Location estimation accuracy in wireless sensor networks
多目标跟踪的多伯努利平滑方法
多目标跟踪的多伯努利平滑方法1 引言多目标跟踪是一种智能多智能体系统,它可以预测一组潜在的目标,并在其生命周期中跟踪它们。
多目标跟踪算法是当今多智能体系统的重要组成部分。
他们的主要功能是数据收集、分析和跟踪,它们可以帮助用户在其决策和行为中了解和规划他们要追踪的目标。
有几种流行的多目标跟踪算法,包括卡尔曼滤波(KF)、线性卡尔曼滤波(LKF)和半监督离散空间平滑算法(BSS)。
多伯努利平滑 (MBMS) 方法是一种基于多目标跟踪算法的先进方法。
它专门用于预测各种类型和形式的潜在目标,并通过监督离散空间平滑(SSS)算法实现跟踪。
MBMS解决了卡尔曼滤波(KF)和线性卡尔曼滤波(LKF)所存在的问题,如高误差和低效率。
总而言之,MBMS可以提高目标跟踪的准确性和效率。
2 MBMS方法概述MBMS方法利用了监督离散空间平滑(SSS)算法来预测和跟踪潜在的复杂目标。
MBMS算法通过监督离散空间平滑(SSS)再抽象出精简的核心算法,以实现其中的平滑处理。
这使得MBMS算法能够动态估计和有效地跟踪目标的多个参数(如位置、速度和加速度等)。
它的主要特点是简便、高效且精确。
3 基于MBMS的混合滤波基于MBMS的混合滤波(MHF)是一种改进的多伯努利平滑(MBMS)方法,它可以有效地处理复杂的多目标运动模型,同时具有针对潜在目标噪声严重的情况的稳健性能。
MHF方法利用了已经检测到的目标来预测未知目标,并利用历史目标位置数据创建一个比较新的位置估计。
通过相互约束,MHF算法可以有效地控制目标的运动,从而减少不确定性。
4 结论多伯努利平滑(MBMS)是一种简单实用的多目标跟踪算法,可以有效地预测和跟踪潜在的复杂目标。
它的特点是简单、高效且精确,可以提高目标跟踪的准确性和效率。
此外,MHF算法是MBMS的改进,可以有效处理复杂的多目标运动模型,具有较好的稳健性能。
未来研究可能会在这两种方法中建立更加复杂的模型,以实现更高效的跟踪结果。
accuracy的参考文献
accuracy的参考文献英文回答:Accuracy in machine learning is a measure of how well a model predicts the correct output for a given input. It is usually calculated as the percentage of correct predictions out of all predictions made. Accuracy is a simple and intuitive metric, but it can be misleading in some cases. For example, accuracy can be high even if the model is biased towards one class. In such cases, the model may be very good at predicting the majority class, but it may not be as good at predicting the minority class.There are several different ways to calculate accuracy, depending on the type of problem being solved. For classification problems, accuracy is calculated as the number of correctly classified instances divided by the total number of instances. For regression problems, accuracy is calculated as the mean absolute error or the mean squared error.Accuracy is a widely used metric, but it is importantto be aware of its limitations. In particular, accuracy can be misleading when the dataset is imbalanced or when there are a large number of classes. In such cases, it may bemore appropriate to use a different metric, such as precision, recall, or F1 score.中文回答:准确度是机器学习中衡量模型对给定输入预测正确输出的程度的指标。
机器学习中的迁移学习算法评估指标
机器学习中的迁移学习算法评估指标在机器学习领域,迁移学习是指将从一个领域学到的知识应用到另一个相关但略有不同的领域中的技术。
迁移学习算法评估指标是用来评估迁移学习算法性能和效果的指标。
本文将介绍几种常用的迁移学习算法评估指标,并对其进行详细解释。
1. 准确率(Accuracy)准确率是迁移学习算法评估中最常用的指标之一。
它表示分类器被正确分类的样本在总样本中所占的比例。
准确率越高,说明算法在迁移学习任务上的性能越好。
2. 精确率(Precision)与召回率(Recall)精确率和召回率是用来评估二分类问题中的迁移学习算法的指标。
精确率表示被正确分类的正样本在所有被分类为正样本中的比例,召回率表示被正确分类的正样本在所有真实正样本中的比例。
精确率和召回率通常是相互影响的,需要在两者之间进行权衡。
3. F1值F1值是综合考虑精确率和召回率的指标。
它是精确率和召回率的调和平均值,可以有效评估迁移学习算法在处理不平衡数据集时的表现。
F1值越接近1,说明算法性能越好。
4. AUC-ROC(Area Under the Receiver Operating Characteristic Curve)AUC-ROC是用来评估二分类问题中迁移学习算法的指标。
ROC曲线是以真正例率(TPR)为纵轴,以假正例率(FPR)为横轴绘制的曲线。
AUC-ROC值表示ROC曲线下的面积,范围在0到1之间。
AUC-ROC值越接近1,说明算法具有更好的分类性能。
5. 平均准确率(Mean Average Precision)平均准确率是用来评估迁移学习算法在多类别问题中的指标。
它综合了每个类别的准确率,并计算出一个平均值。
平均准确率越高,说明算法对多个类别的分类性能越好。
6. 均方误差(Mean Squared Error)均方误差是用来评估回归问题中的迁移学习算法的指标。
它表示预测值与真实值之间的差异程度。
均方误差越小,说明算法对实际值的预测越准确。
Estimating network based locating error in wireles
专利名称:Estimating network based locating error inwireless networks发明人:Jeremy Fix,Mario Kosseifi,Sheldon Meredith申请号:US13188136申请日:20110721公开号:US09519043B2公开日:20161213专利内容由知识产权出版社提供专利附图:摘要:Systems and techniques for determining the accuracy of network based user equipment (UE) locating methods and results thereof are disclosed. Periodic directmeasurements of location error for a network based location result are determined bythe difference in the network based location result and an assisted global positioning system (AGPS) location result. The location error is associated with a cell-pair contributing to data employed to determine the network based location result. The error associated with the cell-pair is then applied as a measure of accuracy in future network based location results that also employ data associated with the cell-pair to determine the future network based location result.申请人:Jeremy Fix,Mario Kosseifi,Sheldon Meredith地址:Acworth GA US,Roswell GA US,Marietta GA US国籍:US,US,US代理机构:Amin, Turocy & Watson, LLP更多信息请下载全文后查看。
断点回归的非参数估计
断点回归的非参数估计断点回归是经济学中常用的方法之一,主要用于研究某些变量在某一特定阈值点处的表现情况。
通俗地说,就是研究一个关键变量变化与另一个变量之间的不连续性,也就是“断点”的位置及其对后续数据的影响。
传统的断点回归方法主要是基于参数估计的,即设定一个预定的函数形式,并通过参数估计来确定特定断点的位置。
然而,实际应用中常常会遇到诸如形状未知、非线性、存在异方差等问题,这就使得传统的参数估计方法有时难以满足需要。
为此,非参数估计成为了断点回归的重要研究方向。
非参数估计不需要事先假定函数形式,从而更具有灵活性和可适应性,其估计值对于形状未知、曲线不光滑、断点位置不确定等问题具有较好的抗干扰能力。
非参数断点回归方法中最常用的是基于“局部线性回归”(Local Linear Regression,LLR)的方法。
在LLR中,将断点左侧和右侧数据分别组成两个区域,然后在每个区域内用线性回归来逼近数据的真实曲线。
具体而言,即对于每个区域内的每个点,分别以该点为中心取一个窗口,然后在该窗口范围内进行线性回归,从而得到曲线在该窗口中的估计值。
最终,将所有窗口的估计值拼接起来,就得到了整个数据样本中曲线的估计值。
LLR方法的关键是如何选取窗口。
一般而言,窗口大小决定了估计的平滑度和偏差-方差权衡。
过大的窗口会导致过度平滑,而过小的窗口则会使估计的方差过大,从而造成过拟合。
因此,需要通过交叉验证等方法来确定最适合的窗口大小。
此外,LLR方法还需要确定更多的参数,如窗口形状、窗口位置、平滑参数等。
这些参数的选取也对估计结果产生较大的影响,因此需要谨慎选择。
总而言之,非参数断点回归方法在不需要指定函数形式的前提下,可以有效地解决估计过程中的形状未知、曲线不光滑、断点位置不确定等问题。
而基于LLR的方法则是非参数方法中最为流行的一种。
当然,不同的问题需要选择不同的方法,因此选择合适的方法是成功应用断点回归的前提。
r语言计算灵敏度区间
r语言计算灵敏度区间
在R语言中,计算灵敏度区间通常涉及统计建模和模拟方法。
灵敏度区间是指在给定的模型和参数估计下,对输入参数的变化所
导致的输出结果的变化范围。
以下是一种常见的方法来计算灵敏度
区间:
1. 参数灵敏度分析,使用R语言中的sensitivity包或其他相
关包,可以进行参数灵敏度分析。
这通常涉及对模型的参数进行一
定范围的变化,然后观察输出结果的变化。
可以使用参数的不同取
值来模拟参数的不确定性,从而计算出参数的灵敏度区间。
2. Bootstrap法,Bootstrap是一种统计学中常用的重抽样方法,可以用来估计参数的置信区间和灵敏度区间。
在R语言中,可
以使用boot包或其他相关包来进行Bootstrap分析,通过对原始数据进行重抽样,得到多个估计值,然后计算这些估计值的置信区间,从而得到参数的灵敏度区间。
3. Monte Carlo模拟,Monte Carlo模拟是一种通过随机抽样
来进行数值计算的方法,可以用来估计参数的不确定性和灵敏度区间。
在R语言中,可以使用Monte Carlo模拟来对模型进行多次随
机抽样,观察输出结果的变化,从而计算灵敏度区间。
总之,在R语言中计算灵敏度区间可以通过参数灵敏度分析、Bootstrap法和Monte Carlo模拟等方法来实现。
这些方法可以帮助我们评估模型的稳定性和对输入参数的敏感程度,从而更好地理解模型的行为和预测能力。
点位精度评定
点位精度评定⽬录第1章点位精度评定1.1 简介下图显⽰了⼀系列的散点。
点位精度评定就是计算⼀些数值,⽤来评定这些点的离散程度。
精度评定数值越⼩说明点的离散程度越⼩,精度越⾼。
1.2 期望上图的圆⼼和椭圆中⼼,是散点的真实位置。
假定其坐标为,那么就是随机变量的期望,就是随机变量的期望。
期望的数值,有可能是已知的,也可能是未知的。
在未知的情况下,需要对期望进⾏估值。
⼀般情况下,期望的估值采⽤的是算术平均值,即:1.3 ⽅差⽅差⽤来描述随机变量的离散程度,它的数值越⼩说明离散度越低。
随机变量的⽅差:随机变量的⽅差:注意:如果随机变量的期望使⽤的是估计值,则⽅差的估值为。
把改成的原因在于:求出后,的⾃由度由变成了。
