2020届高三理科数学精准培优专练:数列求和(附解析)
高三数学数列求和试题答案及解析
高三数学数列求和试题答案及解析1.数列{an }满足a1=1,且对任意的m,n∈N*,都有am+n=a m+a n+mn,则+++…+=()A.B.C.D.【答案】B【解析】令m=1得an+1=a n+n+1,即an+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),上述n-1个式子相加得an -a1=2+3+…+n,所以an=1+2+3+…+n=,当n=1时,a1=1满足上式,所以an= (n∈N*),因此==2(-),所以+++…+=2(1-+-+…+-)=2(1-)=2.函数f(x)对任意x∈R都有. (1)求和(n∈N*)的值;(2)数列{an }满足:,求an;(3)令,,,试比较Tn 和Sn的大小。
【答案】(1),;(2);(3).【解析】(1)由于函数f(x)对任意x∈R都有,则令可求的;再令求出;(2)利用倒序相加结合(1)的结论可求出;(3)由及第(2)问的结论求出,用放缩法变形(),用裂项相消法求,再与比较大小.(1)令=2,则;令得,(4分)(2)由,两式相加得:,∴,(8分)(3),(n≥2)∴.(12分)【考点】倒序相加、裂项相消法求数列的前项和.3.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和4.已知函数,且,则()A.0B.100C.5050D.10200【答案】C【解析】因为,所以,选C.5.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出.试题解析:(1)解法1:当时,,当时,.是等差数列,,得.又,,,、、成等比数列,,即,解得.解法2:设等差数列的公差为,则.,,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,②①②得. .解法2:由(1)得.,.,①由,两边对取导数得,.令,得. .【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导6.数列{an }满足an+1+(-1)n an=2n-1,则{an}的前60项和为____________.【答案】1830【解析】当时,;当时,;当时,.将与相减得:;将与相减得:.所以,,所以.【考点】数列.7.在数列{an }中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=.【答案】299【解析】设定值为M,则an +an+1+an+2=M,进而an+1+an+2+an+3=M,后式减去前式得an+3=an,即数列{an}是以3为周期的数列.由a7=2,可知a1=a4=a7=…=a100=2,共34项,其和为68;由a9=3,可得a 3=a6=…=a99=3,共33项,其和为99;由a98=4,可得a2=a5=…=a98=4,共33项,其和为132.故数列{an}的前100项的和S100=68+99+132=299.8..己知数列满足,则数列的前2016项的和的值是___________.【答案】1017072【解析】这个数列既不是等差数列也不是等比数列,因此我们要研究数列的各项之间有什么关系,与它们的和有什么联系?把已知条件具体化,有,,,,…,,,我们的目的是求,因此我们从上面2015个等式中寻找各项的和,可能首先想到把出现“+”的式子相加(即为偶数的式子相加),将会得到,好像离目标很近了,但少,而与分布在首尾两个式子中,那么能否把首尾两个式子相减呢?相减后得到,为了求,我们又不得不求,依次下去,发现此路可能较复杂或者就行不通,重新寻找思路,从头开始我们有,即,而,∴,因此,我们由开始的三个等式求出了,是不是还可用这种方法求出呢?下面舍去,考察,,,同样方法处理,,从而,于是,而,正好504组,看来此法可行,由此我们可得.【考点】分组求和.9.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图10.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。
高考数学专题03数列求和问题(第二篇)(解析版)
⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。
2020年高考理科数学《数列》题型归纳与训练及参考答案
2020年高考理科数学《数列》题型归纳与训练【题型归纳】等差数列、等比数列的基本运算题组一 等差数列基本量的计算例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2−S n =36,则n = A .5 B .6 C .7 D .8【答案】D【解析】解法一:由题知()21(1)21n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2−S n =36得,(n +2)2−n 2=4n +4=36,所以n =8.解法二:S n +2−S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2−S n =36,解析为a n +2,发生错误。
题组二 等比数列基本量的计算例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即4220q q --=,解得q 2=2,∴4624a a q ==.【易错点】忘了条件中的正数的等比数列. 【思维点拨】等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.等差数列、等比数列的判定与证明题组一 等差数列的判定与证明例1设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项. (1)证明:数列{a n }为等差数列;(2)若b n =−n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值. 【答案】(1)见解析;(2) 当n =2或n =3时,{a n ·b n }的最大项的值为6. 【解析】(1)由已知可得2S n =a 2n +a n ,且a n >0, 当n =1时,2a 1=a 21+a 1,解得a 1=1; 当n ≥2时,有2S n −1=a 2n -1+a n −1,所以2a n =2S n −2S n −1=a 2n −a 2n -1+a n −a n −1,所以a 2n −a 2n -1=a n +a n −1,即(a n +a n −1)(a n −a n −1)=a n +a n −1,因为a n +a n −1>0, 所以a n −a n −1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列. (2)由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (−n +5)=−n 2+5n =−⎝⎛⎭⎫n -522+254, 因为n ∈N *,所以当n =2或n =3时,{a n ·b n }的最大项的值为6.【易错点】S n 是a 2n 和a n 的等差中项,无法构建一个等式去求解出a n 。
2020年高考数学(理)复习【数列求和】小题精练卷附答案解析
2020年高考数学(理)复习【数列求和】小题精练卷刷题增分练○23 一、选择题1.[2019·广东中山华侨中学模拟]已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( )A .9B .18C .36D .72 答案:B解析:∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∵a 5=b 4+b 6=2b 5=4,∴b 5=2. ∴S 9=9b 5=18,故选B.2.[2019·广东中山一中段考]数列112,214,318,4116,…,n 12n ,…的前n 项和等于( )A.12n +n 2+n 2 B .-12n +n 2+n 2+1 C .-12n +n 2+n 2 D .-12n +1+n 2-n 2答案:B解析:设数列{a n }的通项公式为a n =n +12n ,是一个等差数列与一个等比数列对应项的和的形式,适用分组求和,所以112+214+318+4116+…+n 12n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+18+…+12n =n (1+n )2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n 2+n 2+1-⎝⎛⎭⎫12n.故选B. 3.[2019·山东济南月考]设等差数列{a n }的前n 项和为S n ,点(a 1 008,a 1 010)在直线x +y -2=0上,则S 2 017=( )A .4 034B .2 017C .1 008D .1 010 答案:B解析:因为点(a 1 008,a 1 010)在直线x +y -2=0上,所以a 1 008+a 1 010=2,S 2 017=(a 1+a 2 017)×2 0172=(a 1 008+a 1 010)×2 0172=2×2 0172=2 017,故选B.4.[2019·甘肃张掖月考]数列⎩⎨⎧⎭⎬⎫1n +1+n 的前2 017项的和为( )A. 2 018+1B. 2 018-1C. 2 017+1D. 2 017-1 答案:B解析:通过已知条件得到1n +1+n =n +1-n ,裂项累加得S 2 017=2 017+1- 2 017+2 016+1- 2 016+…+2-1= 2 018-1,故选B.5.[2019·资阳诊断]已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124 答案:C解析:由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.6.[2019·辽宁省实验中学模拟]已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( )A .130B .120C .55D .50 答案:C解析:由题意知数列{a n }是以2为首项,2为公比的等比数列,得a n =2n ,所以b n =log 22n =n ,所以数列{b n }是首项为1,公差为1的等差数列,所以其前10项和S 10=10×(1+10)2=55,故选C.7.[2019·河北“五个一名校联盟”]已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( )A .3B .2C .1D .0 答案:A解析:∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3.故选A.8.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( ) A .2n +1+n -2 B .2n +1-n +2C .2n -n -2D .2n +1-n -2 答案:D解析:因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,① 2S n =n ×2+(n -1)×22+(n -2)×23+…+2×2n -1+2n ,②所以①-②得,-S n =n -(2+22+23+…+2n )=n +2-2n +1,所以S n =2n +1-n -2. 二、非选择题9.已知数列{a n }的前n 项和S n =1-5+9-13+…+(-1)n -1(4n -3),则S 15+S 22-S 31=________. 答案:-76解析:因为S n =1-5+9-13+…+(-1)n -1(4n -3),所以S n=⎩⎪⎨⎪⎧n2×(-4),n 为偶数,n -12×(-4)+4n -3,n 为奇数,S n =⎩⎪⎨⎪⎧-2n ,n 为偶数,2n -1,n 为奇数,S 15=29,S 22=-44,S 31=61,S 15+S 22-S 31=-76.10.[2019·福建莆田月考]设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,则S 9=________. 答案:18解析:设等差数列{a n }的公差为d .∵a 1+a 3+a 11=6,∴3a 1+12d =6,即a 1+4d =2,∴a 5=2,∴S 9=(a 1+a 9)×92=2a 5×92=18. 11.[2019·江苏徐州模拟]已知公差不为零的等差数列{a n }的前n 项和为S n ,且a 2=6,若a 1,a 3,a 7成等比数列,则S 8的值为________.答案:88解析:由题意得a 23=a 1a 7,∴(6+d )2=(6-d )(6+5d ),∴6d 2=12d .∵d ≠0,∴d =2,所以a 1=6-2=4,S 8=8×4+12×8×7×2=88.12.[2019·惠州调研]已知数列{a n }满足a 1=1,a n +1-2a n =2n (n ∈N *),则数列{a n }的通项公式a n =________.答案:n ·2n -1解析:a n +1-2a n =2n 两边同除以2n +1,可得a n +12n +1-a n 2n =12,又a 12=12,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是以12为首项,12为公差的等差数列,∴a n 2n =12+(n -1)×12=n2,∴a n =n ·2n -1.刷题课时增分练○23 一、选择题1.[2019·九江十校联考]已知数列{a n },若点(n ,a n )(n ∈N *)在经过点(10,6)的定直线l 上,则数列{a n }的前19项和S 19=( )A .110B .114C .119D .120 答案:B解析:因为点(n ,a n )(n ∈N *)在经过点(10,6)的定直线l 上,故数列{a n }为等差数列,且a 10=6,所以S 19=(a 1+a 19)×192=2a 10×192=19×a 10=19×6=114,选B.2.[2019·辽宁沈阳质量监测]已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( ) A .250 B .200 C .150 D .100 答案:D解析:当n =2k -1时,a 2k +a 2k -1=2,∴{a n }的前100项和=(a 1+a 2)+(a 3+a 4)+…+(a 99+a 100)=50×2=100,故选D.3.[2019·益阳市、湘潭市调研]已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( ) A.4 0352 018 B.4 0332 017 C.2 0172 018 D.2 0162 017 答案:B解析:由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n .当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1.bn =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.故选B.4.[2019·黑龙江大庆模拟]中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走路,第一天健步行走,从第二天起脚痛,每天走的路程是前一天的一半,走了6天,共走378里.”请问第四天走了( )A .12里B .24里C .36里D .48里 答案:B解析:设第一天走a 1里,则每天走的里数组成的数列{a n }是以a 1为首项,以12为公比的等比数列,由题意得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192(里),∴a 4=a 1×⎝⎛⎭⎫123=192×18=24(里),故选B. 5.[2019·湖南郴州质量监测]在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项和 S 100=( )A .-200B .-100C .200D .100 答案:D解析:因为数列{a n }是等差数列,a 4=5,a 7=11,所以公差d =a 7-a 47-4=2,a n =a 4+(n -4)d =2n -3,所以b n =(-1)n (2n -3),所以b 2n -1+b 2n =2,n ∈N *.因此数列{b n }的前100项和S 100=2×50=100,故选D.6.[2019·浙江杭州模拟]若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和T n 为( )A.n +12(n +2)B.34-2n +32(n +1)(n +2)C.n -1n +2D.34-2n +3(n +1)(n +2)答案:B解析:因为a 1+a 2+…+a n =n (3+2n +1)2=n (n +2),所以b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2),故选B. 7.[2019·合肥质检]已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( ) A .22 018-1 B .32 018-6 C.⎝⎛⎭⎫12 2 018-72 D.⎝⎛⎭⎫13 2 018-103 答案:A解析:∵3S n =2a n -3n ,∴当n =1时,3S 1=3a 1=2a 1-3,∴a 1=-3.当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),∴a n =-2a n -1-3,∴a n +1=-2(a n -1+1),∴数列{a n +1}是以-2为首项,-2为公比的等比数列,∴a n +1=-2×(-2)n -1=(-2)n ,∴a n =(-2)n -1,∴a 2 018=(-2)2 018-1=22 018-1,故选A.8.[2019·大连模拟]已知等差数列{a n }的前n 项和为S n ,数列{b n }为等比数列,且满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3,数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和为T n ,若T n <M 对一切正整数n 都成立,则M 的最小值为( )A .7B .8C .9D .10 答案:D解析:设{a n }的公差为d ,{b n }的公比为q ,由已知可得⎩⎪⎨⎪⎧q +6+d =10,2d =2q ,解得d =q =2,所以a n =2n +1,b n =2n -1,则a n b n =2n +12n -1,故T n =3×120+5×121+7×122+…+(2n +1)×12n -1,由此可得12T n =3×121+5×122+7×123+…+(2n +1)×12n ,以上两式相减可得12T n =3+2⎝ ⎛⎭⎪⎫121+122+123+…+12n -1-(2n +1)×12n =3+2-12n -2-2n +12n ,即T n =10-12n -3-2n +12n -1,又当n →+∞时,12n -3→0,2n +12n -1→0,此时T n →10,所以M 的最小值为10,故选D.二、非选择题9.已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *,记数列{a n }的前n 项和为S n ,则S 2 017=________.答案: 2 018-1解析:由f (4)=2可得4a =2,解得a =12,则f (x )=x 12,∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n .S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.10.[2019·广东深圳月考]已知数列{a n }的前n 项和为S n ,且满足a 1=1,a 2=2,S n +1=a n +2-a n +1(n ∈N*),则S n =________.答案:2n -1解析:∵S n +1=a n +2-a n +1(n ∈N *),∴S n +1=S n +2-S n +1-(S n +1-S n ),则S n +2+1=2(S n +1+1).由a 1=1,a 2=2,可得S 2+1=2(S 1+1),∴S n +1+1=2(S n +1)对任意的n ∈N *都成立,∴数列{S n +1}是首项为2,公比为2的等比数列,∴S n +1=2n ,即S n =2n -1.11.[2019·江西南昌模拟]在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解析:(1)∵a 1,2a 2+2,5a 3成等比数列, ∴(2a 2+2)2=5a 3·a 1,整理得d 2-3d -4=0,解得d =-1或d =4, 当d =-1时,a n =10-(n -1)=-n +11; 当d =4时,a n =10+4(n -1)=4n +6. 所以a n =-n +11或a n =4n +6. (2)设数列{a n }前n 项和为S n , ∵d <0,∴d =-1,a n =-n +11, 当n ≤11时,a n =-n +11≥0,∴|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a n =S n =-12n 2+212n ;当n ≥12时,a n =-n +11<0,|a 1|+|a 2|+…+|a 11|+|a 12|+…+|a n |=a 1+a 2+…+a 11-a 12-…-a n =S 11-(S n -S 11)=-S n +2S 11 =12n 2-212n +110. 综上,|a 1|+|a 2|+…+|a n|=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.。
高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(解析版)
专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <. 【答案】(1)选择条件见解析,21n a n =+(2)证明见解析 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,∴25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ∴13a =,21n a n =+;若选②,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+;第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)∵()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ∴11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ∴16n T <,得证 例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)213n a n =- (2)122212nn -(1)解:由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-;感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 122212n n-=类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1(211)2n +-(1)解:各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++,整理得()()()1112n n n n n n a a a a a a ++++-=+,由于10n n a a ++≠, 所以12n n a a +-=, 故数列{}n a 是以1为首项,2为公差的等差数列.所以21n a n =-.(2)解:由(1)可得111212122121n n n n n b a a n n ++--===+-++,所以11(3153...2121)(211)22n S n n n =⨯-+-+++--=+-.例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;(1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =+;(2)证明见解析﹒(1)由题可知,11261861548a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,∴21n a n =+;(2)1122232122321n n n n n b a a n n +-+--===+++-,()()()()()1517395212323212n T n n n n ⎡⎤=-+-+-+++--++--⎣⎦12123132n T n n ⎡⎤=+++--⎣⎦感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.类型三:指数型第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)n S 1212n n +=-++(1)解:设等差数列{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()()()211137a d a d a d +=++,整理得()10d a d -=,又因为10n n a a +->,所以0d >,1a d =,又1410131215a a a a d ++=+=,即15d =15, 所以11a d ==,所以n a n =;感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.(2)解:由(1)知,n a n =, 所以()()12221221n n nn n b n n n n +⋅==-++++,2324312112222222222223243541121n n n n n n n S n n n n n n ---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212n n +=-++.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .【答案】(1)12n na ;(2)1112(1)2n n T n +=-+⋅. (1)因为21n n S a =-,当1n =时,1121S a =-,解得11a =,当2n ≥时,1121n n S a --=-,所以()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥,所以数列{}n a 是首项为1,公比为2的等比数列.故11122n n n a --=⨯=.(2),1122211(1)(1)22(1)2n n n n n n n b a n n n n n n +++++===-⋅⋅++⋅+⋅于是12231111111111122222322(1)22(1)2n n n n T n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:(1)设等差数列{}n a 的公差为d ,则22113222n n n n d d S na d n n n a b -⎛⎫=+=+-=++ ⎪⎝⎭, 所以1,23,20,dd a b ⎧=⎪⎪⎪-=⎨⎪=⎪⎪⎩所以2,2,0,d a b =⎧⎪=⎨⎪=⎩,所以数列{}n a 的通项公式为()32121n a n n =+-=+. 因为23n n n T b +=,当2n ≥时,1113n n n T b --+=, 所以112133n n n n n n n b T T b b --++=-=-, 所以11133n n n n b b --+=,即111n n b n b n -+=-. 所以1232112321n n n n n n n b b b b b b b b b b b b -----=⨯⨯⨯⋅⋅⋅⨯⨯⨯()11432112321n n n n n n n n +-=⨯⨯⨯⋅⋅⋅⨯⨯⨯=+---. (2)()()()()()11111111nn n n n n n n a c b n n n n ++⎛⎫=-=-⋅=-+ ⎪++⎝⎭, 当n 为奇数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅-+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭12111n n n +=--=-++. 当n 为偶数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-+=-++. 综上所述,数列{}n c 的前n 项和2,1,1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数.例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2,2122,21n nn n T n n n ⎧⎪⎪+=⎨+⎪⎪+⎩为偶数为奇数 第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:(1)∴等差数列{an }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列. ∴S n =na 1+n (n ﹣1)(2a 1+2)2=a 1(4a 1+12),a 1=1,∴an =2n ﹣1; (2)∴由(1)可得()()111411112121n n n n n n b a a n n --+⎛⎫=-=-+ ⎪-+⎝⎭, 当n 为偶数时,T n =11111111113355723212121n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n =-=++. 当n 为奇数时,11111111113355723212121n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-⋯-+++ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12212121n n n +=+=++ . 