限时规范检测(八)函数的图像详解答案

合集下载

江苏省2015高考数学一轮复习 第二章 第8课 函数的图象检测与评估答案 pdf

江苏省2015高考数学一轮复习 第二章 第8课 函数的图象检测与评估答案 pdf

5. e
-x-1
1 0, 6. 6
1 0, 6 .
a 0, 1 3a-(-3a) 1, 解析:依题意得 解 得 0<a< 6 , 即 正 实 数 a 的 取 值 范 围 是
7. [-1,+∞)
解析:作出函数y=f(x)的图象如图所示,由不等式f( 2 -x,b)对称,且在R上为增函数,故选①③.
(第8题)
2x 1 2x 1 9. 函数y= x-1 的图象如图所示,从图象上可以看出,函数y= x-1 的单调减区间为
(-∞,1),(1,+∞).
(第9题)
10. (1) 因为-3≤-1,所以f(-3)=-3+5=2, 又因为2≥-1,所以f[f(-3)]=f(2)=2×2=4.
x-x 11. (1) 当0≤x≤2时,f(x)=1+ 2 =1; -x-x 当-2<x<0时,f(x)=1+ 2 =1-x.
1-x,-2 x 0, 所以f(x)= 1,0 x 2.
(2) 函数f(x)的图象如图所示.
(第11题)
(3) 由(2)知,f(x)在(-2,2]上的值域为[1,3).
(第10题) (2) 函数f(x)的图象如图所示.
1 9 (3) 当a≤-1时,f(a)=a+5= 2 ,a=- 2 ≤-1;
2 1 2 当-1<a<1时,f(a)=a = 2 ,a=± 2 ;
1 1 当a≥1时,f(a)=2a= 2 ,a= 4 ,舍去.
2 9 综上,a的值为- 2 或± 2 .
2 -x≤ 2 +1,解得x≥-1,故不等式f( 2 -x)≤f(1)的解集为[-1,+∞).

八年级数学下册《函数的图像》单元测试卷(附带答案)

八年级数学下册《函数的图像》单元测试卷(附带答案)

