中考数学A卷18、19题5套
2020年重庆市中考数学试题A卷(word版,含答案)
考生须知1.考生应按规定的时间入场,开始考试后15分钟禁止迟到考生进入考场。
2.考生入场时须主动出示《准考证》以及有效身份证件(身份证、军人、武警人员证件、未成年人的户口本、公安户籍部门开具的《身份证》号码证明、护照或者港、澳、台同胞证件),接受考试工作人员的核验,并按要求在“考生花名册”上签自己的姓名。
3.考生只准携带必要的文具入场,如铅笔、签字笔、毛笔、水粉水彩颜料等,具体要求见招考简章。
禁止携带任何已完成作品以及各种无线通信工具(如寻呼机、移动电话)等物品。
如发现考生携带以上禁带物品,考生将作为违纪处理,取消该次考试成绩。
考场内不得擅自相互借用文具。
4.考生入场后按号入座,将本人《准考证》以及有效身份证件放在课桌上,以便核验。
5.考生答题前应认真填写试卷及答题纸上的姓名、准考证号等栏目并粘贴带有考生个人信息的条形码。
凡不按要求填写或字迹不清、无法辨认的,试卷及答题纸一律无效。
责任由考生自付。
6.开考后,考生不得中途退场。
如因身体不适要求中途退场,须征得监考人员及考点主考批准,并在退场前将试卷、答题纸如数上交。
7.考生遇试卷分发错误或试题字迹不清等情况应及时要求更换;涉及试题内容的疑问,不得向监考人员询问。
8.考生在考场内必须严格遵守考场纪律,对于违反考场规定、不服从监考人员管理和舞弊者,取消当次考试成绩。
9.考试结束铃声响时,考生要立即停止答题,并将试卷、答题纸按要求整理好,翻放在桌上,待监考人员收齐后方可离开考场。
任何考生不准携带试卷、答题纸离开考场。
离开考场后不准在考场附近逗留和交谈。
试卷第1页,总8页重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,最小的数是( )A .-3B .0C .1D .22.下列图形是轴对称图形的是()A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A .B .C .D .4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A .10B .15C .18D .215.如图,AB 是的切线,A 切点,连接0A ,0B ,若,则的度数为()A .40°B .50°C .60°D .70°6.下列计算中,正确的是( )AB .CD .7. 解一元一次方程时,去分母正确的是()32610⨯32.610⨯42.610⨯50.2610⨯O 20B ∠=︒AOB ∠=2==2-=11(1)123x x +=-A .B .C .D .8.如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF 的长度为()AB .2C .4D .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比),山坡坡底C 点到坡顶D 点的距离,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:,,)A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式结的解集为;且关于的分式方程有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-5611.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把沿着AD 翻折,得到,DE 与AC 交于点G ,连接BE 交AD 于点F .若,,,的面积为2,则点F 到BC 的距离为()3(1)12x x +=-2(1)13x x +=-2(1)63x x +=-3(1)62x x +=-ABC △(1,2)A (1,1)B (3,1)C DEF △DEF △ABC △1:0.75i =45m CD =sin 280.47︒≈cos 280.88︒≈tan 280.53︒≈3132x x x a-⎧≤+⎪⎨⎪≤⎩x a ≤y 34122y a y y y --+=--ABD △AED △DG GE =3AF =2BF =ADG △A B C D12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分,反比例函数的图象经过AE上的两点A,F,且,的面积为18,则k的值为()A.6 B.12 C.18 D.24第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)13.计算:.14. 一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是.15.现有四张正面分别标有数字-1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点在第二象限的概率为.16. 如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以A0的长为半径画弧,分别与正方形的边相交.则图中的阴影音分面积为.(结果保留)17.A,B两地相距240 km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线所示.其中点C的坐标是,点D的坐标是OAE∠(0,0)ky k xx=>>AF EF=ABE△0(1)|2|π-+-=(),P m nπCD DE EF--()0240,,则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
中考数学复习 专题18 与二次函数有关代数方面应用试题(A卷,含解析)
专题18 与二次函数有关代数方面应用二、填空题 1. 2. (浙江衢州,15,4分)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两面墙隔开(如图),已知计划中的建筑材料可建墙的长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为___m 2.【答案】144.【逐步提示】若设每一间长方形种牛饲养室的长为x m ,那么就可以依据题意用x 表示出每一间长方形种牛饲养室的宽,再利用长方形的面积公式,结合二次函数的性质求解.【解析】设这三间长方形种牛饲养室的总占地面积为y m 2,每一间长方形种牛饲养室的长为x m ,那么三间长方形种牛饲养室的宽的和为(48-4x )m ,则根据题意,得y =(48-4x )·x =-4x 2+48x =-4(x 2-12x )=-4(x 2-12x +36)+144=-4(x -6)2+144,此时,当x =6时,y 有最大值144,而当x =6时,48-4x =24<50,符合题意,故答案为144.【解后反思】本题是二次函数的实际应用,求解时应根据题意,寻求变量之间的等量关系,并结合二次函数的性质解决问题.【关键词】二次函数的应用、最值. 三、解答题1. (山东淄博,21,8分)如图,抛物线y =ax 2+2ax +l 与x 轴仅有一个公共点A ,经过点A 的直线交该抛物线于点B ,交y 轴于点C ,且点C 是线段AB 的中点. (1)求这条抛物线对应的函数解析式; (2)求直线AB 对应的函数解析式.【逐步提示】本题考查求一次函数的解析式,求二次函数的解析式,二次函数与一元二次方程的关系,数形结合思想,解题关键是能用待定系数法求函数解析式,掌握二次函数与一元二次方程的关系.(1)利用△=b 2-4ac =0时,抛物线与x 轴有1个交点得到4a 2-4a =0,然后解关于a 的方程求出a ,即可得到抛物线解析式. (2)利用点C 是线段AB 的中点可判断点A 与点B 的横坐标互为相反数,则可以利用抛物线解析式确定B 点坐标,然后利用待定系数法求直线AB 的解析式.【详细解答】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个公共点A ,∴△=4a 2-4a =0. 解得a 1=0(舍去),a 2=1.∴抛物线解析式为y =x 2+2x +1.(2)∵y = x 2+2x +1=(x +1)2,∴顶点A 的坐标为(-1,0).∵点C 是线段AB 的中点,即点A 与点B 关于C 点对称,∴B 点的横坐标为1.当x =1时,y =x 2+2x +1=1+2+1=4,则B 的坐标为(1,4). 设直线AB 的解析式为y =kx +b ,把A (-1,0),B (1,4)的坐标代入,得0,4.k b k b -+=⎧⎨+=⎩ 解得2,2.k b =⎧⎨=⎩∴直线AB 的解析式为y =2x +2.【解后反思】对于二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.【关键词】求一次函数的解析式,求二次函数的解析式,二次函数与一元二次方程的关系,数形结合思想2. (浙江杭州,20,10分)把一个足球垂直于水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h =20t -5t 2(0≤t ≤4).(1)当t =3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t 的值;(3)若存在实数t 1和t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【逐步提示】本题考查了二次函数的相关知识及一元二次方程的解法,解题的关键是熟练地掌握二次函数的图像与性质.在解题时,首先将t =3代入函数解析式,即可求出足球距离地面的高度;然后将h =10代入函数解析式,得到关于t 的一元二次方程,利用配方法或公式法即可求出t 的值;最后将题中所给的二次函数解析式化为顶点式,得到该抛物线的顶点坐标,根据题意可知m 的取值范围系抛物线位于x 轴(包括x 轴)及顶点之间的点的纵坐标的值(不包括标点的纵坐标).【解析】(1)当t =3时,h =20t -5t 2=20×3-5×32=60-5×9=60-45=15(米), ∴当t =3时,足球距离地面的高度为15米.(2)当h =10时,20t -5t 2=10,t 2-4t +2=0,解得t =2±2,∴当足球距离地面的高度为10米时,t 的值为2±2.(3)∵h =20t -5t 2=-5(t 2-4t )=-5(t 2-4t +4-4)=-5(t -2) 2+20,∴抛物线h =20t -5t 2的顶点坐标为(2,20).∵存在实数t 1和t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米), ∴m 的取值范围是0≤m <20.【解后反思】本题主要考查二次函数的性质与图像及简单应用,前两个问题较为简单,只要能解一元二次方程,都能轻松解答,最后一个问题稍复杂些:需要深层次地思考,应根据抛物线的轴对称性进行理解,转化为求抛物线位于x 轴上至顶点处点的纵坐标的取值范围,这样就不难解答此题.【关键词】二次函数;二次函数的求值;二次函数的应用;一元二次方程的解法(浙江杭州,22,12分)已知函数y 1=ax 2+bx ,y 2=ax +b (ab ≠0),在同一平面直角坐标系中. (1)若函数的y 1图像过点(-1,0),函数的y 2图像过点(1,2),求a ,b 的值; (2)若函数y 2的图像过函数y 1的图像的顶点. ①求证:2a +b =0; ②当1<x <23时,比较y 1与y 2的大小. 【逐步提示】本题考查了一次函数、二次函数的综合应用,解题的关键是利用二次函数图像的顶点坐标代入一次函数解析式,证明2a +b =0,并利用此结论将两个函数解析式用含有a 表示的式子后用差比较法来比较y 1与y 2的大小.(1)利用待定系数法,列出A .b 的二元一次方程组进行解答;(2)用公式法先求出抛物线y 1=ax 2+bx 的顶点坐标,并代入一次函数y 2=ax +b ,化简后即可得到2a +b =0结论;(3)先用a 的代数式表示b ,即b =-2a ,然后利用差比较法,计算出y 1-y 2的值,再根据1<x <23,并对a 按正数、负数分类,得到y 1-y 2的值的大小,从而比较出y 1与y 2的大小.【解析】(1)由题意得⎩⎨⎧=+=-20b a b a ,解得⎩⎨⎧==11b a .(2)①∵抛物线y =ax 2+bx 的顶点(-a b 2,a b 42-)在直线y =ax +b 上,∴a b 42-=a (-ab2)+b ,即a b 42-=2b.∴4ab =-2b 2.∵b ≠0, ∴2a =-b . ∴2a +b =0. ②∵2a +b =0, ∴b =-2a .∴y 1=ax 2-2ax ,y 2=ax -2a .∴y 1-y 2=(ax 2-2ax )-(ax -2a )=ax 2-3ax +2a =a (x 2-3x +2) =a (x -1)(x -2). ∵1<x <23, ∴x -1>0,x -2<0,从而(x -1)(x -2)<0.∴当a >0时,y 1-y 2=a (x -1)(x -2)<0,此时,y 1<y 2; 当a <0时,y 1-y 2=a (x -1)(x -2)>0,此时,y 1>y 2.【解后反思】本题命制由易到难设计了三个问题,属于题组题,首问考查常规的待定系数法,最为简单;二问中的前一问题只要会用二次函数顶点的公式法,就不难解答(此时可以参考卷首是提供的二次函数顶点公式);最后一问用作差法较为简单.二次函数y =ax 2+bx +c =a (x +2b a )2+244ac b a -的顶点坐标为(-2b a ,244ac b a -),对称轴为x =-2ba,这个公式应该熟练地记住,在解题时才能游刃有余.实数比较大小,通常有如下几种情况:(1)如有正数、有负数,则直接根据正负比较;(2)两个负数比较大小,绝对值大的反而小;(3)如需要比较的数比较多时,可以考虑把所有数字在数轴上表示,然后左边的数总比右边的小.(4)差比较法:对于两个实数a ,b ,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,则a <b .(5)商比较法:对于两个正数a ,b ,若a b >1,则b >a ;若a b =1,则b =a ;若ab<1,则b <a . 【关键词】一次函数;二次函数;待定系数法;二元一次方程组;二次函数的图像与性质;有理数的大小比较;压轴题;分类思想2. (浙江衢州,22,10分)已知二次函数y =x 2+x 的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x 2+x =1的根在图象上近似地表示出来(精点..),并根据图象,写出方程x 2+x =1的根(精确到0.1). (2)在同一直角坐标系中画出一次函数y =12x +32的图象,观察图象写出自变量x 取值在什么范围时,一次函数的值小于..二次函数的值.(3)如图,点P是坐标平面上的点,并在网格的格点上,请选择一种行当的平移方法,使平移后二次函数图象的顶点落在P点上,平移后二次函数的函数解析式,并判断点P是否在函数y=12x+32的图象上,请说明理由.【逐步提示】(1)设y=x2+x=1,此时可作出y=1与y=x2+x的交点即为所示.(2)y=12x+32的图象,进而由图象判断.(3)方法不惟一,只要符合题意即可.【解析】(1)如图,作出y=1的图象,得到作图精点,∴x1≈-1.6,x2≈0.6.(2)画直线y=12x+32,由图象可知x<-1.5或x>1.(3)平移方法不惟一.如,先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标P(-1,1),平移后的表达式y=(x+1)2+1,或y=x2+2x+2.理由:把P点坐标(-1,1)代入y=12x+32,左边=右边,∴点P是否在函数y=12x+32的图象上.【解后反思】依据题意,准确地作出图形是正确求解的前提,发挥数形结合的作用是顺利求解的保证.【关键词】函数图象、二次函数、一次函数、图形的变换.3.(四川省成都市,28,12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,83) ,顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P、Q两点,点Q在y轴的右侧.⑴求a的值及点A、B的坐标;⑵当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;⑶当点P位于位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否成菱形?若能,求出点N的坐标;若不能,请说明理由.【逐步提示】本题考查了二次函数、一次函数图象与几何图形的综合问题,解题的关键是灵活运用数形结合思想,发现各图象、图形之间的关系..⑴将点C 代入抛物线解析式,求出a 的值,令抛物线解析式中的y =0,即可求出点A 、B 的坐标;⑵求出四边形ABCD 的面积,利用直线l 将四边形ABCD 分为面积比为3:7的两部分,可知直线l 与AD 或BC 相交的三角形面积为四边形ABCD 面积的310,即可求出直线l 与AD 或BC 交点坐标,然后用待定系数法求解;⑶根据PQ 的中点为M ,四边形DMPN 若为菱形,得DN ∥MQ ,根据直线DN 过点D ,求出点N 坐标,再利用直线l 经过点H ,且平行于DN 求出点Q 坐标,根据MN ∥DQ ,利用x M -x N =x Q -x D 列出方程求出k 值.【详细解答】解: ⑴将点C (0,83-)代入y =a (x +1)2-3,得83-=a (0+1)2-3,解得a =13,∴抛物线解析式为y =13(x +1)2-3,令y =0,则0=13(x +1)2-3,解得x 1=-4,x 2=2,∴A (-4,0),B (2,0);⑵∵抛物线解析式为y =13(x +1)2-3,∴顶点D (-1,-3),∴DH =3,OH =1,∵A (-4,0),B (2,0),C (0,83-),∴OA =4,OB =2,OC =83,AH =3,∴S 四边形ABCD =S △ADH +S 梯形DHOC +S △BOC =12AH ·HD +12(OC +HD )·OH +12OB ·OC =12×3×3+12×(83+3 )×1+12×2×83=10,∵直线l 将四边形ABCD 分为面积比为3:7,∴其中一部分面积为四边形ABCD 面积的310. ①当直线l 与AD 交于点M ,过点M 作MN ⊥x 轴于点N ,则S △AMH =310S 四边形ABCD =12AH ·MN =3,∴MN =2,∵MN ∥DH ,∴△AMN ∽△ADH ,AN MNAH DH=, AN =2,∴ON =2,∴N (-2,-2),设直线l 解析式为y =kx +b ,过N (-2,-2),H (-1,0),则220k b k b -=-+⎧⎨=-+⎩,解得22k b =⎧⎨=⎩,∴直线l 解析式为y =2x +2,②当直线l 与BC 交于点M ,过点M 作MN ⊥x 轴于点N ,则S △BMH =310S 四边形ABCD =12BH ·MN =3,∴MN =2,∵MN ∥OC ,∴△BMN ∽△BOC ,BN MN BO OC =,BN =32,∴ON =12,∴N (12,-2),设直线l 解析式为y =kx +b ,过N (12,-2),H (-1,0),则1220k b k b ⎧-=+⎪⎨⎪=-+⎩,解得4343k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线l 解析式为y =-43x -43,∴直线l 解析式为y =2x+2或y =-4x -4;⑶若存在直线l 以DP 为对角线的四边形DMPN 能否成菱形,则有DN ∥PM ,∵PQ 的中点为M ,∴DN ∥MQ ,∴四边形MNDQ 为平行四边形,设直线ND 的解析式为y =kx +b 1,过D (-1,-3),∴-3=-k +b 1,∴b 1=k -3,∴直线ND 的解析式为y =kx +k -3,∴231(1)33y kx k y x =+-⎧⎪⎨=+-⎪⎩,解得x N =3k -1,∴N (3k -1,3k 2-3).设直线PQ 的解析式为y =kx +b 2,过H (-1,0),得y =kx +k ,∴21(1)33y kx ky x =+⎧⎪⎨=+-⎪⎩,则kx +k =13(x +1)2-3,x 1+x 2=3k -2,∴x M =122x x +=322k -,x Q x M -x N =322k --3k -1,∵MN ∥DQ ,∴x M -x N =x Q -x D ,即322k --3k -1=+1,解得k =x N =3k -1=--1,∴y N =kx +k -3=1,∴N (-1,1),M (1,2),P (-1,6),此时,DN ∥PM 且DN =PM ,DN =DM =DMPN为菱形.综上所述,以DP 为对角线的四边形DMPN 能成为菱形,当四边形DMPN 为菱形时,点N 的坐标为(-1,1).【解后反思】本题在解答第⑵问时,由于不会把四边形的面积转化为三角形的面积而求解;第⑶问不会应用菱形的性质及中点得出DN ∥MQ 及MN ∥DQ ,从而无法找出等量关系,不能建立正确等量关系导致无法求解.一般在解决有关平行四边形顶点问题时,通常应用平行四边形对边平行且相等,用平移法可找到相邻顶点之间的联系. 【关键词】 二次函数的表达式;平行四边形的性质;相似三角形的性质;存在探索型问题4(四川乐山,26,13分)在直角坐标系xOy中,A(0,2)、B(-1,0),将△ABO经过旋转、平移变化后得到如图15.1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.【逐步提示】(1)由旋转,平移得到C(1,1),用待定系数法求出抛物线解析式;(2)先判断出△BEF∽△BAO,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A1B1的解析式为y=2x+2-t,A1B1与x轴交点坐标为(22t,0).C1B2的解析式为y=12x+t+12,C1B2与y轴交点坐标为(0,t+12),再分两种情况进行计算即可.【详细解答】解:(1)∵A(0,2)、B(-1,0),将△ABO经过旋转、平移变化得到如图所示的△BCD,∴BD=OA=2,CD=OB=1,∠BDC=∠AOB=90°,∴C(1,1).