人教B版高中数学必修四【高三总复习】高中技能特训:4-1平面向量的概念与线性运算()含解析

合集下载

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B )一. 教学内容:平面向量的概念及运算向量的概念、向量的线性运算、向量的分解和向量的坐标运算二. 课标要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义;②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义。

(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义;②掌握平面向量的正交分解及其坐标表示;③会用坐标表示平面向量的加、减与数乘运算;④理解用坐标表示的平面向量共线的条件。

三. 命题走向本讲内容属于平面向量的基础性内容,与平面向量的数量积比较,出题量小。

以选择题、填空题考查本章的基本概念和性质,重点考查向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。

此类题难度不大,分值5~9分。

预测高考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。

【教学过程】一. 基本知识要点回顾1. 向量的概念①向量:既有大小又有方向的量。

向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。

向量的大小即向量的模(长度),记作|AB |,即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

高一数学必修四第二章 平面向量章末总结

高一数学必修四第二章 平面向量章末总结

高一数学必修四第二章平面向量章末总结平面向量是高中数学必修四中的一章内容,主要介绍了平面向量的定义、平面向量的加法、减法、数乘、数量积、向量积等基本运算,以及平面向量的共线、垂直、平行、四边形法则、平面向量的投影等相关概念和定理。

在学习这一章节的过程中,我深刻体会到平面向量的重要性和应用,对于解决实际问题有着很大的帮助。

下面我将对这一章内容进行总结。

第一节平面向量的定义平面向量是一个有大小和方向的量。

平面向量的表示可以用有向线段表示,其中线段代表向量的大小,箭头代表了向量的方向。

平面向量的起点和终点分别叫做向量的始点和终点。

平面向量常用大写字母表示,例如:AB、AC。

平面向量也可以用坐标表示,例如:向量AB的坐标为(3,4),表示向量的起点在原点,终点在坐标点(3,4)处。

平面向量的大小叫做向量的模,用|AB|表示。

第二节平面向量的加法平面向量的加法满足三个定律:1. 交换律:AB + BC = BC + AB.2. 结合律:(AB + BC) + CD = AB + (BC + CD).3. 加法逆元:对于任意的向量AB, 存在向量BA, 使得AB +BA = 0, BA + AB = 0.第三节平面向量的数乘平面向量的数乘即将向量与一个实数进行乘法运算。

加法和数乘的运算统称为线性运算。

数乘满足两个定律:1. 结合律:a(bAB) = (ab)AB.2. 分配律:(a+b)AB = aAB + bAB.第四节平面向量的减法平面向量的减法可以转化为加法和数乘的运算:AB - AC = AB + (-1)AC第五节平面向量的数量积数量积又称为点积,记为AB·CD, 定义为AB·CD = |AB| |CD| cosθ, 其中θ为两个向量的夹角。

第六节平面向量的向量积向量积的结果是一个向量,记为AB×CD,用它来表示与它们夹角θ所在平面的法向量,其大小等于两个向量的模的乘积与夹角θ的正弦值,方向遵循右手螺旋法则。

高中人教B版必修四课件:复习课(三) 平面向量

高中人教B版必修四课件:复习课(三) 平面向量

4.在平行四边形 ABCD 中,AD=1,∠BAD=60°,E 为 CD 的中点.若 AC ·BE =1,则 AB 的长为________. 解析:设| AB|=x,x>0,则 AB·AD=12x.又 AC ·BE =( AD + AB)· AD-12 AB=1-12x2+14x=1,解得 x=12,即 AB 的长为12. 答案:12
(2)解决此类问题要掌握平面向量数量积的两种求法:一是根据 数量积的定义,即 a·b=|a||b|cos θ,二是利用坐标运算,即 a·b=x1x2 +y1y2;同时还要掌握利用数量积求向量的夹角、求向量的长度和判 断两个向量垂直的方法.
[典例] (1)设 a=(1,2),b=(1,1),c=a+kb.若 b⊥c,则
[答案] (1)A (2)C
[类题通法] (1)数量积的计算通常有三种方法:数量积的定义,坐标运 算,数量积的几何意义; (2)可以利用数量积求向量的模和夹角,向量要分解成题中 已知向量的模和夹角进行计算.
[题组训练]
1.已知 a+b+c=0,|a|=2,|b|=3,|c|= 19,则向量 a 与 b
由―O→C =λ―O→A +μ―O→B ,
得(1,0)=λ(0,1)+μ 23,-12= 23μ,λ-12μ,

23μ=1,
λ-12μ=0,
解得μ=2 3 3,
λ=
3 3.
∴λ+μ= 3. 答案: 3
平面向量的数量积
(1)题型既有选择题、填空题,又有解答题,主要考查数量积运 算、向量的垂直等问题,常与平面几何、三角函数、解析几何等知识 交汇命题.
3.如图,半径为 1 的扇形 AOB 的圆心角为 120°, 点 C 在 AB 上,且∠COB=30°.若―O→C =λ―O→A + μ―O→B ,则 λ+μ=________.

高中数学必修四平面向量复习完美

高中数学必修四平面向量复习完美
F1
G
F2
四、思考
5.在物理中,力是一个向量,力的合成 就是向量的加法运算.力也可以分解, 任何一个大小不为零的力,都可以分解 成两个不同方向的分力之和.将这种力 的分解拓展到向量中来,就会形成一个 新的数学理论.
探究(一):平面向量基本定理
思考1:给定平面内任意两个向量e1,e2, 如何求作向量3e1+2e2和e1-2e2?
b a
思考3:把一个向量分解为两个互相垂直 的向量,叫做把向量正交分解.如图,向 量i、j是两个互相垂直的单位向量,向量 a与i的夹角是30°,且|a|=4,以向量i、 j为基底,向量a如何表示?
B a P A
j
O i
思考4:在平面直角坐标系中,分别取与x轴、 y轴方向相同的两个单位向量i、j作为基底, 对于平面内的一个向量a,由平面向量基本定 理知,有且只有一对实数x、y,使得 a= xi+yj.我们把有序数对(x,y)叫做向量a 的坐标,记作a=(x,y).其中x叫做a在x轴上 的坐标,y叫做a在y轴 y 上的坐标,上式叫做向量 a y 的坐标表示.那么x、y的 几何意义如何? j x O i x
B N O C N B
C
A
M
A
O
M
B
N O
B C N
C
A
M
A
O
M
思考4:在上图中,设 = e1 , = e2 , =a,则向量 分别与e1,e2的 关系如何?从而向量a与e1,e2的关系如 何?
思考5:若向量a与e1或e2共线,a还能用 λ1e1+λ2e2表示吗? a =0 e1 + λ 2 e2
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.