八年级数学下册《函数的图像》单元测试卷(附带答案)一 单选题1.下列图形中的曲线不能表示y 是x 的函数的是( )A .B .C .D .2.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是( )A .清晨5时体温最低B .17时,小明体温是37.5℃C .从5时至24时,小明体温一直是升高的D .从0时至5时,小明体温一直是下降的3.第十七届省运会在金华隆重举行.一批射击运动员分别乘坐甲乙两辆大巴同时从居住地前往比赛场馆.行驶过程中,大巴甲因故停留一段时间后继续驶向比赛场馆,大巴乙全程匀速驶向比赛场馆.两辆大巴的行程()km s 随时间()h t 变化的图象(全程)如图所示.依据图中信息,下列说法错误..的是( )A .大巴甲比大巴乙先到达比赛场馆B .大巴甲中途停留了0.5hC .大巴甲停留后用1.5h 追上大巴乙D .大巴甲停留后的平均速度是60km/h4.星期天,小王去朋友家借书,如图是他离家的距离y (千米)与时间x (分钟)的关系图像.根据图像信息,下列说法正确的是( ).A .小王去时的速度大于回家的速度B .小王在朋友家停留了10分钟C .小王去时花的时间少于回家所花的时间D .小王去时走下坡路,回家时走上坡路5.如图1,在长方形ABCD 中,动点P 从点B 出发,沿BC CD DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .246.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为100米 ①火车的速度为30米/秒 ①火车整体都在隧道内的时间为25秒 ①隧道长度为1050米.其中正确的结论是( )A .①①B .①①C .①①D .①①7.周末,小陈去超市购物 如图是他离家的距离y (千米)与时间x (分钟)的关系图象,根据图象信息:下列说法正确的是( )A .小陈去时的速度为6千米/小时B .小陈在超市停留了15分钟C .小陈去时花的时间少于回家所花的时间D .小陈去时走下坡路,回家时走上坡路8.如图等腰Rt ABC △,AC=BC ,90C ∠=︒点P 由点B 开始沿BC 边匀速运动到点C ,再沿CA 边匀速运动到点A 为止,设运动时间为t ,ABP 的面积为S ,则S 与t 的大致图象是( )A .B .C .D .9.小李和小陆从A 地出发,骑自行车沿同一条路行驶到B 地,小李先出发行驶0.5h 后小陆出发,他们离出发地的距离s (km )和行驶时间t (h )之间的关系图像如图所示,根据图中的信息,有下列说法: ①他们都行驶了20km ①小陆全程共用了2h①小陆出发后1h ,小陆和小李相遇 ①小李在途中停留了0.5h其中正确的有( )A .1个B .2个C .3个D .4个10.甲 乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠 进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用1y元,在乙园采摘需总费用2y元.1y2y与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多二填空题11.如图,斑马奔跑的路程与奔跑时间的关系,请你根据图象计算,斑马奔跑5分钟跑了______km.第11题图第11题图第11题图12.某通讯公司有两种电话计费方式:A套餐是月租20元,B套餐是月租0元,一个月内本地通话时间t(分)与费用S(元)的函数关系如图所示.下列结论正确的是______.①A方式的最低消费20元①当通话100分钟时,两种方式的费用都是30元①当打出电话150分钟时,每分钟收费A方式比B方式便宜0.1元.13.甲无人机从地面起飞,乙无人机从距离地面20m高的楼顶起飞,两架无人机同时匀速上升10s.甲乙两架无人机所在的位置距离地面的高度y(单位:m)与无人机上升的时间x(单位:s)之间的关系如图所示,甲无人机的飞行速度为___________m/s14.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离(单位:米)与时间(单位:分钟)的对应关系如图所示,则小张骑车的速度为_______米/分钟.15.某人从某地出发,骑车前往B地办事,先上坡到达A地后,休息8 min 然后下坡到达B地,8 min办完事,行程情况如图.随后原路返回,若返回时,上下坡速度与原来保持不变,且在A地休息10 min,则他从B地返回到出发地所用的时间是__________min.