第五章2014典型环节
第五章 频率特性法 (2)
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
控制系统的典型环节..
关于我们控制理论教学制冷机仿真热工设备仿真论坛博客联系我们主页习题演练控制系统实验控制理论教程学生作业档案教师办公室典型作业展示常见问题第一章自动控制的基本概念第二章控制系统的数学描述第三章控制系统的时域分析第四章控制系统的频域分析第五章过程控制2.3 控制系统的典型环节2.3 控制系统的典型环节自动控制系统是由不同功能的元件构成的。
从物理结构上看,控制系统的类型很多,相互之间差别很大,似乎没有共同之处。
在对控制系统进行分析研究时,我们更强调系统的动态特性。
具有相同动态特性或者说具有相同传递函数的所有不同物理结构,不同工作原理的元器件,我们都认为是同一环节。
所以,环节是按动态特性对控制系统各部分进行分类的。
应用环节的概念,从物理结构上千差万别的控制系统中,我们就发现,他们都是有为数不多的某些环节组成的。
这些环节成为典型环节或基本环节。
经典控制理论中,常见的典型环节有以下六种。
2.3.1 比例环节比例环节是最常见、最简单的一种环节。
比例环节的输出变量y(t)与输入变量x(t)之间满足下列关系(2.24)比例环节的传递函数为(2.25)式中K为放大系数或增益。
杠杆、齿轮变速器、电子放大器等在一定条件下都可以看作比例环节。
例10 图2.10 是一个集成运算放大电路,输入电压为,输出电压为,为输入电阻,为反馈电阻。
我们现在求取这个电路的传递函数。
解从电子线路的知识我们知道这是一个比例环节,其输入电压与输出电压的关系是(2.26)按传递函数的定义,可以得到(2.27)式中,可见这是一个比例环节。
如果我们给比例环节输入一个阶跃信号,他的输出同样也是一个阶跃信号。
阶跃信号是这样一种函数(2.28)式中为常量。
当时,称阶跃信号为单位阶跃信号。
阶跃输入下比例环节的输出如图2.11 所示。
比例环节将原信号放大了K倍。
图2.10 比例器图2.11 比例环节的阶跃响应(a)阶跃输入;(b)阶跃输出2.3.2 惯性环节惯性环节的输入变量X(t)与输出变量Y(t)之间的关系用下面的一阶微分方程描述(2.29)惯性环节的传递函数为(2.30)式中,T称为惯性环节的时间常数,K称为惯性环节的放大系数。
自动控制原理(第三版)第五章频率响应法
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为
北航机电控制工程基础(自动控制原理)第五章2-典型环节频率特性
北京航空航天大学
二、积分环节 Integral links 1、伯德图
机电控制工程基础
K G (s) s
Fundamentals of Mechatronic Control Engineering
K G ( j ) j
K A( )
K ( ) 0 arctan j 0 2
幅值
机电控制工程基础
袁松梅教授 Tel:82339630
下半个圆对应于正频率部分,而上 半个圆对应于负频率部分。
Email:yuansm@
北京航空航天大学
四、振荡环节Oscillation link 2、伯德图 讨论 0
机电控制工程基础
1 时的情况。当K=1时,频率特性为:
K Kn G( s ) 2 2 2 T s 2Ts 1 s 2 n s n 2
G( s) K , G( j ) K
相频特性: ( )
1、伯德图
幅频特性:A( ) K ;
0
;
L( ) / dB
20log K 20log K 20log K
K 1
对数幅频特性:
K 1 lg
0 K 1
( )
180
0 L( ) 20 lg K 0 0
1.0 -45 100 -89.4
1 1 当 0时, (0) 0;当 时, ( ) ;当 时, () 。 T T 4 2
当时间常数T 变化时,对数幅频特性和对数相频特性的形状都不变,仅仅是根据转折 频率1/T 的大小整条曲线向左或向右平移即可。而当增益改变时,相频特性不变,幅 频特性上下平移。
K P ( ) 1 T 2 2 KT Q ( ) 1 T 2 2 Q ( ) T P( )
2014案例分析
安全验收评价主要内容:(1)辨识与分析危险有害因素并确定其程度。
(2)发生事故与职业危害的可能性与严重程度。
(3)与法律、法规、规章、标准的符合性评价。
(4)划分评价单元,选择评价方法,定量、定性分析。
(5)提出科学合理可行的安全对策措施建议,作出评价结论,撰写评价报告。
液氨泄漏时应采取的应急处置措施:(1)向公安消防部门报警,并报告环保部门。
(2)立即停工,切断隔离生产工艺。
(3)疏散场所人员,向上风向转移,防止吸入接触。