高中数学必修4平面向量知识点

高中数学必修4平面向量知识点

高中数学必修4平面向量知识点平面向量是在二维平面内既有方向又有大小的量,是同学们学习数学的一个重点,下面是店铺给大家带来的高中数学必修4平面向量知识点,希望对你有帮助。

1.平面向量基本概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。

(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e 表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

2.平面向量运算加法与减法的代数运算:(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);实数与向量的积:实数与向量的积是一个向量。

(1)| |=| |·| |;(2) 当 a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .(2) 若 =( ),b=( )则‖b .3.平面向量基本定理若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得 = e1+ e2.4.平面向量有关推论三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。

人教新课标版数学高一B版必修4课件 向量的概念

人教新课标版数学高一B版必修4课件  向量的概念

思考1 向量与数量有什么联系和区别? 向量有哪几种表示? 答 联系是向量与数量都是有大小的量;区别是向量有方向且 不能比较大小,数量无方向且能比较大小.向量可以用有向线段 表示,也可以用字母符号表示. 用表示向量的有向线段的长度表示.向量A→B的大小,也就是向量A→B 的长度(或称模).记作|A→B|,有向线段A→B箭头表示向量A→B的方向.
记作|a|.两个向量 a 和 b 同向且等长,即 a 和 b 相等,记作 a=b.
3.向量的平行 (1)通过有向线段A→B的直线,叫做向量A→B的 基线 (如图).如果向量的基线互相平行或 重合,则称这些向量 共线 或 平行 .向量 a
平行于 b,记作 a∥b. (2)长度等于零的向量,叫做零向量 ,记作0.零向量的方向不确定, 在处理平行问题时,通常规定零向量与任意向量 平行 .
第二章 平面向量
内容 索引
01 明目标
知重点
填要点 02
记疑点
03 探要点
究所然
当堂测 04
查疑缺
明目标、知重点
1.能结合物理中的力、位移、速度等具体背景认识向量,掌 握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的 联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量 及向量的模等概念,会辨识图形中这些相关的概念.
当堂测·查疑缺
1234
1.下列说法中错误的是( C )
A.有向线段可以表示向量但不是向量,且向量也不是有向线段
B.若向量a与b不共线,则a与b都是非零向量
C.长度相等但方向相反的两个向量不一定共线
D.方向相反的两个非零向量必不相等
解析 长度相等但方向相反的两个向量一定共线,由向量的概念

人教B版高中数学必修四【高三总复习】高中技能特训:4-1平面向量的概念与线性运算()含解析.docx

人教B版高中数学必修四【高三总复习】高中技能特训:4-1平面向量的概念与线性运算()含解析.docx

4-1平面向量的概念与线性运算基础巩固强化1.(文)(2011·宁波十校联考)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=0[答案] B[解析] 如图,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC →=0.(理)已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( )A.23B.43 C .-3 D .0[答案] D[解析] CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →. ∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23, ∴r +s =0.2.(2012·四川理,7)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |[答案] C[解析] 本小题考查共线向量、单位向量、向量的模等基本概念. 因a |a |表示与a 同向的单位向量,b|b |表示与b 同向的单位向量,要使a |a |=b |b |成立,则必须a 与b 同向共线,所以由a =2b 可得出a |a |=b |b |. [点评] a =-b 时,a 与b 方向相反;a ∥b 时,a 与b 方向相同或相反.因此A 、B 、D 都不能推出a |a |=b |b |.3.已知向量a =(1,3),b =(3,n ),若2a -b 与b 共线,则实数n 的值是( )A .3+2 3B .9C .6D .3-2 3[答案] B[解析] 2a -b =(-1,6-n ),∵2a -b 与b 共线,∴-1×n -(6-n )×3=0, ∴n =9.4.设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形[答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a ,CD →=OD →-OC →=d -c =-(b -a )=-AB →, ∴AB 綊CD ,∴四边形ABCD 为平行四边形.5.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|APPB |=4,如图所示,则OP →=( )A.15e 1-25e 2B.25e 1+15e 2C.15e 1+45e 2D.25e 1-15e 2 [答案] C[解析] AP →=4PB →,∴AB →=AP →+PB →=5PB →, OP →=OB →+BP →=OB →-15AB →=OB →-15(OB →-OA →)=45OB →+15OA →=15e 1+45e 2.6.P 是△ABC 内的一点,AP →=13(AB →+AC →),则△ABC 的面积与△ABP 的面积之比为( )A .2B .3 C.32 D .6[答案] B[解析] 由AP →=13(AB →+AC →),得3AP →=AB →+AC →, ∴PB →+PC →+P A →=0,∴P 是△ABC 的重心. ∴△ABC 的面积与△ABP 的面积之比为3.7.(2013·福建省惠安三中模拟)已知向量a =(2x +1,4),b =(2-x,3),若a ∥b ,则实数x 的值等于________.[答案] 12[解析] ∵a ∥b ,∴3(2x +1)-4(2-x )=0,∴x =12.8.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________. [答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎪⎨⎪⎧x -2=2x ,y -3=-2(1-y ),解得x =-2,y =-1.9.(2012·东北三省四市联考)在△ABC 中,AB =2AC =2,AB →·AC →=-1,若AO →=x 1AB →+x 2AC →(O 是△ABC 的外心),则x 1+x 2的值为________.[答案] 136[解析] O 为△ABC 的外心,AO →=x 1AB →+x 2AC →,AO →·AB →=x 1AB →·AB →+x 2AC →·AB →,由向量数量积的几何意义,AO →·AB →=12|AB →|2=2,∴4x 1-x 2=2,①又AO →·AC →=x 1AB →·AC →+x 2AC →·AC →,∴-x 1+x 2=12,② 联立①②,解得x 1=56,x 2=43,∴x 1+x 2=136. 10.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =5(a +b )=5AB →. ∴AB →、BD →共线,又它们有公共点B ,∴A 、B 、D 三点共线.(2)解:∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.能力拓展提升11.(2012·珠海调研)已知△ABC 及其平面内点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 [答案] B[解析] 解法1:由已知条件MB →+MC →=-MA →.如图,延长AM 交BC 于D 点,则D 为BC 的中点.延长BM 交AC 于E ,延长CM 交AB 于F ,则E 、F 分别为AC 、AB 的中点,即M 为△ABC 的重心.AM →=23AD →=13(AB →+AC →),即AB →+AC →=3AM →,则m =3.