三解答题16.甲乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,则:(1)A,B两城相距______千米(2)乙车速度为______千米/小时(3)乙车出发后______小时追上甲车.17.小明某天离家,先在A处办事后,再到B处购物,购物后回家,下图描述了他离家的距离s(米)与离家后的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家距离是_________________,小明从家到A 处过程的速度是______________.(2)小明在B 处购物的时间是______________分钟,他从B 处回家过程中速度是_____________.(3)如果小明家 A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是__________米/分.18.某段时间内,汽车离开甲地到达乙地,并返回甲地,折线ABCDE 描述了汽车的行驶过程中汽车离甲地的路程s (千米)和行驶时间t (小时)之间的关系,根据图中提供的信息,解答下列问题:(1)甲地与乙地之间的路程是______千米,汽车在行驶途中停留了______小时(2)汽车在行驶过程中,哪段时间行驶速度最慢:______(填“AB 段”“CD 段”或“DE 段”),此段时间共行驶______千米(3)汽车在返回时的平均速度是多少?19.小颖根据学习函数的经验,对函数11y x =--的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表: x …2- 1- 0 1 2 3 4 … y …2- a 0 b 0 1- c …①=a ___________ b = ___________ c = ___________.①若()6,4A -,(),4B m -为该函数图象上不同的两点,则m =___________(2)描点并画出该函数的图象.(3)①根据函数图象可得,当x =___________时,该函数y 的最大值为___________①观察函数11y x =--的图象,写出该图象的两条性质:___________ ___________参考答案1.B2.C3.C4.B5.B6.A7.A8.B9.B10.D11.612.①①13.814.30015.47.216.(1)解:由图像可得,A ,B 两城两城相距300千米.故答案为300(2)由图像可得,乙车从A 城出发匀速行驶至B 城所需的时间为:413-=(小时)①乙车的速度为:3003100÷=(千米/小时).故答案为100(3)由图像可得,甲车从A 城出发匀速行驶至B 城所需的时间为5小时①甲车的速度为:300560÷=(千米/小时)设乙车出发后a 小时追上甲车①()601100a a +=解得: 1.5a =即乙车出发后1.5小时追上甲车.故答案为1.5.17.解:(1)由图象可知A 处与小明家距离是200m小明从家到A 处过程的速度是200540m /min ÷=.故答案为200m ,40m /min(2)由图象可知小明在B 处购物的时间是20155-=分钟他从B 处回家过程中速度是800(2520)160m /min ÷-=.故答案为5,160m /min(3)由图象可知小明从离家到回家这一过程的路程为80021600m ⨯=,总时间为25min①小明从离家到回家这一过程的平均速度是16002564÷=米/分.18.(1)解:由函数图象可知,甲地与乙地之间的路程是120千米,汽车在行驶途中停留了2 1.50.5-=小时故答案为120,0.5(2)解:AB 段的速度为16080 1.5km /h 3÷=,CD 段的速度为1208040km/h 32-=-,DE 段的速度为12080km /h 4.53=- ①CD 段行驶速度最最慢,此段时间共行驶1208040-=千米故答案为CD 段,40(3)解:由(2)可知汽车在返回时的平均速度是80km /h答:汽车在返回时的平均速度是80km /h .19.(1)解:①当=1x -时,111121a =---=-=-当1x =时,111101b =--=-=当4x =时,141132c =--=-=-故答案为-1,1,-2①()6,4A -,(),4B m -为该函数图象上不同的两点,即411m -=--整理得4m =-(2)解:如图所示:(3)解:①由图象可得当1x =,该函数y 的最大值为1①观察图象可得:该函数的图象是轴对称图形 当1x <时,y 随x 的增大而增大,当1x >时,y 随x 的增大而减小.。