(4)佩戴好防化服和空气呼吸器,用防爆工具进行堵漏处理。
(5)用喷雾水进行稀释,可用砂土及吸附材料收集和吸附泄漏物。
事故报告的内容:1)事故发生单位概况;2)事故发生的时间、地点以及事故现场情况;3)事故的简要经过;4)事故已经造成或者可能造成的伤亡人数(包括下落不明的人数)和初步估计的直接经济损失;5)已经采取的措施;6)其他应当报告的情况。
事故调查报告的内容:(1)事故发生单位概况;(2)事故发生经过和事故救援情况;(3)事故造成的人员伤亡和直接经济损失;(4)事故发生的原因和事故性质;(5)事故责任的认定以及对事故责任者的处理建议;(6)事故防范和整改措施;特种设备管理:(1)使用符合安全技术规范要求的特种设备,保证特种设备的安全使用。
(2)特种设备在投入使用前或者投入使用后30天内,应当向直辖市或者设区的市的特种设备安全监督管理部门登记。
(3)建立特种设备安全技术档案。
(4)对在用特种设备进行经常性日常维护保养,定期自行检查,并作出记录。
(5)在安全检验合格有效期届满前1个月向特种设备检验检测机构提出定期检验要求。
未经定期检验或者检验不合格的特种设备,不得继续使用。
(6)特种设备出现故障或者发生异常情况,使用单位应当对其进行全面检查,消除事故故障后,方可重新投入使用。
(7)特种设备存在严重事故隐患,无改造、维修价值,或者超过安全技术规范规定使用年限,及时予以报废,并应当向原登记的特种设备安全监督管理部门办理注销。
自动控制原理(胡寿松版)完整第五章ppt课件
-20
φ (ω )
ω=0.1 L(ω )=20lg0.1=-20dB 90
对数相频特性:φ (ω )=90o 0 0.1
1
10ω
第二节 典型环节与系统的频率特性
4).惯性环节
G(s)=Ts1+1
G(ωj
)=
jω
1 T+1
(1) 奈氏图
A(ω
)=
1 1+(ω T)2
φ (ω )= -tg-ω1 T
取特可殊以点证:绘明ω制:=0奈氏图近似方I法m : AA图心半A点(ω(ω(是 , 圆ω,))=以 以 。惯=)0然=根ωω0(1性.171==/后据0/环2∞27为T将幅1节φ,jφo半φ它频的(ω)(ω径为(ω奈们特))=的圆)=氏平-性=09-o0滑4和o5连o相ω接频起∞特来0性-。求45ω=出T1特殊ω1=0Re
5)二阶微分环节 s 2 /n 2 2s /n 1(n 0 ,0 1 )
6)积分环节 1 / s
7)微分环节 s
第二节 典型环节与系统的频率特性
(2)非最小相位系统环节
1)比例环节 K (K0)
2)惯性环节 1/( T s1 ) (T0) 3)一阶微分环节 Ts1 (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
第一节 频率特性
系统输入输出曲线 定义频率特性为:
r(t) c(t)
r(t)=Asinωt
G(ωj )
=|G(jω)|e j G(jω) =A(ω )e φj (ω )
A 0
幅频特性: t A(ω )=|G(jω)|
G(jω)
A G(jω )
相频特性: φ (ω )= G(jω)
第五章_开环伯德图
o
n
r
16
振荡环节的幅频 特性为
G jω
1 T ω 2ζ
2 2 2
1
Tω
2
1 gω
其中 :
gω 1 T ω
2
2 2
2ζ Tω
2
2
当出现揩振峰值时,G jω 有最大值,即 gω 有最小值。 dg ω d 得到 1 T ω 2ζ Tω 0
——低频渐近线为一条0dB的水平直线。
13
Lω 20lg 1 T 2ω2 2ζ Tω
2
2
高频段,即ωT>>1时
L ( ) 20 lg( 2T 2 ) 40 lg( T )
当ω增加10倍
L( ) 40lg10T ω 40 40lgT ω
1 T
时,是一条斜率为-20dB/dec的直线。
8
两条渐近线相交处的频率 或交接频率。
L ( )
ω
1 T
称为转折频率
dB
0
1 T
精确曲线 20
10
( )
0 45 90
9
惯性环节的相频特性 ω tg1ω T
1 当ω=0时, ω 0o,当 ω T 时, ω -45 ;当 ω趋于 ω 趋于-90°。 无穷时, 采用渐近线在幅频曲线上产生的误差是可以计算 1 的。幅值的最大误差发生在转折频率 ω T 处,近似等 于3dB。 dB 20lg 1 1 10lg2 3.01
o
分析表明:惯性环节具有低通特性,对低频输入能 精确地复现,而对高频输入要衰减,且产生相位迟后。 因此,它只能复现定常或缓慢变化的信号。
自动控制理论第五章频率分析法1.详解
5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。
④