2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. 三、题型归类练1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =+(2)1n n + (1)设等差数列{}n a 的公差为d , 由210353a a a =⎧⎨=⎩,可得()1115932a d a d a d ⎧+=⎪⎨+=+⎪⎩解得13,2a d==,所以()13122n a n n -⨯=++= (2)由(1)可得2111(1)(22)(1)12n n b n a n n n n n n ====-++++所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)31n a n =-,3nn b =(2)64n nT n =+ (1)设数列{}n a 的公差为d ,则0d >, 由540S =得1545402a d ⨯+=,即128a d +=①, 又123,1,a a a -成等比数列,所以()22131a a a -=,所以()()211112a d a a d +-=+,所以21(1)2d a -=②,联立①②及0d >解得12,3a d ==. 所以2(1)331n a n n =+-⨯=-. 所以161653,6572b S a d ⨯==+=, 所以35723b =+,解得327b =,又231,0b b q q =>,所以3q =,所以3nn b =.(2)由(1)得()311111(31)23log (31)(32)33132n n c n b n n n n ⎛⎫===- ⎪-+-+-+⎝⎭,所以121111111111325583132323264n n n T c c c n n n n ⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)12a =;2n a n =;(2)()()32316812n n T n n +=-++. (1)由()()222220n n S n n S n n -+--+=得:()()()220n n S S n n +-+=;{}n a 为正项数列,0n S ∴>,2n S n n ∴=+;当1n =时,112a S ==;当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=;经检验:12a =满足2n a n =;()2n a n n N *∴=∈.(2)由(1)得:()()111112224282n b n n n n n n ⎛⎫===- ⎪⋅+++⎝⎭,11111111111832435112n T n n n n ⎛⎫∴=⨯-+-+-+⋅⋅⋅+-+- ⎪-++⎝⎭()()()()1111132332318212821216812n n n n n n n n ⎛⎫++⎛⎫=⨯+--=⨯-=- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭. 4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=. (1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)41n nT n =+. (1)因为1332n n S +-=,故当1n =时,13a =,当2n ≥时,1332n n S --=,则()132nn n n a S S n -=-=≥,当1n =时,13a =满足上式,所以3nn a =.(2)由(1)得()33144114log log 11n n n b a a n n n n +⎛⎫===- ⎪⋅++⎝⎭,所以12311111144141223111n n n T b b b b n n n n ⎛⎫⎛⎫=++++=⨯-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 故数列{}n b 的前n 项和41n nT n =+. 5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)n T )112=(1)由1232n n n n S a S S ++-=+得:121211223222n n n n n n n n n n a S S S S S S S a a +++++++-=-+=-+-=-+即122n n n a a a ++=+, 所以数列{}n a 为等差数列, 由53525S a ==得35a =,设公差为d ,315212a a d d ==+=+,得2d =, 所以()11221n a n n =+-⨯=-, 故数列{}n a 的通项公式为21n a n =-.(2)12n b =,所以1122n Tn =++)112=.6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.【答案】(1)选择见解析;3nn a =(2)证明见解析(1)设正项等比数列{}n a 公比为q ,又1330a a +=,选①,()()41234131120S a a a a a a q =+++=++=,所以3q =;选②,13431130a a a q q ⎛⎫+=+= ⎪⎝⎭,所以()()2310390,3q q q q -++==;选③,()()22111112340n n n n n n n n a a a a a a a a ----+-=-+=,所以13n n a a -=,∴3q =;又1311191030a a a a a +=+==,∴13a =,则3nn a =.(2)因为()()()()1112323111131313131n n n n n n n n n b a a +++⋅⋅===-++++++,所以122231111111313131313131n n n n S b b b +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11114314n +=-<+. 7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <【答案】(1)21n a n =-,131(21)22n n b n -⎛⎫=-- ⎪⎝⎭(2)证明见解析(1)解:由数列{}n a 为等差数列,{}n b 且满足11211,,32a b b ===,211412n n n n nn a b a b ++-=+,当1n =时,可得122132a b a b =+,即213322a =⨯+,解得23a =; 因为{}n a 是等差数列,所以21n a n =-,所以2141(21)(21)2n n nn n b n b +--=++,所以1121212n n n b b n n +-=+-, 所以12132121131532123n n n b b b b b b b b n n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭11211112211111311222222212n n n ---⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎝⎭=++++=+=- ⎪⎝⎭-所以131(21)22n n b n -⎛⎫=-- ⎪⎝⎭.(2)解:由(1)得12311(21)(21)22(21)2(21)n n n n n c n n n n -+==--+-+,所以12n n T c c c =+++211111112323252(21)2(21)n n n n -=-+-++-⋅⋅⋅-+ 1112(21)n n =-<+.8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n =(2)最小值为23(1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅, 所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)解:由(1)可得()()()()1111122112121212121212n n n a n n nn a a n n c +++++⎛⎫===- ⎪++++++⎝⎭, 所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为239.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)=n a ()1nn T =-(1)由题可知()22112n n S S n --=≥⇒数列是{}2n S 等差数列,所以()2211n S S n n =+-=,)12n n n n S a S S n -=-=≥,又因为11a ==,所以n a(2)()()11nnnnnb a -===-.所以()()311nnn T =-=+-故答案为:n a ()1n- .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式; (2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值. 【答案】(1)*,N na n n =∈(2)505(1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++,2111412020n T n +=<+,20194n ∴>所以n 的最小值为505.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和. 【答案】(1)(),2nn n a n b n *=∈=N ;(2)证明见解析;(3)2212221n n T n +=-+(1)设等差数列公差为d ,等比数列公比为q ,所以()2311111132132222222d q d a d b q b q q d q b q a d⎧+==+=⎧⎧⇒⇒⎨⎨⎨=+==+⎩⎩⎩,所以,2n n na b n ==, (2){}n b 的前n 项和为 248222222n n n n n n n n n S n a b =++++≤++++=⋅=⋅,(当1n =时,取等号)命题得证.(3)由(1)得,()()131131222(1)(1)(1)11n nn n n n nn n n n n n a b c a n n a n +++⎛⎫+ ⎪+⋅⋅=-=-=-+⎝+⎭⋅, 所以数列{}n c 的前2n 项和2212244881616122()3222241334522nn n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎭,2212221n n T n +=-+12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .【答案】(1)1n a n =;(2)20222023. (1)由11n n n n a a a a --=-,0n a ≠得:1111n n a a --=,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,1n n a ∴=,1n a n ∴=;(2)由(1)知:()()()()1121111111n n n n b n n n n +++=-=-+++;20221111111111223342021202220222023T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++--+++⋅⋅⋅+++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12022120232023=-=.13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列. (1)求数列{}n a 的通项公式.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.【答案】(1)14n n a -=;(2)证明见解析.(1)依题意,当2n ≥时,1144n n n a S S +-+=, 故11444n n n n a S S a +-=-=, 由1215a S ==,得22144a a a ==,,故数列{}n a 是以1为首项,4为公比的等比数列,则14n n a -=;(2)依题意,()()()()2211123232111141414141n n n n n n n n a a ++++⋅⋅==-++++++,故12231111111111414141414141541n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭, ∴n *∈N ,∴1112111855415n T +=≤-<+,即121855n T ≤<.。
高三数学精准培优专题练习12:数列求和(含答案解析)
培优点十二 数列求和1.错位相减法例1:已知是等差数列,其前项和为,是等比数列,且,,.(1)求数列与的通项公式;(2)记,,求证:.【答案】(1),;(2)见解析.【解析】(1)设的公差为,的公比为,则,,即,解得:,,.(2),①,②得,∴所证恒等式左边,右边,即左边右边,所以不等式得证.2.裂项相消法例2:设数列,其前项和,为单调递增的等比数列,, .(1)求数列,的通项公式;{}n a n n S {}n b 112a b ==4427a b +=4410S b -={}n a {}n b 1121n n n n T a b a b a b -=+++L n *∈N 12210n n n T a b +=-+31n a n =-2n n b ={}n a d {}n b q 3441127327a b a d b q +=⇒++=34411104610S b a d b q -=⇒+-=332322786210d q d q ⎧++=⎪⎨+-=⎪⎩32d q =⎧⎨=⎩31n a n ∴=-2n n b =()()231234222nn T n n =-⋅+-⋅++⋅L ()()23+1231234222n n T n n =-⋅+-⋅++⋅L -②①()()()()123124213123222222312321n n n n n T n n -++-∴=--⋅+++++⋅=--⋅+⋅-L ()10223112n n =⋅---()102231n n =⋅--()210231102nn n a b n =-+=--+⋅={}n a n 23n S n =-{}n b 123512b b b =1133a b a b +=+{}n a {}n b(2)若,求数列的前项和.【答案】(1),;(2).【解析】(1)时,,当时,符合上式,,∵为等比数列,,设的公比为,则,而,,解得或,∵单调递增,,.(2),.一、单选题1.已知等差数列中,,,则项数为( )A .10B .14C .15D .17【答案】C 【解析】∵,∴,∴,,故选C .2.在等差数列中,满足,且,是前项的和,若取得最大值,则( )()()21nn n n b c b b =--{}n c n n T 63n a n =-+12n n b +=11121n n T +=--2n ≥()22133163n n n a S S n n n -⎡⎤=-=----=-+⎣⎦1n =113a S ==-63n a n ∴=-+{}n b 31232512b b b b ∴==28b ∴={}n b q 21328,8b b b b q q q q====315a =-113383158a b a b q q ∴+=+⇒-+=-+2q =12q =-{}n b 2q ∴=21222n n n b b -+∴=⋅=()()()()()()111112211222121212121n n nn n n n n n c +++++===-------112231111111212121212121n n n n T c c +⎛⎫⎛⎫⎛⎫∴=++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭L L 1111111212121n n ++=-=----{}n a 918S =240n S =()4309n a n -=>()199599182a a S a +===52a =()()()154230240222n n n n a a n a a n S -+++====15n ={}n a 4737a a =10a >n S {}n a n n S n =对点增分集训A .7B .8C .9D .10【答案】C【解析】设等差数列首项为,公差为,由题意可知,,,二次函数的对称轴为,开口向下,又∵,∴当时,取最大值.故选C .3.对于函数,部分与的对应关系如下表:123456789375961824数列满足:,且对于任意,点都在函数的图象上,则( )A .7554B .7549C .7546D .7539【答案】A【解析】由题意可知:,,,,,点都在函数的图象上,则,,,,,则数列是周期为4的周期数列,由于,且,故.故选A .4.设等差数列的前项和,,,若数列的前项和为,则( )A .8B .9C .10D .11【答案】C【解析】为等差数列的前项和,设公差为,,,1a d 14330a d +=10a >()()2111352233n n n da S na n n -=+=-358754n ==.n *∈N 9n =n S ()y f x =x y xy{}n x 11x =n *∈N ()1n n x x +,()y f x =122015x x x ++⋅⋅⋅+=()13f =()35f =()56f =()61f =()13f =L ()1n n x x +,()y f x =11x =23x =35x =46x =511x x =={}n x 201545033=⨯+123415x x x x +++=()122015503151357554x x x ++⋅⋅⋅+=⨯+++={}n a n n S 44a =515S =11n n a a +⎧⎫⎨⎬⎩⎭m 1011m =n S {}n a n d 44a =515S =则,解得,则.由于,则,解得.故答案为10.故选C .5.在等差数列中,其前项和是,若,,则在,,,中最大的是( )A .B .C .D .【答案】C 【解析】由于,,∴可得,,这样,,,,,,,而,,∴在,,,中最大的是.故选C .6.设数列的前项和为,则对任意正整数,( )A .B .C .D .【答案】D【解析】∵数列是首项与公比均为的等比数列.∴其前项和为.故选D .7.已知数列满足,,,,若恒成立,则的最小值为( )A .0B .1C .2D .【答案】D【解析】由题意知,,由,4534155a S a =⎧⎨==⎩1d =()44n a n n =+-=()1111111n n a a n n n n +==-++11111110112231111m S m m m =-+-++-=-=++L 10m ={}n a n n S 90S >100S <11S a 22S a L 99S a 11S a 88S a 55S a 99S a ()19959902a a S a +==>()()110105610502a a S a a +==+<50a >60a <110S a >220Sa >L 550S a >660S a <L 990S a <125S S S <<<L 125a a a >>>L 11S a 22S a L 99S a 55S a (){}1n-n nS n nS=()112nn ⎡⎤--⎣⎦()1112n --+()112n-+()112n--(){}1n-1-n ()()()()11111112nn n S ⎡⎤-----⎣⎦=--={}n a 11a =()()121211n n n a n a +-=++()()12212141n nn n a n a b n +--+=-12n n T b b b =++⋅⋅⋅+n m T >m 1212121n n n a ab n n +=-+-()()121211n n n a n a +-=++得,∴,∴恒成立,,故最小值为,故选D .8.数列的前项和为,若,则( )A .2018B .1009C .2019D .1010【答案】B【解析】由题意,数列满足,∴,故选B .9.已知数列中,,则等于( )A .B .C .D .【答案】A【解析】设,由,解得,令,故.故选A .10.已知函数,且,则( )A .20100B .20500C .40100D .10050【答案】A【解析】,当为偶数时,,当为奇数时,,故()()111112121212122121n n a a n n n n n n +⎛⎫-==- ⎪+--+-+⎝⎭12111111111112133521212212n n T b b b n n n ⎛⎫⎛⎫=+++=⨯-+-++-=⨯-< ⎪ ⎪-++⎝⎭⎝⎭L L 12n T <12m ≥m 12{}n a n n S ()1nn a n =-⋅2018S ={}n a ()1nn a n =-⋅2018123420172018123420172018S a a a a a a =+++++=-+-+--+L L ()()()1234201720181009=-++-+++-+=L {}n a ()12321n n a a a a n *+++⋅⋅⋅+=-∈N 2222123n a a a a +++⋅⋅⋅+()1413n-()1213n-41n -()221n -()12321n n n S a a a a n *=+++⋅⋅⋅+=-∈N 1112,,n n n S n a S S n -=⎧=⎨-≥⎩12n n a -=214n n n b a -==()22221231413nn a a a a +++⋅⋅=⋅+-()223sin 2n f n n -⎛⎫=π ⎪⎝⎭()n a f n =123200a a a a ++++=L ()n a f n =n ()2223sin 2n f n n n -⎛⎫=π=⎪⎝⎭n ()2223sin 2n f n n n -⎛⎫=π=-⎪⎝⎭222221232001234199200a a a a ++++=-+-++L L --.故选A .11.已知数列满足:,,,则的整数部分为( )A .0B .1C .2D .3【答案】B【解析】,∴原式,当时,,∴整数部分为1,故选B .12.对于任意实数,符号表示不超过的最大整数,例如,,.已知数列满足,其前项和为,若是满足的最小整数,则的值为( )A .305B .306C .315D .316【答案】D【解析】由题意,,当时,可得,(1项)当时,可得,(2项)当时,可得,(4项)当时,可得,(8项)当时,可得,(16项)当时,可得,(项)则前项和为,,()()()()211220019920019912319920020100=-+++-+=+++++=L L {}n a 112a =21a =()112n n n a a a n n *+-=+∈≥N ,132435111a a a a a a ++201820201a a +⋅⋅⋅+1111111111111111n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a +-+-+-+-+--++--=+⇒-=⇒=⇒-=111111111111n n n n n n n n n a a a a a a a a a +--+-+⎛⎫⇒=-=- ⎪⎝⎭1223201820192019202020192020111112a a a a a a a a a a =-++-=-L 3n ≥()201920202019202011121,2n a a a a a >⇒>⇒-∈x []x x []33=[]122-=-.[]121=.{}n a []2log n a n =n n S 0n 2018n S >0n []2log n a n =1n =10a =1222n ≤<231a a ==2322n ≤<4572a a a ====L 3422n ≤<89153a a a ====L 4522n ≤<1617314a a a ====L L L122n n n +≤<12212n n n a a a n ++====L 2n n 1234122232422n n S n =⨯+⨯+⨯+⨯++⨯L 234512122232422n n S n +=⨯+⨯+⨯+⨯++⨯L两式相减得,∴,此时,当时,对应的项为,即,故选D .二、填空题13.已知数列满足,记为的前项和,则__________.【答案】440【解析】由可得:当时,有, ①当时,有, ②当时,有, ③有,有,则.故答案为440.14.的最大整数.若,,,,则__________.【答案】,【解析】第一个等式,起始数为1,项数为,,第二个等式,起始数为2,项数为,,第三个等式,起始数为3,项数为,,2341222222n n n S n +-=+++++-⋅L()1112222122018n n n n S n n +++=⋅-+=-+>8n ≥8n =83162a a =0316n ≥{}n a()()112nnn a a n n---=≥n S {}na n 40S =()()112nn n a a n n ---=≥2n k =2212k k a a k --=21n k =-212221k k a a k --+=-21n k =+21221k k a a k ++=++①②22241k k a a k -+=--③①21211k k a a +-+=()()40135739246840S a a a a a a a a a a =+++++++++++L L ()109110715231071084402⨯=⨯++++=+⨯+⨯=L 13S =++=210S =++++=321S =++++++=L n S =()21n n +()n *∈N2234121=-=-113S =⨯2259432=-=-225S =⨯22716943=-=-337S =⨯L第个等式,起始数为,项数为,,,故答案为,.15.已知函数,则________;【答案】2018【解析】∵,设, ①则, ②得,∴.故答案为2018.16.定义为个正整数,,,的“均倒数”,若已知数列的前项的“均倒数”为,又,则_________;【答案】【解析】∵数列的前项的“均倒数”为,∴,解得,∴,当时,,当时,上式成立,则,∴,,则.故答案为.n n ()22121n n n +-=+()21n S n n =+()n *∈N ()21n S n n =+()n *∈N ()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()111113sin 13sin 12222f a f a a a a a ⎛⎫⎛⎫+-=+-++-+--+⎪ ⎪⎝⎭⎝⎭112sin sin 222a a ⎛⎫⎛⎫=+-+-= ⎪ ⎪⎝⎭⎝⎭122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭201820171201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+①②1201822018403620192019S f f ⎡⎤⎛⎫⎛⎫=⨯+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2018S =12nnp p p +++L n 1p 2p L n p {}n a n 15n 5n n a b =12231011111b b b b b b +++=L 1021{}n a n 15n15n n S n=25n S n =115a S ==2n ≥()()221551105n n n a S S n n n -⎡⎤=-=--=-⎣⎦1n =105n a n =-215nn a b n ==-()()111111212222121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭1223101111111111111111011233557192122121b b b b b b ⎛⎫⎛⎫+++=⨯-+-+-++-=⨯-= ⎪ ⎪⎝⎭⎝⎭L L 1021。
高三数学 数学数列多选题的专项培优练习题(含答案
高三数学 数学数列多选题的专项培优练习题(含答案一、数列多选题1.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.2.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S > 【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC.方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.5.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.6.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】 由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,7.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】 由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当=n n b c 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.8.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭1115()n F F n n -+=+, 令1nn n Fb -=⎝⎭,则11n n b ++, 所以1n n b b +=-,所以n b ⎧⎪⎨⎪⎪⎩⎭以510-所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.二、平面向量多选题9.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪⎪ ⎪⋅⎭⎭21y =⎪+⎭==1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.。
高中数学专题强化练习《数列求和》含答案解析
=2 -1,
1-2
=
∴Sn=(21-1)+(22-1)+…+(2n-1)
2 × (1 - 2)
-n=2n+1-n-2.故选
1-2
=
D.