1.4 标准差标准差也叫中误差,它是⽅差的平⽅根,即:随机变量的标准差:或随机变量的标准差:或1.5 协⽅差随机变量、之间的协⽅差:同样的,如果期望和使⽤的是估计值,则按下式计算1.6 DRMS离散随机变量的均⽅根RMS(Root Mean Square)为:点位误差⾥的RMS其实是距离均⽅根差(DRMS),即:将代⼊上式,可得1.7 2DRMS双倍距离均⽅根的计算公式如下:1.8 CEP圆概率误差CEP(Circular Error Probable)的含义:以为圆⼼,CEP为半径画⼀个圆,点落⼊圆内的概率为50%。
其计算公式如下:1.9 CEP95CEP95(也被称之为R95)的含义:以为圆⼼,CEP95为半径画⼀个圆,点落⼊圆内的概率为95%。
其计算公式如下:1.10 CEP99CEP99的含义:以为圆⼼,CEP99为半径画⼀个圆,点落⼊圆内的概率为99%。
其计算公式如下:1.11 对⽐CEP、CEP95、CEP99之间是有严格的⽐例关系的;DRMS、2DRMS之间也是有严格的⽐例关系的;那么CEP与DRMS有什么关系呢?假定,则:,。
此时。
换句话说就是CEP与DRMS之间有着近似的转换公式:这⼏个统计量从⼩到⼤依次为:CEP、DRMS、CEP95、2DRMS、CEP99。
hodges-lehmann位置偏移估计值
在统计学中,Hodges-Lehmann位置偏移估计值是一种用于衡量两组数据差异的非参数方法。
它的计算方法是取每个组合的差值,然后对这些差值取中位数。
这个估计值不仅不受异常值的影响,而且对数据分布的偏斜和尺度也不敏感,因此在一定程度上具有较好的鲁棒性。
我们可以从简单的例子开始,来理解Hodges-Lehmann位置偏移估计值的计算过程。
假设我们有两组数据,分别是A组和B组。
我们要计算这两组数据的位置偏移估计值。
1. 我们需要对所有A组和B组中的数据进行配对组合,计算出所有配对的差值。
2. 将这些差值进行排序,找出其中位数的差值,即为Hodges-Lehmann位置偏移估计值。
举个简单的例子,假设A组数据为[3, 4, 5, 6, 7],B组数据为[2, 4, 5, 7, 8]。
我们可以计算出所有配对的差值为[-1, 0, 0, 1, 1, 0, 1, 2, 3],然后找出其中位数的差值,即为0。
以上就是Hodges-Lehmann位置偏移估计值的简单计算过程。
接下来,我们可以探讨一些在实际应用中的相关问题。
Hodges-Lehmann位置偏移估计值适用于什么样的数据类型?Hodges-Lehmann位置偏移估计值适用于连续变量的数据,因为它是基于差值的中位数计算的,而对于类别型数据这种计算方法就不适用了。
Hodges-Lehmann位置偏移估计值在哪些领域有着广泛的应用?Hodges-Lehmann位置偏移估计值通常用于比较两组数据的位置差异,例如在医学研究中比较两种治疗方法的效果、在市场营销中比较不同产品的销售情况等。
我们还可以思考Hodges-Lehmann位置偏移估计值的局限性是什么?尽管Hodges-Lehmann位置偏移估计值对异常值具有较好的鲁棒性,但是它对样本量的要求较高,当样本量较小时,其稳定性和准确性就会受到影响。
Hodges-Lehmann位置偏移估计值是一种非参数方法,它通过计算单个配对的差值的中位数来衡量两组数据的位置差异,具有鲁棒性和不受异常值影响的优点。
计量经济学英语词汇
计量经济学英语词汇计量经济学英语词汇Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution,双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart,Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显着差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit 转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显着差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差) Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS 统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显着水平Significance test, 显着性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum varianceunbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换Z-transformation, Z变换。
用于物体位置预测的算法
用于物体位置预测的算法
物体位置预测是计算机视觉和机器学习领域的一个重要问题,
有许多算法可以用于物体位置预测。
以下是一些常用的算法:
1. 卷积神经网络(CNN),CNN是一种深度学习算法,广泛应
用于物体位置预测任务。
通过多层卷积和池化操作,CNN可以有效
地学习图像中的特征,并用于物体位置的预测。
常见的CNN架构包
括AlexNet、VGG、ResNet等。
2. 循环神经网络(RNN),RNN是另一种常用的神经网络算法,特别适用于处理序列数据。
在物体位置预测中,可以使用RNN来对
物体在时间序列上的位置进行预测,例如视频中物体的运动轨迹预测。
3. 卡尔曼滤波器,卡尔曼滤波器是一种经典的状态估计算法,
常用于预测物体的位置和速度。
它基于线性动力学模型和观测模型,通过不断地融合传感器数据和先验知识,可以对物体的位置进行准
确的预测。
4. 支持向量机(SVM),SVM是一种监督学习算法,常用于分
类和回归任务。
在物体位置预测中,可以使用SVM来学习物体位置与图像特征之间的关系,从而进行位置的预测。
5. 随机森林(Random Forest),随机森林是一种集成学习算法,通过组合多个决策树来进行预测。
在物体位置预测中,可以使用随机森林来学习图像特征和物体位置之间的复杂关系,从而实现准确的位置预测。
以上是一些常用于物体位置预测的算法,它们各自有着不同的特点和适用范围。
在实际应用中,通常会根据具体的问题和数据特点选择合适的算法来进行物体位置的预测。
accuracy的用法
Accuracy的用法1. 定义与解释Accuracy是一个英语单词,表示准确性、精确度或者正确性。
在不同的领域中,accuracy的具体含义可能会略有不同,但总的来说,它都指的是某个事物或者过程与真实情况之间的一致程度。
在统计学中,accuracy通常指的是分类模型中正确预测的样本数与总样本数之比。
例如,在一个二分类问题中,如果有100个样本,其中80个被正确分类为正样本,20个被正确分类为负样本,则模型的accuracy为80%。
在科学研究领域,accuracy也被用来描述实验结果或者测量结果与真实值之间的差距。
例如,在物理实验中,我们可以通过比较测量值与理论值之间的差异来评估实验准确性。
2. 应用领域Accuracy这个概念在各个领域都有广泛应用。
2.1 机器学习和数据科学在机器学习和数据科学领域,accuracy是评估分类模型性能最常用的指标之一。
它可以衡量模型对于样本分类任务的准确率。
除了二分类问题外,accuracy也可以应用于多类别问题中。
然而,accuracy并不是适用于所有情况的最佳指标。
当数据集中存在类别不平衡问题时,accuracy可能会给出误导性的结果。
在这种情况下,其他指标如precision、recall和F1 score等更适合评估模型的性能。
2.2 科学研究在科学研究中,准确性是非常重要的。
科学家们通过实验和观察来获取数据,并希望这些数据能够准确地反映真实情况。
因此,在设计实验和测量过程时,他们需要考虑如何提高准确性。
为了提高实验结果的准确性,科学家们通常会采取一系列措施。
例如,在实验设计中考虑到各种潜在误差来源,并尽量减小其影响;使用精密仪器进行测量,以提高测量结果的精确度;进行多次重复实验以获取可靠的平均值等等。
2.3 商业和金融在商业和金融领域,准确性对于决策非常重要。
无论是市场预测、风险管理还是投资决策,都需要基于准确的数据和分析来做出正确判断。
例如,在股票市场中,投资者需要准确预测股票价格的走势,以便做出买入或卖出的决策。
定序回归 截距项 置信区间
定序回归截距项置信区间定序回归、截距项和置信区间是统计学中常用的概念和方法。
在这篇文章中,我将从简单到复杂地说明这些概念的含义和应用,并分析它们在数据分析中的重要性。
一、定序回归定序回归是一种用于处理有序分类(ordinal)或顺序数据的回归方法。
有序分类数据是指变量的取值可以被排序或排列成等级。
相比于普通的分类问题,有序分类数据提供了更详细、更精确的信息。
定序回归的目标是根据预测变量(predictor variables)来预测有序分类因变量(ordinal dependent variable)。
其核心思想是将有序分类转化为数值等级,从而可以应用传统的回归方法进行建模和分析。
在定序回归中,常用的模型包括有序Logit模型(ordinal logistic regression)和有序Probit模型(ordinal probit regression)。
这些模型可以估计预测变量对有序分类因变量的影响,并提供相关系数的显著性检验。
定序回归在社会科学、医学研究、市场调查等领域得到广泛应用。
它可以帮助研究人员理解和解释有序分类因变量的变化规律,从而做出相应的预测和决策。
二、截距项截距项是回归分析中的一个重要概念。
它表示当所有预测变量的取值为0时,因变量的期望值所对应的数值。
截距项可以看作是所有未被考虑的影响因素对因变量的整体效应。
在定序回归中,截距项是指当所有预测变量的取值为中性或不相关水平时,有序分类因变量的期望值所对应的数值。
截距项的估计结果可以告诉我们如果没有考虑其他预测变量,有序分类因变量的基准水平是多少。
对于定序回归模型,截距项通常是模型中最容易解释和理解的部分。
它提供了对比和基准水平,帮助我们评估其他预测变量相对于基准水平的影响。
三、置信区间置信区间是用于估计统计参数的一种方法。
在定序回归和其他回归模型中,参数估计的精确性是一个重要关注点。
置信区间提供了一种区间估计方法,用于给出参数估计结果的不确定性。
Accurate Passive Location Estimation Using TOA Measurements
Accurate Passive Location Estimation Using TOA MeasurementsJunyang Shen,Andreas F.Molisch,Fellow,IEEE,and Jussi Salmi,Member,IEEEAbstract—Localization of objects is fast becoming a major aspect of wireless technologies,with applications in logistics, surveillance,and emergency response.Time-of-arrival(TOA) localization is ideally suited for high-precision localization of objects in particular in indoor environments,where GPS is not available.This paper considers the case where one transmitter and multiple,distributed,receivers are used to estimate the location of a passive(reflecting)object.It furthermore focuses on the situation when the transmitter and receivers can be synchronized,so that TOA(as opposed to time-difference-of-arrival(TDOA))information can be used.We propose a novel, Two-Step estimation(TSE)algorithm for the localization of the object.We then derive the Cramer-Rao Lower Bound(CRLB) for TOA and show that it is an order of magnitude lower than the CRLB of TDOA in typical setups.The TSE algorithm achieves the CRLB when the TOA measurements are subject to small Gaussian-distributed errors,which is verified by analytical and simulation results.Moreover,practical measurement results show that the estimation error variance of TSE can be33dB lower than that of TDOA based algorithms.Index Terms—TOA,TDOA,location estimation,CRLB.I.I NTRODUCTIONO BJECT location estimation has recently received inten-sive interests for a large variety of applications.For example,localization of people in smoke-filled