G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。
自动控制原理第五章频域分析法
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
自动控制原理第5章
8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。
第五章线性系统的频率分析法
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
自动控制原理第五章
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
自动控制原理 第五章 第一讲 典型环节和开环频率特性
对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 尼柯尔斯曲线): 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
5.2 典型环节和开环频率特性
• 典型环节 • 典型环节的频率特性 • 最小相角系统和非最小相角系统
L(ω ) = −20 lg 1 + ω 2T 2
ω<<1/T, L(ω)≈-20lg1=0 ω>>1/T, L(ω)≈-20lgωT =-20(lgω-lg1/T)
(dB) 20 0 0.1 1/T -20 (o) 90 0 0.1 -90 1 10 ω 1 20dB/dec 10 ω -20dB/dec
幅频特性相同, 幅频特性相同,但相频特性符号相反 。 •最小相角系统的幅频特性和相频特性一一对应,只要根据其对 最小相角系统的幅频特性和相频特性一一对应, 数幅频曲线就能写出系统的传递函数 。 L(dB)
L(dB) 20 10 -20 ω L(dB) -20 100 50 -40 ω -40 -20 ω 2 ω1 ωc ω -40
典型环节
•比例环节:G(s)= K 比例环节: ( ) •惯性环节: G(s)= 1/(Ts+1),式中T>0 惯性环节: ( ) ,式中 •一阶微分环节: G(s)= (Ts+1),式中 一阶微分环节: ( ) ,式中T>0 •积分环节: G(s)= 1/s 积分环节: ( ) 微分环节: ( ) •微分环节: G(s)= s •振荡环节: G(s)= 1/[(s/ωn)2+2ζs/ωn+1]; 振荡环节: ( ) 式中ω , 式中 n>0,0<ζ<1 二阶微分环节: ( ) •二阶微分环节: G(s)= (s/ωn)2+2ζs/ωn+1; 式中ω , 式中 n>0,0<ζ<1
自动控制原理第五章课后答案
五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。
【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G )9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。
【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e eeA j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。
【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg 22212121111)(1)(11)(ωωωωωωωT T j eT T jT jT j G ---++=++= 其中1221221,)(,T T C R R T C R T >+==。
自动控制原理第五章PPT课件
s (1 0 .1 s)
s1 0 .1 s
比例环节
一阶微分环节
积分环节
惯性环节
.
23
非最小相位环节 :开环零点、极点位于S平面右 半部分
➢ 比例环节:-K
➢ 惯性环节:1/(-Ts+1),式中. T>0
24
最小相位系统与非最小相位系统
除比例环节外,非最小相位环节和与之对应的最小相位环节的区别在于开环零极点的 位置,非最小相位环节对应于s右半平面开环零点或极点,而最小相位环节对应于s左半 平面开环零点或极点。
• 对于不稳定系统则不可以通过试验方法来确定,因 为输出响应稳态分量中含有由系统传递函数的不稳
定极点产生的发散或震荡分量。
.
8
线性定常系统的传递函数为零初始条件下,输出与输入的拉氏变换之比
其反变换为
G(s)= C(s) R(s)
g(t) 1 jG(s)estds
2 j j 式中位于G(s)的收敛域。若系统稳定,则可取零,如果r(t)的傅氏变换 存在,可令s=j,则有
d () 是 关 于 的 奇 函 数 。
.
5
.