2.B 由题意可得,当 n 为奇数时,an=f(n)+f(n+1)=n2-(n+1)2=-2n-1;
当 n 为偶数时,an=f(n)+f(n+1)=-n2+(n+1)2=2n+1.
公差不为 0,其前 n 项和为 Sn.若 a2,a4,a7 成等比数列,S3=12.
(1)求 an 及 Sn;
1
1
1
(2)已知数列{bn}满足+1-=an,n∈N*,b1=3,Tn 为数列{bn}的前 n 项和,
求 Tn 的取值范围.
答案全解全析
一、选择题
1.D ∵an=1+2+22+…+2n-1
又 a14=b4,所以 1+13d=1×33,解得 d=2,
( - 1)
1 - 3
2+3 - 1.
·2+
=n
2
1-3
2
所以数列{an+bn}的前 n 项和为 n+
8.答案 6
6
解析 设等比数列{an}的首项为 a1,公比为 q,由 a4=24,a6=96,得 q2=4
=4,所以 q=2 或 q=-2,
(n ≤ 6,n ∈ N*),
2
∴Tn= n2 - 11n + 60
(n ≥ 7,n ∈ N*).
2
=15+
2019-2020年高三数学一轮复习 专项训练 数列求和(含解析)
2019-2020年高三数学一轮复习 专项训练 数列求和(含解析)1、已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n](ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.2、在等比数列{a n }中,已知a 1=3,公比q ≠1,等差数列{b n }满足b 1=a 1,b 4=a 2,b 13=a 3. (1)求数列{a n }与{b n }的通项公式;(2)记c n =(-1)nb n +a n ,求数列{c n }的前n 项和S n .解 (1)设等比数列{a n }的公比为q ,等差数列{b n }的公差为d . 由已知,得a 2=3q ,a 3=3q 2,b 1=3,b 4=3+3d ,b 13=3+12d ,故⎩⎪⎨⎪⎧3q =3+3d ,3q 2=3+12d ⇒⎩⎪⎨⎪⎧q =1+d ,q 2=1+4d ⇒q =3或1(舍去).所以d =2,所以a n =3n,b n =2n +1.(2)由题意,得c n =(-1)nb n +a n =(-1)n(2n +1)+3n,S n =c 1+c 2+…+c n=(-3+5)+(-7+9)+…+[(-1)n -1(2n -1)+(-1)n(2n +1)]+3+32+ (3). 当n 为偶数时,S n =n +3n +12-32=3n +12+n -32; 当n 为奇数时,S n =(n -1)-(2n +1)+3n +12-32=3n +12-n -72.所以S n =⎩⎪⎨⎪⎧3n +12+n -32,n 为偶数,3n +12-n -72,n 为奇数.3.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为 ( ).A .2n+n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n -2解析 S n =-2n1-2+n+2n -2=2n +1-2+n 2.答案 C4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ).A .9B .8C .17D .16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A5.已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的n 的最小值.解 (1)设等比数列{a n }的公比为q ,依题意,有⎩⎪⎨⎪⎧2a 1+a 3=3a 2,a 2+a 4=a 3+,即⎩⎪⎨⎪⎧ a 1+q2=3a 1q ,a 1q +q 3=2a 1q 2+4,①②由①得q 2-3q +2=0,解得q =1或q =2. 当q =1时,不合题意,舍去;当q =2时,代入②得a 1=2,所以a n =2·2n -1=2n.故所求数列{a n }的通项公式a n =2n(n ∈N *). (2)b n =a n +log 21a n =2n +log 212n =2n-n .所以S n =2-1+22-2+23-3+ (2)-n =(2+22+23+ (2))-(1+2+3+…+n ) =-2n 1-2-n+n 2=2n +1-2-12n -12n 2.因为S n -2n +1+47<0,所以2n +1-2-12n -12n 2-2n +1+47<0,即n 2+n -90>0,解得n >9或n <-10. 因为n ∈N *,故使S n -2n +1+47<0成立的正整数n 的最小值为10.6.已知在正项等比数列{a n }中,a 1=1,a 2a 4=16,则|a 1-12|+|a 2-12|+…+|a 8-12|=( ). A .224 B .225 C .226 D .256解析 由a 2a 4=a 23=16,解得a 3=4,又a 1=1, ∴q 2=4,∴q =2,∴a n =2n -1,令2n -1≥12,解得n 的最小值为5.∴|a 1-12|+|a 2-12|+…+|a 8-12|=12-a 1+12-a 2+12-a 3+12-a 4+a 5-12+a 6-12+a 7-12+a 8-12=-(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8) =-15+240=225. 答案 B1、正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. 解 (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项a n =2n . (2)证明 由于a n =2n ,b n =n +1n +2a 2n,则b n =n +14n2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -2-⎦⎥⎤1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116⎝ ⎛⎭⎪⎫1+122=564.2、(xx·滨州一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n.所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1n +n +=1n +1-1n +2, 所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =12-1n +2=n n +.3、已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n.所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1n +n +=1n +1-1n +2, 所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =12-1n +2=n n +.4.已知函数f (x )=x 2+2bx 过(1,2)点,若数列⎩⎨⎧⎭⎬⎫1fn的前n 项和为S n ,则S 2 014的值为( ).A.2 0122 011B.2 0102 011C.2 0142 013D.2 0142 015解析 由已知得b =12,∴f (n )=n 2+n ,∴1f n=1n 2+n =1nn +=1n -1n +1, ∴S 2 014=1-12+12-13+…+12 013-12 014+12 014-12 015=1-12 015=2 0142 015.答案 D5.正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ; (2)令b n =1n +a n,求数列{b n }的前n 项和T n .解 (1)由a 2n -(2n -1)a n -2n =0得(a n -2n )(a n +1)=0,由于{a n }是正项数列,则a n =2n . (2)由(1)知a n =2n ,故b n =1n +a n =12nn +=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴T n =12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=nn +.6.已知函数f (x )=x 2-2x +4,数列{a n }是公差为d 的等差数列,若a 1=f (d -1),a 3=f (d +1), (1)求数列{a n }的通项公式;(2)S n 为{a n }的前n 项和,求证:1S 1+1S 2+…+1S n ≥13.(1)解 a 1=f (d -1)=d 2-4d +7,a 3=f (d +1)=d 2+3, 又由a 3=a 1+2d ,可得d =2,所以a 1=3,a n =2n +1. (2)证明 S n =n+2n +2=n (n +2),1S n=1n n +=12⎝ ⎛⎭⎪⎫1n -1n +2, 所以,1S 1+1S 2+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2≥12⎝ ⎛⎭⎪⎫32-11+1-11+2=13.7.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12. (1)证明 当n =1时,4a 1=a 22-5,a 22=4a 1+5, 又a n >0,∴a 2=4a 1+5.(2)解 当n ≥2时,4S n -1=a 2n -4(n -1)-1, ∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2, 又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3.由(1)知a 1=1.又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1. (3)证明1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1n -n+=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1<12.考点三 错位相减法求和1、(xx·山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n=λ(λ为常数),令c n =b 2n (n ∈N *),求数列{c n }的前n项和R n .解 (1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+n -d =2a 1+n -d +1.解得a 1=1,d =2. 因此a n =2n -1,n ∈N *. (2)由题意知T n =λ-n2n -1,所以n ≥2时,b n =T n -T n -1=-n2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)(14)n -1,n ∈N *,所以R n =0×(14)0+1×(14)1+2×(14)2+3×(14)3+…+(n -1)×(14)n -1,则14R n =0×(14)1+1×(14)2+2×(14)3+…+(n -2)×(14)n -1+(n -1)×(14)n, 两式相减得34R n =(14)1+(14)2+(14)3+…+(14)n -1-(n -1)×(14)n =14-14n1-14-(n -1)×(14)n =13-1+3n 3(14)n,整理得R n =19(4-3n +14n -1).所以数列{c n }的前n 项和R n =19(4-3n +14n -1).2、在数列{a n }中,a 1=2,a n +1=3a n +2. (1)记b n =a n +1,求证:数列{b n }为等比数列; (2)求数列{na n }的前n 项和S n .(1)证明 由a n +1=3a n +2,可得a n +1+1=3(a n +1). 因为b n =a n +1,所以b n +1=3b n ,又b 1=a 1+1=3,所以数列{b n }是以3为首项,以3为公比的等比数列. (2)解 由(1)知a n +1=3n ,a n =3n -1,所以na n =n ·3n-n , 所以S n =(3+2·32+…+n ·3n)-(1+2+…+n ), 其中1+2+…+n =n 2+n2,记T n =3+2·32+…+n ·3n,① 3T n =32+2·33+…+(n -1)·3n +n ·3n +1,②两式相减得-2T n =3+32+…+3n -n ·3n +1=3-3n +1-2-n ·3n +1,即T n =2n -14·3n +1+34,所以S n =n -n +14-2n 2+2n -34.3.已知数列{a n }的前n 项和为S n ,且S n =2a n -2. (1)求数列{a n }的通项公式;(2)记S n =a 1+3a 2+…+(2n -1)a n ,求S n .解 (1)∵S n =2a n -2,∴当n ≥2时,a n =S n -S n -1=2a n -2-(2a n -1-2), 即a n =2a n -2a n -1,∵a n ≠0,∴a n a n -1=2(n ≥2,n ∈N *). ∵a 1=S 1,∴a 1=2a 1-2,即a 1=2.数列{a n }是以2为首项,2为公比的等比数列.∴a n =2n. (2)S n =a 1+3a 2+…+(2n -1)a n=1×2+3×22+5×23+…+(2n -1)2n, ① ∴2S n =1×22+3×23+…+(2n -3)2n +(2n -1)2n +1,②①-②得-S n =1×2+(2×22+2×23+…+2×2n)-(2n -1)2n +1,即-S n =1×2+(23+24+…+2n +1)-(2n -1)2n +1∴S n =(2n -3)·2n +1+6.4.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式.(2)令b n =na n ,n =1,2,…,求数列{b n }的前n 项和T n .解 (1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1++a 3+2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0,解得q =2或12.由题意得q >1,所以q =2.则a 1=1.故数列{a n }的通项为a n =2n -1.(2)由于b n =n ·2n -1,n =1,2,…,则T n =1+2×2+3×22+…+n ×2n -1,所以2T n =2+2×22+…+(n -1)×2n -1+n ×2n,两式相减得-T n =1+2+22+23+…+2n -1-n ×2n=2n-n ×2n-1,即T n =(n -1)2n+1.5.已知数列{a n }的首项a 1=4,前n 项和为S n ,且S n +1-3S n -2n -4=0(n ∈N *). (1)求数列{a n }的通项公式;(2)设函数f (x )=a n x +a n -1x 2+a n -2x 3+…+a 1x n,f ′(x )是函数f (x )的导函数,令b n =f ′(1),求数列{b n }的通项公式,并研究其单调性.解 (1)由S n +1-3S n -2n -4=0(n ∈N *),得S n -3S n -1-2n +2-4=0(n ≥2), 两式相减得a n +1-3a n -2=0,可得a n +1+1=3(a n +1)(n ≥2),又由已知得a 2=14,所以a 2+1=3(a 1+1),即{a n +1}是一个首项为5,公比q =3的等比数列,所以a n =5×3n -1-1(n ∈N *).(2)因为f ′(x )=a n +2a n -1x +…+na 1x n -1,所以f ′(1)=a n +2a n -1+…+na 1=(5×3n -1-1)+2(5×3n -2-1)+…+n (5×30-1)=5(3n -1+2×3n -2+3×3n -3+…+n ×30)-n n +2,令S =3n -1+2×3n -2+3×3n -3+…+n ×30,则3S =3n +2×3n -1+3×3n -2+…+n ×31,作差得S =-n 2-3-3n +14,所以f ′(1)=5×3n +1-154-nn +2,即b n =5×3n +1-154-nn +2.而b n +1=5×3n +2-154-n +n +2,所以b n +1-b n =15×3n2-n -72>0,所以{b n }是单调递增数列.求数列{|a n |}的前n 项和问题1、在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+…+|a n |.[规范解答] (1)由题意得5a 3·a 1=(2a 2+2)2, (2分) 即d 2-3d -4=0.故d =-1或4.(4分)所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *, (6分) (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11. ∴S n =-12n 2+212n ,(8分)当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n | =S n =-12n 2+212n .(10分) 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n | =-S n +2S 11=12n 2-212n +110.(12分) 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.分2、已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解 (1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列的通项公式,可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)由(1),知当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n | =5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.考点:公式法1.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案 -2 2n -1-122.在数列{a n }中,a 1=1,a n +1=(-1)n(a n +1),记S n 为{a n }的前n 项和,则S 2 013=________. 解析 由a 1=1,a n +1=(-1)n(a n +1)可得a 1=1,a 2=-2,a 3=-1,a 4=0,该数列是周期为4的数列,所以S 2 013=503(a 1+a 2+a 3+a 4)+a 2 013=503×(-2)+1=- 1 005. 答案 -1 0053.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =____. 解析 当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =-4n1-4=13(4n-1). 答案 13(4n-1)4.已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100= ( ). A .-100 B .0 C .100D .10 200解析 若n 为偶数,则a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1),为首项为a 2=-5,公差为-4的等差数列;若n 为奇数,则a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1,为首项为a 1=3,公差为4的等差数列.所以a 1+a 2+a 3+…+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100) =50×3+50×492×4+50×(-5)+50×492×(-4)=-100.答案 A倒序相加法 1.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011的值为______. 解析 当x 1+x 2=1时,f (x 1)+f (x 2)===1.设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10,即S =5. 答案 5构造法1.设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)在2S n =a n +1-2n +1+1中令n =1得,2S 1=a 2-22+1, 令n =2得,2S 2=a 3-23+1, 解得,a 2=2a 1+3,a 3=6a 1+13.又2(a 2+5)=a 1+a 3,即2(2a 1+8)=a 1+6a 1+13, 解得a 1=1. (2)由2S n =a n +1-2n +1+1,2S n +1=a n +2-2n +2+1,得a n +2=3a n +1+2n +1.又a 1=1,a 2=5也满足a 2=3a 1+21,∴a n +1=3a n +2n对n ∈N *成立,∴a n +1+2n +1=3(a n +2n),∴数列{a n +2n}以3为首项,公比为3的等比数列. ∴a n +2n =(a 1+21)·3n -1=3n,∴a n =3n -2n.考点:1.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3-1的等差中项. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n . 解 (1)由题意,得2a 2=a 1+a 3-1,即2a 1q =a 1+a 1q 2-1,整理得2q =q 2. 又q ≠0,解得q =2,∴a n =2n -1.(2)当n =1时,b 1=a 1=1; 当n ≥2时,nb n =a n -a n -1=2n -2,即b n =2n -2n,∴b n =⎩⎪⎨⎪⎧1,n =1,2n -2n ,n ≥2.2019-2020年高三数学一轮复习 专项训练 立体几何(1)(含解析)1、(xx·四川卷)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).解析:由于俯视图是两个圆,所以排除A ,B ,C ,故选D.2、若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析:A ,B 的正视图不符合要求,C 的俯视图显然不符合要求,答案选D. 答案:D3、若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析所给选项中,A,C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合.答案 B4、(xx·陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为( ).[正解] 还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.[答案] B5、如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).解析注意BE,BG在平面CDGF上的投影为实线,且由已知长度关系确定投影位置,排除A,C选项,观察B ,D 选项,侧视图是指光线从几何体的左面向右面正投影,则BG ,BF 的投影为虚线,故选D. 答案 D6.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( ).解析 给几何体的各顶点标上字母,如图1.A ,E 在侧投影面上的投影重合,C ,G 在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B(而不是A).答案 B7.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.求出侧视图的面积.解析:根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.8.如图所示的是一个零件的直观图,试画出这个几何体的三视图.解 这个几何体的三视图如图.9.如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积. 解 (1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12 3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.考点一 空间几何体的表面积1、如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是( ).A .8B .20+8 2C .16D .24+8 2解析 由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S =2×12×2×2+22×4+2×2×4=20+8 2.答案 B2、一个几何体的三视图如图所示,则该几何体的表面积为________.解析 如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分.∴S 表=(4×1+3×4+3×1)×2+2π×1×1-2π×12=38. 