解法2:∵AB →+AC →=MB →-MA →+MC →-MA →=MB →+MC →-2MA →=mAM →,∴MB →+MC →=(m -2)AM →,∵MA →+MB →+MC →=0,∴(m -2)AM →=AM →,∴m =3.12.如图,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A .(12,12)B .(23,23)C .(13,13)D .(23,12)[答案] C[解析] 解法1:令BF →=λBE →,由题可知:AF →=AB →+BF →=AB →+λBE →=AB →+λ(12AC →-AB →)=(1-λ)AB →+12λAC →;同理,令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ(12AB →-AC →)=12μAB →+(1-μ)·AC →,平面向量基本定理知对应系数相等,可得⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AF →=13AB →+13AC →,故选C.解法2:设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎪⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,a 、b 不共线, ∴12λ-1-1=1-λ12,∴λ=23, ∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎪⎫12a -b=13a +13b ,故x =13,y =13.13.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.[答案] 23 [解析]由图知CD →=CA →+AD →,① CD →=CB →+BD →,②且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →, ∴CD →=13CA →+23CB →,∴λ=23.14.(2012·吉林省延吉市质检)已知:|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则mn =________.[答案] 3[解析] 设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →|=m , |OC →|·sin30°=|OE →|=n |OB →|=3n ,两式相除得:m 3n =|OC →|cos30°|OC →|sin30°=1tan30°=3,∴mn =3.15.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ).(1)若A 、B 、C 三点共线,求实数m 的值; (2)若∠ABC 为锐角,求实数m 的取值范围.[解析] (1)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )).∴AB →=(3,1),AC →=(2-m,1-m ), ∵A 、B 、C 三点共线,∴AB →与AC →共线, ∴3(1-m )=2-m ,∴m =12.(2)由题设知BA →=(-3,-1),BC →=(-1-m ,-m ) ∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0⇒m >-34 又由(1)可知,当m =12时,∠ABC =0°故m ∈⎝⎛⎭⎪⎫-34,12∪⎝⎛⎭⎪⎫12,+∞.16.(文)已知a =(2x -y +1,x +y -2),b =(2,-2), (1)当x 、y 为何值时,a 与b 共线?(2)是否存在实数x 、y ,使得a ⊥b ,且|a |=|b |?若存在,求出xy 的值;若不存在,说明理由.[解析] (1)∵a 与b 共线, ∴存在非零实数λ使得a =λb ,∴⎩⎪⎨⎪⎧2x -y +1=2λ,x +y -2=-2λ,⇒⎩⎨⎧x =13,y ∈R .(2)由a ⊥b ⇒(2x -y +1)×2+(x +y -2)×(-2)=0⇒x -2y +3=0.①由|a |=|b |⇒(2x -y +1)2+(x +y -2)2=8.②由①②解得⎩⎪⎨⎪⎧x =-1,y =1,或⎩⎪⎨⎪⎧x =53,y =73.∴xy =-1或xy =359.(理)已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由.(4)求点P 的轨迹方程.[解析] ∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),∴P (1+3t,2+3t ). (1)∵P 在x 轴上,∴2+3t =0即t =-23.(2)由题意得⎩⎪⎨⎪⎧1+3t <0,2+3t >0.∴-23<t <-13. (3)∵AB →=(3,3),OP →=(1+3t,2+3t ).若四边形ABPO 为平行四边形,则AB →=OP →,∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3.而上述方程组无解, ∴四边形ABPO 不可能为平行四边形. (4)∵OP →=(1+3t,2+3t ), 设OP →=(x ,y ),则⎩⎪⎨⎪⎧x =1+3t ,y =2+3t .∴x -y +1=0为所求点P 的轨迹方程.1.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )A .梯形B .平行四边形C .菱形D .矩形[答案] A[解析] 由已知得AD →=AB →+BC →+CD →=-8a -2b ,故AD →=2BC →,由共线向量知识知AD ∥BC ,且|AD |=2|BC |,故四边形ABCD 为梯形,所以选A.2.已知|a |=3,|b |=1,且a 与b 同向共线,则a ·b 的值是( ) A .-3 B .0 C .3 D .-3或3 [答案] C[解析] ∵a 与b 同向共线,∴a ·b =|a |·|b |cos0=3,选C. 3.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( )A .外心B .垂心C .内心D .重心[答案] D[解析] 设AB →+AC →=AD →,则可知四边形BACD 是平行四边形,而AP →=λAD →表明A 、P 、D 三点共线.又D 在边BC 的中线所在直线上,于是点P 的轨迹一定通过△ABC 的重心.4.(2012·洛阳部分重点中学检测)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则x ·y x +y的值为( )A .3 B.13 C .2D.12[分析] 由M 、N 、G 三点共线知,存在实数λ、μ使AG →=λAM →+μAN →,结合条件AM →=xAB →,AN →=yAC →,可将AG →用AB →,AC →表示,又G 为△ABC的重心,AG →用AB →,AC →表示的表示式唯一,可求得x ,y 的关系式.[答案] B[解析] 法1:由点G 是△ABC 的重心,知GA →+GB →+GC →=0,得-AG →+(AB →-AG →)+(AC →-AG →)=0,则AG →=13(AB →+AC →).又M 、N 、G 三点共线(A 不在直线MN 上),于是存在λ,μ∈R ,使得AG →=λAM →+μAN →(且λ+μ=1),则AG →=λx AB →+μy AC →=13(AB →+AC →),所以⎩⎨⎧λ+μ=1,λx =μy =13,于是得1x +1y =3,所以x ·y x +y=11x +1y=13.法2:特殊化法,利用等边三角形,过重心作平行于底边BC 的直线,易得x ·y x +y =13.5.(2012·豫南四校调研考试)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为( )A.32B.332 C .3 3 D.932[答案] B [解析]如图,由条件知,CD →=AD →-AC →=12AD →-AB →, ∴CD →2=(12AD →-AB →)2, ∴3=14AD →2+AB →2-AD →·AB →,∵|AD →|=|AB →|,∴54|AD →|2-|AD →|·|AB →|cos60°=3, 解之得|AD →|=2.又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1, ∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin60°+12×1×3=332,故选B.6.非零向量a =(sin θ,2),b =(cos θ,1),若a 与b 共线,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.[答案] 13[解析]∵非零向量a、b共线,∴存在实数λ,使a=λb,即(sinθ,2)=λ(cosθ,1),∴λ=2,sinθ=2cosθ,∴tanθ=2,∴tan(θ-π4)=tanθ-11+tanθ=13.。