设经过A 、B 、C 三点的抛物线解析式为y=ax 2+bx+c ,则有012a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a=-32,b=12,c=2.∴抛物线解析式为y=-32x 2+12x+2; (2)如图所示,设直线PC 与AB 交于点E.∵直线PC 将△ABC 的面积分成1:3两部分, ∴13AE BE =或3AEBE=, 过E 作EF ⊥OB 于点F ,则EF∥OA, ∴△BEF ∽△BAO,∴EF BE BFAO BA BO==, ∴当13AE BE =时,3241EF BF ==, ∴33,24EF BF ==,∴13(,)42E -.设直线PC 解析式为y=mx+n ,则可求得其解析式为y=-25x+75, ∴-32x 2+12x+2=-25x+75,∴x 1=-25,x 2=1(舍去), ∴P 1(-25,3925). 当3AE BE=时,同理可得P 2(-67,2349).(3)设△ABO 平移的距离为t ,△A 1B 1O 1与△B 2C 1D 1重叠部分的面积为S .可由已知求出A 1B 1的解析式为y=2x+2-t ,A 1B 1与x 轴交点坐标为(-22t ,0). C 1B 2的解析式为y=12x+t+12,C 1B 2与y 轴交点坐标为(0,t+12). ①如图所示,当0<t <35时,△A 1B 1O 1与△B 2C 1D 1重叠部分为四边形.设A 1B 1与x 轴交于点M ,C 1B 2与y 轴交于点N ,A 1B 1与C 1B 2交于点Q ,连结OQ.由221122y x t y x t =+-⎧⎪⎨=++⎪⎩,得43353t x t y -⎧=⎪⎪⎨⎪=⎪⎩,∴435(,)33t t Q -. ∴1251134()223223QMO QNO t t t S S S t ∆∆--=+=⨯⨯+⨯+⨯2131124t t =-++. ∴S 的最大值为2552. ②如图所示,当35≤t <45时,△A 1B 1O 1与△B 2C 1D 1重叠部分为直角三角形.设A 1B 1与x 轴交于点H ,A 1B 1与C 1D 1交于点G.则G(1-2t ,4-5t),12451222t t D H t --=+-=,145D G t =-. ∴21111451(45)(54)2224t S D H D G t t -==-=-. ∴当3455t ≤<时,S 的最大值为14.综上所述,在此运动过程中△ABO 与△BCD 重叠部分面积的最大值为2552. 【解后反思】本题是动态型压轴题,综合了二次函数、直角三角形、三角形相似的性质与判定、分类讨论等知识于一体,在探讨动态问题时,首先要对运动过程做一个全面的分析,弄清楚运动过程中的变量和常量,变量反映了运动变化关系,常量则是问题求解的重要依据.其次,要分清运动过程中不同的情况,时刻注意分类讨论,不同的情况下题目是否有不同的表现.解决压轴题,既需要坚实的基础知识作功底,也需要严密的思维分析问题,更需要灵活的方法处理细节,还需要概括的数学思想方法作统领.【关键词】待定系数法求解析式;三角形相似的性质和判定;分类讨论思想5. ( 四川省绵阳市,24,12分)如图,抛物线y =2ax bx c ++(a ≠0)与x 轴交于A ,B 两点,与y 轴交于C (0,3),且此抛物线的顶点坐标为M (-1,4). (1)求此抛物线的解析式;(2)设点D 为已知抛物线对称轴上的任意—点,当△ACD 与△ACB 面积相等时,求点D 的坐标;(3)点P 在线段AM 上,当PC 与y 轴垂直时,过点P 作x 轴的垂线,垂足为E ,将△PCE 沿直线CE 翻折,使点P 的对应点P ′与P ,E ,C 处在同一平面内,请求出点P ′坐标,并判断点P ′是否在该抛物线上.【逐步提示】本题是一道综合题,考查的知识较多,解答时要充分利用数形结合思想,注重“数”与“形”的转化进行求解.在进行点的坐标与线段长度转化时,要防止符号出错.(1)已知顶点M (-1,4),利用顶点式求函数解析式.(2)利用(1)中求得的解析式求出△ABC 的面积,求出直线AC 的函数解析式y =3x +及点F 的坐标(-1,2).设点D (-1,D y ),利用割补法得到△ACD 的面积(用含D y 的式子表示),最后根据△ACD 与△ACB 面积相等列方程求出D y ,得到点D 的坐标.(3)记EP ′交y 轴于点N ,可得△NCE 是等腰三角形.再求出点P 的坐标,得到PC ,PE 长.设NC =NE =m ,在Rt △OEN 中利用勾股定理可求得m 的值,从而知道NC ,NE ,NP ′的长.过点P ′作P ′H ⊥y 轴于点H ,在Rt △CNP ′中利用面积法求得斜边上的高P ′H 的长,得到点P ′的横坐标.在Rt △CHP ′利用勾股定理求出CH 长,进而求出OH 长,得到点P ′的纵坐标,最后将点P ′的坐标代入抛物线解析式,不成立,点P ′不在抛物线上. 【详细解答】解:设抛物线的解析式为y =2()a x h k ++. ∵顶点为M (-1,4), ∴y =214()a x ++. ∵抛物线经过点C (0,3), ∴3=2014()a ++. 解得a =-1.∴抛物线的解析式为y =214()x -++,即y =223x x --+. (2)令y =223x x --+=0,解得x =-3或x =1. ∴A (-3,0),B (1,0).∴OA =OC =3,△AOC 为等腰直角三角形. 设AC 交对称轴x =-1于F (-1,F y ). 易得F y =2,故点F (-1,2). 设点D 坐标为(-1,D y ).则S△ADC=12DF·AO=12×2Dy-×3.又S△ABC=12AB·OC=12×4×3=6,由12×2Dy-×3=6得:2Dy-=4,故Dy=-2或Dy=6.∴点D坐标为(-1,-2)或(-1,6).(3)如图,点P′为点P关于直线CE的对称点,过点P′作P′H⊥y轴于H,设P′E交y轴于点N.在△EON和△CP′N中,90CNP ENOCP N EONP C PC OE'∠=∠⎧⎪'∠=∠=︒⎨⎪'==⎩,∴△CP′N≌△EON.设NC=m,则NE=m.易得直线AM的解析式为y=26x+.当y=3时,x=32-.∴点P(32-,3).∴P′C=PC=32,P′N=3m-.在Rt△P′NC中,由勾股定理,得223()(3)2m+-=2m.解得m=158.∵S△P′NC=12CN·P′H=12P′N·P′C,∴P′H=910.在Rt△CHP′中,CH65.∴OH=3-65=95.∴P′的坐标是(910,95).将点P ′(910,95)的坐标代入抛物线解析式,不成立. ∴点P ′不在该抛物线上.【解后反思】(1)求二次函数的解析式,要选择恰当的解析式求解.已知抛物线的顶点坐标,一般选用顶点式;已知抛物线与x轴的两个交点横坐标,一般选用交点式;已知任意三点坐标,一般选用一般式.(2)遇到三角形的面积要联想到下面的方法:①直接运用三角形的面积公式;②如图,对于△ABC ,过三角形的一个顶点作铅垂线,交对边或对边的延长线于D ,记AD 的长为h ,作出另外两个顶点的水平距离l (如图),则△ABC 的面积为12hl .(3)直角坐标系中如果有直角,要联想含直角的相似三角形基本图形,主要有以下几种:【关键词】二次函数;待定系数法;二次函数的表达式;面积法;数形结合思想;化归思想.CD AB hl。
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣12C.12D.22.(4分)下列图形中一定是轴对称图形的是()A.B.C.D.直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若⊙O 的半径为4,BC =6,则P A 的长为( )A .4B .2√3C .3D .2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:0.75,坡长CD =2米,若旗杆底部到坡面CD 的水平距离BC =1米,则旗杆AB 的高度约为( )(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)A .12.6米B .13.1米C .14.7米D .16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.(4分)若数a 使关于x 的不等式组{x−12<1+x35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
中考数学真题分类精编精练18三角形A卷(含解析)
中考数学真题分类精编精练18三角形A卷姓名:__________班级:__________考号:__________总分__________题号一二三总分得分一、选择题(本大题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2022年四川省德阳市)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km2.(2022年广西贺州市)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为()A.34°B.44°C.124°D.134°3.(2022年广西玉林市)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm4.(2022年湖北省恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120°B.130°C.140°D.150°5.(2022年湖北省十堰市)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边6.(2022年河北省)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是()A.α﹣β=0 B.α﹣β<0C.α﹣β>0 D.无法比较α与β的大小7.(2022年江苏省宿迁市)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm8.(2022年辽宁省葫芦岛市)如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°9.(2022年湖南省永州市)下列多边形具有稳定性的是()A.B.C.D.10.(2022年安徽省中考数学试题)两个矩形的位置如图所示,若1∠=α,则2∠=( )A .90α-︒B .45α-︒C .180α︒-D .270α︒-11.(2022年浙江省杭州市)如图,CD ⊥AB 于点D ,已知∠ABC 是钝角,则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线 C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线12.(2021年黑龙江省绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是( )A .八边形B .九边形C .十边形D .十二边形13.(2021年河北省)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角. 求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2021年贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形二、填空题(本大题共8小题,每小题3分,共24分)15.(2022年江苏省扬州市)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND=°.16.(2022年江苏省泰州市)正六边形的一个外角的度数为°.17.(2022年江苏省常州市)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是.18.(2022年黑龙江省哈尔滨市)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是度.19.(2021年青海)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.20.(2020年河北省)正六边形的一个内角是正边形一个外角的4倍,则_________.21.(2020年北京市)如图所示的网格是正方形网格,A,B,C,D是网格交点,则ABC的面积与ABDS(填“>”,“=”或“<”)的面积的大小关系为:______ABD22.(2020年山东省济宁市)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是__________(写出一个即可),三、解答题(本大题共6小题,共54分)23.(2019年湖北省武汉市)如图,点A.B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.24.(2018年重庆市(B卷))如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.25.(2017年重庆市(B) )如图,直线EF∥GH,点A在EF 上,AC 交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.26.(2022年北京市)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC,求证:∠A+∠B+∠C=180°.方法一证明:如图,过点A作DE∥BC.方法二证明:如图,过点C作CD∥AB.27.(2020年吉林省长春市)图①、图②、图③均是的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以为边画.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点在格点上.28.(2018年山东省淄博市)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.答案解析一、选择题1.【考点】三角形三边关系.【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设李锐两家的直线距离为x,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.【点评】本题考查了三角形的三边关系,两点间的距离,熟练掌握三角形的三边关系是解题的关键.2.【考点】直角三角形的性质.【分析】根据直角三角形的两锐角互余计算即可.解:在Rt△ABC中,∠C=90°,则∠B+∠A=90°,∵∠B=56°,∴∠A=90°﹣56°=34°,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.3.【考点】三角形的角平分线、中线和高.【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.【点评】本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.4.【考点】平行线的性质;三角形的外角性质.【分析】过点B作BF∥l1,交AC于点F,利用三角形的外角的性质,平行线的性质定理和对顶角相等的性质解答即可.解:过含30°角的直角三角板的直角顶点B作BF∥l1,交AC于点F,∵∠C=30°,∴∠A=90°﹣∠C=60°.∵∠1=∠A+∠ADE,∴∠ADE=60°.∵BF∥l1,∴∠ABF=∠ADE=60°,∴∠FBG=90°﹣∠ABF=30°.∵BF∥l1,l1∥l2,∴BF∥l2,∴∠BGH+∠FBG=180°,∴∠BGH=180°﹣∠FBG=150°,∴∠2=∠BGH=150°.故选:D.【点评】本题主要考查了直角三角形的两个锐角互余,平行线的性质定理,三角形的外角的性质,对顶角相等,过点B作BF∥l1,交AC于点F是解题的关键.5.【考点】三角形三边关系,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,垂线段最短.【分析】根据两点确定一条直线判断即可.解:这样做应用的数学知识是两点确定一条直线,故选:B.【点评】本题考查的是三角形的三边关系、两点之间,线段最短、两点确定一条直线、垂线段最短,正确理解它们在实际生活中的应用是解题的关键.6.【考点】多边形内角与外角.【分析】利用多边形的外角和都等于360°,即可得出结论.解:∵任意多边形的外角和为360°,∴α=β=360°.∴α﹣β=0.故选:A.【点评】本题主要考查了多边形的内角与外角,正确利用任意多边形的外角和为360°解答是解题的关键.7.【考点】等腰三角形的性质,三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系,已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.【考点】平行线的性质,三角形内角和定理,垂线.【分析】根据垂线的性质可得∠ACB=90°,进而得出∠ABC与∠1互余,再根据平行线的性质可得答案.解:∵AC⊥BC于点C,∴∠ACB=90°,∴∠ABC+∠1=90°,∴∠ABC=90°﹣30°=60°,∵m∥n,∴∠2=180°﹣∠ABC=120°.故选:C.【点评】本题主要考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.9.【考点】三角形的稳定性.【分析】根据三角形具有稳定性即可得出答案.解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.10.【考点】三角形外角性质【分析】用三角形外角性质得到∠3=∠1-90°=α-90°,用余角的定义得到∠2=90°-∠3=180°-α.解:如图,∠3=∠1-90°=α-90°,∠2=90°-∠3=180°-α.故选:C.【点评】本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角形的外角性质,互为余角的定义.11.【考点】三角形的高【分析】根据高线的定义注意判断即可.解:∵线段CD是ABC的AB边上的高线,∴A错误,不符合题意;∵线段CD是ABC的AB边上的高线,∴B正确,符合题意;∵线段AD是ACD的CD边上的高线,∴C错误,不符合题意;∵线段AD是ACD的CD边上的高线,∴D错误,不符合题意;故选B.【点评】本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.12.【考点】多边形的内角和定理,多边形的外角和定理【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.解:设这个多边形的边数为n , 则(n -2)×180°=4×360°, 解得:n =10, 故选C.【点评】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n 变形的内角和为:(n-2) ×180°, n 变形的外角和为:360°;然后根据等量关系列出方程求解.13.【考点】三角形内角和定理,三角形的外角性质【分析】根据三角形的内角和定理与平角的定义可判断A 与B ,利用理论与实践相结合可判断C 与D .解:A . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意; B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意. 故选择:.B【点评】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨. 14.【考点】平面镶嵌【分析】进行平面镶嵌就是在同一顶点处的几个多边形的内角和应是360︒,因此我们只需要验证360︒是不是上面所给的几个正多边形的一个内角度数的整数倍即可. 解:A .等边三角形每个内角的度数为60︒,360606︒÷︒=,故该项不符合题意; B 、正方形的每个内角的度数为90︒,360904︒÷︒=,故该项不符合题意; C 、正五边形的每个内角的度数为108︒,136010833︒÷︒=,故该项符合题意;D 、正六边形的每个内角的度数为120︒,1236030÷︒︒=,故该项不符合题意; 故选:C .【点评】此题考查镶嵌问题,正确掌握各正多边形的每个内角的度数及镶嵌的计算方法是解题的关键. 二 、填空题15.【考点】平行线的性质,三角形内角和定理.【分析】由直角三角形的性质得出∠F=30°,∠B=45°,由平行线的性质得出∠NDB=∠F=30°,再由三角形内角和定理即可求出∠BND的度数.解:∵∠E=60°,∠C=45°,∴∠F=30°,∠B=45°,∵EF∥BC,∴∠NDB=∠F=30°,∴∠BND=180°﹣∠B﹣∠NDB=180°﹣45°﹣30°=105°,故答案为:105.【点评】本题考查了平行线的性质,熟练掌握平行线的性质,直角三角形的性质,三角形内角和定理是解决问题的关键.16.【考点】多边形内角与外角.【分析】根据正多边形的每一个外角都相等和多边形的外角和等于360度解答即可.解:∵正六边形的外角和是360°,∴正六边形的一个外角的度数为:360°÷6=60°,故答案为:60.【点评】本题考查了多边形的外角和的知识,掌握多边形的外角和等于360度是解题的关键.17.【考点】三角形的面积.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC的中线,则有S△ABD=S△ACD,即得解.解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.【点评】本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.18.【考点】三角形内角和定理.【分析】分两种情况:△ABC为锐角三角形或钝角三角形,然后利用三角形内角和定理即可作答.解:当△ABC为锐角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°,当△ABC为钝角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.