6
因而
1
G (j) c b 2 2 ( () ) d a 2 2 ( () ) 2 ,
G (j) a r c ta n b ()c () a ()d () a ()c () d ()b ()
G ( j )c a (( )) jjd b ( ( ) )G (j )ej G (j)
Tddut0u0ui
TRC
uo t
取拉氏变换并带入初始条件uo0
1
1 A
U o ( s ) T s 1 [ U i( s ) T u o 0 ] T s 1 [ s 2 2 T u o 0 ]
5--典型环节传递函数-一阶惯性环节
一个储能元件(如电感、电容和弹簧等)和一个耗能元件(如 电阻、阻尼器等)的组合,就能构成一个惯性环节 当输入量发生突变时,输出量不能突变,只能按指数规 律逐渐变化,这就反映了该环节具有惯性。
1.微分方程
式中的 T为惯性时间常数。
一阶惯性环节(Ineritial Element)
2.传递函数与功能框
惯性环节的 功能框图
阶跃响应
一阶惯性环节(Ineritial Element)
3.动态
反变换:Βιβλιοθήκη 一阶惯性环节(Ineritial Element)
4.举例 【实例1】电阻、电感电路,如 图所示。
由基尔霍夫定律可得电路
对上式进行拉氏变换,并整 理后可得:
典型环节的频率特性
第五章频率域方法典型环节的频率特性用频率法研究控制系统的稳定性和动态响应,是根据系统的开环频率特性进行的,而控制系统的开环频率特性通常是由若干个典型环节的频率特性组成的,如直流电机的传递函数为()(1)mm K G s s T s =+可以将该传递函数分解为三个典型环节的乘积,分别是mK 放大环节:1s积分环节:11m T s +惯性环节:掌握好典型环节的频率特性,就能方便地得出系统的开环频率特性。
一、比例环节(放大环节)幅频特性()A Kω=相频特性()0ϕω︒=对数幅频特性()20lg L Kω=Kj()G s K =幅相特性曲线(K>0)(Nyquist 曲线)对数频率特性曲线(K>1)(Bode 图)典型环节的频率特性20lg K/dBL ϕω2π−ω(j )G Kω=AAKϕ2π−ϕω幅频、相频特性曲线(K>0)二、积分环节1()G s s =幅频特性1()A ωω=相频特性()2πϕω=−j2π−ω=ω∞幅相特性曲线(Nyquist 曲线)1()20lg20lg L ωωω==−对数幅频特性对数幅频特性曲线是斜率为-20分贝/十倍频程的直线,该直线在弧度/秒处与零分贝线相交。
1ω=1(j )j G ωω=AAϕ2π−ϕω幅频、相频特性曲线/(rad/s)ω对数频率特性曲线(Bode 图)20dB/dec−/dBL o /()ϕ三、惯性环节(一阶系统)1()1G s Ts =+幅频特性21()()1A T ωω=+相频特性()arctan T ϕωω=−幅相频特性曲线(Nyquist 曲线)j=1/Tω=ω∞=0ωω1-45︒1(j )1+j G T ωω=Aϕ90︒−ϕω145︒−1TA幅频、相频特性曲线对数频率特性曲线(Bode 图)T ω/dBL o /()ϕ2()20lg ()1L T ωω=−+对数幅频相频特性()arctan T ϕωω=−3(dB)L =−45ϕ︒=−当频率时1T ω=2()20lg ()1L T ωω=−+对数幅频()20lg 20lg 20lg L T Tωωω≈−=−−转折频率:1=Tω当频率时1T ω<()20lg10 (dB)L ω≈=当频率时1T ω>惯性环节(一阶系统)1()1G s Ts =+1(j )1+j G T ωω=对数频率特性曲线(Bode 图)T ω 20dB/dec−对数幅频渐近特性曲线3(dB)−dBL /o /()ϕ四、振荡环节(二阶系统)222()2nn nG