人教版数学高一B版必修4学案向量的概念

人教版数学高一B版必修4学案向量的概念

2.1 向量的线性运算 2.1.1 向量的概念3.理解零向量的特殊性.1.位移的概念位移是表达“一点相对于另一点位置”的量,是一个既有大小又有方向的量. 名师点拨对于位移概念的理解要把握三点: (1)位移由“方向”和“距离”唯一确定;(2)位移只与质点的始、终点间的位置关系有关,而与质点实际运动的路线无关; (3)相同(相等)的位移:从两个不同点出发的位移,只要方向相同,距离相等,我们都把它们看成相同的位移或相等的位移.【自主测试1】某人由A 点出发向正北方向行走1km 至B 点,然后再向东拐弯沿正东方向行走2 km 至C 点,则此人的行走路程共__________ km ,总位移的大小为__________ km.答案:3 5 2.向量的概念(1)向量:具有大小和方向的量称为向量.(2)自由向量:向量是一种新的量,与以前的数量不同.我们把只有大小和方向,而无特定位置的量叫做自由向量.(3)有向线段:具有方向的线段,叫做有向线段.如下图,从点A 位移到点B ,用线段AB 的长度表示位移的距离,在点B 处画上箭头表示位移的方向,这时我们说线段AB 具有从A 到B 的方向,点A 叫做有向线段的始点,点B 叫做有向线段的终点,以A 为始点,以B 为终点的有向线段记作AB →.(4)向量的表示方法:向量的图形表示和向量的符号表示. ①向量的图形表示.向量常用一条有向线段来形象直观地表示(如下图),有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.②向量的符号表示.如,AB →表示从点A 到点B 的向量(即A 为始点,B 为终点的向量),因为两个字母是有顺序的,所以向量AB →与向量BA →是两个不同的向量.通常在印刷时,向量用黑体小写字母a ,b ,c …表示,手写时,可写成带箭头的小写字母a →,b →,c →…有向线段是向量吗?答:有向线段不是向量,它只是用来表示向量而已.(5)向量的长度:AB →的长度,记作|AB →|;如果AB →=a ,那么AB →的长度表示向量a 的大小,也叫做a 的长(或模),记作|a |.向量能比较大小吗?向量的模呢?答:向量既有长度,又有方向,不能比较大小;但向量的模是指向量的长度,能比较大小.(6)相等向量:同向且等长的有向线段表示同一向量,或相等的向量,即两非零向量a ,b 相等的等价条件应是a ,b 的方向相同且模相等.若向量a 与向量b 相等,记作a =b .(7)共线向量或平行向量:通过有向线段AB →的直线,叫做向量AB →的基线.如果向量的基线互相平行或重合,则称这些向量共线或平行.向量a 平行于b ,记作a ∥b .(8)零向量:长度等于零的向量,叫做零向量,记作0.零向量的方向不确定,通常规定零向量与任意向量平行.【自主测试2-1】下列各量中是向量的是( ) A .密度 B .电流 C .面积 D .速度解析:主要考虑各量是否具备向量的两个要素,即大小和方向.密度、电流和面积都只有大小,没有方向,只有速度既有大小,又有方向.答案:D【自主测试2-2】下图中,小正方形的边长均为1,则|AB →|=________,|CD →|=__________,|EF →|=__________.解析:根据勾股定理,可得|AB →|=32,|CD →|=26,|EF →|=2 2. 答案:3 2 26 2 2 3.用向量表示点的位置任给一定点O 和向量a (如下图),过点O 作有向线段OA →=a ,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量OA →,又常叫做点A 相对于点O 的位置向量.【自主测试3】已知,A 地位于B 地正西方向5 km 处,C 地位于A 地正北方向5 km 处,则C 地相对于B 地的位置是__________.答案:西北方向5 2 km1.向量与有向线段的联系与区别剖析:从概念的内涵和外延上来讨论.向量是规定了大小和方向的量,有向线段是规定了始点和终点的线段.它们的联系是:向量可以用有向线段来表示,有向线段的长度是向量的模,有向线段的方向是向量的方向.它们的区别是:向量是可以自由移动的,故当用有向线段来表示向量时,有向线段的始点是任意的,而有向线段是不能自由移动的,有向线段平移后就不是原来的有向线段了.有向线段仅仅是向量的直观体现,是向量的一种表现形式,不能等同于向量;有向线段有平行和共线之分,而向量的平行和共线是相同的,是同一个概念.2.向量与矢量、数量的关系剖析:(1)向量与物理中的矢量既有区别又有联系,如,力是矢量,力的作用效果不仅与大小、方向有关,而且还与力的作用点有关;数学中所说的向量与大小和方向有关,而与表示向量的有向线段的始点无关,这就是数学中所研究的自由向量.(2)向量与数量不同,数量可以比较大小,而向量不能比较大小.向量的模可以比较大小.(3)向量的表示方法:①几何表示法:优点是便于用向量处理几何问题; ②字母表示法:优点是便于向量的运算. 3.教材中的“思考与讨论”在四边形ABDC 中,如果AB →=CD →,那么四边形ABDC 是平行四边形吗?如果四边形ABDC是平行四边形,那么AB →=CD →吗?剖析:在四边形ABDC 中,若AB →=CD →,则有AB ∥CD ,且AB =CD ,从而可以断定四边形ABDC 是平行四边形;反之,如果四边形ABDC 是平行四边形,则有AB ∥CD 且AB =CD ,从而有AB →=CD →.题型一 有关向量概念的问题 【例题1】下列几种说法:(1)若非零向量a 与b 共线,则a =b ;(2)若向量a 与b 同向,且|a |>|b |,则a >b ; (3)若两向量有相同的基线,则两向量相等; (4)若a ∥b ,b ∥c ,则a ∥c .其中错误的是__________.(填序号)解析:(1)错误.共线向量是指向量的基线互相平行或重合,其方向相同或相反,所以共线向量未必相等.(2)错误.向量是既有大小,又有方向的量,不能比较大小.(3)错误.两向量有相同的基线表示两向量共线(或平行),但两向量的大小和方向都不一定相同.(4)错误.当b =0时,a 与c 不一定平行. 答案:(1)(2)(3)(4)反思对向量的有关概念的理解要全面、准确.要注意相等向量与共线向量(或平行向量)之间的区别和联系;零向量的长度为零,方向不确定,解题时一定要注意这一特殊向量.解答本题(4)时,易忽略零向量与任意向量共线.题型二 相等向量与共线向量【例题2】如下图,D ,E ,F 分别是等腰Rt △ABC 的各边的中点,∠BAC =90°.(1)分别写出图中与向量DE →,FD →相等的向量;(2)分别写出图中与向量DE →,FD →共线的向量. 分析:相等向量要考虑两个向量的方向和大小是否都相同,共线向量只考虑方向是否相同或相反.解:(1)DE →=FC →=BF →;FD →=CE →=EA →. (2)DE →∥FC →∥BF →∥BC →;FD →∥CE →∥EA →∥CA →.反思向量有两个要素:一是大小,二是方向.两个向量的模相等且方向相同时才称它们为相等的向量,即a =b 就意味着|a |=|b |,且a 与b 的方向相同,还要注意到0与0是相等的向量.题型三向量在几何中的应用【例题3】如图,在四边形ABCD 中,AB →=DC →,N ,M 分别是AD ,BC 上的点,且CN →=MA →,证明:四边形DNBM 是平行四边形.证明:∵AB →=DC →,∴四边形ABCD 为平行四边形,∴AD ∥BC ,且AD =B C .又∵CN →=MA →, ∴四边形CNAM 为平行四边形,∴AN ∥MC ,且AN =MC ,∴DN ∥MB ,且DN =MB , ∴四边形DNBM 是平行四边形.反思向量的方向反映了形的特征,利用向量知识可以判定图形的形状及线段间的相等关系.将平面几何与向量结合在一起,可以使问题更加直观、明了.题型四 向量的实际应用【例题4】一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2 km 到D 地,然后从D 地沿北偏东60°方向行驶6 km 到达C 地,从C 地又向南偏西30°方向行驶2 km 才到达B 地.(1)在图中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.分析:按要求用直尺作出向量.作图时,既要考虑向量的大小,又要考虑其方向.解:(1)向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →,即AD ∥BC 且AD =BC ,所以,四边形ABCD 为平行四边形.则有AB →=DC →,则B 地相对于A 地的位置向量为AB →=“北偏东60°,6 km”. 反思用向量知识解决物理问题,关键是将物理问题转化成数学模型. 题型五 易错辨析【例题5】设O 为△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量C .模相等的向量D .方向相同的向量错解:∵AO →,BO →,CO →都表示△ABC 的外接圆半径, ∴AO →=BO →=CO →.故选A .错因分析:忽视了向量是有方向的,要知道只有同向且等长的向量才是相等向量. 正解:∵O 为△ABC 的外心,∴OA =OB =OC , 即|AO →|=|BO →|=|CO →|.故选C .1.下列命题中,正确的是( )A .若两个向量相等,则表示它们的有向线段的始点和终点分别重合B .模相等的两个平行向量是相等向量C .若向量a 和b 的模都为1,则a =bD .两个相等向量的模相等 答案:D2.如图所示的四边形ABCD 中,AB →=DC →,则下列四组向量中,相等的是( )A .AD 与CB B .OA 与OCC .AC 与OCD .DO 与OB解析:由AB →=DC →,可以判断出四边形ABCD 为平行四边形,可以判断选项中的四组向量,只有DO →=OB →是正确的.答案:D3.把平面上所有模等于1的向量平移到相同的始点上,那么它们的终点所构成的图形是( )A .一条线段B .一段圆弧C .两个孤立点D .一个圆 解析:如果把平面上所有模等于1的向量平移到相同的始点上,则所有的终点到这个始点的距离都等于1,即所有的终点构成的图形是一个圆.答案:D4.如图,在四边形ABCD 中,AB →=DC →,且|AB →|=|AD →|,则四边形ABCD 为__________.解析:由AB →=DC →,可得AB ∥DC 且AB =DC ,所以四边形ABCD 为平行四边形. 又|AB →|=|AD →|,所以AB =AD , 所以四边形ABCD 为菱形. 答案:菱形5.如图所示,ABCD 是边长为3的正方形,P ,M ,E ,G ,N ,Q ,H ,F 分别为各边的三等分点,图中共有16个交点,从中选取2个交点组成向量,则与AC →平行且长度为22的向量的个数是__________.解析:由题意知,每一个小正方形的边长为1,则其对角线的长为2,如图所示,与AC→平行且长度为22的向量有FE →,EF →,AN →,NA →,MC →,CM →,HG →,GH →.故共8个.答案:86.如图所示,菱形ABCD 中,对角线AC ,BD 相交于O 点,∠DAB =60°,分别以A ,B ,C ,D ,O 中的不同两点为始点与终点的向量中:(1)写出与DA →平行的向量;(2)写出与DA →的模相等的向量.解:(1)与DA →平行的向量有:AD →,BC →,CB →;(2)与DA →的模相等的向量有:AD →,BC →,CB →,AB →,BA →,DC →,CD →,BD →,DB →.。