【点评】本题主要考查三角形内角和定理,注意到分类讨论是解题关键.19.【考点】平行线的性质,三角形内角和定理【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为40°.【点评】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.20.【考点】多边形的外角与内角【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n 边形的外角为30°,再根据外角和定理即可求解.解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.【点评】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.21.【考点】三角形的面积公式【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得个平方单位,,S.故有=ABD故答案为:“=”【点评】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD的面积.22.【考点】三角形三边的关系【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果.解:根据三角形的三边关系,得:第三边应大于6-3=3,而小于6+3=9,故第三边的长度3<x<9.故答案为:4(答案不唯一,在3<x<9之内皆可).【点睛】此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可.三、解答题23.【考点】平行线的性质,三角形内角和定理【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E=∠F.解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.【点评】本题考查了平行线的性质:两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等.也考查了三角形内角和定理.24.【考点】平行线的性质,三角形内角和定理【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.【考点】平行线的性质,三角形的外角性质【分析】由平行线的性质求出∠ABD=108°,由三角形的外角性质得出∠ABD=∠ACD+∠BDC,即可求出∠BDC的度数.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.【点评】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质是解决问题的关键.25.【考点】三角形内角和定理,平行线的判定.【分析】方法一:由平行线的性质得:∠B=∠BAD,∠C=∠CAE,再由平角的定义可得∠BAD+∠BAC+∠CAE=180°,从而可求解,方法二:由平行线的性质得:∠A=∠ACD,∠B+∠BCD=180°,从而可求解.证明:方法一:∵DE∥BC,∴∠B=∠BAD,∠C=∠CAE,∵∠BAD+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°,方法二:∵CD∥AB,∴∠A=∠ACD,∠B+∠BCD=180°,∵∠B+∠ACB+∠A=180°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.26.【考点】三角形的面积,作图—应用与设计作图【分析】因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A.B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.解:经计算可得下图中:图①面积为;图②面积为1;图③面积为,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).故本题答案如下:【点评】本题考查三角形的分类及其作图,难度较低,按照题目要求作图即可.27.【考点】三角形的内角和定理的证明【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.。
重庆市2022年中考数学真题(A卷)
重庆市2022年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1试题的答案书写在答题卡上,不得在试题卷上直接作答;2作答前认真阅读答题卡上的注意事项;3作图(包括作辅助线)请一律用黑色2B 铅笔完成;4考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:拋物线y =ax 2+bx +c (a ≠0)的顶点坐标为-b 2a ,4ac -b 24a ,对称轴为x =-b2a.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是()A.-5B.5C.-15D.152.下列图形是轴对称图形的是()A.B.C.D.3.如图,直线AB ,CD 被直线CE 所截,AB ⎳CD ,∠C =50°,则∠1的度数为()A.40°B.50°C.130°D.150°1ABCDE 4.如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m )随飞行时间t (s )的变化情况,则这只蝴蝶飞行的最高高度约为()A.5mB.7mC.10mD.13m1235571013Ot/sh/m5.如图,△ABC 与△DEF 位似,点O 为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF 的周长是()A.4B.6C.9D.16AB CDEFO6.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图穼中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()⋯①②③④A.32B.34C.37D.417.估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是()A.200(1+x )2=242B.200(1-x )2=242C.200(1+2x )=242D.200(1-2x )=2429.如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =CE ,则∠CDF 的度数为()A.45°B.60°C.67.5°D.77.5°A BCDEF10.如图,AB 是⊙O 的切线,B 为切点,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BD .若∠A =∠D ,且AC =3,则AB 的长度是()A.3B.4C.33D.42ABCDO11.若关于x 的一元一次不等式组x -1≥4x -13,5x -1<a的解集为x ≤-2,且关于y 的分式方程y -1y +1=a y +1-2的解是负整数,则所有满足条件的整数a 的值之和是()A.-26B.-24C.-15D.-1312.在多项式x -y -z -m -n 中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x -y )-(z -m -n )=x -y -z +m +n ,x -y -(z -m )-n =x -y -z +m -n ,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:|-4|+(3-π)0=.14.有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是∙15.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若AB =2,∠BAD =60°,则图中阴影部分的面积为.(结果不取近似值)ABCDE F16.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1)(x +2)2+x (x -4);(2)a b -1 ÷a 2-b 22b.18.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明△BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹).在△BAE 和△EFB 中,∵EF ⊥BC ,∴∠EFB =90°.又∠A =90°,∴①∵AD ⎳BC ,∴②又③∴△BAE ≌△EFB (AAS ).同理可得④∴S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD 四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包拈辅助线),请将解答过程书写在对应的位置上.19.公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格80≤x <85,良好85≤x <95,优秀x ≥95),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B90b903030%抽取的A 、B 型扫地机器人除尘量统计表抽取的B 型扫地机器人除尘量扇形统计图优秀合格良好m%根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)这个月公可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).ABCDE20.已知一次函数y =kx +b (k ≠0)的图象与反比例函数y =4x的图象相交于点A (1,m ).B (n ,-2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx +b >4x的解集:(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求△ABC 的面积.654321654321654321654321Oxy20题图21.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲前行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.22.如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)23.若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”.又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=c+d9,P(M)=|10(a-c)+(b-d)|3.当G(M),P(M)均是整数时,求出所有满足条件的M.ABCDE30°45°东南西北24.如图,在平面直角坐标系中,抛物线y =12x 2+bx +c 与直线AB 交于点A (0,-4),B (4,0).(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方拋物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC +PD 的最大值及此时点P 的坐标;(3)在(2)中PC +PD 取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.xyABOxyA BOCDP备用图25.如图,在锐角△ABC 中,∠A =60°,点D ,E 分别是边AB,AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB >AC ,且BD =CE ,∠BCD =∠CBE ,求∠CFE 的度数;(2)如图2,若AB =AC ,且BD =AE ,在平面内将线段AC 绕点C 顺时针方向旋转60°得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段BF ,CF ,CN 之间存在的数量关系,并证明你的猜想;(3)若AB =AC ,且BD =AE ,将△ABC 沿直线AB 翻折至△ABC 所在平面内得到△ABP ,点H 是AP 的中点,点K 是线段PF 上一点,将△PHK 沿直线HK 翻折至△PHK 所在平面内得到△QHK ,连接PQ .在点D ,E 运动过程中,当线段PF 取得最小值,且QK ⊥PF 时,请直接写出PQBC的值.ABCDEFABCDEFMNABC图1图2备用图重庆市2022年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1试题的答案书写在答题卡上,不得在试题卷上直接作答;2作答前认真阅读答题卡上的注意事项;3作图(包括作辅助线)请一律用黑色2B 铅笔完成;4考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:拋物线y =ax 2+bx +c (a ≠0)的顶点坐标为-b 2a ,4ac -b 24a ,对称轴为x =-b2a.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是(A )A.-5B.5C.-15D.152.下列图形是轴对称图形的是(D )A.B.C.D.3.如图,直线AB ,CD 被直线CE 所截,AB ⎳CD ,∠C =50°,则∠1的度数为(C )A.40°B.50°C.130°D.150°1ABCD E 4.如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m )随飞行时间t (s )的变化情况,则这只蝴蝶飞行的最高高度约为(D )A.5mB.7mC.10mD.13m1235571013Ot/sh/m5.如图,△ABC 与△DEF 位似,点O 为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF 的周长是(B )A.4B.6C.9D.16AB CDEFO6.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图穼中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为(C )⋯①②③④A.32B.34C.37D.417.估计3×(23+5)的值应在(B )A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是(A )A.200(1+x )2=242B.200(1-x )2=242C.200(1+2x )=242D.200(1-2x )=2429.如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =CE ,则∠CDF 的度数为(C )A.45°B.60°C.67.5°D.77.5°A BCDEF10.如图,AB 是⊙O 的切线,B 为切点,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BD .若∠A =∠D ,且AC =3,则AB 的长度是(C )A.3B.4C.33D.42ABCDO11.若关于x 的一元一次不等式组x -1≥4x -13,5x -1<a的解集为x ≤-2,且关于y 的分式方程y -1y +1=a y +1-2的解是负整数,则所有满足条件的整数a 的值之和是(D )A.-26B.-24C.-15D.-1312.在多项式x -y -z -m -n 中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x -y )-(z -m -n )=x -y -z +m +n ,x -y -(z -m )-n =x -y -z +m -n ,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是(D )A.0B.1C.2D.3【解析】我们将括号(称为左括号,)称为右括号,左括号加在最左侧则不改变结果①正确;②不管如何加括号,x 的系数始终为1,y 的系数为-1,故②正确;③我们发现加括号或者不加括号只会影响z 、m 、n 的符号,故最多有23=8种结果x -(y -z )-m -n ,x -y -(z -m )-n ,x -y -z -(m -n ),x -(y -z -m )-n ,x -y -(z -m -n ),x -(y -z )-(m -n ),x -(y -z -m -n ),(x -y )-z -m -n二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:|-4|+(3-π)0=5.14.有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是13∙15.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若AB=2,∠BAD =60°,则图中阴影部分的面积为23-23π.(结果不取近似值)ABCDE F16.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为35.【解析】设三座山各需香樟数量分别为4、3、9.甲、乙两山需红枫数量2a 、3a .∴4+2a 3+3a =56,∴a =3,故丙山需要香樟9,红枫5,设香樟和红枫价格分别为m 、n .∴16m +20n =161-6.25% ×0.8m +20n ×1.25,∴m :n =5:4,∴实际购买香樟的总费用与实际购买红枫的总费用之比为16×1-6.25% ×0.8×520×1.25×4=0.6三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1)(x +2)2+x (x -4);(2)a b -1 ÷a 2-b 22b .【解析】1 原式=x 2+4x +4+x 2-4x =2x 2+42 原式=a -b b ×2b a +b a -b=2a +b18.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明△BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹).在△BAE 和△EFB 中,∵EF ⊥BC ,∴∠EFB =90°.又∠A =90°,∴∠A =∠EFB ①∵AD ⎳BC ,∴∠AEB =∠FBE②又BE =EB③∴△BAE ≌△EFB (AAS ).同理可得△EDC ≌△CFE AAS ④∴S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包拈辅助线),请将解答过程书写在对应的位置上.19.公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格80≤x <85,良好85≤x <95,优秀x ≥95),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B90b903030%抽取的A 、B 型扫地机器人除尘量统计表抽取的B 型扫地机器人除尘量扇形统计图优秀合格良好m%根据以上信息,解答下列问题:(1)填空:a =95,b =90,m =20;(2)这个月公可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【解析】2 3000×30%=900台3 A 型号更好,在平均数均为90的情况下,A 型号的平均除尘量众数95>B 型号的平均除尘量众数90ABCDE20.已知一次函数y =kx +b (k ≠0)的图象与反比例函数y =4x的图象相交于点A (1,m ).B (n ,-2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx +b >4x的解集:(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求△ABC 的面积.654321654321654321654321Oxy20题图【解析】(1)解:A (1,4),B (-2,-2),AB 解析式为y =2x +2(2)-2<x <0或x >1(3)S △ABC =12×4×6=1221.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲前行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.【解析】解(1)设乙的速度为x km /h ,则甲的速度为1.2x km /h ,由题意可列式0.5×1.2x =0.5x +2,解得x =20(2)20分钟=13小时由题意可列式30x -13=301.2x解得x =15,检验成立答:甲骑行的速度为18km /h22.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,AC =200米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,BD =100米.点B 在点A 的北偏东30°,点D 在点E 的北偏东45°.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)【解析】1 过E 作BC 的垂线,垂足为H ,∴EH =AC =200,DE =2002≈283米;2 AB =400,∴经过点B 到达点D ,总路程为500,∵BC =2003,AE =BC +BD -DH =2003+100-200=2003-100经过点E 到达点D ,总路程为2002+2003-100≈529>500故经过点B 到达点D 较近。
精品解析:2022年重庆市中考数学真题(A卷)(解析版)
A B. C. D.