高考数学专题《函数的图象》习题含答案解析

高考数学专题《函数的图象》习题含答案解析

专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。

函数的图像和性质试题答案

函数的图像和性质试题答案

函数的图像和性质试题答案一、单项选择题1. 函数y = |x|在点x=2处的导数为:A. 0B. 1C. -1D. 不存在答案:B2. 若函数f(x) = x^3 - 3x^2 + 2x + 1在区间[0, 3]上单调递增,则其在x=1处的极值为:A. 极小值B. 极大值C. 无极值D. 不确定答案:C3. 函数g(x) = 2x^2 - 4x + 3的图像关于:A. 直线x=1对称B. 直线x=-1对称C. 点(1, 3)对称D. 点(-1, 3)对称答案:A4. 若函数h(x) = sin(x) + cos(x),则h(x)在区间[0, π/2]上的最大值为:A. 1B. √2C. 2D. 不存在最大值答案:B5. 函数k(x) = e^x + ln(x)的定义域为:A. (-∞, 0)B. (0, +∞)C. (-∞, 1)D. (1, +∞)答案:B二、填空题1. 函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1的图像与x轴共有____个交点。

答案:42. 函数g(x) = a|x - b| + c的图像是一个V形谷,当a > 0时,谷的顶点坐标为____。

答案:(b, a*b - c)3. 若函数h(x) = tan(x)在区间(-π/2, π/2)内单调递增,则其在x=0处的导数为____。

答案:0三、计算题1. 求函数f(x) = 3x^3 - 6x^2 + 9x - 5在区间[-2, 2]上的最大值和最小值。

解:首先求导数f'(x) = 9x^2 - 12x + 9。

令f'(x) = 0,得到x = 1或x = 1/3。

计算f(-2) = -37,f(1) = -1,f(1/3) = -19/27,f(2) = -1。

在区间[-2, 2]上,最大值为-1,最小值为-37。

2. 求函数g(x) = 1/(2x^2 + 3x - 2)的渐近线方程。

高考数学一轮复习课时跟踪检测八函数的图象含解析050661.doc

高考数学一轮复习课时跟踪检测八函数的图象含解析050661.doc

课时跟踪检测(八) 函数的图象一、题点全面练1.函数f (x )=x e-|x |的图象可能是( )解析:选C 因为函数f (x )的定义域为R ,f (-x )=-f (x ),所以函数f (x )为奇函数,排除A 、B ;当x ∈(0,+∞)时,f (x )=x e -x,因为e -x>0,所以f (x )>0,即f (x )在x ∈(0,+∞)时,其图象恒在x 轴上方,排除D ,故选C.2.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,x +a ,x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,x +,x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.3.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:选B 函数y =f (x )的图象与函数y =f (a -x )的图象关于直线x =a2对称,令a =2可得与函数y =ln x 的图象关于直线x =1对称的是函数y =ln(2-x )的图象.故选B.4.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D 在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.5.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:选C 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后向左平移一个单位长度得到y =-f (x +1)的图象,根据上述步骤可知C 正确.6.(2019·汉中模拟)函数f (x )=⎝⎛⎭⎪⎫21+e x -1·sin x 的图象大致为( )解析:选 A ∵f (x )=⎝⎛⎭⎪⎫21+e x -1·s in x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x )=-⎝ ⎛⎭⎪⎫2e x1+e x -1·sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),∴函数f (x )为偶函数,故排除C 、D ;当x =2时,f (2)=⎝⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B ,选A.7.若函数f (x )=(ax 2+bx )e x的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B 令f (x )=0,则(ax 2+bx )e x=0,解得x =0或x =-ba ,由图象可知,-b a>1,又当x >-b a时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.8.定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x,2x -3,6-x },则M 的最小值是( )A .2B .3C .4D .6解析:选C 画出函数M =max{2x,2x -3,6-x }的图象如图中实线部分所示,由图可得,函数M 在点A (2,4)处取得最小值,最小值为4,故选C.9.已知在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),该函数的图象与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )解析:选B 由题意知,当-1<t <0时,S 越来越大,但增长的速度越来越慢.当t >0时,S 的增长速度会越来越快,故在S 轴右侧图象的切线斜率逐渐增大,选B.10.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案:{x |-1<x ≤1}11.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)12.已知函数f (x )=|x |(x -a ),a >0. (1)作出函数f (x )的图象; (2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧x x -a ,x ≥0,-x x -a ,x <0,其图象如图所示.(2)由图知,f (x )的单调递增区间是(-∞,0),⎝ ⎛⎭⎪⎫a 2,+∞;单调递减区间是⎝ ⎛⎭⎪⎫0,a2.(3)由图象知,当a2>1,即a >2时,f (x )min =f (1)=1-a ;当0<a2≤1,即0<a ≤2时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a 24.综上,f (x )min =⎩⎪⎨⎪⎧-a 24,0<a ≤2,1-a ,a >2.二、专项培优练(一)易错专练——不丢怨枉分1.(2019·大同质检)已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象关于下列哪个点成中心对称( )A .(1,0)B .(-1,0)C.⎝ ⎛⎭⎪⎫12,0D.⎝ ⎛⎭⎪⎫-12,0 解析:选C 因为f (2x +1)是奇函数,所以图象关于原点成中心对称,而f (2x )的图象是由f (2x +1)的图象向右平移12个单位得到的,故f (2x )关于⎝ ⎛⎭⎪⎫12,0成中心对称. 2.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).3.(2019·合肥质检)对于函数f (x ),如果存在x 0≠0,使得f (x 0)=-f (-x 0),则称(x 0,f (x 0))与(-x 0,f (-x 0))为函数图象的一组奇对称点.若f (x )=e x-a (e 为自然对数的底数)的图象上存在奇对称点,则实数a 的取值范围是________.解析:依题意,知f (x )=-f (-x )有非零解,由f (x )=-f (-x )得,e x-a =-(e -x-a ),即a =12⎝⎛⎭⎪⎫e x+1ex >1(x ≠0),所以当f (x )=e x -a 存在奇对称点时,实数a 的取值范围是(1,+∞).答案:(1,+∞)(二)素养专练——学会更学通4.[数学建模]如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (x )的大致图象如右图所示,那么平面图形的形状不可能是( )解析:选C 由y =f (x )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.5.[直观想象]已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 当x >0时,f (x )=f (x -1),所以f (x )是以1为周期的函数.又当0<x ≤1时,x -1≤0,所以f (x )=f (x -1)=21-x-1=2⎝ ⎛⎭⎪⎫12x-1.方程f (x )=x +a 的根的个数可看成是两个函数y =f (x )与y =x +a 的图象的交点个数,画出函数的图象,如图所示,由图象可知实数a 的取值范围是(-∞,1).(三)难点专练——适情自主选6.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x2.∵g (x )在(0,2]上为减函数, ∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立, ∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞). 7.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于ax -1<34x -1. 令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一坐标系中作出两个函数的图象如图(2)所示,当x ≥2时,f (2)≤g (2), 即a2-1≤34×2-1, 解得a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12.精美句子1、善思则能“从无字句处读书”。