答案 383、如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为 ( ). A.312 B.34 C.612D.64解析:三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.答案:A4、(xx·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以=13×12×1=16.[优美解法] E 点移到A 点,F 点移到C 点,则==13×12×1×1×1=16. [答案] 165、(xx·辽宁卷)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为A.3172B .210 C.132D .310解析:因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案:C6、(xx·新课标全国Ⅰ卷)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm3解析 作出该球的轴截面,如图所示,依题意BE =2 cm ,AE =CE =4 cm ,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3(cm),故该球的半径AD =5 cm ,所以V =43πR3=500π3(cm 3).答案 A7.(xx·广东卷)某四棱台的三视图如图所示,则该四棱台的体积是( ).A .4 B.143 C.163D .6解析 由四棱台的三视图可知该四棱台的上底面是边长为1的正方形;下底面是边长为2的正方形,高为2.由棱台的体积公式可知该四棱台的体积V =13(12+12×22+22)×2=143,故选B.答案 B8.(xx·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ).A.6π B .43π C .46π D .63π 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =22+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 B9.(xx·辽宁卷)某几何体的三视图如图所示,则该几何体的体积是________.解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,所以几何体的体积为16π-16.答案 16π-1610.(xx·陕西卷)某几何体的三视图如图所示,则其体积为________.解析 该几何体为一个半圆锥,故其体积为V =13×12×π×12×22=π3.答案π311.(xx·江苏卷)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.解析 设三棱柱A 1B 1C 1-ABC 的高为h ,底面三角形ABC 的面积为S ,则V 1=13×14S ·12h =124Sh =124V 2,即V 1∶V 2=1∶24. 答案 1∶2412.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,BC ⊂平面ABC ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423. 13.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm 2)为 ( ).A .48B .64C .80D .120解析 据三视图知,该几何体是一个正四棱锥(底面边长为8 cm),直观图如图,PE 为侧面△PAB 的边AB 上的高,且PE =5 cm.∴此几何体的侧面积是S =4S △PAB =4×12×8×5=80 (cm 2).答案 C14.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是A .12πB .24πC .32πD .48π解析 该几何体的直观图如图所示,它是有一条侧棱垂直于底面的四棱锥,其中底面ABCD 是边长为4的正方形,高为CC 1=4,该几何体的所有顶点在同一球面上,则球的直径为AC 1=43=2R ,所以球的半径为R =23,所以球的表面积是4πR 2=4π×(23)2=48π.答案 D15.(xx·山东卷)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为A.5π12B.π3C.π4D.π6 解析 如图,O 为底面ABC 的中心,连接PO ,由题意知PO 为直三棱柱的高,∠PAO 为PA 与平面ABC所成的角,S △ABC =12×3×3×sin 60°=334. ∴=S △ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1,∴tan ∠OAP =OPOA =3,又0<∠OAP <π2,∴∠OAP =π3.答案 B侧面展开问题1、如图所示,在直三棱柱ABC -A 1B 1C 1中,△ABC 为直角三角形,∠ACB =90°,AC =4,BC =CC 1=3.P 是BC 1上一动点,则CP +PA 1的最小值为________(其中PA 1表示P ,A 1两点沿棱柱的表面距离). 解:由题意知,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可.则A 1、P 、C 三点共线时,CP +PA 1最小,∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +PA 1的最小值为73.答案 (1)823(2)73。
高三数学数列求和试题答案及解析
高三数学数列求和试题答案及解析1.已知数列{an }满足a1=1,a2=-2,an+2=-,则该数列前26项的和为________.【答案】-10【解析】由于a1=1, a2=-2,an+2=-,所以a3=-1,a4=,a5=1,a6=-2,…,所以{an}是周期为4的数列,故S26=6×+1-2=-10.2.已知和均为给定的大于1的自然数,设集合,集合,(1)当时,用列举法表示集合A;(2)设其中证明:若则.【答案】(1) , (2) 详见解析.【解析】(1)本题实质是具体理解新定义,当时,,,再分别对取得到 (2)证明大小不等式,一般利用作差法.,根据新定义:,所以,即.解:当时,,,可得,证明:由及可得所以.【考点】新定义,作差证明不等式,等比数列求和3.已知数列{an }的前n项和为Sn,对任意的n∈N*有Sn=an-,且1<Sk<12,则k的值为()A.2B.2或4C.3或4D.6【答案】B【解析】本题考查等比数列的前n项和,考查考生对数列知识的综合运用能力,属于中档题.首先要根据Sn =an-,推出数列{an}是等比数列并求出其通项公式,然后用前n项和公式表达出Sn,再对选项中k的值逐一进行验证.∵a1=a1-,∴a1=-2.∵an+1=S n+1-S n=(a n+1-a n),∴a n+1=-2a n,数列{a n}是以-2为首项,-2为公比的等比数列,∴an =(-2)n,Sn=(-2)n-.逐一检验即可知k=4或2.4.设数列{an }的前n项和为Sn,点(n,)(n∈N*)均在函数y=x+的图象上,则a2014=()A.2014B.2013C.1012D.1011【答案】A【解析】由题意得=n+,即Sn =n2+n,当n≥2时,an=Sn-Sn-1=n2+n-[ (n-1)2+ (n-1)]=n;当n=1时,a1=S1=1.∴an=n,故a2014=2014,选A.5.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和6.已知数列{an }中,a1=1,an+1=(-1)n(an+1),记Sn为{an}前n项的和,则S2 013=________.【答案】-1 005【解析】由a1=1,an+1=(-1)n(an+1)可得该数列是周期为4的数列,且a1=1,a2=-2,a3=-1,a4=0.所以S2 013=503(a1+a2+a3+a4)+a2 013=503×(-2)+1=-1 005.7.数列的通项,其前n项和为.(1)求;(2)求数列{}的前n项和.【答案】(1);(2)【解析】(1)化简通项公式为,考虑到的值是周期性出现的,而且周期是3,故将数列三项并为一组为+++……+分别求和,进而求;(2)求,观察其特征选择相应的求和方法,通常求数列前n项和的方法有①裂项相消法,在求和过程中相互抵消的办法;②错位相减法,通项公式是等差数列乘以等比数列的形式;③分组求和法,将数列求和问题转化为等差数列求和或者等比数列求和问题;④奇偶并项求和法,考虑数列相邻两项或者相邻几项的特征,进而求和的方法,该题利用错位相减法求和. 试题解析:(1) 由于,,∴;(2)两式相减得:【考点】1、三角函数的周期性;2、数列求和;3、余弦的二倍角公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知,点在函数的图象上,其中(1)证明:数列是等比数列,并求数列的通项公式;(2)记,求数列的前项和.【答案】(1)证明详见解析; ;(2)【解析】(1)把点(an ,an+1)代入f(x)=x2+2x中,整理可得递推公式an+1+1=(an+1)2,两边取常用对数,整理可证是公比为2,a1=2的等比数列,然后由数列的通项公式可推出数列{an}的通项公式.(2)由已知递推公式an+1=an2+2an变形整理得,代入中,整理可得最后利用裂项法求数列的前n项和Sn.试题解析:(Ⅰ)由已知,,两边取对数得,即是公比为2的等比数列.(*)由(*)式得(2)又.【考点】1.数列的递推公式及等比数列的定义和通项公式;2.求数列的前n项和.10.设数列满足,,且对任意,函数满足(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.【答案】(Ⅰ) (Ⅱ)【解析】由所以,是等差数列.而(2)第(1)题,通过求导以及,能够判断出是等差数列是等差数列,由第(1)题的结论能够写出的通项公式,根据的特征,选择求和的方法,利用分组求和的方法即可求出.【考点】考查函数的求导法则和求导公式,等差、等比数列的性质和数列基本量的求解.并考查逻辑推理能力和运算能力.11.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。
专题07 数列求和(解析版)-高考数学计算题型精练(新高考通用版)
数列求和的运算1.等比数列{}n a 的公比为2,且234,2,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)若()21log n n n n b a a a +=⋅+,求数列{}n b 的前n 项和n T .【答案】(1)*2,N n n a n =∈(2)n T 21222;n n n +=++-【详解】(1)已知等比数列{}n a 的公比为2,且234,2,a a a +成等差数列,()32422a a a ∴+=+,()11124228a a a ∴+=+,解得12a =,1*222,N ;n n n a n -∴=⨯=∈(2)()12122log 222log 22212n n n n n n n b n ++=⋅+=+=++,()()()()221221222221212n n n T n n n n -∴=++++++++=+++++- .21222;n n n +=++-2.正项数列{}n a 的前n 项和为n S ,已知221n n n a S a =+.(1)求证:数列{}2n S 为等差数列,并求出n S ,n a ;(2)若(1)nn nb a -=,求数列{}n b 的前2023项和2023T .【答案】(1)n S ;=n a (2)2023T =.【详解】(1)由221n n n a S a =+可得,221121S S =+,又因为n S 为正项数列{}n a 的前n 项和,所以111S a ==,因为1n n n a S S -=-,所以()()21121n n n n n S S S S S ---=-+,所以()22112n n S S n --=≥,数列{}2n S 为等差数列,所以2nS n =,n S ,())112n n a n ⎧==≥,所以n a(2)(1)(1)nn n nb a -==-,202311T =-+-⋅⋅⋅--3.已知数列{}n a 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取11a =,接着复制该项粘贴在后面作为2a ,并添加后继数2作为3a ;再复制所有项1,1,2并粘贴在后面作为4a ,5a ,6a ,并添加后继数3作为7a ,…依次继续下去.记n b 表示数列{}n a 中n 首次出现时对应的项数.(1)求数列{}n b 的通项公式;(2)求12363a a a a ++++ .【答案】(1)21nn b =-(2)120【详解】(1)由题意知:121n n b b +=+,即112(1)n n b b ++=+,且112b +=,所以数列{1}n b +是以112b +=为首项,2为公比的等比数列,所以12n n b +=,则21nn b =-.(2)由(1)可知,662163b =-=,所以6在前63项中出现1次,5在前63项中出现2次,4在前63项中出现224⨯=次,3在前63项中出现428⨯=次,2在前63项中出现8216⨯=次,1在前63项中出现16232⨯=次,所以1236313221638445261120a a a a ++++=⨯+⨯+⨯+⨯+⨯+⨯= .4.已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,(1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前2023项和.【答案】(1)n a n =(2)20232024【详解】(1)设公差为d ,由55a =,515S =,得1145545152a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11a d ==,所以n a n =.(2)由(1)可得()1111111n n n b a a n n n n +===-++,所以122320232024111a a a a a a +++ 1111112023112232023202420242024⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故数列{}n b 的前2023项和为20232024.5.已知{}n a 是首项为2,公差为3的等差数列,数列{}n b 满足114,321n n b b b n +==-+.(1)证明{}n b n -是等比数列,并求{}{},n n a b 的通项公式;(2)若数列{}n a 与{}n b 中有公共项,即存在*,N k m ∈,使得k m a b =成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作{}n c ,求12n c c c +++ .【答案】(1)证明见解析,()*31N n a n n =-∈,()*3Nn n b n n =+∈(2)()()927131262n n n -++()*N n ∈【详解】(1)由题意可得:()()*21331N n a n n n =+-⨯=-∈,而114,321n n b b b n +==-+,变形可得:()()111333,13n n n b n b n b n b +-+=-=--=,故{}n b n -是首项为3,公比为3的等比数列.从而3nn b n -=,即()*3N n n b n n =+∈.(2)由题意可得:313m k m -=+,*,N k m ∈,令31m n =-()*N n ∈,则()312231331331n n k n n ---=+-=+-,此时满足条件,即2,5,8,,31m n =⋯-时为公共项,所以122531n n c c c b b b -+++=+++ ()()()25319271313332531262n n n n n --+=+++++++-=+()*N n ∈.6.设数列{}n a 的前n 项和为n S ,已知()*12N n n S a n +=∈.(1)求{}n a 的通项公式;(2)设,21,2n n a n k b n n k=-⎧=⎨=⎩且*N k ∈,求数列{}n b 的前n 项和为n T .【答案】(1)12n n a -=(2)()12221,234211,2134n n n n n n k T n n k +⎧+-+=⎪⎪=⎨--⎪+=-⎪⎩,*N k ∈【详解】(1)当1n =时,11a =,当2n ≥时,111212n nn n S a S a --+=⎧⎨+=⎩12n n a a -⇒=,所以{}n a 是首项为1,公比为2的等比数列,则12n n a -=.(2)由题设知:12,21,2n n n k b n n k-⎧=-=⎨=⎩,*N k ∈,当n 为偶数时,13124()()n n n T b b b b b b -=+++++++ 022(222)(24)n n -=+++++++ 21(2)34n n n -+=+;当n 为奇数时,13241()()n n n T b b b b b b -=+++++++ 021(222)(241)n n -=+++++++- 1221134n n +--=+;综上,()12221,234211,2134n n n n n n k T n n k +⎧+-+=⎪⎪=⎨--⎪+=-⎪⎩,*N k ∈.7.已知数列{}n a 满足:12a =,且对任意的*n ∈N ,11,,222,.nnn n n a n a a n ++⎧⎪=⎨⎪+⎩是奇数是偶数(1)求2a ,3a 的值,并证明数列2123n a -⎧⎫+⎨⎬⎩⎭是等比数列;(2)设()21N *n n b a n -=∈,求数列{}n b 的前n 项和n T .【答案】(1)21a =,310a =,证明见解析(2)()824193n n T n =--【详解】(1)1212a a ==,3322210a a =+=.由题意得212121212212121288822244332333n n n n n n n n a a a a a ++-+---⎛⎫⎛⎫+=+=+=+=+ ⎪ ⎪⎝⎭⎝⎭,又128033a +=≠,所以数列2123n a -⎧⎫+⎨⎩⎭是等比数列.(2)由(1)知12182433n n n b a --==⋅-.运用分组求和,可得()0121828142444++4333143n n n T n n--=++⋅⋅⋅-=⋅--()824193n n =--.8.已知正项数列{}n a 的前n 项和为n T ,12a =且对任意2n ≥,11,,n n n n a T a a T -成等差数列,又正项等比数列{}n b 的前n 项和为n S ,23413,39S S ==.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足2n n n c T b =⋅,是否存在正整数n ,使129n c c c +++> .若存在,求出n 的最大值;若不存在,请说明理由.【答案】(1)2n a =,n b =113n -⎛⎫⎪⎝⎭(2)不存在,理由见解析【详解】(1)设{}n b 的公比为q ,显然1q ≠,由23413,39S S ==,可得()()2131141311319b q qb q q⎧-⎪=-⎪⎨-⎪=⎪-⎩,解得13q =或14q =-(舍去),又11b =,所以n b =113n -⎛⎫⎪⎝⎭,又对任意2n ≥,11,,n n n n a T a a T -成等差数列,12a =,所以14n n n n a T a T -+=.因为()12n n n a T T n -=-≥,所以()()114n n n n T T T T ---+=,所以2214n n T T --=()2n ≥,故{}2n T 是以214T =为首项,公差4d =的等差数列,所以()24144n T n n =+-⨯=,又0n a >,所以0n T >,所以n T =当2n ≥时,142n n n a T T -==+,1n =时,12a =满足上式,故2n a =.(2)12143n n nn c T b n -⎛⎫=⋅=⨯ ⎪⎝⎭,设12n n K c c c =+++ ,121114812333n K ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1143n n -⎛⎫⨯ ⎪⎝⎭①,123111148123333n K ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11141433n nn n -⎛⎫⎛⎫+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭②,①-②,得122114444333n K ⎛⎫⎛⎫=+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭3111144333n nn -⎛⎫⎛⎫⎛⎫++⨯- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭111341313n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎛⎫⎝⎭⎢⎥=- ⎪⎢⎥⎝⎭-⎢⎥⎣⎦331142233n n n ⎡⎤⎛⎫⎛⎫=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()11119969329333nnn n K n n -⎛⎫⎛⎫=--=-+< ⎪ ⎪⎝⎭⎝⎭,故不存在正整数n ,使129n c c c +++> .9.已知各项均为正数的等比数列{}n a ,其前n 项和为n S ,满足226n n S a +=-,(1)求数列{}n a 的通项公式;(2)记m b 为数列{}n S 在区间()2,m m a a +中最大的项,求数列{}n b 的前n 项和n T .【答案】(1)132n n a -=⨯;(2)222313n n T n +--=⨯.【详解】(1)设{}n a 的公比为q ,则0q >,又226n n S a +=-,当1n =时,1326S a =-,当2n =时,2426S a =-,两式相减可得,2432a a a =-,所以22q q =-,所以2q =或1q =-(舍去),所以1312646S a a =-=-,即13a =,所以等比数列{}n a 的通项公式为132n n a -=⨯;(2)由132n n a -=⨯,226n n S a +=-,可得()()1211632632322n n n n S a ++=-=⨯-=⨯-,所以113n n n S a a ++=-<,又0n a >,所以n n S a ≥,当且仅当1n =时等号成立,所以122m m m m m a S S a S +++≤<<<,所以11323m m m b S ++==⨯-,所以()2341322223n n T n +++=+-+ 22233322212312n n n n ++-⨯⨯-==---.即222313n n T n +--=⨯.10.已知等差数列{}n a 的公差0d >,且满足11a =,1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22,1,n a n n n n b n a a+⎧⎪=⎨⎪⎩为奇数为偶数求数列{}n b 的前2n 项的和2n T .【答案】(1)n a n =(2)21221534412n n T n +=--+【详解】(1)因为1a ,2a ,4a 成等比数列,所以2214a a a =,即2(1)1(13)d d +=⨯+,解得0d =或1d =.因为0d >,所以1d =,所以11(1)n a n n =+⨯-=.(2)由(1)得()2,,1,,2n n n b n n n ⎧⎪=⎨⎪+⎩为奇数为偶数所以2,,111,22n n n b n n n ⎧⎪=⎨⎛⎫- ⎪⎪+⎝⎭⎩为奇数为偶数,所以21232121321242()()n n n n n T b b b b b b b b b b b --=+++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+13211111111(222)22446222n n n -⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦12122222111122222n n --⋅⎛⎫=+- ⎪-+⎝⎭,2121534412n n +=--+,所以数列{}n b 的前2n 项的和21221534412n n T n +=--+.11.设n S 是数列{}n a 的前n 项和,已知30a =,1(1)2n nn n a S ++-=.(1)求1a ,2a ;(2)令12n n n b a a +=+,求2462n b b b b ++++ .【答案】(1)121,3a a ==(2)2122n +-【详解】(1)由1(1)2n nn n a S ++-=得212,a a -=即212,a a =+23242a S +==,即1324a a a +=+,又30a =,所以121,3a a ==,(2)当2n k =时,22122kk k a S ++=,当21n k =-时,221212k k k a S --=-,两式相加可得22121221222k k k k k k a S a S +--=+-++,得221212222k k k k a a -++=+,由于12n n n b a a +=+,所以()()()()32547462622212222n n n b b b b a a a a a a a a +=++++++++++++ ()()()()21436522122222222n n -=++++++++ ()()24621352122222222n n -=+++++++++ ()()21414214221414n n n +--=+=---12.