【答案】C
【解析】
【分析】先利用正方形的性质得到 , , ,利用角平分线的定义求得 ,再证得 ,利用全等三角形的性质求得 ,最后利用 即可求解.
【详解】解:∵四边形 是正方形,
∴ , , ,
【答案】
【解析】
【分析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.
【详解】解:根据题意列表如下:
A
B
C
A
AA
BA
CA
B
AB
BB
CB
C
AC
BC
CC
共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,
所以P(抽取的两张卡片上的字母相同)= = .
【答案】C
【解析】
【分析】连接OB,先求出∠A=30°,OB=AC=3,再利用 =tan30°,即可求出AB的长度.
【详解】解:连接OB,
∵OB=OD,
∴△OBD是等腰三角形,
∴∠OBD=∠D,
∵∠AOB是△OBD的一个外角,
∴∠AOB=∠OBD+∠D=2∠D,
∵ 是 切线,
∴OB⊥AB,
∴∠ABO=90°,
2022年重庆市中考数学试卷A卷
一、选择题
1.5的相反数是( )
A. B.﹣ C.5D.﹣5
【答案】D
【解析】
【分析】根据相反数的定义(只有符号不同的两个数互为相反数)即可得.
【详解】解:5的相反数是 ,
故选:D.
【点睛】本题考查了相反数,熟记定义是解题关键.
2019年重庆市中考数学试题A卷(含解析)
2019年重庆市初中毕业、升学考试数学A 卷(满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.(2019重庆A 卷,1,4)下列各数中,比-1小的数是 ( )A .2B .1C .0D .-2【答案】D .【解析】利用“正数大于负数,0大于负数,两个负数,绝对值大的反而小”的原则来判断,而1、2、0都比-1大,故选D .【知识点】实数的大小比较2.(2019重庆A 卷,2,4)如图是由4个相同的小正方体组成的一个立体图形,其主视图是 ( )【答案】A .【解析】因为从正面看该几何体,共有2列,第1列有两个小正方形,第2列有一个小正方形,所以选A . 【知识点】三视图3.(2019重庆A 卷,3,4)如图,△ABO ∽△CDO ,若BO =6,DO =3,CD =2,则AB 的长是 ( )A .2B .3C .4D .5【答案】C .【解析】∵△ABO ∽△CDO ,∴AB BO CD DO =.∵BO =6,DO =3,CD =2,∴623AB =.∴AB =4.故选C . 【知识点】图形的相似;相似三角形的性质4.(2019重庆A 卷,4,4)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C =50°,则∠AOD 的度数为 ( ) A .40° B .50° C .80° D .100°第2题图 A . B . C . D .从正面看ODCB A第3题图【答案】C【解析】∵AC是⊙O的切线,∴AC⊥AB.∵∠C=50°,∴∠B=90°-∠C=40°.∵OB=OD,∴∠B=∠ODB =40°.∴∠AOD=∠B+∠ODB=80°.故选C.【知识点】等腰三角形的性质;切线的性质5.(2019重庆A卷,5,4)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【答案】A.【解析】根据矩形的定义,易知选项A正确,另外,对角线互相平分且相等的四边形是矩形;三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.【知识点】四边形;矩形的判定6.(2019重庆A卷,6,4)估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C.【解析】∵原式=23×13+62×13=2+24,而162425<<,即4<24<5,∴2+4<2+24<5+2,即6<()123+623⨯<7.故选C.【知识点】实数的运算;二次根式的混合运算;估算7.(2019重庆A卷,7,4)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A.第4题图ODCB A【解析】根据“甲的钱+乙的钱的一半=50;甲的钱的23+乙的钱=50”可得方程组15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,故选A .【知识点】二元一次方程组;古代问题8.(2019重庆A 卷,8,4)按如图所示的运算程序,能使输出y 值为1的是 ( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1【答案】D .【解析】∵m =1,n =1,∴y =2m +1=3;∵m =1,n =0,∴y =2n -1=-1;∵m =1,n =2,∴y =2m +1=3;∵m =2,n =1,∴y =2n -1=1.故选D . 【知识点】代数式的值;程序求值9.(2019重庆A 卷,9,4)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为 ( )A .16B .20C .32D .40【答案】B .【解析】如答图,过点B 作BF ⊥x 轴于点F ,则∠AFB =∠DOA =90°.∵四边形ABCD 是矩形, ∴ED =EB ,∠DAB =90°.∴∠OAD +∠BAF =∠BAF +∠ABF =90°. ∴∠OAD =∠FBA . ∴△AOD ∽△BFA .∴OA ODBF AF=. ∵BD ∥x 轴,A (2,0),D (0,4), ∴OA =2,OD =4=BF .yxO EDCBA 第9题图输出y 的值y =2n -1y =2m +1否是m ≤n输入m ,n 第8题图∴244AF .∴AF=8.∴OF=10,E(5,4).∵双曲线y=kx过点E,∴k=5×4=20.故选B.【知识点】反比例函数;矩形的性质;相似三角形的判定与性质10.(2019重庆A卷,10,4)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A 的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD 与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【答案】C.【解析】如答图,延长DC交EA于点F,则CF⊥EA.∵山坡AC上坡度i=1:2.4,AC=26米,∴令CF=k,则AF=2.4k,由勾股定理,得k2+(2.4k)2=262,解得k=10,从而AF=24,CF=10,EF=30.在Rt△DEF中,tan E=DF EF,故DF=EF•tan E=30×tan48°=30×1.11=33.3,于是,CD=DF-CF=23.3,故选C.【知识点】解直角三角形;坡度问题第10题答图FEDC BAEDC BA第10题图第9题答图FyxO EDCB A11.(2019重庆A卷,11,4)若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【答案】B.【解析】原不等式组可化为5x ax≤⎧⎨<⎩,而它的解集是x≤a,从而a<5;对于分式方程两边同乘以y-1,得2y-a +y-4=y-1,解得y=32a+.而原方程有非负整数解,故32312aa+⎧≥⎪⎪⎨+⎪≠⎪⎩且32a+为整数,从而在a≥-3且a≠-1且a<5的整数中,a的值只能取-3、1,3这三个数,它们的和为1,因此选B.【知识点】一元一次不等式组;分式方程12.(2019重庆A卷,12,4)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC'与AB交于点E,连结AC',若AD=AC'=2,BD=3,则点D到BC'的距离为()A.233B.7213C.7D.13【答案】B.【解析】如答图,过点D作DM⊥BC'于点M,过点B作BN⊥DC'于点N,由翻折可知DC'=DC=AD=2,∠BDC=∠B DC'.∵AD=AC'=2,∴△ADC'是等边三角形,从而∠ADC'=∠B DC'=∠BDC=60°.在Rt△BDN中,DN=12BD=32,BN=332,从而C N'=12.于是,BC'=22133()()22+=7.∵BDCS'∆=1122DC BN BC DM''⋅=⋅,∴DM=DC BNBC'⋅'=33227⨯=3217.故选B.第12题图【知识点】翻折;等边三角形的判定与性质;勾股定理;解直角三角形;面积桥法.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.(2019重庆A 卷,13,4)计算:=+1-0213-)()(π . 【答案】3.【解析】因为原式=1+2=3,所以答案为3.【知识点】实数的运算;0指数幂;负整数指数幂.14.(2019重庆A 卷,14,4)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .【答案】2.56×107.【解析】因为25600000=2.56×10000000=2.56×107,故答案为2.56×107. 【知识点】科学记数法.15.(2019重庆A 卷,15,4)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 . 【答案】14. 【解析】记红球三个分别为a 1、a 2、a 3,白球两个分别为b 1、b 2,黄球为c ,现列表如下:(b 1,c )(b 1,b 2)(b 1,b 1)(b 1,a 3)(b 1,a 2)(b 1,a 1)(c ,c )(c ,b 2)(c ,b 1)(c ,a 3)(c ,a 2)(c ,a 1)(b 2,a 1)(b 2,a 2)(b 2,a 3)(b 2,b 1)(b 2,b 2)(b 2,c )(a 2,a 2)(a 2,a 1)(a 2,a 3)(a 2,b 1)(a 2,b 2)(a 2,c )(a 1,a 2)(a 1,a 1)(a 1,a 3)(a 1,b 1)(a 1,b 2)(a 1,c )(a 3,c )(a 3,b 2)(a 3,b 1)(a 3,a 3)(a 3,a 1)(a 3,a 2)a 1a 3a 2b 1b 2c cb 2b 1a 2a 3a 1由上表可知,共有36种等可能的结果,其中两个球都是红球的有9种情况,故P(两次都摸到红球)=936=14. 【知识点】概率;用列表法或树状图法求等可能条件下的事件的概率.16.(2019重庆A 卷,16,4)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)第12题答图【答案】2233π-. 【解析】∵在菱形ABCD 中,∠ABC =60°,∴△ABC 是正三角形,且∠BAD =∠BCD =120°.∴S阴影=2S正三角形ABC -2S阴影AEF=2×34×22-2×21201360π⋅⋅=2233π-.如下图:【知识点】菱形;等边三角形的面积;扇形的面积.17.(2019重庆A 卷,17,4)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.【答案】6000.【解析】由图像可知甲8分钟行驶4000米,甲速为500米/分,而甲乙两人2分钟行驶的路程和为甲10分钟行驶的路程,故乙速为(500×10-500×2)÷4=1000米/分,于是4000+4×500=6000米,即为乙回到公司时,甲距公司的路程,因此答案为6000. 【知识点】一次函数;行程问题.18.(2019重庆A 卷,18,4)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5.根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地第16题答图FE ODCBA ODCB A第16题图124000y /米x /分O第17题图面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 . 【答案】320. 【解析】设该村土地总面积为a 亩,该村已种植的川香、贝母、黄连面积分别为4k 亩、3k 亩、5k 亩,根据题意得5k +916(a -12k )=1940a ,解得a =20k .再令在余下的土地(20k -9.5k -4k -3k )亩x 亩种植贝母,根据题意,得(4k +3.5k -x )﹕(3k +x )=3﹕4,解得x =3k ,故该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是320kk =320.因此答案为320.【知识点】二元一次方程组的应用.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(2019重庆A 卷,19,10)计算:(1))2(2y x y y x +-+)(;(2)292492--÷--+a a a a a )(.【思路分析】(1)按完全平方公式和单项式乘以多项式法则展开,再合并同类项即可;(2)按分式的运算法则进行计算即可. 【解题过程】(1)原式=x 2+2xy +y 2-2xy -y 2=x 2;(2)原式=22294229a a a a a a -+--⋅--=2(3)22(3)(3)a a a a a --⋅-+-=33a a -+. 【知识点】整式的运算;分式的运算.20.(2019重庆A 卷,20,10)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数;(2)求证:FB =FE .【思路分析】(1)先利用“等边对等角”求出∠ABC 的度数,然后利用三角形内角和定理,得到∠BAC 的度数,最后利用“三线合一”性质,即可求出∠BAD 的度数;(2)由角平分线定义,得∠ABE =∠CBE ,再由平行线性质,得到∠FEB =∠CBE ,从而∠ABE =∠FEB ,于是FB =FE . 【解题过程】(1)解:∵AB =AC ,∴∠B =∠C =36°.∴∠BAC =180°-∠B -∠C =108°. ∵AB =AC ,D 是BC 边上的中点, ∴AD 平分∠BAC .∴∠BAD =12∠BAC =54°. 第20题图FEDCBA(2)证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE . ∵EF ∥BC ,∴∠FEB =∠CBE . ∴∠ABE =∠FEB . ∴FB =FE .【知识点】等腰三角形的性质与判定;角平分线定义;平行线的性质;三角形内角和定理.21.(2019重庆A 卷,21,10)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x <85,B .85≤x <90,C .90≤x <95,D .95≤x ≤100),下面给出了部分信息: 七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82. 八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94.八年抽取的学生竞赛成绩扇形统计图 七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【思路分析】(1)从统计图上看,八年级样本中A 组1人,B 组2人,而C 组已知有3人,故D 组的有10-1-2-3=4人,占40%,故a =40;将八年级的成绩按从小到大顺序排序后,处在第5、6两个数据均为94、94,它们的平均数亦为94,从而b =94;易知七年级10名同学的竞赛成绩为99分的最多,故c =99.(2)应从中位数上或众数或方差的角度来比较两个年级学生竞赛的成绩好坏.(3)从图表信息中可知样本容量为20的数据中,x ≥90的有13人,用720去乘以1320即可. 【解题过程】(1)a =40,b =94,c =99.(2)从平均数上看,两个年级平均分相等,成绩相当;但从中位数上看,八年级学生成绩高于七年级学生;从众数上看,八年级得满分的多,也好于七年级;从方差上看,八年级方差小,成绩相对整齐些,综上,我认为八年级学生掌握防溺水安全知识较好.(3)因为在样本中,七八年级共有6+7=13人不低于90分,所以估计该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是720×1320=468(人). 【知识点】统计图表;平均数;中位数;众数;方差;用样本估计总体年级 七年级 八年级 平均数92 92 中位数 93 b 众数 c 100 方差5250.4a %DC 10%B20%A 第21题图22.(2019重庆A 卷,22,10)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.【思路分析】(1)按“纯数”的定义,看2019+2020+2021及2020+2021+2022在计算时,是否各数位都不产生进位,即可做出判断;(2)寻找“纯数”的构成规律:连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.然后按一位、两位数及三位数(100)分三种情况讨论,即可锁定答案. 【解题过程】(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个;③当这个数为100时,易知100是“纯数”.综上,不大于100的“纯数”的个数为3+9+1=13.【知识点】阅读理解题;新定义问题;分类思想;纯数.23.(2019重庆A 卷,23,10)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题:在函数b kx y +-=3中,当x =2时,y =-4;当x =0时,y =-1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函数y =12x -3的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.【思路分析】(1)利用待定系数法,将x =2时,y =-4;x =0时,y =-1代入函数关系式,得到关于k 、b 的二元一次方程组,解之即可.(2)利用绝对值意义将所求带有绝对值的函数转化为分段函数,即可在所给网格的平面直角系中画出该函数的图像,并结合图像较易从增减性上写出该函数的性质;(3)利用数形结合思想,由两个函数图像的交点的横坐标分别为1和4,分段函数图像在直线y =12x -3下方的自变量x 的取值范围即为所求不等式的解集体.【解题过程】(1)由题意得23431k b b ⎧-+=-⎪⎨-+=-⎪⎩,解得324k b ⎧=⎪⎨⎪=-⎩,故该函数解析式为y =332x --4. (2)当x ≥2时,该函数为y =32x -7;当x ≤2时,该函数为y =-32x -1,其图像如下图所示:性质:当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.(3)不等式3213-≤+-x b kx 的解集为1≤x ≤4. 【知识点】一次函数的图像与性质;分类函数;绝对值;待定系数法;不等式的解集;数形结合思想.24.(2019重庆A 卷,24,10)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.第23题答图y xO -1-2-3-4-5-6-7-8-6-5-4-3-2-112345678654321y xO -1-2-3-4-5-6-7-8-6-5-4-3-2-112345678654321第23题图(1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提高大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值. 【思路分析】(1)根据“50平方米的物管费+80平方米的物管费=90000元”,列一元一次方程即可解答;(2)根据5、6两月参加两种活动的户数及减少的每平米的物管费,可列表如下: 6月份参加活动二的户数及缴物管费统计表户数每户实缴物管50m 2 500×40%×(1+2a %) 100(1-310a %) 80m 2 250×20%×(1+6a %)160(1-14a %)再根据“参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ”列一元二次方程即可解答. 【解题过程】(1)设80平方米的住宅有x 套,则50平方米的住宅有2x 套,根据题意,得2x •100+160x =90000,解得x =250. 答:80平方米的住宅有250套.(2)根据题意,得200(1+2a %)•100(1-310a %)+50(1+6a %)•160(1-14a %)= [200(1+2a %)•100+50(1+6a %)•160]•(1-518a %)令m =a %,原方程可化为20000(1+2m )(1-0.3m )+8000(1+6m )(1-14m )=[20000(1+2m )+8000(1+6m )]( (1-518m ),整理,得19m 2-118m =0,解得m 1=0.5,m 2=0(不合题意,舍去).∴a %=50%,故a 的值为50.【知识点】一元一次方程的应用;一元二次方程的应用;换元法.25.(2019重庆A 卷,25,10)如图,在□ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积; (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .【思路分析】(1)过点C 作CQ ⊥AD 于点Q ,利用勾股定理,建立关于PQ 的方程,求出PQ 的值,进而求得AD 边上的高,即可求得△ACD 的面积.(2)连接NE .首先由EM ⊥AE ,AF ⊥BC ,BG ⊥AE ,得到∠EAF =∠NBF =∠MEC ,再证明△BFN ≌△AFE ,从而BF =AF ,NF =EF .于是∠ABC =45°,∠ENF =45°,FC =AF =BF .