人教B版高中数学必修四《第二章 平面向量 2.1 向量的线性运算 2.1.1 向量的概念》_1

人教B版高中数学必修四《第二章 平面向量 2.1 向量的线性运算 2.1.1 向量的概念》_1

2.1.1向量的概念学习目标:(1)体会向量的实际背景,知道平面向量的概念和向量的几何表示.(2)知道向量的模、零向量、相等向量、平行向量等概念.(3)学会区分相等向量和平行向量.重点:向量、零向量、单位向量、相等向量、平行向量的概念.难点:向量的概念,平行向量、相等向量区别和联系.【情景导学】:1.在日常生活中有很多量,既有大小又有方向,如面积、质量、力、长度、速度、位移等,哪些量是既有大小又有方向的量?2.对既有大小又有方向的量,如何形象、直观地表示出来?探究点一、向量的概念阅读教材77页—78页,完成下列问题1、向量的要素是什么?向量之间能否比较大小?向量与数量的区别是什么?2.向量的表示方法:(1)图形表示;(2)字母表示:3.向量的相关概念:(1)如果=a,那么的长度表示向量a的大小,也叫做a的长(或模),记作|a|两个向量a和b同向且等长,即a和b相等,记作a=b(2)通过有向线段的直线,叫做向量的基线.如果向量的基线互相平行或重合则称这些向量共线或平行.(3)什么是零向量?什么是单位向量?单位向量是否一定相等?探究点二、位置向量任给一定点O 和向量a ,过点O 作有向线段OA →=a ,则点A 相对于点O 的位置被向量a 唯一确定,这时向量OA →叫做点A 相对于点O 的位置向量.变式2.下列说法正确的是(1)零向量是唯一没有方向的向量;(2)方向相反的向量是共线向量,共线向量不一定是相等向量;(3)向量a 和b 是共线向量,a ||b ,则a 和c 是方向相同的向量;(4)相等向量一定是共线向量;(5)两个长度相等的向量一定相等;(6)相等的向量始点必相同;(7)若向量a 的模小于b 的模,则a <b例2:如图所示,O是正六边形ABC DEF的中心,且=a,=b(1)与a相等的向量有多少个?(2)与a的长度相等,方向相反的向量有哪些?(3)与a共线的向量有哪些?(4)请一一列出与b相等的向量.变式3: (1)写出与向量相等的向量.(2)写出与向量共线的向量;。

人教版2024年高考数学一轮复习高考频点《第01讲 平面向量的概念及其线性运算知识点必背》

人教版2024年高考数学一轮复习高考频点《第01讲 平面向量的概念及其线性运算知识点必背》

第01讲 平面向量的概念及其线性运算知识点必背1、向量的有关概念(1)向量:既有大小又有方向的量叫做向量;向量的大小叫做向量的长度(或模) 向量表示方法:向量AB 或a ;模||AB 或||a .(2)零向量:长度等于0的向量,方向是任意的,记作0.(3)单位向量:长度等于1个单位的向量,常用e 表示.特别的:非零向量a 的单位向量是||a a . (4)平行向量(共线向量):方向相同或相反的非零向量,a 与b 共线可记为λ=a b ; 特别的:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量,记作=a b .(6)相反向量:长度相等且方向相反的向量,记作=-a b .2、向量的线性运算2.1向量的加法①定义:求两个向量和的运算,叫做向量的加法.两个向量的和仍然是一个向量.对于零向量与任意向量a ,我们规定00a a a +=+=.②向量加法的三角形法则(首尾相接,首尾连)已知非零向量a ,b ,在平面内任取一点A ,作AB a =,BC b =,则向量AC 叫做a 与b 的和,记作a b +,即a b AB BC AC +=+=.这种求向量和的方法,称为向量加法的三角形法则.③向量加法的平行四边形法则(作平移,共起点,四边形,对角线)已知两个不共线向量a ,b ,作OA a =,OB b =,以OA ,OB 为邻边作OACB ,则以O 为起点的向量OC (OC 是OACB 的对角线)就是向量a 与b 的和.这种作两个向量和的方法叫做向量加法的平行四边形法则.2.2向量的减法①定义:向量a 加上b 的相反向量,叫做a 与b 的差,即()a b a b -=+-. ②向量减法的三角形法则(共起点,连终点,指向被减向量)已知向量a ,b ,在平面内任取一点O ,作OA a =,OB b =,则向量a b BA -=.如图所示如果把两个向量a ,b 的起点放在一起,则a b -可以表示为从向量b 的终点指向向量a 的终点的向量.2.3向量的数乘向量数乘的定义:一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作a λ.它的长度与方向规定如下:①||||||a a λλ=②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.3、共线向量定理①定义:向量b 与非零向量a 共线,则存在唯一一个实数λ,b a λ=.②向量共线定理的注意问题:定理的运用过程中要特别注意0a ≠;特别地,若0a b ==,实数λ仍存在,但不唯一.4、常用结论4.1向量三角不等式①已知非零向量a ,b ,则||||||||||||a b a b a b -≤+≤+(当a 与b 反向共线时左边等号成立;当a 与b 同向共线时右边等号成立);②已知非零向量a ,b ,则||||||||||||a b a b a b -≤-≤+(当a 与b 同向共线时左边等号成立;当a 与b 反向共线时右边等号成立);记忆方式:(“符异”反向共线等号成立;“符同”同向共线等号成立)如||||||||||||a b a b a b -≤+≤+中,||||||||a b a b -≤+中间连接号一负一正“符异”,故反向共线时等号成立;右如:||||||||||||a b a b a b -≤+≤+中|||||||a b a b +≤+中间链接号都是正号“符同”,故同向共线时等号成立;4.2中点公式的向量形式: 若P 为线段AB 的中点,O 为平面内任意一点,则2OP OA OB =+.4.3三点共线等价形式:OA OB OB λμ=+(λ,μ为实数),若A ,B ,C 三点共线⇔1λμ+=。