已知{}n a 是递增的等差数列,{}n b 是等比数列,且11a =,22b a =,35b a =,414b a =.(1)求数列{}n a 与{}n b 的通项公式;(2)n *∀∈N ,数列{}n c 满足1122313n n n c a c c b b b ++++⋅⋅⋅+=,求{}n c 的前n 项和n S .【答案】(1)21n a n =-,13n n b -=(2)3n n S =【详解】(1)解:由题意,设等差数列{}n a 的公差为()0d d >,则221b a d ==+,3514b a d ==+,414113b a d ==+,因为数列{}n b 为等比数列,则2324b b b =,即()()()2141113d d d +=++,因为0d >,解得2d =,()()1112121n a a n d n n ∴=+-=+-=-.又因为223b a ==,359==b a ,所以,等比数列{}n b 的公比为323b q b ==,因此,2123n n n b b q --==.(2)解:由1122313n n n c a c c b b b ++++⋅⋅⋅+=,①可得12213c a b ==,所以,13c =,当2n ≥时,112233n n n c a c c b b b -++⋅⋅⋅+=,②①-②得11233n n n n c a a b ++-==,所以,()1122323n n n c b n -+==⋅≥,13c =不满足()1232n n c n -=⋅≥,所以,13,123,2n n n c n -=⎧=⎨⋅≥⎩.当1n =时,113S c ==,当2n ≥时,()()1121613323333313n n n n S ---=+⨯+++=+=- ,13S =也满足()32n n S n =≥,综上所述,对任意的n *∈N ,3nn S =.13.已知数列{}n a 的前n 项和为n S ,且225n n S a n =+-.(1)求数列{}n a 的通项公式;(2)记()21log 2n n b a +=-,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和n T .【答案】(1)122n n a -=+(2)1n n +【详解】(1)当1n =时,111225S a a ==+-,解得13a =,当2n ≥时,()112215n n S a n --=+--.可得()112252215n n n n S S a n a n --⎡⎤-=+--+--⎣⎦,整理得:122n n a a -=-,从而()()12222n n a a n --=-≥,又121a -=,所以数列{}2n a -是首项为1,公比为2的等比数列;所以()1112222n n n a a ---=-⋅=,所以122n n a -=+,经检验,13a =满足122n n a -=+,综上,数列{}n a 的通项公式为122n n a -=+;(2)由(1)得122n n a --=,所以122nn a +-=,所以()21log 2n n b a n +=-=,()1111111n n b b n n n n +∴==-⋅++,所以12233411111n n n T b b b b b b b b +=++++ 11111111.1223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭ 1111nn n =-=++14.已知n S 为数列{}n a 的前n 项和,11a =,且2*,N n n na S n n n -=-∈.(1)求数列{}n a 的通项公式;(2)若()()122121nnn a n a a b +=--,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)21111321n n T +⎛⎫=- ⎪-⎝⎭【详解】(1)因为2n n na S n n -=-,所以211(1)(1)(1)(2)n n n a S n n n ----=---≥,两式相减得1(1)22n n n na n a a n ----=-,化简得12(2)n n a a n --=≥,所以数列{}n a 是以1为首项,2为公差的等差数列,所以1(1)221n a n n =+-⨯=-.(2)()()21212121212111321212121n n n n n n b --+-+⎛⎫==-⎪----⎝⎭,所以12n nT b b b =++¼+335212111111113212121212121n n -+⎛⎫=-+-+⋯+- ⎪------⎝⎭21111321n +⎛⎫=- ⎪-⎝⎭所以21111321n n T +⎛⎫=- ⎪-⎝⎭.15.已知函数{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)求证11n a ⎧⎫-⎨⎬⎩⎭为等比数列,并求n a .(2)对于实数x ,[]x 表示不超过x 的最大整数,求123100123100a a a a ⎡⎤++++⎢⎥⎣⎦ 的值.【答案】(1)证明见解析,332nn na =+(2)5051【详解】(1)因为135a =,1321n n n a a a +=+,所以0n a ≠,所以12113n n n a a a ++=2133n a =+,所以1111113n n a a +⎛⎫-=- ⎪⎝⎭.又因为11213a -=,所以数列11n a ⎧⎫-⎨⎬⎩⎭是首项为23,公比为13的等比数列,所以112112333nn n a -⎛⎫-=⨯⎪=⎝⎭,所以1213n n a =+,所以332n n na =+.(2)因为1213n n a =+,所以1210012310012310024200123100333a a a a +++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅+()1210010010011210023332⨯+⎛⎫=⨯++⋅⋅⋅++ ⎪⎝⎭.设1231001231003333T =+++⋅⋅⋅+,所以234101112310033333T =+++⋅⋅⋅+,所以2310010121111100333333T =+++⋅⋅⋅+-100101100101111100111003311323313⎛⎫⨯- ⎪⎛⎫⎝⎭=-=⨯-- ⎪⎝⎭-,所以1003203443T =-⨯,所以100123123100a a a a +++⋅⋅⋅+100100320320*********.522323=+-=-⨯⨯.因为100203013<<,所以10020310232<<⨯,所以10020350515051.55051.523<-<⨯,所以1001231231005051a a a a ⎡⎤+++⋅⋅⋅+=⎢⎥⎣⎦.16.已知各项均为正数的数列{n a }满足111,23n n a a a -==+(正整数2)n ≥(1)求证:数列{}3n a +是等比数列;(2)求数列{n a }的前n 项和n S .【答案】(1)证明见解析(2)2234n n S n +=--【详解】(1)证明:已知递推公式123n n a a -=+,两边同时加上3,得:()()13232n n a a n -+=+≥,因为0,30n n a a >+>,所以()13223n n a n a -+=≥+,又1340a +=≠,所以数列{}3n a +是以134a +=为首项、以2为公比的等比数列.(2)由(1)113=422n n n a -++⨯=,则()1*23N n n a n +=-∈,所以23112232323n n n S a a a +=++⋅⋅⋅+=-+-+⋅⋅⋅+-()2312223n n+=++⋅⋅⋅+-()2412323412nn n n +⋅-=-=---.17.已知在数列{}n a 中,112a =,且1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)设1n n n n a b a a +=+,数列{}n b 的前n 项和为n T ,求使得425m T ≤的最大整数m 的值;(3)设12nn n na c a -=⋅,求数列{}n c 的前n 项和nQ 【答案】(1)11n a n =+(2)8(3)222n nn Q +=-【详解】(1)由112a =可知112a =,又1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,所以12(1)11n n n a =+-⨯=+,故11n a n =+.(2)1111112112n n n n a n b a a n n n n ++=+=+=+-++++,121111111123341222n n T b b b n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+-+-++-=+- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭,则1142225m T m m =+-≤+,整理得210(2)99(2)100m m +-+-≤,解得18m ≤≤,故满足条件的最大整数m 的值为8.(3)由题得122n n nn n a nc a -==⋅,则2311111232222n n Q n =⨯+⨯+⨯++⨯ ,2311111112(1)22222n n n Q n n +=⨯+⨯++-⨯+⨯ ,两式相减得231111111111122222222n nn n n Q n n ++⎛⎫=++++-⨯=--⨯ ⎪⎝⎭,所以2222222n n n nn nQ +=--=-.18.已知数列{}n a 各项都不为0,前n 项和为n S ,且32n n a S -=,数列{}n b 满足11b =-,1n n b b n +=+.(1)求数列{}n a 和{}n b 的通项公式;(2)令21n nn a b c n =+,求数列{}n c 的前n 项和为nT 【答案】(1)132n n a -⎛⎫= ⎪⎝⎭;()()122nn n b +-=;(2)()138342n n T n -⎛⎫=+-⨯ ⎪⎝⎭【详解】(1)由32n n a S -=,可得()11322n n a S n ---=≥,两式相减得1133n n n n n a a S S a ---=-=,整理得132n n a a -=,因为数列{}n a 各项都不为0,所以数列{}n a 是以32为公比的等比数列.令1n =,则11132a S a -==,解得11a =,故132n n a -⎛⎫= ⎪⎝⎭.由题知1n n b b n +-=,所以()()()()11232211n n n n n b b b b b b b b b b ---=-+-++-+-+ ()()()()21221221122n n n n n n +---=-+-+++-==(2)由(1)得()123212n n n n a b c n n -⎛⎫==- ⎪+⎝⎭,所以()()01112333102222n n n T c c c n -⎛⎫⎛⎫⎛⎫=+++=-⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()()1233331022222nn T n ⎛⎫⎛⎫⎛⎫=-⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相减得()()1133122133312463222212n n n n T n n --⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦-=-+--⨯=-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,所以()138342n n T n -⎛⎫=+-⨯ ⎪⎝⎭.19.已知等比数列{}n a 的公比为2,数列{}n b 满足12b =,23b =,12n n n n n a b a b +-=.(1)求{}n a 和{}n b 的通项公式;(2)记n S 为数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和,证明:13n S ≤<.【答案】(1)2n n a =;1n b n =+(2)证明见解析【详解】(1)当1n =时,12112a b a b -=,又122,3b b ==,解得12a =.所以{}n a 是以2为首项,2为公比的等比数列,故1222n nn a -=⨯=.则1222n n nn n b b +-=,即11n n b b +=+.所以{}n b 是以2为首项,1为公差的等差数列,故()2111n b n n =+-⨯=+.(2)由(1)可得2n n a =,1n b n =+,所以12n n n b n a +=.则2323412222n n n S +=+++⋅⋅⋅+①,23411234122222n n n S ++=+++⋅⋅⋅+②,①-②可得122311111122111111331112222222212n n n n n n n n n S -+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+++⎢⎥⎛⎫⎣⎦=+++⋅⋅⋅+-+-=- ⎪⎝⎭-,所以3332n nn S +=-<.因为111432330222n n n n n n n n S S ++++++-=--+=>,所以{}n S 是递增数列.则113312n S S +≥=-=,故13n S ≤<.20.在数列{}n a 中,11a =-,()*12362,N n n a a n n n -=+-≥∈.(1)求证:数列{}3n a n +为等比数列,并求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析;23nn a n =-;(2)122(1)n n n +--+【详解】(1)()*12362,N n n a a n n n -=+-≥∈ ,∴当2n ≥时,()()11111333263133332233n n n n n n a n a n a n a n n n a n a -----+-+-+===+-++-+-,数列{}3n a n +是首项为132a +=,公比为2的等比数列,32n n a n ∴+=,23n n a n =-;(2)2322n nn n n b a n a n n n=+==-+=-数列{}n b 的前n 项和()()()()12312...222426...22n n n T b b b n =+++=-+-+-++-()()1212122222...2246...222(1)122n n n nn n n n +-+=+++-++++=-⨯=--+-.21.记n S 为数列{}n a 的前n 项和,已知{}11,2n na a =是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:4n S <.【答案】(1)12n n na -=(2)证明见解析【详解】(1)因为11a =,所以122a =,因为{}2nn a 是公差为2的等差数列,所以()22212n n a n n =+-=,所以1222n n n n n a -==.(2)01211232222n n n S -++++=,①所以121112122222n n n n nS --=++++ ,②①-②则2111111122121222222212nn n n n n n n n S --+=++++-=-=-- ,所以12442n n n S -+=-<.22.已知数列{}n a 满足1224n n a a n -=-+(n ≥2,*n ∈N ),14a =.(1)求证:数列{}2-n a n 为等比数列,并求{}n a 的通项公式;(2)求数列(){}1nn a -的前n 项和n S .【答案】(1)证明见解析,22n n a n=+(2)1122,3325,33n n n n n S n n ++⎧+-⎪⎪=⎨⎪---⎪⎩为偶数为奇数【详解】(1)∵1224n n a a n -=-+,∴()112244221n n n a n a n a n ---=-+=--⎡⎤⎣⎦,所以()12221n n a na n --=--,又122a -=,∴{}2-n a n 是首项为2,公比为2的等比数列,∴22nn a n -=,∴22n n a n =+.(2)∵()()()1221n n nn a n -=-+-,∴()()()()12222212341n nn S n ⎡⎤=-+-++-+-+-+-+-⎣⎦,当n 为偶数时,()()()()()()11212222221234212123233nn n n n S n n n n ++⎡⎤----⎣⎦=+-++-+++-++--=+⨯=+-⎡⎤⎣⎦-- .当n 为奇数时,()()()()()()112122222123421121233nn n n S n n n n n ++⎡⎤-----⎣⎦=+-++-+++-++--=+--=-⎡⎤⎣⎦-- 53n --.综上1122,3325,33n n n n n S n n ++⎧+-⎪⎪=⎨⎪---⎪⎩为偶数为奇数.23.已知数列{}n a 是公差为()0d d ≠的等差数列,且满足111,2n n a a xa +==+.(1)求{}n a 的通项公式;(2)设14(1)nn n n nb a a +=-⋅,求数列{}n b 的前10项和10S .【答案】(1)21n a n =-(2)2021-【详解】(1)因为{}n a 是公差为()0d d ≠的等差数列,111,2n n a a xa +==+,所以当1n =时,2122a xa x =+=+,当2n =时,()23222222a xa x x x x =+=++=++,因为3221a a a a -=-,即21x x x +=+,解得1x =±,所以2d =或0d =(舍去),所以()12121n a n n =+-=-;(2)由(1)得,()()14411(1)(1)(1)21212121n n n n n n n n b a a n n n n +⎛⎫=-⋅=-⋅=-⋅+ ⎪-+-+⎝⎭.所以101111111120113355719212121S =--++--+++=-+=- .24.已知数列{}n a 的前n 项和为n S ,且24n n S a =-.(1)求{}n a 的通项公式;(2)求数列{}n nS 的前n 项和n T .【答案】(1)12n n a +=(2)3(1)22(1)8n n T n n n +=--++【详解】(1)因为24n n S a =-,所以当2n ≥时,1124n n S a --=-,两式相减,得1124(24)n n n n S S a a ---=---,整理得12n n a a -=,即2n ≥时,12n n a a -=,又当1n =时,11124S a a ==-,解得14a =,所以数列{}n a 是以4为首项,2为公比的等比数列,所以11422n n n a -+=⨯=.(2)由(1)知1222424n n n S ++=⨯-=-,所以224n n n n nS +=⋅-,令22,4n n n b n c n +=⋅=-,易知,12(1)42(1)2n n n c c c n n ++++=-⨯=-+ ,设数列{}n b 的前n 项和为n K ,则34521222322n n K n +=⨯+⨯+⨯++⋅ ①,456321222322n n K n +=⨯+⨯+⨯++⋅ ②,由①-②,得3456231222222n n n K n ++-=⨯+++++-⋅ ,即4133332(12)2222812n n n n n K n n -+++--=+-⋅=-⋅--,所以413332(12)22(1)2812n n n n K n n -++-=+-⋅=-⋅+-,所以32(1)(1)22(1)8n n n T K n n n n n +=-+=-⋅-++.25.已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n b n a =⋅,求{}n b 的前n 项和n T .【答案】(1)13n n a -=;(2)()21314n nn T -+=.【详解】(1)设数列{}n a 的公比为()0q q >,则()2314321113923a q q q a q a q a q⎧++=⎪⎨=+⎪⎩,0q >,解得113a q =⎧⎨=⎩,所以13n n a -=,即{}n a 的通项公式为13n n a -=;(2)由题可知13n n b n -=⋅,则()12210132333133n n n T n n --=⨯+⨯+⨯++-⨯+⨯ ,()31123132333133n n n T n n -=⨯+⨯+⨯++-⨯+⨯ ,两式相减得:12312133333n nn T n --=+++++-⨯ ()1231133132n n nn n ---=-⨯=-,()21314n nn T -+∴=.26.已知数列{}n a 中,11a =,12n n n a a +=,*n ∈N .(1)求数列{}n a 的通项公式;(2)设22log 3n n b a n =+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S ,求证:34n S <.【答案】(1)(1)22n n na -=(2)证明见解析【详解】(1)解:因为11a =,*1()2n n na a n +=∈N ,所以*12()n n na n a +=∈N ,所以121121n n n n n aaaa a a a a ---=⋅⋅⋅⋅⋅⋅⋅()(1)1211212222122n n n n n -+++---=⋅⋅⋅⋅⋅⋅⋅== 当1n =时,11a =满足条件,所以(1)22n n na -=;(2)因为22log 3n n b a n =+(2)n n =+,所以11111()(2)2+2n b n n n n ==-+,所以111111=(1++)23242n S nn --⋅⋅⋅+-+11111311(1)()22122212n n n n =+--=--++++,所以34n S <.27.数列{}n a 满足2113,2,21n bn n n n a a a a a +=-==+.(1)求证:{}n b 是等比数列;(2)若1n nnc b =+,求{}n c 的前n 项和为n T .【答案】(1)证明见解析(2)22.2n nn T n +=+-【详解】(1)21221,log (1),log (31)2,n bn n n a b a b =+∴=+=+= 212,n n n a a a +=+ ()2211211,n n n n a a a a +∴+=++=+212log (1)2log (1),n n a a +∴+=+1212log (1)2,log (1)n n n n b a b a +++∴==+所以数列{}n b 是以2为首项,2为公比的等比数列.(2)由(1)可得,2nn b =,所以12n nnc =+,设,2n nnd =设其前n 项和为n S ,则12311231,22222n n nn n S --=+++++ ①234111231,222222n n n n nS +-=+++++ ②减②得111312111*********,12222222212nn n n n n n n n S -++⎡⎤⎛⎫-⎢⎥⎪⎝⎭+⎢⎥⎣⎦=++++-=-=-- 所以22,2n nn S +=-所以22.2n n nn T S n n +=+=+-28.已知正数数列{}n a ,11a =,且满足()()2211102n n n n a n a a na n -----=≥.(1)求数列{}n a 的通项公式;(2)设1n nn b a -=,求数列{}n b 的前n 项和n S .【答案】(1)!n a n =(2)11!n S n =-【详解】(1)∵()()2211102n n n n a n a a na n -----=≥,∴()()()1102n n n n a na a a n ---+=≥,又0n a >,∴1n n a na -=,即()12nn a n n a -=≥.又()231121123!2n n n a a aa a n n n a a a -=⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯=≥,且111!a ==,∴!n a n =(2)1!n n b n -=,∴10b =,()()1112!1!!n n b n n n n -==-≥-,1234n nS b b b b b ∴=++++⋅⋅⋅+()111111111011!2!2!3!3!4!1!!!n n n =+-+-+-+⋅⋅⋅+-=--又111101!S b ==-=,∴11!n S n =-.29.已知数列{}n a 、{}n b ,满足1100a =,21n n a a +=,lg n n b a =.(1)求数列{}n b 的通项公式;(2)若22122log log log n n n n c b b b +=+++ ,求数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)2nn b =(2)()231n n S n =+【详解】(1)解:因为21n n a a +=,11001a =>,则2211a a =>,2321a a =>,L ,以此类推可知,对任意的n *∈N ,1n a >,所以21lg lg n n a a +=,即1lg 2lg n n a a +=,12n n b b +=,又因为12b =,所以{}n b 是首项为2,公比为2的等比数列,所以{}n b 的通项公式为1222n nn b -=⨯=.(2)解:2log n b n =,则()()()()()123112222n n n n n n c n n n n +++=++++++==,所以,()122113131n c n n n n ⎛⎫==- ⎪++⎝⎭,故()211111112121132233413131n nS n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ .30.