buildings can be life-saving[1];positioning techniques also provide useful location information for search-and-rescue[2],logistics[3], and security applications such as localization of intruders[4].A variety of localization techniques have been proposed in the literature,which differ by the type of information and system parameters that are used.The three most important kinds utilize the received signal strength(RSS)[5],angle of arrival(AOA)[6],and signal propagation time[7],[8],[9], respectively.RSS algorithms use the received signal power for object positioning;their accuracies are limited by the fading of wireless signals[5].AOA algorithms require either directional antennas or receiver antenna arrays1.Signal-propagation-time based algorithms estimate the object location using the time it takes the signal to travel from the transmitter to the target and from there to the receivers.They achieve very accurate Manuscript received April15,2011;revised September28,2011and Jan-uary18,2012;accepted February12,2012.The associate editor coordinating the review of this paper and approving it for publication was X.Wang.J.Shen and A.F.Molisch are,and J.Salmi was with the Department of Electrical Engineering,Viterbi School of Engineering,University of Southern California(e-mail:{junyangs,molisch,salmi}@).J.Salmi is currently with Aalto University,SMARAD CoE,Espoo,Finland.This paper is partially supported by the Office of Naval Research(ONR) under grant10599363.Part of this work was presented in the IEEE Int.Conference on Ultrawide-band Communications2011.Digital Object Identifier10.1109/TWC.2012.040412.1106971Note that AOA does not provide better estimation accuracy than the signal propagation time based methods[10].estimation of object location if combined with high-precision timing measurement techniques[11],such as ultrawideband (UWB)signaling,which allows centimeter and even sub-millimeter accuracy,see[12],[13],and Section VII.Due to such merits,the UWB range determination is an ideal candidate for short-range object location systems and also forms the basis for the localization of sensor nodes in the IEEE802.15.4a standard[14].The algorithms based on signal propagation time can be fur-ther classified into Time of Arrival(TOA)and Time Difference of Arrival(TDOA).TOA algorithms employ the information of the absolute signal travel time from the transmitter to the target and thence to the receivers.The term“TOA”can be used in two different cases:1)there is no synchronization between transmitters and receivers and then clock bias between them exist;2)there is synchronization between transmitters and receivers and then clock bias between them does not exist. In this paper,we consider the second situation with the synchronization between the transmitter and receivers.Such synchronization can be done by cable connections between the devices,or sophisticated wireless synchronization algo-rithms[15].TDOA is employed if there is no synchronization between the transmitter and the receivers.In that case,only the receivers are synchronized.Receivers do not know the signal travel time and therefore employ the difference of signal travel times between the receivers.It is intuitive that TOA has better performance than the TDOA,since the TDOA loses information about the signal departure time[7].The TDOA/TOA positioning problems can furthermore be divided into“active”and“passive”object cases.“Active”means that the object itself is the transmitter,while“passive”means that it is not the transmitter nor receiver,but a separate (reflecting/scattering)object that just interacts with the signal stemming from a separate transmitter2.There are numerous papers on the TOA/TDOA location estimation for“active”objects.Regarding TDOA,the two-stage method[16]and the Approximate Maximum Likelihood Estimation[17]are shown to be able to achieve the Cramer-Rao Lower Bound(CRLB)of“active”TDOA[8].As we know,the CRLB sets the lower bound of the estimation error variance of any un-biased method.Two important TOA methods of“active”object positioning are the Least-Square Method[18]and the Approximate Maximum Likelihood Es-timation Method[17],both of which achieve the CRLB of “active”TOA.“Active”object estimation methods are used, e.g,for cellular handsets,WLAN,satellite positioning,and active RFID.2The definitions of“active”and“passive”here are different from those in radar literature.In radar literature,“passive radar”does not transmit signals and only detects transmission while“active radar”transmits signals toward targets.1536-1276/12$31.00c 2012IEEE“Passive”positioning is necessary in many practical situa-tions like crime-prevention surveillance,assets tracking,and medical patient monitoring,where the target to be localized is neither transmitter nor receiver,but a separate(reflect-ing/scattering)object.The TDOA positioning algorithms for “passive”objects are essentially the same as for“active”objects.For TOA,however,the synchronization creates a fundamental difference between“active”and“passive”cases. Regarding the“passive”object positioning,to the best of our knowledge,no TOA algorithms have been developed.This paper aims tofill this gap by proposing a TOA algorithm for passive object location estimation,which furthermore achieves the CRLB of“passive”TOA.The key contributions are:•A novel,two step estimation(TSE)method for the passive TOA based location estimation.It borrows an idea from the TDOA algorithm of[16].•CRLB for passive TOA based location estimation.When the TOA measurement error is Gaussian and small,we prove that the TSE can achieve the CRLB.Besides,it is also shown that the estimated target locations by TSE are Gaussian random variables whose covariance matrix is the inverse of the Fisher Information Matrix(FIM)related to the CRLB.We also show that in typical situations the CRLB of TOA is much lower than that of TDOA.