高中数学必修4(人教B版)第二章平面向量2.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第二章平面向量2.1知识点总结含同步练习题及答案

其中 →a ,→b 共线的有______(填上所有正确的序号).
解:①②③
① 中 →a = −→b ,所以 →a ∥ →b ;
② 中 →b = −2→a ,所以 →a ∥ →b ;
③ ④
中→a =
4(e→1 −
1 10
中不存在非零实数
e→2 ) = λ,使
4→b ,所以 →a ∥ →b ; →a = λ→b ,所以 →a
+ +
−−OM−−→B→B=) =2−O−A−−→B→O;+
−O−→B
=
−A−→B.
已知下列各式:①−A−→B + B−−→C + −C−→A ;②(−A−→B + −M−→B + −B−→O + O−−M→;③−O−→A + O−−→C + −B−→O + −C−→O;
④−A−→B + −C−→A + −B−→D + D−−→C .其中结果为
四、课后作业 (查看更多本章节同步练习题,请到快乐学)
关于向量 →a ,→b ,有
① →a = 2→e ,→b = −2→e ;
② →a = e→1 − e→2 ,→b = −2e→1 + 2e→2 ;

→a
= 4e→1 −
2 5
e→2 ,→b
= e→1 −
1 10
e→2 ;
④ →a = e→1 + e→2 ,→b = −2e→1 + 2e→2 ;(其中 e→1 , e→2 不共线)
量,叫做单位向量(unit vector).
方向相同或相反的非零向量叫做平行向量 (parallel vectors),向量 a⃗、b⃗ 平行,通常记做 a⃗ ∥ b⃗.

高中数学新人教B版必修4复习平面向量

高中数学新人教B版必修4复习平面向量

1 2高考并不神祕高考有规可寻 我们亦细研历年高耆试題的基础上探寻出一些命题规律 若题在课外考点亦谍内 每于模块总有那么几个魅识点 是高考的常考点耳至是必考点我帕将这些高频考点集結起来一-解读 押煤弃学习完本噪块之启系统復习 去粗存蓿锁定高潘复习课(三)平面向量(1)题型为选择题和填空题. 主要考查向量的线性运算及对向量有关概念的理解, 量共线和平面向量基本定理及数量积运算交汇命题.合并同类项等变形方向在向量的线性运算中都可以使用.[典例] 在厶 ABC 中,点 M , N 满足 AM = 2MC , BN = NC .若 MN = x AB +y AC A 」x1••• BN = NC ,••• AN = 1( AB + AC ),AB-6AC .平面向量的概念及线性运算(2)向量的加法遵循三角形法则和平行四边形法则, 的加减法满足交换律、 结合律,数乘运算满足结合律、 分配律.实数运算中的去括号、 减法可以转化为加法进行运算, 向量 移项、模块复习精要常与向[解析]••• AM = 2MC ,••• AM2AC .• M N = T N — AM = 12AB + AC )— 2 AC又 MN =x AB +y AC , 1 1 二 x = 2, y 一 6.1[答案][类题通法] 向量线性运算的基本原则 向量的加法、减法和数乘运算统称为向量的线性运算•向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.[题组训练]若 A(3, - 6), B( - 5,2), C(6, y)三点共线,则 B • - 13解析:选 D AB = (- 8,8), AC = (3, y + 6) • •/ A B // AC , .•.— 8(y + 6) — 24 = 0. y =— 9.2.如图,点A , B , C 是圆0上不重合的三点,线段--- > -------- > ------- > ------- > -------- >于圆内一点 P.若 OC = mOA + 2m OB , AP = ^AB ,5A.6C .3---- --------- 解析:选D 由题意,设OP = nOC .—> > > ------------ > >因为 AP = OP - OA = 4 OB - OA), —> > --------- > > 故 n OC - OA =4 OB - OA ),---- > --------- > ------ > ------- > ------- > n(m OA + 2m OB ) — OA = 4 OB — OA ),f---- >即(mn + — 1) OA + (2mn — 4 OB = 0. f ——>mn + 入一1= 0, 2而OA 与OB 不共线,故有解得4= 2.选D.l2mn - 4= 0, 33.如图,半径为1的扇形AOB 的圆心角为120 °点C 在AB 上,且-f f f/ COB = 30°若 OC =入OA + yOB ,贝U H 尸 __________ .解由已知,可得 OA 丄OC ,以O 为坐标原点,OC , OA 所在直线分别为 x 轴、y 轴y =()13OC 与线段 则入=()32.建立平面直角坐标系(图略),则有C(1,0), A(0,1), B(cos 30 ° — sin 30),即 Bi 3,- 2.---> ---------- > ---------- > 是 OC = (1,0), OA = (0,1), OB = —> > >由 OC =入OA + OB ,得(1,°)= ei )+ 住,-1 卜陽,入-2 J ,■V(1)题型既有选择题、填空题,又有解答题,主要考查数量积运算、向量的垂直等问题, 常与平面几何、三角函数、解析几何等知识交汇命题.(2)解决此类问题要掌握平面向量数量积的两种求法:一是根据数量积的定义,即a b =|a||b|cos B,二是利用坐标运算, 即a b = X 1X 2 + y i y 2;同时还要掌握利用数量积求向量的夹角、求向量的长度和判断两个向量垂直的方法.DN = 2NC ,贝U AM -NM =()A . 20[解析](1)c = a + kb = (1 + k,2+ k),又 b 丄 c ,所以 1x (1 + k) + 1X (2 + k) = 0,解得 k = 逼=12 1= 1, 1入—2尸o ,• I ?d - 1= 3答案:3 解得入_3 3 .[典(1)设 a = (1,2), b = (1,1), c = a + kb 若b ± c ,则实数k 的值等于(C・5(2)设四边形 ABCD 为平行四边形, | AB |= 6, | AD |= 4.若点 M , N 满足 BM = 3 MC ,B . 15(2)如图所示,由题设知:3 2.7M = AB + BM = AB + 47D,1 1NM = NC —MC = 3 AB —4 AD ,••• A M NM = AB +3AD 」AB —1AD l AB〒4 丿0 4 丿1 2 3 2 1 1=3l AB| —16I AD | + 4 AB •AD — 4 AB •AD=-x 36—3x 16= 9.3 16[答案](1)A (2)C[类题通法](1) 数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2) 可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行计算.[题组训练]1 .已知a+ b+ c= 0, |a| = 2, |b|= 3, |c|=.佃,则向量a与b的夹角为()A. 30 °B. 45 °C. 60 ° D .以上都不对解析:选 C ■/ a + b+ c= 0, • c=—(a+ b),•c2= (a+ b)2,即卩|c|2= |a|2+ |b|2+ 2|a||b|cos〈a, b>,•佃=4+ 9+ 12cos < a, b> ,1•cos < a , b>=.2又••• 0°< <a , b> w 180°, •< a , b>= 60°2.若a , b , c均为单位向量,且a b= 0 , (a—c) (b—c) w 0,则|a+ b—c|的最大值为()A. 2 —1 B . 1C. .2 D . 2解析:选 B 由题意,知a2= 1 ,b2= 1, c2= 1,由a b= 0 及(a—c) (b—c)w 0,知(a + b) c> c2 =1.因为|a+ b—c|2= a2+ b2+ c2+ 2a b—2a c—2b c= 3 —2(a c+ b c)w 1,故|a + b—©的最大值为1.3. ________________________________________________________________________已知向量a,b满足|a|= |b|= 2,a与b的夹角为60。