已知数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,数列2n n S a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)证明:121112nS S S +++< .【答案】(1)n a n =(2)证明见解析【详解】(1)因为数列2n n S a ⎧⎫⎨⎬⎩⎭是首项为2,公差为1的等差数列,所以()22111nnSn n a =+-⋅=+,则()21n n S n a =+,得112n n S na --=(2n ≥),两式相减得:()121n n n a n a na -=+-,则11n n a n a n -=-,121121121121n n n n n a a a n n a a n a a a n n ----=⋅⋅⋅⋅=⋅⋅⋅⋅=-- (2n ≥),又11a =适合上式,故n a n =.另解:由()121n n n a n a na -=+-得11n n a a n n -=-(2n ≥),故{}n an为常数列,则111n a a n ==,故n a n =.(2)由(1)得()12n n n S +=,所以()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则12111111111212221222311n S S S n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭ .31.已知在等差数列{}n a 中,14724a a a ++=-,25815a a a ++=-.(1)求数列{}n a 的通项公式;(2)求数列(){}1nn a -的前n 项和n T .【答案】(1)320n a n =-(2)3,22373,212n nn k T n n k ⎧=⎪⎪=⎨-⎪=-⎪⎩且*N k ∈【详解】(1)若等差数列公差为d ,则258147()()39a a a a a a d ++-++==,即3d =,由1474324a a a a ++==-,则48a =-,所以{}n a 的通项公式4(4)83(4)320n a a n d n n =+-=-+-=-.(2)由题设()12341nn n T a a a a a =-+-+-+- ,当n 为偶数,则()()()2143132n n n nT a a a a a a -=-+-++-=;当n 为奇数,则()()()()2143123137332022n n n n n nT a a a a a a a n ----=-+-++--=-+=;所以3,22373,212n nn k T n n k ⎧=⎪⎪=⎨-⎪=-⎪⎩且*N k ∈.32.记数列{}n a 的前n 项和为n S ,已知11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩*k ∈N ,317S a =,423a a =+.(1)求1a ,t ;(2)求数列{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .【答案】(1)11a =,t =2(2)()*31,21,232,22n n n k a k n n k -⎧=-⎪⎪=∈⎨-⎪=⎪⎩N (3)()2*231,21,43,24n n n k S k n n k ⎧+=-⎪⎪=∈⎨⎪=⎪⎩N 【详解】(1)由11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩(*N k ∈)可得,211a a =+,32a a t =+,431a a =+,又317S a =,423a a =+,则()()()111111117,213,a a a t a a t a ⎧+++++=⎪⎨++=++⎪⎩解得11a =,t =2.(2)由11,21,2,2,n n n a n k a a n k ++=-⎧=⎨+=⎩(*k ∈N )可得,当n 为奇数时,212123n n n n a a a a ++=+=++=+,所以数列{}n a 的奇数项是一个公差为3的等差数列,又11a =,则1131322n n n a a --=+⨯=;当n 为偶数时,211213n n n n a a a a ++=+=++=+,所以数列{}n a 的偶数项是一个公差为3的等差数列,又2112a a =+=,则2232322n n n a a --=+⨯=,则()*31,21,232,22n n n k a k n n k -⎧=-⎪⎪=∈⎨-⎪=⎪⎩N .(3)()()2135212462n n n S a a a a a a a a -=+++++++++ 2(1)(1)1323322n n n n n n n --⎡⎤⎡⎤⨯+⨯+⨯+⨯=⎢⎥⎢⎥⎣⎦⎣⎦=.()22*2,21,,2k k n k S a n k S k S n k -=-⎧=∈⎨=⎩N ,则()2*23223,21,23,2n k k n k S k k n k⨯-⎧-=-⎪=∈⎨⎪=⎩N ,即()2*231,21,43,24n n n k S k n n k ⎧+=-⎪⎪=∈⎨⎪=⎪⎩N .33.数列{}n a 中,11a =,且121n n a a n +=+-.(1)证明:数列{}n a n +为等比数列,并求出n a ;(2)记数列{}n b 的前n 项和为n S .若2n n n a b S +=,求11S .【答案】(1)证明见详解,2nn a n =-(2)1360【详解】(1)因为121n n a a n +=+-,则()()()()1212211n n n n n n a a n n a n a a nn n n a ++++++==-+++=+,且112a +=,所以数列{}n a n +是以首项为2,公比为2的等比数列,故1222n n n a n -+=⨯=,可得2n n a n =-.(2)因为22n n n n n S a b b n =+=+-,即22nn n S b n =+-,当1n =时,则1121b b =+,解得11b =;当2n ≥时,则111221n n n S b n ---=+-+,两式相减得:11221n n n n b b b --=-+-,整理得1121n n n b b --+=-;所以()()()111234511123451011S b b b b b b b b b b b b b =+++++⋅⋅⋅+=+++++⋅⋅⋅++()()()()241024681012121212222241360=+-+-+⋅⋅⋅+-=++++-=,即111360S =.34.已知数列{}n a 满足13a =,1121n n n a a a ++-=.(1)记11n n b a =-求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)32n b n =-(2)412nn-【详解】(1)1121n n n a a a ++-= ,112n na a +∴=-,又11n n b a =- ,11111111111221n n n n n n nb b a a a a a ++∴====-=-------,又111112b a ==-,所以数列{}n b 是以12为首项,1-为公差的等差数列,所以数列{}n b 的通项公式为13(1)22n b n n =--=-.(2)由(1)得111113113()()2222n n b b n n n n +==-----,所以数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为12233411111n n b b b b b b b b +++++ =11111111131313*********2222222n n -+-+-++--------- 1141312122nn n =-=---.35.已知等比数列{}n a 的前n 项和为n S ,且12n +,n S ,a 成等差数列.(1)求a 的值及数列{}n a 的通项公式;(2)若()21n n b n a =-求数列{}n b 的前n 项和nT 【答案】(1)2a =-,12n n a -=,*N n ∈;(2)()3232n n T n =+-⋅【详解】(1)12n + ,n S ,a 成等差数列,122n n S a +∴=+,即22n n a S =+,当1n =时,11224a S a ==+,即122a a =+,当2n ≥时,11122222nn n n n n a aa S S ---=-=+--=,{}n a 是等比数列,11a ∴=,则212a+=,得2a =-,∴数列{}n a 的通项公式为12n n a -=,*N n ∈;(2)()()121212n n n b n a n -=-=-⋅,则前n 项和0121123252(21)2n n T n -=⋅+⋅+⋅++-⋅ ,1232123252(21)2n n T n =⋅+⋅+⋅++-⋅ ,两式相减可得2112(222)(21)2n nn T n --=++++--⋅ 12(12)12(21)212n n n --=+⋅--⋅-,化简可得()3232nn T n =+-⋅.36.已知数列{}n a 和{}n b ,12a =,111n nb a -=,12n n a b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)221n n n a =-,1221n n n b +=-(2)2222n n n T n n +=+-+【详解】(1)由12a =,111n nb a -=,12n n a b +=得1211n n a a +-=,整理得1111112n n a a +⎛⎫-=- ⎪⎝⎭,而111102a -=-≠,所以数列11n a ⎧⎫-⎨⎬⎩⎭是以12-为首项,公比为12的等比数列,所以111111222n nn a -⎛⎫-=-=-⎪⎝⎭,221nn na ∴=-,1112221nn n n b a ++∴==-.(2)121222n nn n n nn n b +-=⋅=-,设212222n n n S =+++ ,则2311122222n n nS +=+++ ,两式相减得2111111111122211222222212n n n n n n n n n S +++⎛⎫- ⎪+⎝⎭=+++-=-=-- ,从而222n nn S +=-()2222222n n nn n n T S n n ++∴=-=+-+.37.等比数列{}n a 的前n 项和为n S ,已知11a =,且23331,,a a S -成等差数列.(1)求{}n a 的通项公式;(2)若12n n a bn a +=,数列{}n b 的前n 项和n T .【答案】(1)14n n a -=(2)13286994n n n T -+=-⨯【详解】(1)设等比数列{}n a 的公比为q ,因为23331,,a a S -成等差数列,所以32321323141a a S a a a =-+=-++,因为11a =,所以324a a =,即324a q a ==,所以1114n n n a a q --==.(2)由(1)得14nn a +=,因为12n n a bn a +=,所以2422n n a b n n ==,所以2n n a b n =,即1224n n n n n b a -==;101224644424n n n T -=+++ ,1231424424644n n n T =+++ ,两式相减可得12313222224442444nn n T n -=+++++- 1211211214444nn n -⎛⎫=++++- ⎪⎝⎭ 114212144n nn ⎛⎫- ⎪=-⎪ ⎪-⎝⎭8244833nnn =--⨯863483nn +=-⨯;所以13286994n n n T -+=-⨯.38.已知数列{}n a 的前n 项和为n S ,0n a >,且满足()241n n S a =+.(1)求数列{}n a 的通项公式;(2)设14nn n n S b a a +=的前n 项和为n T ,求n T .【答案】(1)21n a n =-(2)22221n n nT n +=+【详解】(1)因为()241n n S a =+,当2n ≥时,()21141n n S a --=+,两式作差得()()221121241212n n n n n n n a a a a a a a ---=+-=+--+,即221122n n n n a a a a --+=-,又0n a >,所以,当2n ≥时,12n n a a --=,又当1n =时,()21141a a =+,解得11a =,可知数列{}n a 是以首项为1,公差为2的等差数列,所以1(1)2n a n =+-⨯,即21n a n =-(2)由(1)知2(121)2n n n S n +-==,所以221444111111()(21)(21)(21)(21)22121n n n n S n n b a a n n n n n n +-+====+--+-+-+,22111111211(2131112)(1235)2112212n n n n n n T b b n n n n b =+++=-+-+-++=+-=+++-+ .39.已知数列{}n a 满足:()1113,2n n n a a a n n++==+.(1)证明:数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列;(2)设n n c a n =+,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析(2)()2124n n T n +=-+【详解】(1)设1n n a b n =+,则1111,41n n ab b n ++=+=+,且0n b ≠,因为121n n a a nn n ++=+,所以112121211n nn n nn a a b n n a a b nn+++++===++,即{}n b 是以4为首项,2为公比的等比数列,则数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列.(2)由(1)知11422n n n b -+=⨯=,则12n n a n n +=⋅-,即12n n c n +=⋅,则23112222n n T n +=⨯+⨯++⨯ ,()212222122n n n T n n ++=⨯++-⨯+⨯ ,两式相减得:()()1223224121242222212n n n n n n T n n n ++++-=-=----=+++-⨯⨯ ,所以()2124n n T n +=-+.40.已知正项等差数列{}n a 的前n 项和为n S ,其中24n n a a +-=,2224(1)(1)S a +=+.(1)求数列{}n a 的通项公式及n S ;(2)若134n n n b a -⎛⎫=⋅ ⎪⎝⎭,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =+,()2n S n n =+;(2)()3364294nn T n ⎛⎫=-+⋅ ⎪⎝⎭【详解】(1)设等差数列的首项为1a ,公差为d ,则224n n a a d +-==,则2d =,因为2224(1)(1)S a +=+,所以()()2114233a a +=+,。
2020届高考数学(理科)总复习课时跟踪练(三十五)数列求和含解析
课时跟踪练(三十五)A 组 基础巩固1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .答案:A2.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A .9B .99C .10D .100解析:因为a n =1n +n +1=n +1-n ,所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1,令n +1-1=9,得n =99,故选B. 答案:B3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里解析:由题意,知每天所走路程形成以a 1为首项,公比为12的等比数列,则a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=96,即第二天走了96里.故选B.答案:B4.(2019·广州综合测试〈二〉)数列{a n }满足a 2=2,a n +2+(-1)n +1a n=1+(-1)n (n ∈N *),S n 为数列{a n }的前n 项和,则S 100=( )A .5 100B .2 550C .2 500D .2 450解析:由a n +2+(-1)n +1a n =1+(-1)n (n ∈N *),可得a 1+a 3=a 3+a 5=a 5+a 7=…=0,a 4-a 2=a 6-a 4=a 8-a 6=…=2,由此可知,数列{a n }的奇数项相邻两项的和为0,偶数项是首项为a 2=2、公差为2的等差数列,所以S 100=50×0+50×2+50×492×2=2 550,故选B.答案:B5.已知函数f (x )=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=( )A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1解析:由f (4)=2得4a=2,解得a =12,则f (x )=x 12.所以a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 020- 2 019)= 2 020-1.答案:C6.设数列{a n }的前n 项和为S n ,且a n =sin n π2,n ∈N *,则S 2 019=________.解析:a n =sin n π2,n ∈N *,显然每连续四项的和为0.S 2 019=S 4×504+a 2 017+a 2 018+a 2 019=0+1+0+(-1)=0. 答案:07.计算:3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 解析:设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+⎝ ⎛⎭⎪⎫122+123+…+12n -n +22n +1.所以S =3+⎝ ⎛⎭⎪⎫12+122+…+12n -1-n +22n=3+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-n +22n=4-n +42n .答案:4-n +42n8.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则,k =1) 1S k=________.解析:设等差数列{a n }的公差为d ,则由⎩⎨⎧a 3=a 1+2d =3,S 4=4a 1+4×32d =10,得⎩⎪⎨⎪⎧a 1=1,d =1.所以S n =n ×1+n (n -1)2×1=n (n +1)2,1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1. 所以,k =1) 1S k =1S 1+1S 2+1S 3+…+1S n=2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 答案:2n n +19.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解:(1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27,所以b n =3n -1(n =1,2,3,…).设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2. 所以a n =2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n1-3=n 2+3n -12.10.(2019·深圳一模)设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.(1)解:因为a n +1=2+S n (n ∈N *), 所以a n =2+S n -1(n ≥2). 所以a n +1-a n =S n -S n -1=a n , 所以a n +1=2a n (n ≥2),又因为a 2=2+a 1=4,a 1=2,所以a 2=2a 1, 所以数列{a n }是以2为首项,2为公比的等比数列, 则a n =2·2n -1=2n (n ∈N *).(2)证明:因为b n =1+log 2(a n )2,则b n =2n +1. 则1b n b n +1=12⎝ ⎛⎭⎪⎫12n +1-12n +3,所以T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3<16. B 组 素养提升11.已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( ) A .250 B .200 C .150D .100解析:n =2k (k ∈N *)时,a 2k +1-a 2k =2,n =2k -1(k ∈N *)时,a 2k +a 2k-1=2,n =2k +1(k ∈N *)时,a 2k +2+a 2k +1=2,所以a 2k +1+a 2k -1=4,a 2k +2+a 2k =0,所以{a n }的前100项和=(a 1+a 3)+…+(a 97+a 99)+(a 2+a 4)+…+(a 98+a 100)=25×4+25×0=100.故选D.答案:D12.(2019·郑州毕业班质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n =1S 1+1S 2+…+1S n (n ∈N *),则T 2 018=( )A.4 0342 018B.2 0172 018C.4 0362 019D.2 0182 019解析:因为a n +2-2a n +1+a n =0, 所以a n +2+a n =2a n +1,所以数列{a n }是等差数列,又a 1=1,a 2=2, 所以d =1,则a n =n ,S n =(1+n )·n2,所以1S n =2n ·(n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,所以T n =1S 1+1S 2+…+1S n =2(11-12+12-13+…+1n -1n +1)=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,则T 2 018=4 0362 019.故选C. 答案:C13.(2019·广东六校联盟联考)已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *),则数列{na n }的前n 项和T n 为________.解析:因为S n =2a n -1(n ∈N *)所以n =1时,a 1=2a 1-1,解得a 1=1,n ≥2时,a n =S n -S n -1=2a n -1-(2a n -1-1),化为a n =2a n -1, 所以数列{a n }是首项为1,公比为2的等比数列, 所以a n =2n -1.所以na n =n ·2n -1.则数列{na n }的前n 项和T n =1+2×2+3×22+…+n ·2n -1. 2T n =2+2×22+…+(n -1)×2n -1+n ·2n ,两式相减得-T n =1+2+22+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )·2n -1,所以T n =(n -1)2n +1. 答案:(n -1)2n +114.(2019·广州一模)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a nb n =5-(4n +5)·⎝ ⎛⎭⎪⎫12n ,求数列{b n }的前n 项和T n .解:(1)由题意可得,S nn=1+2(n -1),可得S n =2n 2-n .所以n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. n =1时,a 1=1对上式也成立. 所以a n =4n -3(n ∈N *).(2)a 1b 1+a 2b 2+…+a nb n =5-(4n +5)⎝ ⎛⎭⎪⎫12n ,所以n ≥2时,a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)·⎝ ⎛⎭⎪⎫12n -1, 相减可得,a nb n =(4n -3)×⎝ ⎛⎭⎪⎫12n (n ≥2),又a 1b 1=12满足上式,所以a nb n =(4n -3)×⎝ ⎛⎭⎪⎫12n (n ∈N *).所以b n =2n,所以数列{b n }的前n 项和T n =2(1-2n )1-2=2n +1-2.。
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
高考数列求和专项训练及解答(2020年整理).pptx
(2)bn= =2n•( )n﹣1,
Tn=2×( )0+4×( )1+6×( )2+…+2(n﹣1)•( )n 2+2﹣n•( )n 1……﹣………………
学海无 涯
① Tn=2×( )1+4×( )2+6×( )3+…+2(n﹣1)•( )n﹣1+2n•( )n…………………… ② ①﹣②得: Tn=2×[( )0+2( )1+( )2+…+( )n﹣1]﹣2n•( )n
=1﹣ , 由 Tn= ,可得 n=20, 故选:B. 【点评】本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:
裂项相消求和,考查运算能力,属于中档题.