•Experimental study of the performances of TSE.With one transmitter and three receivers equipped with UWB antennas,we perform100experimental measurements with an aluminium pole as the target.After extracting the signal travel time by high-resolution algorithms,the location of the target is evaluated by TSE.We show that the variance of estimated target location by TSE is much (33dB)lower than that by the TDOA method in[16]. The remainder of this paper is organized as follows.Section II presents the architecture of positioning system.Section III derives the TSE,followed by comparison between CRLB of TOA and TDOA algorithms in Section IV.Section V analyzes the performance of TSE.Section VI presents the simulations results.Section VII evaluates the performance of TSE based on UWB measurement.Finally Section VIII draws the conclusions.Notation:Throughout this paper,a variable with“hat”ˆ•denotes the measured/estimated values,and the“bar”¯•denotes the mean value.Bold letters denote vectors/matrices. E(•)is the expectation operator.If not particularly specified,“TOA”in this paper denotes the“TOA”for a passive object.II.A RCHITECTURE OF L OCALIZATION S YSTEMIn this section,wefirst discuss the challenges of localization systems,and present the focus of this paper.Then,the system model of individual localization is discussed.A.Challenges for target localizationFor easy understanding,we consider an intruder localization system using UWB signals.Note that the intruder detection can also be performed using other methods such as the Device-free Passive(DfP)approach[19]and Radio Frequency Identification(RFID)method[20].However,both the DfP and RFID methods are based on preliminary environmental measurement information like“Radio Map Construction”[19] and“fingerprints”[20].On the other hand,the TOA based approach considered in our framework does not require the preliminary efforts for obtaining environmental information. With this example,we show the challenges of target po-sitioning system:Multiple Source Separation,Indirect Path Detection and Individual Target Localization.The intruder detection system localizes,and then directs a camera to capture the photo of the targets(intruders).This localization system consists of one transmitter and several receivers.The transmitter transmits signals which are reflected by the targets,then,the receivers localize the targets based on the received signals.Multiple Source Separation:If there are more than one intruders,the system needs to localize each of them.With multiple targets,each receiver receives impulses from several objects.Only the information(such as TOA)extracted from impulses reflected by the same target should be combined for localization.Thus,the Multiple Source Separation is very important for target localization and several techniques have been proposed for this purpose.In[21],a pattern recognition scheme is used to perform the Multiple Source Separation. Video imaging and blind source separation techniques are employed for target separation in[22].Indirect Path Detection:The transmitted signals are not only reflected by the intruders,but also by surrounding objects,such as walls and tables.To reduce the adverse impact of non-target objects in the localization of target, the localization process consists of two steps.In the initial/first stage,the system measures and then stores the channel impulses without the intruders.These impulses are reflected by non-target objects,which is referred to as reflectors here.The radio signal paths existing without the target are called background paths.When the intruders are present,the system performs the second measurement. To obtain the impulses related to the intruders,the system subtracts the second measurement with thefirst one. The remaining impulses after the subtraction can be through one of the following paths:a)transmitter-intruders-receivers,b)transmitter-reflectors-intruders-receivers,c) transmitter-intruders-reflectors-receivers,d)transmitter-reflectors-intruders-reflectors-receivers3.Thefirst kind of paths are called direct paths and the rest are called indirect paths.In most situations,only direct paths can be used for localization.In the literature,there are several methods proposed for indirect path identification[23],[24]. Individual Target Localization:After the Multiple Source Separation and Indirect Path Detection,the positioning system knows the signal impulses through the direct paths for each target.Then,the system extracts the characteristics of direct paths such as TOA and AOA.Based on these characteristics, the targets arefinally localized.Most researches on Individual Target Localization assumes that Multiple Source Separation and Indirect Path Detection are perfectly performed such as [16],[25]and[26].Note that the three challenges sometimes 3Note that here we omit the impulses having two or more interactions with the intruder because of the resulted low signal-to-noise radio(SNR)by multiple reflections.Cable for synchronizationFig.1.Illustration of TOA based Location Estimation System Model.are jointly addressed,so that the target locations are estimated in one step such as the method presented in [27].In this paper,we focus on the Individual Target Local-ization,under the same framework of [16],[25]and [26],assuming that Multiple Source Separation and Indirect Path Detection are perfectly performed in prior.In addition,we only use the TOA information for localization,which achieves very high accuracy with ultra-wideband signals.The method to ex-tract TOA information using background channel cancelation is described in details in [28]and also Section VII.B.System Model of Individual LocalizationFor ease of exposition,we consider the passive object (target)location estimation problem in a two-dimensional plane as shown in Fig.1.There is a target whose location [x,y ]is to be estimated by a system with one transmitter and M receivers.Without loss of generality,let the location of the transmitter be [0,0],and the location of the i th receiver be [a i ,b i ],1≤i ≤M .The transmitter transmits an impulse;the receivers subsequently receive the signal copies reflected from the target and other objects.We adopt the assumption also made in [16],[17]that the target reflects the signal into all ing (wired)backbone connections be-tween the transmitter and receivers,or high-accuracy wireless synchronization algorithms,the transmitter and receivers are synchronized.The errors of cable synchronization are negli-gible compared with the TOA measurement errors.Thus,at the estimation center,signal travel times can be obtained by comparing the departure time at the transmitter and the arrival time at the receivers.Let the TOA from the transmitter via the target to the i th receiver be t i ,and r i =c 0t i ,where c 0is the speed of light,1≤i ≤M .Then,r i = x 2+y 2+(x −a i )2+(y −b i )2i =1,...M.