然后通过证明△ANE ≌△ECM ,得到CM =NE .最后在等腰Rt △EFN 中,由NF =22NE =22CM ,加上AD =2AF ,AF =AN +NF ,AN =EC ,即可锁定答案.【解题过程】(1)如答图1,过点C 作CQ ⊥AD 于点Q .∵DP =2AP =4, ∴AP =2,AD =6.设PQ =x ,则DQ =4-x ,根据勾股定理,得CP 2-PQ 2=CD 2-DQ 2,即17-x 2=52-(4-x )2,解得x =1,从而CQ =2253-=4,故S △ACD =12AD •CQ =12×6×4=12.(2)如答图2,连接NE .∵EM ⊥AE ,AF ⊥BC ,BG ⊥AE ,∴∠AEB +∠FBN =∠AEB +∠EAF =∠AEB +∠MEC =90°. ∴∠EAF =∠NBF =∠MEC .在△BFN 和△AFE 中,BFN AFE FBN FAE BN AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFN ≌△AFE (AAS ). ∴BF =AF ,NF =EF .∴∠ABC =45°,∠ENF =45°,FC =AF =BF . ∴∠ANE =∠BCD =135°,AD =BC =2AF .在△ANE 和△ECM 中,NAE CEM ANE ECM AN EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ANE ≌△ECM (ASA ).∴CM =NE .第25题答图1QPHNMFEDCBAABCDEFMNHP第25题答图2PHNMFEDCBA 第25题图又∵NF =22NE =22CM , ∴AF =22CM +CE . ∴AD =2CM +2CE .【知识点】平行四边形的性质;勾股定理;全等三角形的判定与性质;等腰直角三角形的判定与性质.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(2019重庆A 卷,26,8)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N(点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值; (2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P 向上平移个22单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.【思路分析】(1)①首先由已知条件求出A 、B 、C 、D 的坐标及直线BD 的解析式;②再由S △BDN =12BD •MN ,转化为由MN 的最大值得到S △BDN 取最大值,进而为FN 取最大值;③N (m ,m 2-2m -3),则F (m ,2m -6),FN =(2m -6)-(m 2-2m -3)=-(m -2)2+1,求出MN 最大时点N 、F 、H 的坐标;④利用OC 为长直角边,构造一个斜边长为短直角边3倍的直角三角形OCK ,再由点到直线的垂线段最短,找到“MN 取得最大值时,HF +FP +13PC 最小值=HF +FR ”;⑤利用相似形的性质及相关数学知识,求出FR 的值,进而求出HF +FP +13PC 最小值.(2)如答图2至答图5,分四种情况讨论,先求出Q 点坐标,再按要求利用数学知识即可求出符合条件的点Q '的坐标有4个.yxOEDCBA第26题备用图第26题图【解题过程】(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0).在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =324,于是在x 轴上取点K (-324,0),连接KC ,易求直线KC :y =-22x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP +13PC 最小值=HF +FR .在y =-22x -3中,当y =-2,x =-24,于是FT =2+24.在Rt △FTR 中,由223FR FT =,得FR =223FT =223(2+24)=14233+,故HF +FP +13PC 最小值=2+14233+=7423+.第26题答图1 T KR Q P HF NMyxO ED CBA第26题答图2第26题答图3(2)4525 (,)55 --,2545(,)55-,4525(,)55,2545(,)55-.【知识点】一次函数;二次函数;相似三角形;平移;旋转;勾股定理;最值问题;数形结合思想;构造法;待定系数法;分类思想;压轴题;原创题.第26题答图4 第26题答图5。
2024年重庆市中考真题数学试卷(A卷)含答案解析
2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。
2022年重庆市中考数学试卷(A卷)及答案解析
2022年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O 于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣1312.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E 作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.∴S△BCE四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C 的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【点评】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【点评】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.:C△DEF=2:3,∴C△ABC∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【点评】本题考查位似变换,解答本题的关键是明确相似三角形的周长比等于相似比.6.【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有4n+1个正方形是解题的关键.7.【分析】先计算出原式得6+,再根据无理数的估算可得答案.【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.【分析】设该快递店揽件日平均增长率为x,关系式为:第三天揽件数=第一天揽件数×(1+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【点评】本题考查正方形的性质、全等三角形的判定与性质,解答本题的关键是求出∠ADF的度数.10.【分析】连接OB,则OB⊥AB,由勾股定理可知,AB2=OA2﹣OB2①,由OB和OD是半径,所以∠A=∠D=∠OBD,所以△OBD∽△BAD,AB=BD,可得BD2=OD•AD,所以OA2﹣OB2=OD•AD,设OD=x,则AD=2x+3,OB=x,OA=x+3,所以(x+3)2﹣x2=x(2x+3),求出x的值,即可求出OA和OB的长,进而求得AB的长.【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【点评】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.【分析】解不等式组得出,结合题意得出a>﹣11,解分式方程得出y=,结合题意得出a=﹣8或﹣5,进而得出所有满足条件的整数a的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.【分析】根据“加算操作”的定义可知,当只给x﹣y加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【点评】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式=4+1=5.故答案为:5.【点评】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:AB C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE 的面积,由S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE 可得答案.【解答】解:如图,连接BD 交AC 于点O ,则AC ⊥BD ,∵四边形ABCD 是菱形,∠BAD =60°,∴∠BAC =∠ACD =30°,AB =BC =CD =DA =2,在Rt △AOB 中,AB =2,∠BAO =30°,∴BO =AB =1,AO =AB =,∴AC =2OA =2,BD =2BO =2,∴S 菱形ABCD =AC •BD =2,∴S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE=2﹣=,故答案为:.【点评】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确解答的前提.16.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y ∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x 所以香樟的总量是16x,红枫的总量是20x,设香樟的单价为a,红枫的单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x•b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴==,故答案为:.【点评】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.【分析】以C为圆心DE长为半径画弧交BC于F,连接CF,根据已知条件依次写出相应的解答过程即可.【解答】解:根据题意作图如下:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,∴S△BCE故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【点评】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.【分析】(1)根据众数、中位数概念可求出a、b的值,由B型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m的值;(2)用3000乘30%即可得答案;(3)比较A型、B型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【点评】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.【分析】(1)根据反比例函数解析式求出A点和B点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C点坐标,根据A点、B点和C点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,==12.∴S△ABC【点评】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【点评】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.22.【分析】(1)过D作DF⊥AE于F,由已知可得四边形ACDF是矩形,则DF=AC=200米,根据点D在点E的北偏东45°,即得DE=DF=200≈283(米);(2)由△DEF是等腰直角三角形,DE=283米,可得EF=DF=200米,而∠ABC=30°,即得AB=2AC=400米,BC==200米,又BD=100米,即可得经过点B到达点D路程为AB+BD=500米,CD=BC+BD=(200+100)米,从而可得经过点E到达点D路程为AE+DE=200﹣100+200≈529米,即可得答案.【解答】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是掌握含30°、45°角的直角三角形三边的关系.23.【分析】(1)由“勾股和数”的定义可直接判断;(2)由题意可知,10a+b=c2+d2,且0<c2+d2<100,由G(M)为整数,可知c+d=9,再由P(M)为整数,可得c2+d2=81﹣2cd为3的倍数,由此可得出M的值.【解答】解:(1)∵22+22=8,8≠20,∴2022不是“勾股和数”,∵52+52=50,∴5055是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)为整数,为整数,∴c+d=9,∴P(M)==为整数,∴c2+d2=81﹣2cd为3的倍数,∴cd为3的倍数.∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563.【点评】本题以新定义为背景考查了因式分解的应用,考查了学生应用知识的能力,解题关键是要理解新定义,表示出“勾股和数”,能根据条件找出合适的“勾股和数”.24.【分析】(1)用待定系数法可得抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入可得直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,可得C(m2﹣m,m2﹣m﹣4),PC=﹣m2+2m,则PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m﹣4=﹣(m﹣)2+,利用二次函数性质可得PC+PD的最大值为,此时点P的坐标是(,﹣);(3)将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=x2+4x+,对称轴是直线x=﹣4,即可得F(0,),E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),分三种情况:①当EF、MN为对角线时,EF、MN的中点重合,可得N(,);②当FM、EN为对角线时,FM、EN的中点重合,可得N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,可得N(﹣,).【解答】解:(1)把A(0,﹣4),B(4,0)代入y=x2+bx+c得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入得:,解得,∴直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,在y=x﹣4中,令y=m2﹣m﹣4得x=m2﹣m,∴C(m2﹣m,m2﹣m﹣4),∴PC=m﹣(m2﹣m)=﹣m2+2m,∴PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m+4=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PC+PD取最大值,此时m2﹣m﹣4=×()2﹣﹣4=﹣,∴P(,﹣);答:PC+PD的最大值为,此时点P的坐标是(,﹣);(3)∵将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=(x+5)2﹣(x+5)﹣4=x2+4x+,∴新抛物线对称轴是直线x=﹣=﹣4,在y=x2+4x+中,令x=0得y=,∴F(0,),将P(,﹣)向左平移5个单位得E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),①当EF、MN为对角线时,EF、MN的中点重合,∴,解得r=,∴r2+4r+=×()2+4×+=,∴N(,);②当FM、EN为对角线时,FM、EN的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);综上所述,N的坐标为:(,)或(﹣,)或(﹣,).【点评】本题考查二次函数的综合应用,涉及待定系数法,二次函数、一次函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.25.【分析】(1)如图1中,在射线CD上取一点K,使得CK=BE,证明△BCE≌△CBK (SAS),推出BK=CE,∠BEC=∠BKD,再证明∠ADF+∠AEF=180°,可得结论;(2)结论:BF+CF=2CN.首先证明∠BFC=120°.如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,证明△CNM≌△QNF(SAS),推出FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,再证明△PFQ≌△PBC(SAS),推出PQ=PC,∠CPB=∠QPF=60°,推出△PCQ是等边三角形,可得结论;(3)由(2)可知∠BFC=120°,推出点F的运动轨迹为红色圆弧(如图3﹣1中),推出P,F,O三点共线时,PF的值最小,此时tan∠APK==,如图3﹣2中,过点H作HL⊥PK于点L,设HL=LK=2,PL=,PH=,KH=2,由等积法求出PQ,可得结论.【解答】解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.(3)由(2)可知∠BFC=120°,∴点F的运动轨迹为红色圆弧(如图3﹣1中),∴P,F,O三点共线时,PF的值最小,此时tan∠APK==,∴∠HPK>45°,∵QK⊥PF,∴∠PKH=∠QKH=45°,如图3﹣2中,过点H作HL⊥PK于点L,设PQ交KH题意点J,设HL=LK=2,PL=,PH=,KH=2,=•PK•HL=•KH•PJ,∵S△PHK∴PQ=2PJ=2×=2+∴==.【点评】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考压轴题.。
2022年重庆市中考数学试卷(a卷)(解析版)
2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.5-B.5C.15-D.1 5【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:5的相反数是5-,故选:A.2.(4分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.3.(4分)如图,直线AB,CD被直线CE所截,//AB CD,50C∠=︒,则1∠的度数为()A.40︒B.50︒C.130︒D.150︒【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解://AB CD,1180C ∴∠+∠=︒,118018050130C ∴∠=︒-∠=︒-︒=︒.故选:C .4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()h m 随飞行时间()t s 的变化情况,则这只蝴蝶飞行的最高高度约为()A .5mB .7mC .10mD .13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当3t =时,13h =,∴这只蝴蝶飞行的最高高度约为13m ,故选:D .5.(4分)如图,ABC ∆与DEF ∆位似,点O 为位似中心,相似比为2:3.若ABC ∆的周长为4,则DEF ∆的周长是()A .4B .6C .9D .16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得DEF ∆的周长.【解答】解:ABC ∆ 与DEF ∆位似,相似比为2:3.:2:3ABC DEF C C ∆∆∴=,ABC ∆ 的周长为4,DEF ∴∆的周长是6,故选:B .6.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A .32B .34C .37D .41【分析】根据图形的变化规律得出第n 个图形中有41n +个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,⋯,第n 个图案中有41n +个正方形,∴第⑨个图案中正方形的个数为49137⨯+=,故选:C .7.(4的值应在()A .10和11之间B .9和10之间C .8和9之间D .7和8之间【分析】先计算出原式得6,再根据无理数的估算可得答案.【解答】解:原式6==91516<< ,34∴<<,9610∴<+<.故选:B .8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是()A .2200(1)242x +=B .2200(1)242x -=C .200(12)242x +=D .200(12)242x -=【分析】设该快递店揽件日平均增长率为x ,关系式为:第三天揽件数=第一天揽件数(1⨯+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x ,根据题意,可列方程:2200(1)242x +=,故选:A .9.(4分)如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为()A .45︒B .60︒C .67.5︒D .77.5︒【分析】根据正方形的性质和全等三角形的判定和性质,可以得到ADF ∠的度数,从而可以求得CDF ∠的度数.