二.解答题(共 5 小题) 4.已知数列{an}的通项是 an=2n﹣1.
学海无 涯
1 求数列{an}的前 n 项和为 Sn
2 设数列
的前 n 项和为 Tn,求 Tn.
【分析】(1)利用等差数列的通项公式求解数列的和即可. (2)利用错位相减法求解数列的和即可. 【解答】(12 分) 解:(1)∵an=2n﹣1,∴a1=1,
∴
(2)
①,
②
①减②得本题主要考查数列通项公式和前 n 项和的求解,利用错位相减法的应用, 考查计算能力.
5.已知正项数列满足 4Sn=an2+2an+1.
1 求数列{an}的通项公式;
2 设 bn=
,求数列{bn}的前 n 项和 Tn.
【分析】(1)由
,可知当 n≥2 时,
,两
式作差可得 an﹣an﹣1=2(n≥2),再求出首项,代入等差数列的通项公式可得 数列{an}的通项公式;
08、2020版高考数学大二轮培优理科通用版能力升级练(八) 数列求和与数列综合问题 Word版含解析
能力升级练(八)数列求和与数列综合问题一、选择题1.已知数列{a n}满足:任意m,n∈N*,都有a n·a m=a n+m,且a1=,那么a5=()A. B.C. D.解析由题意,得a2=a1a1=,a3=a1·a2=,则a5=a3·a2=.答案A2.(2019江西重点中学盟校联考)在数列{a n}中,a1=-,a n=1-(n≥2,n∈N*),则a2 019的值为()A.-B.5C. D.解析在数列{a n}中,a1=-,a n=1-(n≥2,n∈N*),所以a2=1-=5,a3=1-,a4=1-=-,所以{a n}是以3为周期的周期数列,所以a2 019=a673×3=a3=.答案C3.已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+1(n∈N*),则S5=()A.31B.421C.37D.47解析由题意,得S n+1-S n=S n+1(n∈N*),∴S n+1+1=2(S n+1)(n∈N*),故数列{S n+1}为等比数列,其首项为3,公比为2,则S5+1=3×24,所以S5=47.答案D4.(2019四川成都诊断)已知f(x)=数列{a n}(n∈N*)满足a n=f(n),且{a n}是递增数列,则a的取值范围是()A.(1,+∞)B.C.(1,3)D.(3,+∞)解析因为{a n}是递增数列,所以解得a>3,则a的取值范围是(3,+∞).答案D5.(2017全国Ⅲ,理9)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.-24B.-3C.3D.8解析设等差数列的公差为d,则d≠0,=a2·a6,即(1+2d)2=(1+d)(1+5d),解得d=-2,所以S6=6×1+×(-2)=-24,故选A.答案A26.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.答案B7.数列{a n}的通项公式是a n=,前n项和为9,则n等于()A.9B.99C.10D.100解析因为a n=,所以S n=a1+a2+…+a n=()+()+…+()+()=-1,令-1=9,得n=99.答案B8.(2019山东德州调研)已知T n为数列的前n项和,若m>T10+1 013恒成立,则整数m的最小值为() A.1 026 B.1 025 C.1 024 D.1 023解析∵=1+,∴T n=n+1-,∴T10+1 013=11-+1 013=1 024-,又m>T10+1 013恒成立,3∴整数m的最小值为1 024.答案C9.(2019福建厦门质检)已知数列{a n}满足a n+1+(-1)n+1a n=2,则其前100项的和为()A.250B.200C.150D.100解析当n=2k(k∈N*)时,a2k+1-a2k=2,当n=2k-1(k∈N*)时,a2k+a2k-1=2,当n=2k+1(k∈N*)时,a2k+2+a2k+1=2,∴a2k+1+a2k-1=4,a2k+2+a2k=0,∴{a n}的前100项和=(a1+a3)+…+(a97+a99)+(a2+a4)+…+(a98+a100)=25×4+25×0=100.答案D二、填空题10.若数列{a n}的前n项和S n=3n2-2n+1,则数列{a n}的通项公式a n=.解析当n=1时,a1=S1=3×12-2×1+1=2;当n≥2时,a n=S n-S n-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5,显然当n=1时,不满足上式.故数列的通项公式为a n=答案11.在数列{a n}中,a1=2,+ln,则a n=.解析由题意,得=ln(n+1)-ln n,=ln n-ln(n-1)(n≥2).∴=ln 2-ln 1,=ln 3-ln 2,…,=ln n-ln(n-1)(n≥2).4累加,得=ln n,∴=2+ln n(n≥2),又a1=2适合=2+ln n,故a n=2n+n ln n.答案2n+n ln n12.(2019湖北武汉质检)设数列{(n2+n)a n}是等比数列,且a1=,a2=,则数列{3n a n}的前15项和为.解析等比数列{(n2+n)a n}的首项为2a1=,第二项为6a2=,故公比为,所以(n2+n)a n=·,所以a n=,则3n a n=,其前n项和为1-,当n=15时,为1-.答案13.等差数列{a n}的前n项和记为S n,若S4≥4,S7≤28,则a10的最大值为.解析∵等差数列{a n}的前n项和为S n,S4≥4,S7≤28,∴即∴∴≤a10≤4+6d,∴≤4+6d,解得d≤2,5∴a10≤4+6×2=16.答案16三、解答题14.求和S n =+…+(x≠0).解当x≠±1时,S n =+…+=x 2+2++x4+2++…+x2n+2+=(x2+x4+…+x2n)+2n++…+=+2n=+2n.当x=±1时,S n=4n.15.设数列{a n}的前n项和为S n,a1=2,a n+1=2+S n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=1+log2(a n)2,求证:数列的前n项和T n<.(1)解因为a n+1=2+S n(n∈N*),所以a n=2+S n-1(n≥2),6所以a n+1-a n=S n-S n-1=a n,所以a n+1=2a n(n≥2).又因为a2=2+a1=4,a1=2,所以a2=2a1,所以数列{a n}是以2为首项,2为公比的等比数列,则a n=2·2n-1=2n(n∈N*).(2)证明因b n=1+log2(a n )2,则b n =2n+1.则,所以T n=+…+==.7。
2020版高考数学(理科)大一轮精准复习精练:6.4数列求和、数列的综合应用含解析
6.4 数列求和、数列的综合应用挖命题【考情探究】分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.破考点【考点集训】考点一数列求和1.(2017湖南郴州第一次教学质量监测,6)在等差数列{a n}中,a4=5,a7=11.设b n=(-1)n·a n,则数列{b n}的前100项之和S100=( )A.-200B.-100C.200D.100答案D2.(2018湖北东南省级示范高中联考,15)已知S n为{a n}的前n项和,若a n(4+cos nπ)=n(2-cos nπ),则S88等于.答案23323.(2018江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足a n b n=1,a n=n2+3n+2,则{b n}的前2018项和为.答案考点二数列的综合应用1.(2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比均为3,则++=( )A.64B.32C.38D.33答案D2.(2017陕西西安铁一中第五次模拟,9)已知数列{a n}满足a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·a n为整数的数n叫做“优数”,则在区间(1,2004)内的所有“优数”的和为( )A.1024B.2003C.2026D.2048答案C3.已知a n=3n(n∈N*),记数列{a n}的前n项和为T n,若对任意的n∈N*,k≥3n-6恒成立,则实数k的取值范围是.答案k≥炼技法【方法集训】方法1 错位相减法求和1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为.答案52.(2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为S n,点(n,S n)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C.(1)求数列{a n}的通项公式;(2)记b n=a n(-+1),求数列{b n}的前n项和T n.解析(1)设数列{a n}的公差为d,则S n=na1+-d=n2+-n,又S n=n2+Bn+C-1,两式对照得解得-所以a1=1,所以数列{a n}的通项公式为a n=2n-1(n∈N*).(2)由(1)知b n=(2n-1)(2·2n-1-1+1)=(2n-1)2n,则T n=1×2+3×22+…+(2n-1)·2n,2T n=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,两式相减得T n=(2n-1)·2n+1-2(22+…+2n)-2=(2n-1)·2n+1-2×---2=(2n-3)·2n+1+6.方法2 裂项相消法求和1.(2018湖南株洲醴陵第二中学、第四中学联考,3)数列的前2017项的和为( )A.+1B.-1C.+1D.-1答案B2.(2018湖南邵阳期末,15)设数列{(n2+n)a n}是等比数列,且a1=,a2=,则数列{3n a n}的前15项和为.答案3.(2017广东潮州二模,16)已知S n为数列{a n}的前n项和,a n=2·3n-1(n∈N*),若b n=,则b1+b2+…+b n= .答案--过专题【五年高考】A组统一命题·课标卷题组考点一数列求和1.(2017课标Ⅱ,15,5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则= .答案2.(2015课标Ⅰ,17,12分)S n为数列{a n}的前n项和.已知a n>0,+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.解析(1)由+2a n=4S n+3,可知+2a n+1=4S n+1+3.可得-+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=-=(a n+1+a n)(a n+1-a n).由于a n>0,所以a n+1-a n=2.又由+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1.(6分)(2)由a n=2n+1可知b n===-.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=-+-+…+-=.(12分)思路分析(1)由+2a n=4S n+3,得+2a n+1=4S n+1+3,两式相减得出递推关系,再求出a1,利用等差数列的通项公式可得通项.(2)利用裂项相消法求T n-.考点二数列的综合应用1.(2017课标Ⅰ,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110答案A2.(2016课标Ⅱ,17,12分)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1000项和.解析(1)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(6分)(2)因为b n=(9分)所以数列{b n}的前1000项和为1×90+2×900+3×1=1893.(12分)思路分析(1)先求公差,从而得通项a n,再根据已知条件求b1,b11,b101.(2)分析出{b n}中项的规律,进而求出数列{b n}的前1000项和.B组自主命题·省(区、市)卷题组考点一数列求和1.(2018天津,18,13分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{a n}和{b n}的通项公式;(2)设数列{S n}的前n项和为T n(n∈N*).(i)求T n;(ii)证明=-2(n∈N*).解析(1)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以,数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.(2)(i)由(1),有S n==2n-1,故T n=--=-n=2n+1-n-2.(ii)证明:因为=--==-,所以,=-+-+…+-=-2.2.(2016山东,18,12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=,求数列{c n}的前n项和T n.解析(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5.当n=1时,a1=S1=11,所以a n=6n+5.设数列{b n}的公差为d.由即可解得b1=4,d=3.所以b n=3n+1.(2)由(1)知c n==3(n+1)·2n+1.又T n=c1+c2+…+c n,得T n=3×[2×22+3×23+…+(n+1)×2n+1],2T n=3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×-=-3n·2n+2.所以T n=3n·2n+2.考点二数列的综合应用1.(2015福建,8,5分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )A.6B.7C.8D.9答案D2.(2018浙江,20,15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解析(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=--解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)·-,故b n-b n-1=(4n-5)·-,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)·-+(4n-9)·-+…+7·+3.设T n=3+7·+11·+…+(4n-5)·-,n≥2,T n=3·+7·+…+(4n-9)·-+(4n-5)·-,所以T n=3+4.+4.+ (4)--(4n-5)·-,因此T n=14-(4n+3)·-,n≥2,又b1=1,所以b n=15-(4n+3)·-.C组教师专用题组考点一数列求和1.(2017天津,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).解析(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n=-×4n+1+.所以,数列{a2n b2n-1}的前n项和为-×4n+1+.方法总结(1)等差数列与等比数列中有五个量a1,n,d(或q),a n,S n,一般可以“知三求二”,通过列方程(组)求关键量a1和d(或q),问题可迎刃而解.(2)数列{a n}是公差为d的等差数列,{b n}是公比q≠1的等比数列,求数列{a n b n}的前n项和适用错位相减法.2.(2015湖北,18,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故--或-(2)由d>1,知a n=2n-1,b n=2n-1,故c n=--,于是T n=1+++++…+--,①T n=+++++…+-.②①-②可得T n=2+++…+---=3-,故T n=6--.3.(2015天津,18,13分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=-,n∈N*,求数列{b n}的前n项和.解析(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=-;当n=2k(k∈N*)时,a n=a2k=2k=.所以,{a n}的通项公式为a n=-为奇数为偶数(2)由(1)得b n=-=-.设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×-+n×-,S n=1×+2×+3×+…+(n-1)×-+n×,上述两式相减,得S n=1+++…+--=-=2--,整理得,S n=4--.所以,数列{b n}的前n项和为4--,n∈N*.4.(2014江西,17,12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a nb n+1-a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解析(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以-=2,即c n+1-c n=2.所以数列{c n}是以1为首项,2为公差的等差数列,故c n=2n-1.(2)由(1)及b n=3n-1知a n=c n b n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1·30+3·31+5·32+…+(2n-1)·3n-1,3S n=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.5.(2014山东,19,12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1,求数列{b n}的前n项和T n.解析(1)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,所以由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)b n=(-1)n-1=(-1)n-1-=(-1)n-1-.当n为偶数时,T n=-+…+----=1-=.当n为奇数时,T n=-+…--+-+-+=1+=.所以T n=为奇数为偶数或-考点二数列的综合应用1.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.答案272.(2018江苏,20,16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d 的取值范围(用b1,m,q表示).解析(1)由条件知a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得≤d≤.因此,d的取值范围为.(2)由条件知:a n=b1+(n-1)d,b n=b1q n-1.若存在d∈R,使得|a n-b n|≤b1(n=2,3,…,m+1)均成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d满足---b1≤d≤--b1.因为q∈(1,],所以1<q n-1≤q m≤2,从而---b1≤0,--b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列---的最大值和数列--的最小值(n=2,3,…,m+1).①当2≤n≤m时,-----=----=----,当1<q≤时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,数列---单调递增,故数列---的最大值为-.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,--=-≤=f<1.因此,当2≤n≤m+1时,数列--单调递减,故数列--的最小值为.因此,d的取值范围为-.3.(2015安徽,18,12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=…-,证明:T n≥.解析(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2.从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-=.(2)证明:由题设和(1)中的计算结果知T n=…-=…-.当n=1时,T1=.当n≥2时,因为-=-=->--=-=-.所以T n>×××…×-=.综上可得对任意的n∈N*,均有T n≥.4.(2015陕西,21,12分)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=+;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.