(1)For future use we define r =[r 1,r 2,...,r M ].Assuming each measurement involves an error,we haver i −ˆri =e i ,1≤i ≤M,where r i is the true value,ˆr i is the measured value and e i is the measurement error.In our model,the indirect paths areignored and we assume e i to be zero mean.The estimation system tries to find the [ˆx ,ˆy ],that best fits the above equations in the sense of minimizing the error varianceΔ=E [(ˆx −x )2+(ˆy −y )2].(2)Assuming the e i are Gaussian-distributed variables with zeromean and variances σ2i ,the conditional probability functionof the observations ˆr are formulated as follows:p (ˆr |z )=Ni =11√2πσi ·exp −(ˆr i −( x 2+y 2+ (x −a i )2+(y −b i )2))22σ2i,(3)where z =[x,y ].III.TSE M ETHODIn this section,we present the two steps of TSE andsummarize them in Algorithm 1.In the first step of TSE,we assume x ,y , x 2+y 2are independent of each other,and obtain temporary results for the target location based on this assumption.In the second step,we remove the assumption and update the estimation results.A.Step 1of TSEIn the first step of TSE,we obtain an initial estimate of[x,y, x 2+y 2],which is performed in two stages:Stage A and Stage B.The basic idea here is to utilize the linear approximation [16][29]to simplify the problem,considering that TOA measurement errors are small with UWB signals.Let v =x 2+y 2,taking the squares of both sides of (1)leads to2a i x +2b i y −2r i v =a 2i +b 2i −r 2i .Since r i −ˆr i =e i ,it follows that−a 2i +b 2i −ˆr 2i 2+a i x +b i y −ˆr i v=e i (v −ˆr i )−e 2i 2=e i (v −ˆr i )−O (e 2i ).(4)where O (•)is the Big O Notation meaning that f (α)=O (g (α))if and only if there exits a positive real number M and a real number αsuch that|f (α)|≤M |g (α)|for all α>α0.If e i is small,we can omit the second or higher order terms O (e 2i )in Eqn (4).In the following of this paper,we do this,leaving the linear (first order)term.Since there are M such equations,we can express them in a matrix form as followsh −S θ=Be +O (e 2)≈Be ,(5)whereh=⎡⎢⎢⎢⎢⎣−a21+b21−ˆr212−a22+b22−ˆr222...−a2M+b2M−ˆr2M2⎤⎥⎥⎥⎥⎦,S=−⎡⎢⎢⎢⎣a1b1−ˆr1a2b2−ˆr2...a Mb M−ˆr M⎤⎥⎥⎥⎦,θ=[x,y,v]T,e=[e1,e2,...,e M]T,andB=v·I−diag([r1,r2,...,r M]),(6) where O(e2)=[O(e21),O(e22),...,O(e2M)]T and diag(a) denotes the diagonal matrix with elements of vector a on its diagonal.For notational convenience,we define the error vectorϕ=h−Sθ.(7) According to(5)and(7),the mean ofϕis zero,and its covariance matrix is given byΨ=E(ϕϕT)=E(Bee T B T)+E(O(e2)e T B T)+E(Be O(e2)T)+E(O(e2)O(e2)T)≈¯BQ¯B T(8)where Q=diag[σ21,σ22,...,σ2M].Because¯B depends on the true values r,which are not obtainable,we use B(derived from the measurementsˆr)in our calculations.From(5)and the definition ofϕ,it follows thatϕis a vector of Gaussian variables;thus,the probability density function (pdf)ofϕgivenθisp(ϕ|θ)≈1(2π)M2|Ψ|12exp(−12ϕTΨ−1ϕ)=1(2π)M2|Ψ|12exp(−12(h−Sθ)TΨ−1(h−Sθ)).Then,lnp(ϕ|θ)≈−12(h−Sθ)TΨ−1(h−Sθ)+ln|Ψ|−M2ln2π(9)We assume for the moment that x,y,v are independent of each other(this clearly non-fulfilled assumption will be relaxed in the second step of the algorithm).Then,according to(9),the optimumθthat maximizes p(ϕ|θ)is equivalent to the one minimizingΠ=(h−Sθ)TΨ−1(h−Sθ)+ln|Ψ|. IfΨis a constant,the optimumθto minimizeΠsatisfies dΠdθθ=0.Taking the derivative ofΠoverθ,we havedΠdθθ=−2S TΨ−1h+2S TΨ−1Sθ.Fig.2.Illustration of estimation ofθin step1of TSE.Thus,the optimumθsatisfiesˆθ=arg minθ{Π}=(S TΨ−1S)−1S TΨ−1h,(10)which provides[ˆx,ˆy].Note that(10)also provides the leastsquares solution for non-Gaussian errors.However,for our problem,Ψis a function ofθsince Bdepends on the(unknown)values[x,y].For this reason,themaximum-likelihood(ML)estimation method in(10)can notbe directly used.Tofind the optimumθ,we perform theestimation in two stages:Stage A and Stage B.In Stage A,themissing data(Ψ)is calculated given the estimate of parameters(θ).Note thatθprovides the values of[x,y]and thus thevalue of B,therefore,Ψcan be calculated usingθby(8).In the Stage B,the parameters(θ)are updated according to(10)to maximize the likelihood function(which is equivalentto minimizingΠ).These two stages are iterated until con-vergence.Simulations in Section V show that commonly oneiteration is enough for TSE to closely approach the CRLB,which indicates that the global optimum is reached.B.Step2of TSEIn the above calculations,ˆθcontains three componentsˆx,ˆy andˆv.They were previously assumed to be independent;however,ˆx andˆy are clearly not independent ofˆv.As amatter of fact,we wish to eliminateˆv;this will be achievedby treatingˆx,ˆy,andˆv as random variables,and,knowing thelinear mapping of their squared values,the problem can besolved using the LS solution.Letˆθ=⎡⎣ˆxˆyˆv⎤⎦=⎡⎣x+n1y+n2v+n3⎤⎦(11)where n i(i=1,2,3)are the estimation errors of thefirststep.Obviously,the estimator(10)is an unbiased one,and themean of n i is zero.Before proceeding,we need the following Lemma.Lemma 1:By omitting the second or higher order errors,the covariance of ˆθcan be approximated as cov (ˆθ)=E (nn T )≈(¯S T Ψ−1¯S )−1.