【解答】解: 四边形ABCD 是正方形,AD BA ∴=,90DAF ABE ∠=∠=︒,在DAF ∆和ABE ∆中,AD BA DAF ABE AF BE =⎧⎪∠=∠⎨⎪=⎩,()DAF ABE SAS ∆≅∆,ADF BAE ∠=∠,AE 平分BAC ∠,四边形ABCD 是正方形,122.52BAE BAC ∴∠=∠=︒,90ADC ∠=︒,22.5ADF ∴∠=︒,9022.567.5CDF ADC ADF ∴∠=∠-∠=︒-︒=︒,故选:C .10.(4分)如图,AB 是O 的切线,B 为切点,连接AO 交O 于点C ,延长AO 交O 于点D ,连接BD .若A D ∠=∠,且3AC =,则AB 的长度是()A .3B .4C .D .【分析】连接OB ,则OB AB ⊥,由勾股定理可知,222AB OA OB =-①,由OB 和OD 是半径,所以A D OBD ∠=∠=∠,所以OBD BAD ∆∆∽,AB BD =,可得2BD OD AD =⋅,所以22OA OB OD AD -=⋅,设OD x =,则23AD x =+,OB x =,3OA x =+,所以22(3)(23)x x x x +-=+,求出x 的值,即可求出OA 和OB 的长,进而求得AB 的长.【解答】解:如图,连接OB ,AB 是O 的切线,B 为切点,OB AB ∴⊥,222AB OA OB ∴=-,OB 和OD 是半径,D OBD ∴∠=∠,A D ∠=∠ ,A D OBD ∴∠=∠=∠,OBD BAD ∴∆∆∽,AB BD =,::OD BD BD AD ∴=,2BD OD AD ∴=⋅,即22OA OB OD AD -=⋅,设OD x =,3AC = ,23AD x ∴=+,OB x =,3OA x =+,22(3)(23)x x x x ∴+-=+,解得3x =(负值舍去),6OA ∴=,3OB =,22227AB OA OB ∴=-=,AB ∴=故选:C.11.(4分)若关于x 的一元一次不等式组411,351x x x a-⎧-⎪⎨⎪-<⎩的解集为2x -,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .26-B .24-C .15-D .13-【分析】解不等式组得出215x a x -⎧⎪+⎨<⎪⎩,结合题意得出11a >-,解分式方程得出13a y -=,结合题意得出8a =-或5-,进而得出所有满足条件的整数a 的值之和是8513--=-,即可得出答案.【解答】解:解不等式组411351x x x a -⎧-⎪⎨⎪-<⎩得:215x a x -⎧⎪+⎨<⎪⎩,不等式组411351x x x a-⎧-⎪⎨⎪-<⎩的解集为2x -,∴12 5a+>-,11a∴>-,解分式方程1211y ay y-=-++得:13ay-=,y是负整数且1y≠-,∴13a-是负整数且113a-≠-,8a∴=-或5-,∴所有满足条件的整数a的值之和是8513--=-,故选:D.12.(4分)在多项式x y z m n----中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:()()x y z m n x y z m n----=--++,()x y z m n x y z m n----=--+-,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【分析】根据“加算操作”的定义可知,当只给x y-加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x y z m n----中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①()x y z m n x y z m n----=----,与原式相等,故①正确;② 在多项式x y z m n----中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x y z m n----中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,2228∴⨯⨯=种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D .二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:0|4|(3)π-+-=5.【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式415=+=.故答案为:5.14.(4分)有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是13.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:AB C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为3193=,故答案为:13.15.(4分)如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒,则图中阴影部分的面积为6323π-.(结果不取近似值)【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE 的面积,由2ADE ABCD S S S =-阴影部分扇形菱形可得答案.【解答】解:如图,连接BD 交AC 于点O ,则AC BD ⊥, 四边形ABCD 是菱形,60BAD ∠=︒,30BAC ACD ∴∠=∠=︒,2AB BC CD DA ====,在Rt AOB ∆中,2AB =,30BAO ∠=︒,112BO AB ∴==,32AO AB ==,2AC OA ∴==,22BD BO ==,12ABCD S AC BD ∴=⋅=菱形,2ADE ABCD S S S ∴=-阴影部分扇形菱形2602360π⨯=-6323π-=,故答案为:6323π-.16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为35.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x 54y x -5y 乙3x 63y x -6y 丙9x79y x-7y甲、乙两山需红枫数量之比为2:3,∴542633y x y x -=-,2y x ∴=,故数量可如下表:香樟数量红枫数量总量甲4x 6x 10x 乙3x 9x 12x 丙9x5x14x所以香樟的总量是16x ,红枫的总量是20x ,设香樟的单价为a ,红枫的单价为b ,由题意得,[16(1 6.25%)][(120%)]20[(125%)]1620x a x b x a x b ⋅-⋅⋅-+⋅⋅+=⋅+⋅,12251620a b a b ∴+=+,45a b ∴=,设5a k =,4b k =,∴121253252545a kb k ⨯==⨯,故答案为:35.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)2(2)(4)x x x ++-;(2)22(1)2a a b b b--÷.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式22444x x x x=+++-224x =+;(2)原式()()()2a b a b a b b b b+-=-÷2()()a b b b a b a b -=⋅+-2a b=+.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明BCE ∆的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图痕迹).在BAE ∆和EFB ∆中,EF BC ⊥ ,90EFB ∴∠=︒.又90A ∠=︒,∴A EFB ∠=∠,①//AD BC ,∴②又③()BAE EFB AAS ∴∆≅∆.同理可得④111222BCE EFB EFC ABFE EFCD ABCD S S S S S S ∆∆∆∴=+=+=矩形矩形矩形.【分析】以C 为圆心DE 长为半径画弧交BC 于F ,连接CF ,根据已知条件依次写出相应的解答过程即可.【解答】解:根据题意作图如下:由题知,在BAE ∆和EFB ∆中,EF BC ⊥ ,90EFB ∴∠=︒.又90A ∠=︒,A EFB ∴∠=∠,①//AD BC ,AEB FBE ∴∠=∠,②又BE EB =,③()BAE EFB AAS ∴∆≅∆.同理可得()EDC CFE AAS ∆≅∆,④111222BCE EFB EFC ABFE EFCD ABCD S S S S S S ∆∆∆∴=+=+=矩形矩形矩形,故答案为:①A EFB ∠=∠,②AEB FBE ∠=∠,③BE EB =,④()EDC CFE AAS ∆≅∆.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:)g ,并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格8085x <,良好8595x <,优秀95)x ,下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A 、B 型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B 90b 903030%根据以上信息,解答下列问题:(1)填空:a =95,b =,m =;(2)这个月公司可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【分析】(1)根据众数、中位数概念可求出a 、b 的值,由B 型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m 的值;(2)用3000乘30%即可得答案;(3)比较A 型、B 型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数95a =,10台B 型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占150%30%20%--=,即20m =,把B 型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,90b ∴=,故答案为:95,90,20;(2)该月B 型扫地机器人“优秀”等级的台数300030%900⨯=(台);(3)A 型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A 型号的扫地机器人除尘量的众数B >型号的扫地机器人除尘量的众数(理由不唯一).20.(10分)已知一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象相交于点(1,)A m ,(,2)B n -.(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式4kx b x+>的解集;(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求ABC ∆的面积.【分析】(1)根据反比例函数解析式求出A 点和B 点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C 点坐标,根据A 点、B 点和C 点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1) 反比例函数4y x =的图象过点(1,)A m ,(,2)B n -,∴41m =,42n =-,解得4m =,2n =-,(1,4)A ∴,(2,2)B --,一次函数(0)y kx b k =+≠的图象过A 点和B 点,∴422k b k b +=⎧⎨-+=-⎩,解得22k b =⎧⎨=⎩,∴一次函数的表达式为22y x =+,描点作图如下:(2)由(1)中的图象可得,不等式4kx b x+>的解集为:20x -<<或1x >;(3)由题意作图如下:由图知ABC ∆中BC 边上的高为6,4BC =,146122ABC S ∆∴=⨯⨯=.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x 千米/时,则甲骑行的速度为1.2x 千米/时,利用路程=速度⨯时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x 的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x 中即可求出甲骑行的速度;(2)设乙骑行的速度为y 千米/时,则甲骑行的速度为1.2y 千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y 的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y 中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x 千米/时,则甲骑行的速度为1.2x 千米/时,依题意得:111.2222x x ⨯=+,解得:20x =,1.2 1.22024x ∴=⨯=.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y 千米/时,则甲骑行的速度为1.2y 千米/时,依题意得:3030201.260y y -=,解得:15y =,经检验,15y =是原方程的解,且符合题意,1.2 1.21518y ∴=⨯=.答:甲骑行的速度为18千米/时.22.(10分)如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近?1.414≈ 1.732)≈【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得283DE ==≈(米);(2)由DEF ∆是等腰直角三角形,283DE =米,可得200EF DF ==米,而30ABC ∠=︒,即得2400AB AC ==米,BC ==米,又100BD =米,即可得经过点B 到达点D 路程为500AB BD +=米,100)CD BC BD =+=米,从而可得经过点E 到达点D 路程为100529AE DE +=+≈米,即可得答案.【解答】解:(1)过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,200DF AC ∴==米,点D 在点E 的北偏东45︒,即45DEF ∠=︒,DEF ∴∆是等腰直角三角形,283DE ∴==≈(米);(2)由(1)知DEF ∆是等腰直角三角形,283DE =米,200EF DF ∴==米,点B 在点A 的北偏东30︒,即30EAB ∠=︒,30ABC ∴∠=︒,200AC = 米,2400AB AC ∴==米,BC =米,100BD = 米,∴经过点B 到达点D 路程为400100500AB BD +=+=米,100)CD BC BD =+=米,100)AF CD ∴==米,100)200100)AE AF EF ∴=-=-=米,∴经过点E 到达点D 路程为100529AE DE +=-+≈米,529500> ,∴经过点B 到达点D 较近.23.(10分)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,223425+= ,2543∴是“勾股和数”;又如:4325M =,225229+= ,2943≠,4325∴不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c d G M +=,|10()()|()3a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【分析】(1)由“勾股和数”的定义可直接判断;(2)由题意可知,2210a b c d +=+,且220100c d <+<,由()G M 为整数,可知9c d +=,再由()P M 为整数,可得22812c d cd +=-为3的倍数,由此可得出M 的值.【解答】解:(1)22228+= ,820≠,2022∴不是“勾股和数”,225550+= ,5055∴是“勾股和数”;(2)M 为“勾股和数”,2210a b c d ∴+=+,220100c d ∴<+<,()G M 为整数,9c d +为整数,9c d ∴+=,22|10()()||99|()33a cb dcd c P M -+-+--∴==为整数,22812c d cd ∴+=-为3的倍数,cd ∴为3的倍数.∴①0c =,9d =或9c =,0d =,此时8109M =或8190;②3c =,6d =或6c =,3d =,此时4536M =或4563.24.(10分)如图,在平面直角坐标系中,抛物线212y x bx c =++与直线AB 交于点(0,4)A -,(4,0)B .(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P作y 轴的平行线交x 轴于点D ,求PC PD +的最大值及此时点P 的坐标;(3)在(2)中PC PD +取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.Ⅷ【分析】(1)用待定系数法可得抛物线的函数表达式为2142y x x =--;(2)设直线AB 解析式为y kx t =+,把(0,4)A -,(4,0)B 代入可得直线AB 解析式为4y x =-,设21(,4)2P m m m --,则2142PD m m =-++,可得21(2C m m -,214)2m m --,2122PC m m =-+,则2222113252434()2224PC PD m m m m m m m +=-+-++=-+-=--+,利用二次函数性质可得PC PD +的最大值为254,此时点P 的坐标是3(2,35)8-;(3)将抛物线2142y x x =--向左平移5个单位得抛物线217422y x x =++,对称轴是直线4x =-,即可得7(0,)2F ,7(2E -,35)8-,设(4,)M n -,217(,422N r r r ++,分三种情况:①当EF 、MN 为对角线时,EF 、MN 的中点重合,可得1(2N ,458;②当FM 、EN 为对角线时,FM 、EN 的中点重合,可得1(2N -,138;③当FN 、EM 为对角线时,FN 、EM 的中点重合,可得15(2N -,138.【解答】解:(1)把(0,4)A -,(4,0)B 代入212y x bx c =++得:4840c b c =-⎧⎨++=⎩,解得14b c =-⎧⎨=-⎩,∴抛物线的函数表达式为2142y x x =--;(2)设直线AB 解析式为y kx t =+,把(0,4)A -,(4,0)B 代入得:440t k t =-⎧⎨+=⎩,解得14k t =⎧⎨=-⎩,∴直线AB 解析式为4y x =-,设21(,4)2P m m m --,则2142PD m m =-++,在4y x =-中,令2142y m m =--得212x m m =-,21(2C m m ∴-,214)2m m --,2211()222PC m m m m m ∴=--=-+,2222113252434()2224PC PD m m m m m m m ∴+=-+-++=-++=--+,10-< ,∴当32m =时,PC PD +取最大值254,此时221133354(422228m m --=⨯--=-,3(2P ∴,35)8-;答:PC PD +的最大值为254,此时点P 的坐标是3(2,35)8-;(3) 将抛物线2142y x x =--向左平移5个单位得抛物线22117(5)(5)44222y x x x x =+-+-=++,∴新抛物线对称轴是直线44122x =-=-⨯,在217422y x x =++中,令0x =得72y =,7(0,)2F ∴,将3(2P ,35)8-向左平移5个单位得7(2E -,35)8-,设(4,)M n -,217(,422N r r r ++,①当EF 、MN 为对角线时,EF 、MN 的中点重合,∴270427351742822r n r r ⎧-=-+⎪⎪⎨⎪-=+++⎪⎩,解得12r =,∴22171117454()42222228r r ++=⨯+⨯+=,1(2N ∴,458;②当FM 、EN 为对角线时,FM 、EN 的中点重合,∴270427351742822r n r r ⎧-=-+⎪⎪⎨⎪+=-+++⎪⎩,解得12r =-,∴22171117134()4()2222228r r ++=⨯-+⨯-+=,1(2N ∴-,13)8;③当FN 、EM 为对角线时,FN 、EM 的中点重合,∴270427173542228r r r n ⎧+=--⎪⎪⎨⎪+++=-+⎪⎩,解得152r =-,∴2217115157134(4()2222228r r ++=⨯-+⨯-+=,15(2N ∴-,138;综上所述,N 的坐标为:1(2,45)8或1(2-,138或15(2-,13)8.25.(10分)如图,在锐角ABC ∆中,60A ∠=︒,点D ,E 分别是边AB ,AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且BD CE =,BCD CBE ∠=∠,求CFE ∠的度数;(2)如图2,若AB AC =,且BD AE =,在平面内将线段AC 绕点C 顺时针方向旋转60︒得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段BF ,CF ,CN 之间存在的数量关系,并证明你的猜想;(3)若AB AC =,且BD AE =,将ABC ∆沿直线AB 翻折至ABC ∆所在平面内得到ABP ∆,点H 是AP 的中点,点K 是线段PF 上一点,将PHK ∆沿直线HK 翻折至PHK ∆所在平面内得到QHK ∆,连接PQ .在点D ,E 运动过程中,当线段PF 取得最小值,且QK PF ⊥时,请直接写出PQ BC 的值.【分析】(1)如图1中,在射线CD 上取一点K ,使得CK BE =,证明()BCE CBK SAS ∆≅∆,推出BK CE =,BEC BKD ∠=∠,再证明180ADF AEF ∠+∠=︒,可得结论;(2)结论:2BF CF CN +=.首先证明120BFC ∠=︒.如图21-中,延长CN 到Q ,使得NQ CN =,连接FQ ,证明()CNM QNF SAS ∆≅∆,推出FQ CM BC ==,延长CF 到P ,使得PF BF =,则PBF ∆是等边三角形,再证明()PFQ PBC SAS ∆≅∆,推出PQ PC =,60CPB QPF ∠=∠=︒,推出PCQ ∆是等边三角形,可得结论;(3)由(2)可知120BFC ∠=︒,推出点F 的运动轨迹为红色圆弧(如图31-中),推出P ,F ,O 三点共线时,PF 的值最小,此时tanAO APK AP ∠==,如图32-中,过点H 作HL PK ⊥于点L ,设2HL LK ==,PL =,PH =,KH =PQ ,可得结论.【解答】解:(1)如图1中,在射线CD 上取一点K ,使得CK BE =,在BCE ∆和CBK ∆中,BC CB BCK CBE BE CK =⎧⎪∠=∠⎨⎪=⎩,()BCE CBK SAS ∴∆≅∆,BK CE ∴=,BEC BKD ∠=∠,CE BD = ,BD BK ∴=,BKD BDK ADC CEB ∴∠=∠=∠=∠,180BEC AEF ∠+∠=︒ ,180ADF AEF ∴∠+∠=︒,180A EFD ∴∠+∠=︒,60A ∠=︒ ,120EFD ∴∠=︒,18012060CFE ∴∠=︒-︒=︒;(2)结论:2BF CF CN +=.理由:如图2中,AB AC = ,60A ∠=︒,ABC ∴∆是等边三角形,AB CB ∴=,60A CBD ∠=∠=︒,AE BD = ,()ABE BCD SAS ∴∆≅∆,BCF ABE ∴∠=∠,60FBC BCF ∴∠+∠=︒,120BFC ∴∠=︒,如图21-中,延长CN 到Q ,使得NQ CN =,连接FQ ,NM NF = ,CNM FNQ ∠=∠,CN NQ =,()CNM QNF SAS ∴∆≅∆,FQ CM BC ∴==,延长CF 到P ,使得PF BF =,则PBF ∆是等边三角形,120PBC PCB PCB FCM ∴∠+∠=∠+∠=︒,PFQ FCM PBC ∴∠=∠=∠,PB PF = ,()PFQ PBC SAS ∴∆≅∆,PQ PC ∴=,60CPB QPF ∠=∠=︒,PCQ ∴∆是等边三角形,2BF CF PC QC CN ∴+===.(3)由(2)可知120BFC ∠=︒,∴点F 的运动轨迹为红色圆弧(如图31-中),P ∴,F ,O 三点共线时,PF 的值最小,此时tanAO APK AP ∠==45HPK ∴∠>︒,QK PF ⊥ ,45PKH QKH ∴∠=∠=︒,如图32-中,过点H 作HL PK ⊥于点L ,设PQ 交KH 题意点J ,设2HL LK ==,PL =,PH =,KH =1122PHK S PK HL KH PJ ∆=⋅⋅=⋅⋅ ,22PQ PJ ∴===+∴14PQ BC =.。