解析(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1+++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F'n(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,即-2=0,故x n=+.(2)由题设知,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时,f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1--.若0<x<1,则h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,则h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).5.(2015重庆,22,12分)在数列{a n}中,a1=3,a n+1a n+λa n+1+μ=0(n∈N+).(1)若λ=0,μ=-2,求数列{a n}的通项公式;(2)若λ=(k0∈N+,k0≥2),μ=-1,证明:2+<<2+.解析(1)由λ=0,μ=-2,得a n+1a n=2(n∈N+).若存在某个n0∈N+,使得=0,则由上述递推公式易得-=0.重复上述过程可得a1=0,此与a1=3矛盾,所以对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故a n=a1q n-1=3·2n-1.(2)证明:若λ=,μ=-1,则数列{a n}的递推关系式变为a n+1a n+a n+1-=0,变形为a n+1=(n∈N+).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0因为a n+1==-=a n-+·,所以对n=1,2,…,k0求和得=a1+(a2-a1)+…+(-)=a1-k0·+·>2+·个=2+.另一方面,由上已证的不等式知a1>a2>…>>>2,得=a1-k0·+·<2+·个=2+.综上,2+<<2+.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届江西抚州七校高三10月联考,11)已知数列{a n}的前n项和为S n,且满足a1=a2=1,S n=a n+2-1,则下列命题错误的是( )A.a n+2=a n+1+a nB.a1+a3+a5+…+a99=a100C.a2+a4+a6+…+a98=a99D.S1+S2+S3+…+S98=S100-100答案C2.(2019届山西太原高三阶段性考试,10)已知集合P={x|x=2n,n∈N*},Q={x|x=2n-1,n∈N*},将P∪Q中的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n<1 000成立的n的最大值为( )A.9B.32C.35D.61答案C3.(2018福建厦门第一学期期末质检,7)已知数列{a n}满足a n+1+(-1)n+1a n=2,则其前100项和为( )A.250B.200C.150D.100答案D4.(2018河北衡水中学八模,8)已知函数f(x)=a x+b(a>0,且a≠1)的图象经过点P(1,3),Q(2,5).当n∈N*时,a n=-,记数列{a n}的前n项和为S n,当S n=时,n的值为( )A.7B.6C.5D.4答案D5.(2018四川南充模拟,11)设数列{a n}的前n项和为S n,已知a1=,a n+1=≤-则S2018等于( )A. B. C. D.答案B6.(2018百校联盟TOP20三月联考,12)已知数列{a n}的通项公式为a n=-为奇数为偶数则数列{3a n+n-7}的前2n项和的最小值为( )A.-B.-C.-D.-答案D二、填空题(每小题5分,共15分)7.(2019届山西太原高三上学期阶段性考试,15)在数列{a n}中,a1=1,a n=-a n-1(n≥2),记S n为数列的前n项和,若S n=,则n= .答案498.(2018安徽皖南八校第三次联考,16)已知数列{a n}的前n项和为S n=2n+1,b n=log2(·),数列{b n}的前n项和为T n,则满足T n>1024的n的最小值为.答案99.(2017河北“五个一名校联盟”二模,16)已知数列{a n}的前n项和为S n,S n=n2+2n,b n=a n a n+1cos[(n+1)π],数列{b n}的前n项和为T n,若T n≥tn2对n∈N*恒成立,则实数t的取值范围是.答案(-∞,-5]三、解答题(共25分)10.(2019届全国I卷五省优创名校联考,17)设数列{a n}的前n项和为S n,a1=3,且S n=na n+1-n2-n. (1)求{a n}的通项公式;,求{b n}的前n项和T n.(2)若数列{b n}满足b n=-解析(1)由条件知S n=na n+1-n2-n,①当n=1时,a2-a1=2;当n≥2时,S n-1=(n-1)a n-(n-1)2-(n-1),②①-②得a n=na n+1-(n-1)a n-2n,整理得a n+1-a n=2.综上可知,数列{a n}是首项为3、公差为2的等差数列,故a n=2n+1.(2)由(1)得b n==-,所以T n=--==-.11.(2018安徽淮南一模,17)已知数列{a n}为等差数列,且a3=5,a5=9,数列{b n}的前n项和为S n=b n+.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n|b n|,求数列{c n}的前n项和T n.解析(1)∵数列{a n}为等差数列,且a3=5,a5=9,∴d=-==2,∴a1=a3-2d=5-4=1,∴a n=1+(n-1)×2=2n-1.∵数列{b n}的前n项和为S n=b n+,∴n=1时,S1=b1+,由S1=b1,解得b1=1,当n≥2时,b n=S n-S n-1=b n-b n-1,∴b n=-2b n-1,∴{b n}是首项为1,公比为-2的等比数列,∴b n=(-2)n-1.(2)c n=a n|b n|=(2n-1)·2n-1,∴数列{c n}的前n项和T n=1×1+3×2+5×22+…+(2n-1)×2n-1,∴2T n=1×2+3×22+5×23+…+(2n-1)×2n,两式相减,得:-T n=1+2(2+22+…+2n-1)-(2n-1)·2n=1+2×-(2n-1)·2n=1+2n+1-4-(2n-1)·2n=-3+(3-2n)·2n,∴T n=(2n-3)·2n+3.易错警示在利用错位相减法求和时,注意相减后的项求和.如本题-T n=1+2(2+22+…+2n-1)-(2n-1)·2n 中,对于2+22+…+2n-1的求解,利用S n=-(q≠1)更好一些.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高三理科数学精准培优专练:数列求和(附解析)例1:已知在数列{}n a 中,11a =,12()n n a a n +=∈*N ,数列{}n b 是公差为3的等差数列,且23b a =.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b -的前n 项和n S .例2:已知数列{}n a 是首项114a =,公比14q =的等比数列,数列{}n b 满足1423log ()n n b a n +=∈*N ,数列{}n c 满足11n n n c b b +=⋅.(1)求证:数列{}n b 为等差数列; (2)求数列{}n c 的前n 项和n S .二、裂项相消法一、公式法例3:已知数列{}n a 的前n 项和为n S ,且122n n S +=-. (1)求数列{}n a 的通项公式; (2)设n nnc a =,求数列{}n c 的前n 项和n T .例4:已知等差数列{}n a 中,3547a a a +=+,1019a =,则数列{cos }n a n π的前2018项和为( )A .1008B .1009C .2017D .2018四、并项求和法三、错位相减法一、选择题1.设等差数列{}n a ,且13a =,2636a a +=,则数列{}n a 的前8项和8S =( ) A .45 B .144 C .164 D .2002.在等比数列{}n a 中,已知13a =,96n a =,189n S =,则n 的值为( ) A .4 B .5 C .6 D .7 3.已知{}n a 是公差为12的等差数列,n S 为{}n a 的前n 项和,若2a ,6a ,14a 成等比数列,则5S =( )A .352 B .35 C .252D .25 4.数列{}n a ,{}n b 都是等差数列,15a =,17b =,且303060a b +=,则{}n n a b +的前30项的和为( )A .1000B .1020C .1040D .1080 5.数列{}n a 的通项公式为cos2n n a π=,n ∈*N ,其前n 项和为n S ,则2016S =( ) A .1008 B .1008- C .1- D .06.已知n S 为数列{}n a 的前n 项和,且21n n S a =-,则数列{}n na 的前10项和为( )A .10921⨯-B .10921⨯+C .11921⨯-D .11921⨯+对点增分集训7.在递减的等差数列{}n a 中,21324a a a =-,113a =,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和的最大值 为( )A .24143 B .1143 C .2413 D .613二、填空题8.已知n S 为数列{}n a 的前n 项和,若12a =,且12n n S S +=,设2log n n b a =,则12231011111b b b b b b +++的值是 . 9.已知函数3()31xx f x =+,()x ∈R ,正项等比数列{}n a 满足501(1)a q =≠,则1299(ln )(ln )(ln )f a f a f a +++等于 .三、解答题10.已知等比数列{}n a ,其前n 项和为n S ,232a a =,531S =. (1)求数列{}n a 的通项公式; (2)若211log n n b a +=,求数列2{}n n b b +的前n 项和n T .11.设数列{}n a 满足12a =,21132n n n a a -+-=⋅. (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S .12.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若21log a ,2,25log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11{}n nn b b a ++-的前n 项和为232n n +. (1)求q 的值; (2)求{}n b 的通项公式; (3)若11(1)(2)n n b c n n +-=++,123n n H c c c c =+++,求n H .例1:【答案】(1)12n n a -=,32n b n =-;(2)232122n n nS n =-+-. 【解析】(1)∵12()n n a a n +=∈*N ,11a =,∴数列{}n a 是公比为2的等比数列,∴11122n n n a --=⨯=,∵等差数列{}n b 的公差为3,22324b a ===,∴2(2)332n b b n n =+-⨯=-. (2)11221212()()()()()n n n n n S a b a b a b a a a b b b =-+-++-=+++-+++21(12)(132)32112222n n n n nn ⨯-+-=-=-+--.例2:【答案】(1)证明见解析;(2)31n nS n =+. 【解析】(1)证明:由已知得14nn a ⎛⎫= ⎪⎝⎭,∴14123log 34nn b n ⎛⎫+== ⎪⎝⎭,∴32n b n =-.故数列{}n b 为等差数列.数列求和 答案(2)111111()(32)(31)33231n n n c b b n n n n +===-⋅-+-+,∴12311111111(1)()()()34477103231n n S c c c c n n ⎡⎤=++++=-+-+-++-⎢⎥-+⎣⎦11(1)33131nn n =-=++. 例3:【答案】(1)2n n a =;(2)12(2)()2n n T n =-+⋅. 【解析】(1)当2n ≥时,1122222n n n n n n a S S +-=-=--+=, 当1n =时,112a S ==,符合上式.综上,2n n a =. (2)1()2n n n n c n a ==⋅, 则前n 项和11112()242n n T n =⋅+⋅++⋅,1111112()2482n n T n +=⋅+⋅++⋅,两式相减可得1111(1)11111122()()122422212n n n n n T n n ++-=+++-⋅=-⋅-, 化简可得12(2)()2nn T n =-+⋅.例4:【答案】D【解析】由题1112637919a d a d a d +=++⎧⎨+=⎩,解得112a d =⎧⎨=⎩,∴21n a n =-,设cos πn n b a n =,则1212cos πcos 2π2b b a a +=+=,3434cos3πcos 4π2b b a a +=+=,∴数列{cos π}n a n 的前2018项和为123420172018()()()n S b b b b b b =++++++2018220182=⨯=.一、选择题 1.【答案】C【解析】等差数列{}n a ,13a =,2611536a a a d a d +=+++=, 联立两式得5d =,88(81)8351642S -=⨯+⨯=. 2.【答案】C【解析】由11n n a a q -=,得1963n q -=.∴15322n q -==.取6n =,2q =,这时663(21)18921S -==-.适合题意. 3.【答案】C【解析】因为2a ,6a ,14a 成等比数列,所以26214a a a =,21115113()()()222a a a +=++, ∴132a =,因此5311255542222S =⨯+⨯⨯⨯=,故选C . 4.【答案】D【解析】{}n n a b +的前30项的和3011223030()()()S a b a b a b =++++++1233012330()()a a a a b b b b =+++++++++13013013013030()30()15()108022a ab b a a b b ++=+=+++=. 5.【答案】D【解析】πcos2n n a =的周期2π4π2T ==,12340(1)100a a a a +++=+-++=,20161234504()0S a a a a =⨯+++=,故选D .6.【答案】B【解析】由21n n S a =-,得11a =.当2n ≥时,112()n n n n n a S S a a --=-=-,∴12n n a a -=. ∴数列{}n a 是首项为1,公比为2的等比数列,∴12n n a -=. ∴数列{}n na 的前10项和为029*********T =⨯+⨯+⨯++⨯①,∴23102122232102T =⨯+⨯+⨯++⨯.②①-②,得102910101012122210210292112T --=++++-⨯=-⨯=-⨯--,故10921T =⨯+. 7.【答案】D【解析】设等差数列{}n a 的公差为d ,则0d <,因为21324a a a =-,113a =, 所以213(132)(13)4d d +=+-,解得2d =-或2d =(舍去), 所以1(1)132(1)152n a a n d n n =+-=--=-,当1520n a n =-≥时,7.5n ≤,所以当7n ≤时,0n a >.因为111(152)(132)n n a a n n +=--111()2215213n n =⨯---, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和111111111()()21311119215213213213n S n n n 1=⨯-+-++-=⨯---------, 当6n =时,n S 取得最大值,最大值为116(1)21313⨯-+=. 二、填空题8.【答案】1910【解析】由12n n S S +=,且112S a ==,得数列{}n S 是首项、公比都为2的等比数列,则2n n S =,当2n ≥时,111222n n n n n n a S S ---=-=-=,12a =不满足上式, 则12,12,2n n n a n -=⎧=⎨≥⎩,所以1,11,2n n b n n =⎧=⎨-≥⎩, 所以1223101111111111223910b b b b b b +++=++++⨯⨯⨯ 111111191(1)()()22239101010=+-+-++-=-=. 9.【答案】992【解析】因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++. 因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====, 即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.∴199298991(ln )(ln )(ln )(ln )(ln )(ln )1f a f a f a f a f a f a +=+==+= 设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++①, 又999998971(ln )(ln )(ln )(ln )S f a f a f a f a =++++②,+①②,得99299S =,所以99992S =. 三、解答题 10.【答案】(1)12n n a -=;(2)3111()4212n T n n =-+++. 【解析】(1)设等比数列{}n a 的公比为q ,则322a q a ==. ∵531S =,∴51(12)3112a -=-,解得11a =, ∴12n n a -=,故数列{}n a 的通项公式为12n n a -=.(2)∵212111log log 2n n n b a n +===,∴21111()(2)22n n b b n n n n +==-++, 11111111111(1)()()()2322423522n T n n =-+-+-++⨯-+11113111(1)()22124212n n n n =+--=-+++++. 11.【答案】(1)212n n a -=;(2)211(31)229n n S n +⎡⎤=-+⎣⎦. 【解析】(1)由已知,当1n ≥时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+ 21232(1)13(222)22n n n --+-=++++=,而12a =,所以数列{}n a 的通项公式为212n n a -=.(2)由212n n n b na n -==⋅知,35211222322n n S n -=⨯+⨯+⨯++⨯①, 从而23521212222n n S n +⋅=⨯+⨯++⨯②, ①-②,得2352121(12)22222n n n S n -+-=++++-⋅,即211(31)229n n S n +⎡⎤=-+⎣⎦.12.【答案】(1)2q =;(2)(1)21nn b n =-⋅+;(3)2222n n H n +=-+. 【解析】(1)21log a ,2,25log a 成等差数列,2125215log log log ()4a a a a +==,215316a a a ==,又因为0n a >,∴34a =,又37S =,∴21211147a q a a q a q ⎧=⎨++=⎩,解得2q =或23q =-(舍). (2)记11n n n n b b d a ++-=,当2n ≥时,223(1)3(1)122n n n n n d n +-+-=-=+, 又∵12d =也符合上式,∴1n d n =+.而31322n n n a a --=⋅=,∴1(1)2n n n b b n +-=+⋅,∴21121321()()()122322n n n n b b b b b b b b n --=+-+-++-=+⋅+⋅++⋅,(2)n ≥, ∴231222232(1)22n n n b n n -=+⋅+⋅++-⋅+⋅两式相减得2112222(1)21n n n n b n n --=++++-⋅=-⋅-, ∴(1)21n n b n =-⋅+,(2)n ≥.而11b =也符合上式,故(1)21n n b n =-⋅+.(3)12111222(1)(2)(1)(2)21n n n n n b n c n n n n n n ++++-⋅===-++++++, 2221232222222n n n n H c c c c n n ++=++++=-=-++。