5﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)(﹣56)×(﹣+)=﹣56×+56×﹣56×=﹣32+21﹣4=﹣15;(5)3.1416×6.4955+3.1416×(﹣5.4955)=3.1416×(6.4955﹣5.4955)=3.1416×1=3.1416.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.四、解答题(每小题6分,总计24分)22.已知|x﹣4|+|y+2|=0,求y﹣x的值.考点:非负数的性质:绝对值.分析:利用非负数的性质解得x,y,将x,y的值代入即可.解答:解:∵|x﹣4|+|y+2|=0,∴x﹣4=0,y+2=0,解得:x=4,y=﹣2,∴y﹣x=﹣2﹣4=﹣6.点评:本题主要考查了绝对值的非负性,利用绝对值的非负性得出a,b的值是解答此题的关键.23.已知有理数a,b在数轴上的位置如图所示,请比较 a,b,|a|,|b|的大小(用<连接起来).考点:有理数大小比较;数轴;绝对值.分析:通过观察可知a,b为负数,且b的绝对值大于a的绝对值,再比较即可解答.解答:解:因为a,b为负数,且b的绝对值大于a的绝对值,可得:b<a<丨a丨<丨b丨.点评:此题考查有理数大小的比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.24.若a﹣5和﹣7互为相反数,求a的值.考点:相反数.分析:根据相反数的性质,互为相反数的两个数和为0,求解即可.解答:解:根据性质可知a﹣5+(﹣7)=0,得a﹣12=0,解得:a=12.点评:本题主要考查互为相反数的定义:只有符号不同的两个数互为相反数.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.25.正式足球比赛对所用足球的质量有严格的规定,标准质量为400克.下面是5个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数):﹣25,+10,﹣20,+30,+15.(1)写出每个足球的质量;(2)请指出哪个足球的质量好一些,并用绝对值的知识进行判断.考点:有理数的加法;绝对值.专题:应用题.分析:标准质量为400克,正数记超过规定质量的克数,用负数记不足规定质量的克数,所以每个足球的质量是375克、410克、380克、430克、415克.质量为410克(即质量超过+10克)的足球的质量好一些.解答:解:(1)每个足球的质量分别为:400﹣25=375克、400+10=410克、400﹣20=380克、400+30=430克、400+15=415克.(2)质量为410克(即质量超过+10克)的足球的质量好一些.因为它离标准质量400克最近,最接近标准.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,要活学活用.五、解答题(每题8分,共16分)26.上午6点水箱里的温度是68℃,此后每小时下降4.5℃,求下午2点水箱内的温度.考点:有理数的混合运算.专题:应用题.分析:由题意可得,下午两点水箱内的温度=68﹣4.5×(14﹣6),据此解答.解答:解:下午2点即为14点,68﹣4.5×(14﹣6)=68﹣36=32(℃).故下午2时水箱内的温度是32℃.点评:此题结合实际问题考查有理数的混合运算,解答此题的关键是理清题意,找准等量关系.27.某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?考点:有理数的加法.专题:应用题.分析:(1)由于东西方向检修规定向东为正,向西为负,南北方向检修,约定向北为正,那么收工时,甲组在A地的39米处,即东39千米处;乙组﹣4即南4千米处;(2)把甲乙两组的检修的所有行走记录的绝对值的和求出,然后分别乘以每千米汽车耗油a升就可以求出出发到收工时两组各耗油多少升.解答:解:(1)∵(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=39,∴收工时,甲组在A地的东边,且距A地39千米.∵(﹣17)+(+9)+(﹣2)+(+8)+(+6)+(+9)+(﹣5)+(﹣1)+(+4)+(﹣7)+(﹣8)=﹣4,∴收工时,乙组在A地的南边,且距A地4千米;(2)从出发到收工时,甲组耗油为[|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|]×a =(15+2+5+1+10+3+2+12+4+5+6)×a=65a升,乙组耗油[|﹣17|+|+9|+|﹣2|+|+8|+|+6|+|+9|+|﹣5|+|﹣1|+|+4|+|﹣7|+|﹣8|]×a=(17+9+2+8+6+9+5+1+4+7+8)×a=76a升.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.。