2023年河南省中考数学真题(A卷)解析版
2023年河南省普通高中招生考试数学A 卷注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个正确的。
1.32−的绝对值是( )A .32− B .23− C .32 D .232.2023全国“两会”政府工作报告中指出:我国粮食产量连年稳定在1.3万亿斤以上.其中数据“1.3万伧”用科学记数法可表示为( )A .120.1310×B .121.310×C .111310×D .131.310× 3.某几何体的三视图如图所示,这个几何体是( )A .B .C .D .4.下列运算正确的是( )A .32xy xy −=B .22(3)6x x −=C .62322x x x ÷=D .()()22x y x y x y −+=− 5.如图,在ABC △中,作边AB 的垂直平分线,交边BC 于点D ,连接AD .若35,60B C ∠=°∠=°,则DAC ∠的度数为( )A .50°B .40°C .35°D .30° 6.把不等式组52,137x x x +>−≥−的解集表示在数轴上,下列选项正确的是( )A .B .C .D .7.若关于x 的一元二次方程()221204x a x a +++=有两个不相等的实数根,则a 的值可以是( ) A .3− B .2− C .0 D .1−8.近年来我国航天事业取得了一系列的伟大成就,现有5张卡片正面图案如图所示,它们除此之外其他完全相同,把这5张卡片背面朝上洗匀,从中随机抽取两张卡片正面图案恰好是“嫦娥五号”和“卫星导航系统”的概率是( )A .16 B .18 C .310 D .1109.如图,在平面直角坐标系中,四边形OABC 的顶点O 在原点上,OA 边在x 轴的正半轴上AB x ⊥轴2,,60AB CB OA OC AOC ===∠=°,将四边形OABC 绕点O 逆时针旋转,每次旋转90°,则第2023次旋转结束时,点C 的坐标为( )A .(−B .(3,C .()D .(1,10.如图1,在矩形ABCD 中,动点P 从点A 出发沿A D C →→方向运动到点C 停止,动点Q 从点C 出发沿C A →方向运动到点A 停止,若点,P Q 同时出发,点P 的速度为2cm /s ,点Q 的速度为1cm /s ,设运动时间为s,cm,x AP CQ y y −=与x 的函数关系图象如图2所示,则AC 的长为( )A .8B .9C .10D .14二、填空题(每小题3分,业15分)11.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:__________℃. 12.已知点()()12,,1,M m y N y −在直线1y x =−+上,且12y y >,则m 的取值范围是__________. 13.某校计划从小颖、小亮、小东、小朋四名学生中选拔一人参加全市知识竞赛,下表是他们最近3次选拔测试的平均成绩及方差:小颖 小亮 小陈 小明 平均成绩/分97 96 95 97 方差0.350.420.360.15学校决定依据他们的平均成绩及稳定性进行选拔,那么被选中的学生应是__________.14.如图,在扇形OBA 中,90,AOB C D ∠=°、分别是,OA OB 的中点,连接AD 和BC 交于点E ,若2OA =,则图中阴影部分的面积为__________.15.如图,正方形ABCD 的边长为5,E 是边AD 上的一动点,将正方形沿CE 翻折,点D 的对应点为D ′,过点D ′作折痕CE 的平行线,分别交正方形ABCD 的边于点,M N (点M 在点N 上方),若2AM CN =,则DE 的长为__________.三、解答题(本大题,共8个小题,共75分)16.(1)(5()1120233π− +−°+(2)(5分)化简:2111x x x x÷+ −−17.(9分)互联网已成为当代未成年人重要的学习、社交、娱乐工具,对其成长产生深刻影响,2022年11月30日,共青团中央维护青少年权益部、中国互联网络信息中心(CNNIC ).中国青少年新媒体协会联合发布了《2021年全国未成年人互联网使用情况研究报告》(注:此报告中未成年网民指6岁到18岁的在校学生中的网民)。
2022年陕西省中考数学A卷试题及答案解析
2022年陕西省中考数学试卷(A 卷)一、选择题(本大题共8小题,共24.0分) 1. −37的相反数是( )A. −37B. 37C. −137D. 1372. 如图,AB//CD ,BC//EF.若∠1=58°,则∠2的大小为( )A. 120°B. 122°C. 132°D. 148°3. 计算:2x ⋅(−3x 2y 3)=( )A. 6x 3y 3B. −6x 2y 3C. −6x 3y 3D. 18x 3y 34. 在下列条件中,能够判定▱ABCD 为矩形的是( )A. AB =ACB. AC ⊥BDC. AB =ADD. AC =BD5. 如图,AD 是△ABC 的高.若BD =2CD =6,tanC =2,则边AB 的长为( )A. 3√2B. 3√5C. 3√7D. 6√26. 在同一平面直角坐标系中,直线y =−x +4与y =2x +m 相交于点P(3,n),则关于x ,y 的方程组{x +y −4=0,2x −y +m =0的解为( )A. {x =−1,y =5B. {x =1,y =3C. {x =3,y =1D. {x =9,y =−57. 如图,△ABC 内接于⊙O ,∠C =46°,连接OA ,则∠OAB =( )A. 44°B. 45°C. 54°D. 67°8. 已知二次函数y =x 2−2x −3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 3<y 1<y 2D. y 2<y 3<y 1二、填空题(本大题共5小题,共15.0分) 9. 计算:3−√25=______.10. 实数a ,b 在数轴上对应点的位置如图所示,则a ______−b.(填“>”“=”或“<”)11. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即BE 2=AE ⋅AB.已知AB 为2米,则线段BE 的长为______米.12. 已知点A(−2,m)在一个反比例函数的图象上,点A′与点A 关于y 轴对称.若点A′在正比例函数y =12x 的图象上,则这个反比例函数的表达式为______.13. 如图,在菱形ABCD 中,AB =4,BD =7.若M 、N 分别是边AD 、BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E 、F ,则ME +NF 的值为______.三、解答题(本大题共13小题,共81.0分) 14. 计算:5×(−3)+|−√6|−(17)0. 15. 解不等式组:{x +2>−1x −5≤3(x −1).16. 化简:(a+1a−1+1)÷2aa 2−1.17.如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP//AB.(保留作图痕迹,不写作法)18.如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.19.如图,△ABC的顶点坐标分别为A(−2,3),B(−3,0),C(−1,−1).将△ABC平移后得到△A′B′C′,且点A的对应点是A′(2,3),点B、C的对应点分别是B′、C′.(1)点A、A′之间的距离是______;(2)请在图中画出△A′B′C′.20.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是______;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.22.如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…−6−4−202…输出y…−6−22616…根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为______;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60850B60≤t<901675C90≤t<12040105D t≥12036150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在______组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24.如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.25.现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.26.问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为______.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP//BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.答案和解析1.【答案】B【解析】解:−37的相反数是−(−37)=37,故选:B.根据相反数的意义即可得到结论.本题主要考查了相反数,熟记相反数的定义是解决问题的关键.2.【答案】B【解析】解:∵AB//CD,∠1=58°,∴∠C=∠1=58°,∵BC//EF,∴∠CGF=∠C=58°,∴∠2=180°−∠CGF=180°−58°=122°,故选:B.根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.本题考查的是平行线的判定和性质,掌握平行线的性质是解题的关键.3.【答案】C【解析】解:原式=2×(−3)x1+2y3=−6x3y3.故选:C.单项式乘以单项式,首先系数乘以系数,然后相同字母相乘,最后只在一个单项式含有的字母照写.本题主要考查了单项式乘单项式,解决本题的关键是掌握单项式乘单项式法则.4.【答案】D【解析】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项C不符合题意;D 、∵▱ABCD 中,AC =BD ,∴▱ABCD 是矩形,故选项D 符合题意; 故选:D .由矩形的判定和菱形的判定分别对各个选项进行判断即可.本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.5.【答案】D【解析】解:∵2CD =6, ∴CD =3, ∵tanC =2, ∴AD CD=2,∴AD =6,在Rt △ABD 中,由勾股定理得, AB =√AD 2+BD 2=√62+62=6√2, 故选:D .利用三角函数求出AD =6,在Rt △ABD 中,利用勾股定理可得AB 的长.本题主要考查了解直角三角形,勾股定理等知识,熟练掌握三角函数的定义是解题的关键.6.【答案】C【解析】解:将点P(3,n)代入y =−x +4, 得n =−3+4=1, ∴P(3,1),∴关于x ,y 的方程组{x +y −4=0,2x −y +m =0的解为{x =3y =1,故选:C .先将点P 代入y =−x +4,求出n ,即可确定方程组的解.本题考查了一次函数与二元一次方程组的关系,求出两直线的交点坐标是解题的关键.7.【答案】A【解析】解:如图,连接OB,∵∠C=46°,∴∠AOB=2∠C=92°,∵OA=OB,∴∠OAB=180°−92°=44°.2故选:A.根据圆周角定理可得∠AOB的度数,再进一步根据等腰三角形和三角形的内角和定理可求解.此题综合运用了等腰三角形的性质,三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.8.【答案】B=1,【解析】解:抛物线的对称轴为直线x=−−22×1∵−1<x1<0,1<x2<2,x3>3,而抛物线开口向上,∴y2<y1<y3.故选B.先求出抛物线的对称轴为直线x=1,由于−1<x1<0,1<x2<2,x3>3,于是根据二次函数的性质可判断y1,y2,y3的大小关系.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.确定x1,x2,x3离对称轴的远近是解决本题的关键.9.【答案】−2【解析】解:原式=3−5=−2.故答案为:−2.首先利用算术平方根的定义化简,然后加减即可求解.本题主要考查了实数的运算,主要利用算术平方根的定义.10.【答案】<【解析】解:∵b与−b互为相反数∴b与−b关于原点对称,即−b位于3和4之间∵a位于−b左侧,∴a<−b,故答案为:<.根据正数大于0,0大于负数即可解答.本题考查了有理数大小的比较,解决本题的关键是熟记正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小.11.【答案】−1+√5【解析】解:∵BE2=AE⋅AB,设BE=x,则AE=(2−x),∵AB=2,∴x2=2(2−x),即x2+2x−4=0,解得:x1=−1+√5,x2=−1−√5(舍去),∴线段BE的长为(−1+√5)米.故答案为:−1+√5.根据BE2=AE⋅AB,建立方程求解即可.本题主要考查了黄金分割,熟练掌握线段之间的关系列出方程是解决本题的关键.12.【答案】y=−2x【解析】解:∵点A′与点A关于y轴对称,点A(−2,m),∴点A′(2,m),x的图象上,∵点A′在正比例函数y=12×2=1,∴m=12∴A(−2,1),∵点A(−2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=−2x,故答案为:y=−2x.根据轴对称的性质得出点A′(2,m),代入y=12x求得m=1,由点A(−2,1)在一个反比例函数的图象上,从而求得反比例函数的解析式.本题考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求得A的坐标是解题的关键.13.【答案】√152【解析】解:连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=72,OA=OC,由勾股定理得:OA=√AB2−OB2=√42−(72)2=√152,∵ME⊥BD,AO⊥BD,∴ME//AO,∴△DEM∽△DOA,∴MEOA =DMAD,即ME√152=4−AM4,解得:ME=4√15−√15AM8,同理可得:NF=√15AM8,∴ME+NF=√152,故答案为:√152.连接AC交BD于O,根据菱形的性质得到BD⊥AC,OB=OD=72,OA=OC,根据勾股定理求出OA,证明△DEM∽△DOA,根据相似三角形的性质列出比例式,用含AM的代数式表示ME、NF,计算即可.本题考查的是相似三角形的判定和性质、菱形的性质、勾股定理,掌握相似三角形的判定定理是解题的关键.14.【答案】解:5×(−3)+|−√6|−(17)0=−15+√6−1=−16+√6.【解析】根据有理数混合运算法则计算即可.此题考查了有理数的混合运算,零指数幂,熟练掌握有理数混合运算的法则是解题的关键.15.【答案】解:由x+2>−1,得:x>−3,由x−5≤3(x−1),得:x≥−1,则不等式组的解集为x≥−1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.【答案】解:(a+1a−1+1)÷2aa2−1=a+1+a−1a−1⋅a2−12a=2aa−1⋅(a+1)(a−1)2a=a+1.【解析】根据分式混合运算的法则计算即可.本题考查了分式混合运算,熟练掌握运算法则是解题的关键.17.【答案】解:如图,射线CP即为所求.【解析】利用尺规作图作出∠ACD的平分线,得到射线CP.本题考查的是尺规作图、平行线的判定,能够利用基本尺规作图作出已知角的角平分线是解题的关键.18.【答案】证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,{∠EDC=∠B CD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE=BC.【解析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.本题主要考查了平行线的性质,全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.【答案】4【解析】解:(1)∵A(−2,3),A′(2,3),∴点A、A′之间的距离是2−(−2)=4,故答案为:4;(2)如图所示,△A′B′C′即为所求.(1)根据两点间的距离公式即可得到结论;(2)根据平移的性质作出图形即可.本题考查作图−平移变换,解题的关键是掌握平移变换的性质.20.【答案】25【解析】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是25,故答案为:25;(2)画树状图如下:共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,∴所选两个纸箱里西瓜的重量之和为15kg的概率为420=15.(1)直接由概率公式求解即可;(2)画树状图,共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,再由概率公式求解即可.此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:∵AD//EG ,∴∠ADO =∠EGF ,∵∠AOD =∠EFG =90°,∴△AOD∽△EFG ,∴AO EF =OD FG ,即AO 1.8=202.4, ∴AO =15,同理得△BOC∽△AOD ,∴BO AO =OC OD ,即BO 15=1620,∴BO =12,∴AB =AO −BO =15−12=3(米),答:旗杆的高AB 是3米.【解析】先证明△AOD∽△EFG ,列比例式可得AO 的长,再证明△BOC∽△AOD ,可得OB 的长,最后由线段的差可得结论.本题考查相似三角形的判定与性质等知识,解题的关键掌握相似三角形的判定,属于中考常考题型.22.【答案】8【解析】解:(1)当输入的x 值为1时,输出的y 值为y =8x =8×1=8,故答案为:8;(2)将(−2,2)(0,6)代入y =kx +b 得{2=−2k +b 6=k, 解得{k =2b =6; (3)令y =0,由y =8x 得0=8x ,∴x =0<1(舍去),由y =2x +6,得0=2x +6,∴x =−3<1,∴输出的y值为0时,输入的x值为−3.(1)把x=1代入y=8x,即可得到结论;(2)将(−2,2)(0,6)代入y=kx+b解方程即可得到结论;(3)解方程即可得到结论.本题考查了待定系数法求一次函数的解析式,函数值,正确地求得函数的解析式是解题的关键.23.