人教B版高中数学必修四第二章 平面向量.docx

人教B版高中数学必修四第二章  平面向量.docx

第二章平面向量§2.1向量的线性运算2.1.1 向量的概念课时目标1.通过对物理模型和几何模型的探究,了解向量的实际背景,掌握向量的有关概念及向量的几何表示.2.掌握平行向量与相等向量的概念.1.向量:既有______,又有______的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作______.3.向量的有关概念:(1)零向量:长度为____的向量叫做零向量,记作__________.(2)单位向量:长度为____的向量叫做单位向量.(3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作a∥b.②规定:零向量与任一向量平行.一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A.1个B.2个C.3个D.4个2.下列条件中能得到a=b的是( )A.|a|=|b|B.a与b的方向相同C.a=0,b为任意向量D.a=0且b=03.下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.A .2个B .3个C .4个D .5个4.命题“若a ∥b ,b ∥c ,则a ∥c ”( )A .总成立B .当a ≠0时成立C .当b ≠0时成立D .当c ≠0时成立5.下列各命题中,正确的命题为( )A .两个有共同起点且共线的向量,其终点必相同B .模为0的向量与任一向量平行C .向量就是有向线段D .|a |=|b |⇒a =b6.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线B .长度相等的向量叫做相等向量C .零向量长度等于0D .共线向量是在一条直线上的向量二、填空题7.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________.(填序号)8.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________.9.下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①__________;②____________;③____________.10.如图所示,E 、F 分别为△ABC 边AB 、AC 的中点,则与向量EF →共线的向量有________________(将图中符合条件的向量全写出来).三、解答题11.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?12.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.能力提升 13.如图,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′;(2)AB →=A ′B ′→,AC →=A ′C ′→.14.如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些?(3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.2.向量不能比较大小,但向量的模可以比较大小.如a >b 没有意义,而|a |>|b |有意义.3.共线向量与平行向量是同一概念,规定:零向量与任一向量都平行.第二章 平面向量§2.1 向量的线性运算2.1.1 向量的概念答案知识梳理1.大小 方向 2.AB → 3.(1)0 0作业设计1.D 2.D3.A [②与⑤正确,其余都是错误的.]4.C [当b =0时,不成立,因为零向量与任何向量都平行.]5.B [由于模为0的向量是零向量,只有零向量的方向不确定,它与任一向量平行,故选B .]6.C [向量AB →∥CD →包含AB →所在的直线平行于CD →所在的直线和AB →所在的直线与CD →所在的直线重合两种情况;相等向量不仅要求长度相等,还要求方向相同;共线向量也称为平行向量,它们可以是在一条直线上的向量,也可以是所在直线互相平行的向量,所以A 、B 、D 均错.]7.①③④解析 相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立.8.菱形解析 ∵AB →=DC →,∴AB 綊DC∴四边形ABCD 是平行四边形,∵|AB →|=|AD →|,∴四边形ABCD 是菱形.9.单位圆 相距为2的两个点 一条直线10.FE →,BC →,CB →解析 ∵E 、F 分别为△ABC 对应边的中点,∴EF ∥BC ,∴符合条件的向量为FE →,BC →,CB →.11.解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(作图略).12.解 (1)因为E 、F 分别是AC 、AB 的中点,所以EF 綊12BC .又因为D 是BC 的中点, 所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →.(3)与EF →相等的向量有:DB →与CD →.13.证明 (1)∵AA ′→=BB ′→,∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.14.解 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.。

高中数学必修4平面向量知识点总结.doc

高中数学必修4平面向量知识点总结.doc

高中数学必修4平面向量知识点总结高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y 轴方向相同的两个单位向量作为基底。

由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x 轴上的坐标,y叫做在y轴上的坐标。

来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x ,y )则a+b=(x+x ,y+y )向量的加法满足平行四边形法则和三角形法则。