s s s ωζωω=++2221()[1()][2()]n n A ωωωζωω=−+22()()arctan 1()n n ζωωϕωωω⎛⎫=− ⎪−⎝⎭/nωωA=0ζ=0.2ζ=0.5ζ=0.7ζ=1ζ/nωωo /()ϕ(0) 1 ()1(2) ()0n A A A ωζ==∞=()0d A d ωω=212m nωωζ=−令,得20<<2ζ⎛⎫ ⎪ ⎪⎝⎭(0)0 ()2 ()=n ϕϕωπϕπ==−∞−21()21m m A A ωζζ==−幅频、相频特性曲线(0, 0)n ζω≥>当时,,当时无峰值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率法
频域分析法: 用频率响应(特性)来分析系统的方法。 Frequency Domain Response Analysis
二〇一四年十一月
2014-11-15 第五章 频率法 1
时域分析法——解析分析法
1)以单位阶跃响应为基础的分析方法。具有直观、明确 的物理意义。 2)对于高阶或较为复杂的系统难以求解和定量分析。 3)是一种基于数学模型(传递函数)的分析方法。 4)参数的全局特征不明显。在某一参数连续变化对系统
常用的表示方法:
1. 幅相频率特性(奈氏图) 2. 对数频率特性(Bode图)
[极坐标或直角坐标]
[对数坐标] [对数坐标]
3. 对数幅相特性(尼氏图)
2014-11-15
第五章 频率法
20
1. 幅相频率特性(奈氏图)
在极坐标系或直角坐标系中,以频率ω为参变量, 绘制W(jω)的幅频特性A(ω)和相频特性ϕ(ω)之间关系 的曲线。
指导控制系统的设计; 2)频率特性可通过试验获得; 3)以图解分析、设计为主;
简单迅速地判断出某环节或参数对系统性能的影响,
4)可研究噪声问题,可设计出能有效抑制噪声的系统。
2014-11-15 第五章 频率法 4
主要内容
• 频率特性的基本概念 • 频率特性的表示方法
• 典型环节的频率特性
• 系统开环频率特性的绘制
t
jt
xc (t ) A01e
A01 W (s)
A02e
jt
X r X rW ( j ) ( s j ) s j s2 2 2j
Xr A02 W ( s ) 2 ( s j ) 2 s
2014-11-15
X rW ( j ) s j 2j
2014-11-15 第五章 频率法 24
半对数坐标:一个轴是分度均匀的普通坐标轴,另一个轴是
分度不均匀的对数坐标轴。该图中的纵坐标轴(y轴)是对数 坐标。在此轴上,某点与原点的实际距离为该点对应数的对
数值,但是在该点标出的值是真数。
2014-11-15
第五章 频率法
25
lg W ( j ) lg A() j0.434 ()
A( ) 1/ R 1 (T )
2
, T L/ R
arctan T
幅频特性
arctan
2014-11-15
L
R
相频特性
第五章 频率法 10
(1)频率特性定义
线性系统(或环节)在正弦输入下,稳 态时,输出量与输入量之比叫做系统(或环节) 的频率特性。
传递 函数
系 统
频率 特性
s j
2014-11-15 第五章 频率法 18
(4)频率特性的求取
a、根据传递函数求取 用s=j代入系统的传递函数,即可得到。
即: W ( j ) W ( s)
s j
b、通过实验的方法直接测得
2014-11-15
第五章 频率法
19
5.2 频率特性的几何表示方法
面上,以对数幅值作纵坐标(单位为分贝)、以 相位移作横坐标(单位为度)、以频率为参变量。 这种图称为对数幅—相频率特性,也称为尼柯尔 斯图或尼氏图。
2014-11-15
第五章 频率法
31
5.3 典型环节的频率特性
• 1. 比例环节
• 2.
• 3.
惯性环节
积分环节
• 4.