(12)where n =[n 1,n 2,n 3]T ,and Ψand ¯S(the mean value of S )use the true/mean values of x ,y,and r i .Proof:Please refer to the Appendix.Note that since the true values of x ,y,and r i are not obtain-able,we use the estimated/measured values in the calculationof cov (ˆθ).Let us now construct a vector g as followsg =ˆΘ−G Υ,(13)where ˆΘ=[ˆx 2,ˆy 2,ˆv 2]T ,Υ=[x 2,y 2]T and G =⎡⎣100111⎤⎦.Note that here ˆΘis the square of estimation result ˆθfrom the first step containing the estimated values ˆx ,ˆy and ˆv .Υis the vector to be estimated.If ˆΘis obtained without error,g =0and the location of the target is perfectly obtained.However,the error inevitably exists and we need to estimate Υ.Recalling that v =x 2+y 2,substituting (11)into (13),and omitting the second-order terms n 21,n 22,n 23,it follows that,g =⎡⎣2xn 1+O (n 21)2yn 2+O (n 22)2vn 3+O (n 23)⎤⎦≈⎡⎣2xn 12yn 22vn 3⎤⎦.Besides,following similar procedure as that in computing(8),we haveΩ=E (gg T )≈4¯D cov (ˆθ)¯D ,(14)where ¯D =diag ([¯x ,¯y ,¯v ]).Since x ,y are not known,¯Dis calculated as ˆD using the estimated values ˆx ,ˆy from the firststep.The vector g can be approximated as a vector of Gaussian variables.Thus the maximum likelihood estimation of Υis theone minimizing (ˆΘ−G Υ)T Ω−1(ˆΘ−G Υ),expressed by ˆΥ=(G T Ω−1G )−1G T Ω−1ˆΘ.(15)The value of Ωis calculated according to (14)using the valuesof ˆx and ˆy in the first step.Finally,the estimation of target location z is obtained byˆz =[ˆx ,ˆy ]=[±ˆΥ1,± ˆΥ2],(16)where ˆΥi is the i th item of Υ,i =1,2.To choose the correct one among the four values in (16),we can test the square error as followsχ=M i =1( ˆx 2+ˆy 2+ (ˆx −a i )2+(ˆy −b i )−ˆr i )2.(17)The value of z that minimizes χis considered as the final estimate of the target location.In summary,the procedure of TSE is listed in Algorithm 1:Note that one should avoid placing the receivers on a line,since in this case (S T Ψ−1S )−1can become nearly singular,and solving (10)is not accurate.Algorithm 1TSE Location Estimation Method1.In the first step,use algorithm as shown in Fig.2to obtain ˆθ,2.In the second step,use the values of ˆx and ˆy from ˆθ,generate ˆΘand D ,and calculate Ω.Then,calculate the value of ˆΥby (15),3.Among the four candidate values of ˆz =[ˆx ,ˆy ]obtained by (16),choose the one minimizing (17)as the final estimate for target location.IV.C OMPARISON OF CRLB BETWEEN TDOA AND TOA In this section,we derive the CRLB of TOA based estima-tion algorithms and show that it is much lower (can be 30dB lower)than the CRLB of TDOA algorithms.The CRLB of “active”TOA localization has been studied in [30].The “passive”localization has been studied before under the model of multistatic radar [31],[32],[33].The difference between our model and the radar model is that in our model the localization error is a function of errors of TOA measurements,while in the radar model the localization error is a function of signal SNR and waveform.The CRLB is related to the 2×2Fisher Information Matrix (FIM)[34],J ,whose components J 11,J 12,J 21,J 22are defined in (18)–(20)as follows J 11=−E (∂2ln(p (ˆr |z ))∂x 2)=ΣM i =11σ2i (x −a i (x −a i )2+(y −b i )2+xx 2+y2)2,(18)J 12=J 21=−E (∂2ln(p (ˆr |z ))∂x∂y )=ΣM i =11σ2i (x −a i (x −a i )2+(y −b i )2+x x 2+y 2)×(y −b i (x −a i )2+(y −b i )2+yx 2+y 2),(19)J 22=−E (∂2ln(p (ˆr |z ))∂y 2)=ΣM i =11σ2i (y −b i (x −a i )2+(y −b i )2+yx 2+y2)2.(20)This can be expressed asJ =U T Q −1U ,(21)where Q is defined after Eqn.(8),and the entries of U in the first and second column are{U }i,1=x ¯r i −a ix 2+y 2(x −a i )2+(y −b i )2 x 2+y 2,(22)and{U }i,2=y ¯r i −b ix 2+y 2(x −a i )2+(y −b i )2 x 2+y 2,(23)with ¯r i =(x −a i )2+(y −b i )2+ x 2+y 2.The CRLB sets the lower bound for the variance of esti-mation error of TOA algorithms,which can be expressed as [34]E [(ˆx −x )2+(ˆy −y )2]≥ J −1 1,1+J −1 2,2=CRLB T OA ,(24)where ˆx and ˆy are the estimated values of x and y ,respec-tively,and J −1 i,j is the (i,j )th element of the inverse matrix of J in (21).For the TDOA estimation,its CRLB has been derived in [16].The difference of signal travel time between several receivers are considered:(x −a i )2+(y −b i )2−(x −a 1)2+(y −b 1)2=r i −r 1=l i ,2≤i ≤M.(25)Let l =[l 2,l 3,...,l M ]T ,and t be the observa-tions/measurements of l ,then,the conditional probability density function of t is p (t |z )=1(2π)(M −1)/2|Z |12×exp(−12(t −l )T Z −1(t −l )),where Z is the correlation matrix of t ,Z =E (tt T ).Then,the FIM is expressed as [16]ˇJ=ˇU T Z −1ˇU (26)where ˇUis a M −1×2matrix defined as ˇU i,1=x −a i (x −a i )2+(y −b i )2−x −a 1(x −a 1)2+(y −b 1)2,ˇUi,2=y −b i (x −a i )2+(y −b i )2−y −b 1(x −a 1)2+(y −b 1)2.The CRLB sets the lower bound for the variance of esti-mation error of TDOA algorithms,which can be expressed as [34]:E [(ˆx −x )2+(ˆy −y )2]≥ ˇJ −1 1,1+ ˇJ −1 2,2=CRLB T DOA .(27)Note that the correlation matrix Q for TOA is different from the correlation matrix Z for TDOA.Assume the variance of TOA measurement at i th (1≤i ≤M )receiver is σ2i ,it follows that:Q (i,j )=σ2i i =j,0i =j.and Z (i,j )= σ21+σ2i +1i =j,σ21i =j.As an example,we consider a scenario wherethere is a transmitter at [0,0],and four receivers at [−6,2],[6.2,1.4],[1.5,4],[2,2.3].The range of the targetlocations is 1≤x ≤10,1≤y ≤10.The ratio of CRLB of TOA over that of TDOA is plotted in Fig.3.Fig.3(a)shows the contour plot while Fig.3(b)shows the color-coded plot.It can be observed that the CRLB of TOA is always —in most cases significantly —lower than that of TDOA.xy(a )xy0.10.20.30.40.50.60.70.80.9Fig.3.CRLB ratio of passive TOA over passive TDOA estimation:(a)contour plot;(b)pcolor plot.V.P ERFORMANCE OF TSEIn this section,we first prove that the TSE can achieve the CRLB of TOA algorithms by showing that the estimation error variance of TSE is the same as the CRLB of TOA algorithms.In addition,we show that,for small TOA error regions,the estimated target location is approximately a Gaussian random variable whose covariance matrix is the inverse of the Fisher Information Matrix (FIM),which in turn is related to the CRLB.Similar to the reasoning in Lemma 1,we can obtain the variance of error in the estimation of Υas follows:cov (ˆΥ)≈(G T Ω−1G )−1.