八年级数学下册(人教版)课堂练习检测—函数的图像1(含答案)

八年级数学下册(人教版)课堂练习检测—函数的图像1(含答案)

八年级数学下册(人教版)课堂练习检测—函数的图像1(含答案)一、选择题1.图中,表示y是x的函数图象是()2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()A.39.0℃B.38.2℃C.38.5℃D.37.8℃3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是( )二、填空题5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s (m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题6.如图,下面的图象记录了某地一月份的温度随时间变化的情况,请你仔细观察图象回答下面的问题:(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。

高二数学函数图像试题答案及解析

高二数学函数图像试题答案及解析

高二数学函数图像试题答案及解析1.为了得到函数的图像,只需将图像上的每个点纵坐标不变,横坐标( ) A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】由可知:将图像上的每个点纵坐标不变,横坐标向右平移个单位即可得到函数的图像.【考点】三角函数图像变换.2.函数的图像大致是( )A. B. C. D【答案】A【解析】注意到当时,,显然可排除B、C;再注意当时,,所以,所以排除D,故选A.【考点】函数的图象.3.现有四个函数:①;②;③;④的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是A.①④②③B.①④③②C.④①②③D.③④②①【答案】A【解析】由于从左到右图象的第一个图象关于y轴对称,所以其对应函数是偶函数,而已知的四个函数中①是偶函数,②是奇函数,③是奇函数,④非奇非偶函数;故第一个图象对应的函数只能是①,这样就右排除C和D了,对于A和B,第二个图象对应的函数均是④,所以只须看第三个图象:在y轴右侧图象有在x轴的下方的部分,而函数③,当时,显然,所以第三个图象对应的函数不能是③,故只能是②,这样就排除B,而应选A.【考点】函数的图象.4.若函数,且)的图像如右图所示,则下列函数图像正确的是【答案】B【解析】由已知得:,则对于A:是一个R上的减函数,所以不正确,对于B:是奇函数且在R上是增函数,所以正确,对于C:是一个R上的减函数,所以不正确,对于D:的图象与的图象关于y轴对称,所以不正确,只有B是正确的,故选B.【考点】函数图象.5.已知函数f(x)=,若方程f(x)+2a-1=0恰有4个实数根,则实数a的取值范围是()A.(-,0 ]B.[-,0 ]C.[1,)D.(1,]【答案】A【解析】方程恰有四个实数根,等价于函数与函数的图象恰有四个不同的交点,在同一坐标系中画出函数与函数的图象如下:由图可知,当时,即时,两图象恰有四个不同的交点,所以答案选A.【考点】1、函数的图象;2、数形结合的思想.6.将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为()A.B.C.D.【解析】根据题意是将通过伸缩变换为易验证C正确.【考点】图形的变换.7.在下面的四个图象中,其中一个图象是函f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)等于( ).A.B.-C.D.-或【答案】B【解析】因为,所以的图像是开口向上的抛物线,所以从左到右第三个图像为的图像。