2014-11-15
第五章 频率法
8
例5.1 R-L串联回路
正弦输入 u U sin t
同频输出 i I sin t
U e jt U
Z R j L
U I R j L U R 2 ( L) 2 e j ( t )
arctan
X c ( s) 传递函数: W (s) X r ( s)
频率特性与传递函数之间的关系:
W ( j ) W ( s )
2014-11-15
s j
第五章 频率法
17
微分方程
时域 复数域 频域
线性定常系统的数学模型
传递函数 频率特性 微分 方程
到此已给 出了线性 定常系统 数学模型 的三大表 示体系。
2014-11-15 第五章 频率法 12
(3)频率特性与传递函数的关系
X c (s) W (s) X r (s) K g ( s zi )
i 1 m
(s p )
j 1 j
n
xr (t ) X r sin t
输出的拉氏变换为:
X r (s) X r
s2 2
φ(ω)为复数频率特性的辐角或相位,即相频特性。
2014-11-15 第五章 频率法 22
当 : 0 变化时,矢量W j 终端所描绘的曲线称为 该环节的幅相频率特性 或奈氏图。
2014-11-15 第五章 频率法 23
2. 对数频率特性( Bode图)
在半对数坐标中,表示频率特性的对数幅值 20lgA(ω)与对数频率lgω,相角()与对数频率 lgω之间关系的曲线图称为对数频率特性或Bode图。
与幅频特性相同。
表示相位移 的均匀 分度,单位:弧度或度。
度
(rad/s)
900
2014-11-15
第五章 频率法
29
注意:
对数幅频特性和对数相频特性(两张图)
和起来称为对数频率特性,又称为Bode
图。
2014-11-15
第五章 频率法
30
3. 对数幅相特性(尼氏图)
将对数幅频特性和对数相频特性绘在一个平
A01 A02 A1 X c (s) W (s) X r s s j s j s p1
2014-11-15
An s pn
第五章 频率法 14
xc (t ) A01e
jt
A02e
jt
A1e
p1t
Ane
pnt
稳态时
熟练掌握系统稳定裕量的物理含义和计算方法;
建立开环频率特性和系统性能指标之间的对应关系, 能够定性地分析系统的性能;
第五章 频率法 6
2014-11-15
5.1 频率特性的基本概念
1. 频率特性
给稳定的线性系统输入一个正弦信号,系统的稳态
输出也是一个与输入信号同频率的正弦信号,其幅值
和相位随输入信号频率的变化而变化。 输出
2014-11-15
第五章 频率法
21
两种形式之间的转换
W ( j ) P 2 ( ) Q 2 ( ) e j ( ) A( )e j ( )
式中: A( )
P 2 ( ) Q 2 ( )
Q ( w) P ( w)
f (w) = arctan
A(ω)为复数频率特性的模值或幅值,即幅频特性。
输入
线性系统
Xrsinωt
2014-11-15
Xcsin(ωt+φ)
第五章 频率法 7
设系统结构如图,由劳斯判据知系统稳定。
保持幅值不变,增大频率,输入输出曲线如下: 给系统输入正弦信号,
给稳定的线性系统输入一个正弦信号,其稳态 结论: 输出是与输入同频率的正弦信号,称为频率响 应。其幅值随ω而变,相角也是ω的函数。 ω=1 ω=2 ω=2.5 ω=4 Ar=1 ω=0.5
decade )
第五章 频率法
27
为什么要采用对数坐标?
(1)在研究频率范围很宽的频率特性时,可缩小比例 尺,在一张图上表示出低、中、高频段的特性, 便于分析。
(2)大大简化频率特性的绘制。因为系统往往是由多 个环节串联构成的,设频率特性为:
W1 j A1 e
j1
2014-11-15
L
R
第五章 频率法 9
频率特性: U 作为输入量,I 作为输出量
1/ R 1/ R j j 1 I e A ( ) e W ( j ) 2 1 T j R j L 1 ( T ) U
物理意义: 给出了不同频率下电路传递正弦信号的能力。
• 用频率法分析控制系统的稳定性
• 系统暂态特性和开环频率特性的关系 • 闭环系统频率特性 • 系统暂态特性和闭环频率特性的关系
2014-11-15 第五章 频率法 5
学习重点
了解频率特性的基本概念,掌握不同的表示方法; 了解典型环节的频率特性; 熟练掌握波德图和奈氏图的绘制方法; 理解和掌握奈氏稳定判据,会用奈氏判据判断系统 的稳定性;
调整系统的参数来获得预期结果。它弥补了时域分
析法中某一参数变化时特征不明显的不足。特别适 用于高阶系统的分析求解。 在数学模型问题、高频噪声问题等方面仍然存 在不足。
2014-11-15 第五章 频率法 3
频域分析法
基于频率特性和频率响应对系统进行分析的方 法。图解分析和设计的方法。
频域分析法的特点: 1)工程方法,根据频率特性可间接揭示系统的性能,
影响的分析无能为力。
5)系统的性能不满足技术要求时,无法方便地确定应如 何调整系统的参数来获得预期结果。 6)对工程中普遍存在的高频噪声干扰的研究无能为力。
2014-11-15 第五章 频率法 2
根轨迹法——图解分析法
根轨迹法是一种快速、简洁而实用的图解分 析法。由开环的零极点来研究闭环极点(闭环系统) 的方法。它根据图形的变化趋势即可得到系统性能 随某一参数变化的全部信息,从而可以获得应如何
一般不考虑0.434这个系数,而只用相角位移本身。 通常将对数特性绘在以10为底的对数坐标中,则