(28)Let ˆx =x +e x ,ˆy=y +e y ,and insert them into Υ,omitting the second order errors,we obtainˆΥ1−x 2=2xe x +O (e 2x )≈2xe x ˆΥ2−y 2=2ye y +O (e 2y)≈2ye y (29)Then,the variance of the final estimate of target location ˆzis cov (ˆz )=E (e x e ye x e y )≈14C −1E ( Υ1−x 2Υ2−y 2Υ1−x 2Υ2−y 2 )C −1=14C −1cov (ˆΥ)C −1,(30)where C = x 00y.Substituting (14),(28),(12)and (8)into (30),we can rewrite cov (ˆz )as cov (ˆz )≈(W T Q −1W )−1(31)where W =B −1¯SD−1GC .Since we are computing an error variance,B (19),¯S(5)and D (14)are calculated using the true (mean)value of x ,y and r i .Using (19)and (1),we can rewrite B =−diag ([d 1,d 2,...,d M ]),whered i=(x−a i)2+(y−b i)2.Then B−1¯SD−1is given by B−1¯SD−1=⎡⎢⎢⎢⎢⎢⎣a1xd1b1yd1−¯r1√x2+y2d1a2xd2b2yd2−¯r2√x2+y2d2.........a Mxd Mb Myd M−¯r M√x2+y2d M⎤⎥⎥⎥⎥⎥⎦.(32)Consequently,we obtain the entries of W as{W}i,1=x¯r i−a ix2+y2(x−a i)2+(y−b i)2x2+y2,(33){W}i,2=y¯r i −b ix2+y2(x−a i)2+(y−b i)2x2+y2.(34)where{W}i,j denotes the entry at the i th row and j th column.From this we can see that W=paring(21)and (31),it followscov(ˆz)≈J−1.(35) Then,E[(ˆx−x)2+(ˆy−y)2]≈J−11,1+J−12,2.Therefore,the variance of the estimation error is the same as the CRLB.In the following,wefirst employ an example to show that[ˆx,ˆy]obtained by TSE are Gaussian distributed with covariance matrix J−1,and then give the explanation for this phenomenon.Let the transmitter be at[0,0],target at[0.699, 4.874]and four receivers at[-1,1],[2,1],[-31.1]and[4 0].The signal travel distance variance at four receivers are [0.1000,0.1300,0.1200,0.0950]×10−4.The two dimensional probability density function(PDF)of[ˆx,ˆy]is shown in Fig.4 (a).To verify the Gaussianity of[ˆx,ˆy],the difference between the PDF of[ˆx,ˆy]and the PDF of Gaussian distribution with mean[¯x,¯y]and covariance J−1is plotted in Fig.4(b).The Gaussianity of[ˆx,ˆy]can be explained as follows.Eqn.(35)means that the covariance of thefinal estimation of target location is the FIM related to CRLB.We could further study the distribution of[e x,e y].The basic idea is that by omitting the second or high order and nonlinear errors,[e x,e y]can be written as linear function of e:1)According to(29),[e x,e y]are approximately lineartransformations ofˆΥ.2)(15)means thatˆΥis approximately a linear transfor-mation ofˆΘ.Here we could omit the nonlinear errors occurred in the estimate/calculation ofΩ.3)According to(11),ˆΘ≈¯θ2+2¯θn+n2,thus,omittingthe second order error,thus,ˆΘis approximately a linear transformation of n.4)(10)and(39)mean that n is approximately a lineartransformation of e.Here we could omit the nonlinear errors accrued in the estimate of S andΨ.Thus,we could approximately write[e x,e y]as a linear trans-formation of e,thus,[e x,e y]can be approximated as Gaussian variables.Fig.4.(a):PDF of[ˆx,ˆy]by TSE(b):difference between the PDF of[ˆx,ˆy] by TSE and PDF of Gaussian distribution with mean[¯x,¯y]and covariance J−1.Fig.5.Simulation results of TSE for thefirst configuration.VI.S IMULATION R ESULTSIn this section,wefirst compare the performance of TSE with that TDOA algorithm proposed in[16]and CRLBs.Then, we show the performance of TSE at high TOA measurement error scenario.For comparison,the performance of a Quasi-Newton iterative method[35]is shown.To verify our theoretical analysis,six different system con-figurations are simulated.The transmitter is at[0,0]for all six configurations,and the receiver locations and error variances are listed in Table I.Figures5,6and7show simulation results comparing the distance to the target(Configuration1vs. Configuration2),the receiver separation(Configuration3vs. Configuration4)and the number of receivers(Configuration5 vs.Configuration6),respectively4.In eachfigure,10000trails are simulated and the estimation variance of TSE estimate is compared with the CRLB of TDOA and TOA based localization schemes.For comparison,the simulation results of error variance of the TDOA method proposed in[16]are also drawn in eachfigure.It can be observed that1)The localization error of TSE can closely approach theCRLB of TOA based positioning algorithms.4During the simulations,only one iteration is used for the calculation of B(19).。
accuracy()方法
accuracy()方法一个电脑程序的好坏,最终的评判标准往往在于其结果的准确性。
在这个过程中,程序中的某些方法对结果的正确性有着至关重要的作用。
今天我们来讨论一个关于计算准确性的方法——accuracy()方法。
1. accuracy()方法是什么?accuracy()方法可以将机器学习模型的预测结果与实际结果进行比较,从而计算出模型的预测准确率。
在scikit-learn中,accuracy()方法属于metrics模块中的一个函数,可根据实际结果和预测结果计算出精确度。
2. accuracy()方法的使用在使用accuracy()方法之前,需要先导入对应的库和数据。
一般来说,我们会将数据分为训练集和测试集,然后使用训练集训练模型,再使用模型对测试集进行预测。
最后使用accuracy()方法将预测结果与实际结果进行对比,从而计算出模型的准确率。
以下为使用accuracy()方法的示例代码:```from sklearn.metrics import accuracy_score # 导入accuracy_score方法from sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LogisticRegression# 导入数据data = pd.read_csv("data.csv")X = data.drop('target', axis=1)y = data['target']# 将数据分为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2, random_state=42)# 构建逻辑回归模型model = LogisticRegression()# 使用训练集训练模型model.fit(X_train, y_train)# 使用模型对测试集进行预测y_pred = model.predict(X_test)# 使用accuracy_score方法计算准确率acc = accuracy_score(y_test, y_pred)print('模型准确率为:{:.2f}%'.format(acc * 100))```通过以上代码,我们将数据分为了训练集和测试集,并且使用训练集训练了一个逻辑回归模型。
位置估计损失函数
位置估计损失函数在许多机器学习和计算机视觉任务中,位置估计是一个重要的问题。
位置估计的目标是通过给定的输入图像来估计目标或者物体的位置。
在许多应用中,位置估计是一个关键的步骤,如目标跟踪、目标检测、姿态估计等。
为了解决位置估计问题,我们需要定义一个合适的损失函数。
损失函数是用来衡量预测结果与真实位置之间的差异的函数。
它可以帮助我们评估模型的性能,并指导模型的优化过程。
常见的位置估计损失函数包括均方误差(Mean Squared Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和交叉熵损失函数等。
均方误差是最常见的损失函数之一,它衡量了预测值与真实值之间的平均差异的平方。
均方误差越小,表示预测结果与真实位置越接近。
然而,均方误差对异常值比较敏感,可能导致模型过于关注异常值而忽视其他重要的信息。
平均绝对误差是衡量预测值与真实值之间平均差异的绝对值。
相比于均方误差,平均绝对误差对异常值不太敏感,更加鲁棒。
然而,平均绝对误差不能很好地反映真实位置的分布情况,可能忽略了一些重要的信息。
除了均方误差和平均绝对误差之外,交叉熵损失函数也常用于位置估计问题。
交叉熵损失函数是基于信息论中的概念,用来衡量预测结果与真实位置之间的差异。
交叉熵损失函数可以帮助模型更好地学习到目标的位置信息,并且对异常值不敏感。
除了上述常见的损失函数之外,还有一些其他的损失函数可以用于位置估计问题。
例如,Huber损失函数可以在均方误差和平均绝对误差之间进行平衡,既能保持鲁棒性,又能对异常值进行一定程度的修正。