向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x ,y-y )若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,y) b=(x ,y )a b(点积)=x x +y y =|a| |b|*cos夹角4、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料 (灿若寒星 精心整理制作)4-1平面向量的概念与线性运算基础巩固强化1.(文)(2011·宁波十校联考)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=0[答案] B[解析] 如图,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC →=0.(理)已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( )A.23B.43 C .-3 D .0[答案] D[解析] CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →. ∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23, ∴r +s =0.2.(2012·四川理,7)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |[答案] C[解析] 本小题考查共线向量、单位向量、向量的模等基本概念. 因a |a |表示与a 同向的单位向量,b|b |表示与b 同向的单位向量,要使a |a |=b |b |成立,则必须a 与b 同向共线,所以由a =2b 可得出a |a |=b |b |. [点评] a =-b 时,a 与b 方向相反;a ∥b 时,a 与b 方向相同或相反.因此A 、B 、D 都不能推出a |a |=b |b |.3.已知向量a =(1,3),b =(3,n ),若2a -b 与b 共线,则实数n 的值是( )A .3+2 3B .9C .6D .3-2 3[答案] B[解析] 2a -b =(-1,6-n ),∵2a -b 与b 共线,∴-1×n -(6-n )×3=0, ∴n =9.4.设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 [答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a ,CD →=OD →-OC →=d -c =-(b -a )=-AB →, ∴AB 綊CD ,∴四边形ABCD 为平行四边形.5.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|APPB |=4,如图所示,则OP →=( )A.15e 1-25e 2B.25e 1+15e 2C.15e 1+45e 2D.25e 1-15e 2 [答案] C[解析] AP →=4PB →,∴AB →=AP →+PB →=5PB →, OP →=OB →+BP →=OB →-15AB →=OB →-15(OB →-OA →)=45OB →+15OA →=15e 1+45e 2.6.P 是△ABC 内的一点,AP →=13(AB →+AC →),则△ABC 的面积与△ABP 的面积之比为( )A .2B .3 C.32 D .6[答案] B[解析] 由AP →=13(AB →+AC →),得3AP →=AB →+AC →, ∴PB →+PC →+P A →=0,∴P 是△ABC 的重心. ∴△ABC 的面积与△ABP 的面积之比为3.7.(2013·福建省惠安三中模拟)已知向量a =(2x +1,4),b =(2-x,3),若a ∥b ,则实数x 的值等于________.[答案] 12[解析] ∵a ∥b ,∴3(2x +1)-4(2-x )=0,∴x =12.8.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________. [答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎪⎨⎪⎧x -2=2x ,y -3=-2(1-y ),解得x =-2,y =-1.9.(2012·东北三省四市联考)在△ABC 中,AB =2AC =2,AB →·AC →=-1,若AO →=x 1AB →+x 2AC →(O 是△ABC 的外心),则x 1+x 2的值为________.[答案] 136[解析] O 为△ABC 的外心,AO →=x 1AB →+x 2AC →,AO →·AB →=x 1AB →·AB →+x 2AC →·AB →,由向量数量积的几何意义,AO →·AB →=12|AB →|2=2,∴4x 1-x 2=2,①又AO →·AC →=x 1AB →·AC →+x 2AC →·AC →,∴-x 1+x 2=12,② 联立①②,解得x 1=56,x 2=43,∴x 1+x 2=136. 10.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =5(a +b )=5AB →. ∴AB →、BD →共线,又它们有公共点B ,∴A 、B 、D 三点共线.(2)解:∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.能力拓展提升11.(2012·珠海调研)已知△ABC 及其平面内点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 [答案] B[解析] 解法1:由已知条件MB →+MC →=-MA →.如图,延长AM 交BC 于D 点,则D 为BC 的中点.延长BM 交AC 于E ,延长CM 交AB 于F ,则E 、F 分别为AC 、AB 的中点,即M 为△ABC 的重心.AM →=23AD →=13(AB →+AC →),即AB →+AC →=3AM →,则m =3.解法2:∵AB →+AC →=MB →-MA →+MC →-MA →=MB →+MC →-2MA →=mAM →,∴MB →+MC →=(m -2)AM →,∵MA →+MB →+MC →=0,∴(m -2)AM →=AM →,∴m =3.12.如图,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A .(12,12)B .(23,23)C .(13,13)D .(23,12)[答案] C[解析] 解法1:令BF →=λBE →,由题可知:AF →=AB →+BF →=AB →+λBE →=AB →+λ(12AC →-AB →)=(1-λ)AB →+12λAC →;同理,令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ(12AB →-AC →)=12μAB →+(1-μ)·AC →,平面向量基本定理知对应系数相等,可得⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AF →=13AB →+13AC →,故选C.解法2:设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎪⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,a 、b 不共线, ∴12λ-1-1=1-λ12,∴λ=23, ∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎪⎫12a -b=13a +13b ,故x =13,y =13.13.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.[答案] 23 [解析]由图知CD →=CA →+AD →,① CD →=CB →+BD →,②且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →, ∴CD →=13CA →+23CB →,∴λ=23.14.(2012·吉林省延吉市质检)已知:|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则mn =________.[答案] 3[解析] 设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →|=m , |OC →|·sin30°=|OE →|=n |OB →|=3n ,两式相除得:m 3n =|OC →|cos30°|OC →|sin30°=1tan30°=3,∴mn =3.15.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ).(1)若A 、B 、C 三点共线,求实数m 的值; (2)若∠ABC 为锐角,求实数m 的取值范围.[解析] (1)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )).∴AB →=(3,1),AC →=(2-m,1-m ), ∵A 、B 、C 三点共线,∴AB →与AC →共线, ∴3(1-m )=2-m ,∴m =12.(2)由题设知BA →=(-3,-1),BC →=(-1-m ,-m ) ∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0⇒m >-34 又由(1)可知,当m =12时,∠ABC =0°故m ∈⎝⎛⎭⎪⎫-34,12∪⎝⎛⎭⎪⎫12,+∞.16.(文)已知a =(2x -y +1,x +y -2),b =(2,-2), (1)当x 、y 为何值时,a 与b 共线?(2)是否存在实数x 、y ,使得a ⊥b ,且|a |=|b |?若存在,求出xy 的值;若不存在,说明理由.[解析] (1)∵a 与b 共线, ∴存在非零实数λ使得a =λb ,∴⎩⎪⎨⎪⎧2x -y +1=2λ,x +y -2=-2λ,⇒⎩⎨⎧x =13,y ∈R .(2)由a ⊥b ⇒(2x -y +1)×2+(x +y -2)×(-2)=0⇒x -2y +3=0.①由|a |=|b |⇒(2x -y +1)2+(x +y -2)2=8.②由①②解得⎩⎪⎨⎪⎧x =-1,y =1,或⎩⎪⎨⎪⎧x =53,y =73.∴xy =-1或xy =359.(理)已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由.(4)求点P 的轨迹方程.[解析] ∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),∴P (1+3t,2+3t ). (1)∵P 在x 轴上,∴2+3t =0即t =-23.(2)由题意得⎩⎪⎨⎪⎧1+3t <0,2+3t >0.∴-23<t <-13. (3)∵AB →=(3,3),OP →=(1+3t,2+3t ).若四边形ABPO 为平行四边形,则AB →=OP →,∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3.而上述方程组无解, ∴四边形ABPO 不可能为平行四边形. (4)∵OP →=(1+3t,2+3t ), 设OP →=(x ,y ),则⎩⎪⎨⎪⎧x =1+3t ,y =2+3t .∴x -y +1=0为所求点P 的轨迹方程.1.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )A .梯形B .平行四边形C .菱形D .矩形[答案] A[解析] 由已知得AD →=AB →+BC →+CD →=-8a -2b ,故AD →=2BC →,由共线向量知识知AD ∥BC ,且|AD |=2|BC |,故四边形ABCD 为梯形,所以选A.2.已知|a |=3,|b |=1,且a 与b 同向共线,则a ·b 的值是( ) A .-3 B .0 C .3 D .-3或3 [答案] C[解析] ∵a 与b 同向共线,∴a ·b =|a |·|b |cos0=3,选C. 3.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( )A .外心B .垂心C .内心D .重心[答案] D[解析] 设AB →+AC →=AD →,则可知四边形BACD 是平行四边形,而AP →=λAD →表明A 、P 、D 三点共线.又D 在边BC 的中线所在直线上,于是点P 的轨迹一定通过△ABC 的重心.4.(2012·洛阳部分重点中学检测)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则x ·y x +y的值为( )A .3 B.13 C .2D.12[分析] 由M 、N 、G 三点共线知,存在实数λ、μ使AG →=λAM →+μAN →,结合条件AM →=xAB →,AN →=yAC →,可将AG →用AB →,AC →表示,又G 为△ABC的重心,AG →用AB →,AC →表示的表示式唯一,可求得x ,y 的关系式.[答案] B[解析] 法1:由点G 是△ABC 的重心,知GA →+GB →+GC →=0,得-AG →+(AB →-AG →)+(AC →-AG →)=0,则AG →=13(AB →+AC →).又M 、N 、G 三点共线(A 不在直线MN 上),于是存在λ,μ∈R ,使得AG →=λAM →+μAN →(且λ+μ=1),则AG →=λx AB →+μy AC →=13(AB →+AC →),所以⎩⎨⎧λ+μ=1,λx =μy =13,于是得1x +1y =3,所以x ·y x +y=11x +1y=13.法2:特殊化法,利用等边三角形,过重心作平行于底边BC 的直线,易得x ·y x +y =13.5.(2012·豫南四校调研考试)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为( )A.32B.332 C .3 3 D.932[答案] B [解析]如图,由条件知,CD →=AD →-AC →=12AD →-AB →, ∴CD →2=(12AD →-AB →)2, ∴3=14AD →2+AB →2-AD →·AB →,∵|AD →|=|AB →|,∴54|AD →|2-|AD →|·|AB →|cos60°=3, 解之得|AD →|=2.又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1, ∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin60°+12×1×3=332,故选B.6.非零向量a =(sin θ,2),b =(cos θ,1),若a 与b 共线,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.[答案] 13[解析]∵非零向量a、b共线,∴存在实数λ,使a=λb,即(sinθ,2)=λ(cosθ,1),∴λ=2,sinθ=2cosθ,∴tanθ=2,∴tan(θ-π4)=tanθ-11+tanθ=13.。

相关文档
最新文档