【答案】C【解析】解:(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组,故答案为:C;×(50×8+75×16+105×40+105×36)=112(分钟),(2)x−=1100答:这100名学生的平均“劳动时间”为112分钟;=912(人),(3)1200×40+36100答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.(1)利用中位数的定义解答即可;(2)根据平均数的定义解答即可;(3)用样本估计总体即可.本题考查了频数(率)分布表.从频数(率)分布表中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.24.【答案】(1)证明:∵AM是⊙O的切线,∴∠BAM=90°,∵∠CEA=90°,∴AM//CD,∴∠CDB=∠APB,∵∠CAB=∠CDB,∴∠CAB=∠APB.(2)解:如图,连接AD,∵AB是直径,∴∠CDB+∠ADC=90°,∵∠CAB+∠∠C=90°,∠CDB=∠CAB,∴∠ADC=∠C,∴AD=AC=8,∵AB=10,∴BD=6,∵∠BAD+∠DAP=90°,∠PAD+∠APD=90°,∴∠APB=∠DAB,∵∠BDA=∠BAP∴△ADB∽△PAB,∴ABPB =BDAB,∴PB=AB2BD =1006=503,∴DP=503−6=323.故答案为:323.【解析】(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.25.【答案】解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x−5)2+9,把(0,0)代入,可得a=−925,∴抛物线的解析式为y=−925(x−5)2+9;(2)令y=6,得−925(x−5)2+9=6,解得x1=5√33+5,x2=−5√33+5,∴A(5−5√33,6),B(5+5√33,6).【解析】(1)设抛物线的解析式为y=a(x−5)2+9,把(0,0)代入,可得a=−925,即可解决问题;(2)把y=6,代入抛物线的解析式,解方程可得结论.本题考查二次函数的应用,待定系数法,一元二次方程等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.26.【答案】75°【解析】解:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵AD是等边△ABC的中线,∴∠PAC=12∠BAC=30°,∵AP=AC,∴∠APC=12×(180°−30°)=75°,故答案为:75°;(2)如图2,连接PB,∵AP//BC,AP=BC,∴四边形PBCA为平行四边形,∵CA=CB,∴平行四边形PBCA为菱形,∴PB=AC=6,∠PBC=180°−∠C=60°,∴BE=PB⋅cos∠PBC=3,BE=PB⋅sin∠PBC=3√3,∵CA=CB,∠C=120°,∴∠ABC=30°,∴OE=BE⋅tan∠ABC=√3,∴S四边形OECA=S△ABC−S△OBE=12×6×3√3−12×3×√3=15√32;(3)符合要求,理由如下:如图3,过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,∵CA=CD,∠DAC=45°,∴∠ACD=90°,∴四边形FDCA为正方形,∵PE是CD的垂直平分线,∴PE是AF的垂直平分线,∴PF=PA,∵AP=AC,∴PF=PA=AF,∴△PAF为等边三角形,∴∠PAF=60°,∴∠BAP=60°−45°=15°,∴裁得的△ABP型部件符合要求.(1)根据等边三角形的性质得到AB=AC,∠BAC=60°,根据等腰三角形的三线合一得到∠PAC=30°,根据三角形内角和定理、等腰三角形的性质计算,得到答案;(2)连接PB,证明四边形PBCA为菱形,求出PB,解直角三角形求出BE、PE、OE,根据三角形的面积公式计算即可;(3)过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,根据线段垂直平分线的性质得到PA=PF,根据等边三角形的性质得到∠PAF=60°,进而求出∠BAP= 15°,根据要求判断即可.本题考查的是正方形的性质、菱形的性质、等腰三角形的性质、线段垂直平分线的性质,得出△PAF为等边三角形是解题的关键.。
2018年重庆市中考数学试卷(A卷)含答案
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 9.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B 在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2023年重庆市中考数学真题(A卷)(答案解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。
2018年重庆市中考数学试卷-答案
重庆市2018年初中学业水平暨高中招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直角三角形不是轴对称图形;B 中的直角梯形不是轴对称图形;C 中的平行四边形是中心对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提示】判断一个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、角、等腰三角形、菱形、矩形、正方形、圆、正多边形等。
【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的方法进行调查比较全面,结果也会比较真实有效,故选C. 【提示】选择抽取样本的恰当的方法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加一个图案则增加2个三角形,∴第○n 个图案中有42(1)n +-个三角形,∴第⑦个图案中有16个三角形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三角形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三角形的最长边为4.5 cm ,故选C .【提示】理解相似三角形的性质是解答本题的关键. 【考点】相似三角形的性质. 6.【答案】D【解析】Q 平行四边形的对角线互相平分而不垂直,∴命题A 不正确;Q 矩形的对角线相等且互相平分而不垂直,∴命题B 不正确;Q 菱形的对角线互相垂直平分而不相等,∴命题C 不正确;Q 正方形的对角线互相垂直平分且相等,∴命题D 正确,故选D.【提示】掌握特殊四边形的对角线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】245223==<∴<<Q ,,,即在2和3之间,故选B .【考点】二次根式的运算、估算无理数. 8.【答案】C【解析】根据题意,当输入33x y ==,时,2021512y x y ∴+=≥,≠;当输入42x y =-=-,时,20,22012y x y ∴-=<≠;当输入24x y ==,时,20,212y x y ∴+=≥;当输入42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提示】根据y 的范围分情况求值是解答本题的关键。
2023年重庆市中考数学真题(A卷)(原卷版和解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.估计2810+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,23AB =3BC =,则OC 的长度是()A.3B.23C.13 D.69.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别AB平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中=a ___________,b =___________,m =___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A 款智能玩具飞机200架、B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-【答案】A 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,【答案】C 【解析】【分析】根据题意将各项的坐标代入反比例函数4y x=-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B 【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计2810+的值应在()A.7和8之间B.8和9之间C .9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.28101620=45=+∵25 2.5<<,∴455<<,∴8459<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-【答案】A【解析】【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH ,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023-+=11=1.52+.故答案为1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】19【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.【答案】3【解析】【分析】证明AFC BEA ≌△△,得到,BE AF CF AE ==,即可得解.【详解】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)【答案】25124π-【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到5BD =,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y -+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.【答案】①.4312②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭【答案】(1)21a -(2)11x +【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式2221a a a =-+-21a =-;【小问2详解】原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:a___________,b=___________,m=___________;(1)上述图表中=(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出a,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知10架A款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该a=;组数据的众数为72,即72由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,⨯=(架)则B款智能玩具飞机运行时间合格的架次为:1040%4则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;【小问2详解】B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面90份【解析】【分析】(1)设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解。
2018年全国中考数学真题试题福建中考数学A卷(解析版-精品文档)
2018年福建省中考数学A试题一、选择题:本大题共10小题,每小题4分,共40分.1.(2018福建A卷,1,4)在实数3-、-2、0、π中,最小的数是()A.3- B.-2 C. 0 D. π【答案】B【解析】∵3-=3,根据有理数的大小比较法则(正数大于零,负数都小于零,正数大于一切负数,比较即可.解:∵-2<0<3-<π,∴最小的数是-2.故选C.【知识点】有理数比较大小2.(2018福建A卷,2,4)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱 C.长方体 D.四棱锥【答案】C【解析】思路一:充分发挥空间想象能力,让俯视图根据主视图长高,再利用左视图进行验证即可.思路二:分别根据球,圆柱,圆锥,立方体的三视图作出判断.三棱柱的主视图和左视图都是长方形,俯视图是三角形;四棱锥的主视图和左视图都是三角形,俯视图是有对角线的四形;长方体的三视图都是长方形,由此得这个几何体是长方体,故选C.【知识点】三视图的反向思维3.(2018福建A卷,3,4)下列各组数中,能作为一个三角形三边边长的是( ) A.1,1,2 B.1,2,4C. 2,3,4D.2,3,5【答案】C【解析】三数中,若最小的两数和大于第三数,符合三角形的三边关系,则能成为一个三角形三边长,否则不可能.解:∵1+1=2 ,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D不能.故选C.【知识点】三角形三边的关系4.(2018福建A卷,4,4)一个n边形的内角和是360°,则n等于( )A.3 B.4 C. 5 D. 6【答案】B【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=(n-2)×180°,n=4.【知识点】多边形;多边形的内角和5.(2018福建A卷,5,4)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C. 45° D. 60°【答案】A【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=-60°-45°=15°.【知识点】等边三角形性质,三线合一6.(2018福建A卷,6,4)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于12【答案】D【解析】事先就知道一定能发生的事件是必然事件,所以两枚骰子向上一面的点数之和大于1是必然事件;事先知道它有可能发生,也有可能不发生的事件是随机事件,所以两枚骰子向上一面的点数之和等于12是随机事件;事先知道它一定不会发生的事件是不可能事件,所以两枚骰子向上一面的点数之和等于1、两枚骰子向上一面的点数之和大于12是不可能事件.故选D.【知识点】必然事件;随机事件;不可能事件;m,则以下对m的估算正确的是( )7.(2018福建A卷,7,4)已知43A.23mB. 34m C. 45m D. 56mB【答案】B【解析】本题考查了算术平方根的估算.解:因为1<3<4,所以134<<,即132<<,又∵42,∴34m.故选B.【知识点】算术平方根的概念及求法8.(2018福建A卷,8,4)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是 ( )A.5152x yx yB.5152x yx yC.525x yx yD.525x yx y【答案】A【解析】本题考查了二元一次方程组,解题的关键是找准等量关系.由“绳索比竿长5尺”,可得x=y+5;再根据“将绳索对半折后再去量竿,就比竿短5尺”,可列得方程152x y.所以符合题意的方程组是5152x yx y.【知识点】二元一次方程组的实际应用9.(2018福建A卷,9,4)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于 ( )A.40° B. 50° C. 60° D. 80°【答案】D【解析】根据同弧所对的圆周角等于这条弧所对圆心角的一半,即可求出结果. 解:∵ AB是⊙O 的直径,∴∠ABC=90°,∵∠ACB=50°,∴∠A=90°-∠A C B=40°,∠BOD=2∠A=80°.【知识点】圆;圆的有关性质;圆心角、圆周角定理10.(2018福建A 卷,10,4)已知关于x 的一元二次方程21210a x bx a 有两个相等的实数根,下列判断正确的是 ( ) A .1一定不是关于x 的方程20x bx a 的根 B.0一定不是关于x 的方程20x bx a 的根 C.1和-1都是关于x 的方程20x bx a 的根 D. 1和-1不都是关于x 的方程20x bx a 的根 【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a 、b 的等式,再逐一判断20x bx a 根的情况即可. 解:由关于x 的方程21210a x bx a 有两个相等的实数根,所以△=0,所以错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《中考数学A卷18 、19题》
第一组
18.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)熙熙和丽丽想用以上四张卡片做游戏,游戏规则见信息图。
你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.
19、如图,直线与反比例函数的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(,m).
(1)求反比例函数的解析式;
(2)若点P(n,-1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.
18. 5月11日是“母亲节”,《×××时报》刊登了一则有奖征集活动启事:2015年5月8日起至2015年5月11日止,你可以通过拨打爱心热线电话、发送爱心短信和登陆社区文明网站三种方式参加“爱的感言”和“爱的祝福”活动,活动规则如下:
请你利用这则启事中的相关信息解决下列问题:
(1)活动主办在这次活动中要准备的礼物总价值是多少元?
(2)若预计每天参与活动的人数是2000人,其中你也发送了一条短信,那么,请你算一算自己成为200元和50元礼物获得者的概率分别是多少?
19、如图,已知函数y=2x和函数的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4.(1)求反比例函数的解析式及交点A、B的坐标;
(2)直接写出不等式的解集_________________;
(3)若P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,请直接写出满足条件的P 点坐标;
18. 某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍),下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)这次活动一共调查了________名学生;
(2)在扇形统计图中,“其他”所在图形的圆心角等于________度;
(3)补全条形统计图;
(4)若该年级有1800名学生,请你估计该年级喜欢“科普常识”的学生人数.
19. 如图,一次函数y =kx +3的图象与反比例函数的图象交于点P . PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点
C 、点
D ,且S
=27,.
△DBP
(1)求点D 的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值
18.“五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:
(1)前往A地的车票有________张,前往C地的车票占全部车票的________%;
(2)若公司决定采用随机抽取的方式把车票分配给100名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为________;
(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
19
. 已知:如图,在平面直角坐标系中,直线AB分别与轴交于点B、A,与
反比例函数的图象分别交于点C、D,轴于点E,.
求该反比例函数及直线AB的解析式.
第五组:
18. 减负提质“1+5”行动计划是我市教育改革的一项重要举措。
某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方法进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”、“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制成了如图的两幅不完整的统计图。
由图中给出的信息解答下列问题:
求出x的值,并将不完整的条形统计图补充完整;
在此次调查活动中,初三班的两个学习小组各有2人每周阅读时间都是4小时以上,现从中任选2 人去参加学校的知识抢答赛。
用列表或画树状图的方法求选出的2人来自不同小组的概率。
19. 如图,将一块直角三角形纸板的直角顶点放在点C(1,)处,两直角边分别与x,
y轴平行,纸板的另两个顶点A,B恰好为直线y=kx+ 与双曲线y= (m>0)的交点.(1)求m和k的值;
(2)设双曲线y= (m>0)A,B之间的部分为L,让
—把三角尺的直角顶点P在L上滑动,两直角边始
终与坐标轴平行,且与线段AB交于M,N两点,请
探究是否存在点P使得MN= AB,写出你的探究过
程和结论.。