在选择位置估计损失函数时,我们需要根据具体的任务需求和数据特点进行权衡。
不同的损失函数对于不同的问题可能会产生不同的效果。
我们需要根据具体情况选择合适的损失函数,并结合模型的优化算法进行模型的训练和优化。
位置估计损失函数在解决位置估计问题中起到了至关重要的作用。
它可以帮助我们评估模型的性能,并指导模型的优化过程。
类准确系数 -回复
类准确系数-回复什么是类准确系数(Cluster Accuracy)?类准确系数(Cluster Accuracy),也被称为准确度(Accuracy),是一种用于评估聚类结果的指标。
通常用来度量聚类算法的性能。
类准确系数通过比较聚类结果与某个参考标准(如真实的标签)之间的一致性来评估聚类结果的质量。
聚类是一种无监督的学习方法,它将数据分为不同的簇或群组,使得同一簇内的数据点在某种意义上相似,而不同簇之间的数据点有较大的差异。
聚类算法的目标是将相似的数据聚集在一起,并尽可能使得不同的簇之间尽可能不相似。
当对聚类结果进行评估时,一个重要的问题是如何确定聚类结果是否是合理的。
类准确系数提供了一种量化的方法来度量聚类结果的质量。
如何计算类准确系数?类准确系数的计算方法相对简单。
首先,我们需要有一个参考标准,通常是真实的样本标签。
然后,我们将聚类结果的标签与参考标准进行比较,以确定聚类结果中正确分类的数据点数量。
最后,将正确分类的数据点数量除以总数据点数量,即可得到类准确系数。
具体而言,可以按照以下步骤计算类准确系数:Step 1: 给定聚类结果和参考标准。
首先,需要有一个聚类结果,其中每个数据点都被分配到一个聚类中心或簇。
同时,需要有一个参考标准,该标准包含了每个数据点的真实标签或所属的真实类别。
Step 2: 遍历聚类结果和参考标准。
逐个比较每个数据点在聚类结果中的标签与其在参考标准中的标签是否相同。
Step 3: 统计正确分类的数据点数量。
对于相同标签的数据点,计数器加一。
这个计数器将统计所有正确分类的数据点数量。
Step 4: 计算类准确系数。
将正确分类的数据点数量除以总数据点数量,即可得到类准确系数。
为什么类准确系数是一种常用的聚类评估指标?类准确系数是一种常用的聚类评估指标,原因如下:1. 直观易懂:类准确系数直接度量聚类结果与参考标准之间的一致性,具有直观性,易于理解和解释。
2. 简单计算:类准确系数的计算方法相对简单,只需要比较聚类结果的标签与参考标准的标签,然后统计正确分类的数据点数量即可。
4 非精确一维搜索
设
f
f x 可微,取
xk kdk f x
k
0, 1 2
k
,
f
选取
( xk )T
k
dk
0
使:
6.4.2
f xk kdk f xk (1 ) kf ( xk )T dk 6.4.3
非精确一维搜索
Armijo-Goldstein 非精确一维搜索方法
几何解释
此准则下的 可接受区间
为[b, c] xk
非精确一维搜索
Armijo-Goldstein 非精确一维搜索方法
算法步骤
非精确一维搜索
Wolfe-Powell 非精确一维搜索方法 问题
Armijo-Goldstein 准则有可能把最优步长排除在可接受区间外 面.为此,Wo1fe—Powell给出了一个更简单的条件代替(6.4.3)式.
使得目标函数有满意的下降量即
k . 大大节省计算量,
基本方法
提高效率.
在实际计算中,我们不仅要求函数值下降,而且对下降量 有一定的要求.
Armijo-Goldstein 非精确一维搜索方法 Wolf-Powell 非精确一维搜索方法 后退法
非精确一维搜索
Armijo-Goldstein 非精确一维搜索方法 基本公式
400
x2 x12 200 x
2 2
x1 x12
21
x1
,
fk
f 0,0 1, gk
2,0T
,
g
T k
pk
2.
非精确一维搜索
Wolfe-Powell 非精确一维搜索方法 举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The peer-to-peer nature of a wireless sensor network presents the opportunity for accurate and lowconfiguration sensor location estimation. Range measurements are made between pairs of sensors, regardless of their a priori coordinate knowledge. This paper quantifies via the Cram´ er-Rao Bound (CRB) variance limits on location estimators which use measured timeof-arrival (TOA) or received signal strength (RSS). An extensive campaign measures TOA and RSS in a 44-device multipoint-to-multipoint indoor network for input into maximum-likelihood estimators (MLEs) of location. RMS location errors of 1.2 and 2.2 m are demonstrated using TOA and RSS, respectively. can be employed, as reported for sensors that measure angle-of-arrival and TOA [5] or RSS only [8]. This paper focuses on the sensor location accuracy possible in networks of devices capable of peer-to-peer RSS or TOA measurements. The radio channel is notorious for its impairments [6] [3], thus accurate RSS or TOA measurements are by no means a given. The CRBs presented in this article provide an ability to determine if the location accuracy necessary for a particular application is possible using either RSS or TOA. First, we state the location estimation problem and model assumptions in Section 1.1, and derive the CRB and MLEs for the RSS and TOA cases in Sections 2 and 3. Then, we present an extensive measurement campaign in Section 4, which we use to verify the channel model assumptions and to test the TOA and RSS relative location MLEs.
1
Introduction
Sensor location estimation in wireless sensor networks is both a requirement and an opportunity. To be useful, sensor data must be accompanied by location. Location estimation must be enabled in a manner consistent with the low power, low cost and low configuration requirements of sensor networks. The low power and low cost requirements preclude including GPS in each device, and the low configuration requirement prevents installation of a dense network of base stations. A low transmit power device may only be able to communicate with its nearby neighbors. However, when all devices in the network measure range to their neighbors, and a small proportion of devices, which we call reference devices, have a priori information about their coordinates, we have the opportunity to enable accurate sensor location estimates. We call this relative location estimation since it uses range measurements predoห้องสมุดไป่ตู้inantly between pairs of devices of which neither has absolute coordinate knowledge. Distributed algorithms [1] [11] [13] are proposed to locate devices in such wireless sensor networks using parallel and iterative estimation algorithms. If a central processor can be deployed, convex optimization [2] can solve a set of geometric constraints, or MLEs
Location Estimation Accuracy in Wireless Sensor Networks
Neal Patwari∗ and Alfred O. Hero III Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109
∗ N. Patwari was employed at Motorola Labs, Plantation FL, USA, during the measurement campaign presented here.
1.1
Estimation problem statement
We assume a wireless sensor network of M reference devices and N − M devices with unknownlocation, which we call blindfolded devices. The relative location problem is the estimation of θ = {x1 , . . . , xN −M , y1 , . . . , yN −M } given the known coordinates, {xN −M +1 , . . . , xN , yN −M +1 , . . . , yN }. In the TOA case, Ti,j is the measured TOA between devices i and j in (s), and in the RSS case, Pi,j is the measured received power between devices i and j in (mW). The set H (k ) ⊂ {1, . . . , N } is the set of all devices with which device k has measured a range. By symmetry, if l ∈ H (k ) then k ∈ H (l), and clearly k ∈ / H (k ). If reciprocal measurements (from i to j and then from j to i) are made, we assume that they have been averaged together and set to Ti,j . For simplicity we consider Ti,j and Pi,j to be upper triangular. We assume that Ti,j is Gaussian distributed,
2 ), Ti,j ∼ N (di,j /c, σT
di,j =
(xi − xj )2 + (yi − yj )2
2 where c is the speed of light, and σT is not a function of di,j . We assume that Pi,j is log-normal, thus the random variable Pi,j (dBm) = 10 log10 Pi,j is Gaussian, ¯i,j (dBm), σ 2 ) Pi,j (dBm) ∼ N (P (1) dB
¯ij (dBm) = P