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.设表示不超过实数的最大整数,则在坐标平面上,满足的点所形成的图形的面积为__________.【答案】4【解析】设都是整数,则满足的点形成的图形是单位正方形(,),其面积为1,而在椭圆上整点有,共4个,因此满足题设条件的点形成的图形是4个单位正方形,其面积为4.【考点】函数图象,图形面积.3.已知函数若方程有两个不相等的实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】由已知,函数的图象有两个公共点,画图可知当直线介于之间时,符合题意,故选B.【考点】函数与方程,函数的图象.4.若直角坐标平面内两点P,Q满足条件:①P,Q都在函数f(x)的图像上;②P,Q关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与点对(Q,P)看做同一个“友好点对”).已知函数f(x)=,则f(x)的“友好点对”有________个.【答案】2【解析】由题意知,在函数f(x)=上任取一点A(a,-b),则该点关于原点对称的点B(-a,b)在函数f(x)=2x2+4x+1上,故-b=,b=2a2-4a+1,所以=-2a2+4a-1(a≥0).令g(x)=(x≥0),h(x)=-2x2+4x-1(x≥0),由图像(如图)可知f(x)的“友好点对”有2个.5. [2013·四川高考]函数y=的图象大致是()【答案】C【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y==>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故→0且大于0,故排除D,选C.6. [2014·北京质检]已知函数f(x)=,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是________.【答案】(0,1)【解析】在同一坐标系中作出f(x)=,及y=k的图象(如图).可知,当0<k<1时,y=k与y=f(x)的图象有两个交点,即方程f(x)=k有两个不同的实根.7.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM AB于M,EN AD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()【答案】A【解析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选:A.【考点】动点问题的函数图象;二次函数的图象.8.函数的一段大致图象是()【答案】A【解析】∵,∴,∴函数为奇函数,所以排除B,C答案,当时,,∴,∴排除D,所以选A.【考点】函数图象.9.已知函数的图象大致为()【答案】A【解析】,的图象始终位于的图象的上方,所以函数值为正数,排除当取时,,排除.选.【考点】函数的图象.10.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.11.函数y=2|log2x|的图象大致是()【答案】C【解析】当log2x≥0,即x≥1时,f(x)=2log2x=x;当log2x<0,即0<x<1时,f(x)=2-log2x=.所以函数图象在0<x<1时为反比例函数y=的图象,在x≥1时为一次函数y=x的图象.12.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.13.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.14.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.15.已知函数的图象关于直线对称,则可能是()A.B.C.D.【答案】C【解析】∵函数的图象关于直线对称,∴,∴,当时,,故选C.【考点】由的部分图象确定其解析式.16.已知定义在R上的函数满足:,,则方程在区间上的所有实根之和为( )A.B.C.D.【答案】C【解析】由题意知函数的周期为,则函数在区间上的图象如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.【考点】数形结合图像周期性17.已知函数f(x)=若直线y=m与函数f(x)的图像有两个不同的交点,则实数m的取值范围是________.【答案】(0,1)x(x>0)的图像,不难看到当0<m<1时,直线y=m与【解析】分别画出函数y=2x(x<0)和y=log2函数f(x)的图像有两个不同的交点.18.函数y=的图象大致是 ().【答案】B【解析】对于函数y=定义域为{x|x∈R,且x≠0},当x<0时,3x-1<0,x2>0,∴y<0.∴选项A,C,D不满足,应选B.19.如图放置的边长为1的正方形沿轴正方向滚动.设顶点的轨迹方程是,设在其两个相邻零点间的图象与轴所围区域为S,则直线从所匀速移动扫过区域S的面积D与的函数图象大致为().A. B. C. D.【答案】D【解析】不难想象,从点在轴上的时候开始计算,到下一次点落在轴上,这个过程中四个顶点依次落在了轴上,而每两个顶点间距离为正方形的边长1,下面考察点的运动轨迹,点从轴上开始运动的时候,首先是围绕点运动个圆,该圆半径为1,然后以点为中心,滚动到点落地,其间是以为半径,旋转90°,然后以为圆心,再旋转90°,这时候以为半径,因此最终构成图象如下:因此不难直线从所匀速移动扫过区域S的面积D与的函数图象在增加速度越来越快,在上增加速度越来越慢,故选D.【考点】轨迹问题,函数图像.20.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.21.函数y= (0<a<1)的图象的大致形状是().【答案】D【解析】函数定义域为{x|x∈R,x≠0},且y==,当x>0时,函数是一个指数函数,其底数0<a<1,所以函数递减;当x<0时,函数图象与指数函数y=a x(x<0)的图象关于x轴对称,函数递增,所以应选D.22.函数的图象大致是()【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.23.如图,半径为1的圆切直线于点,射线从出发绕着点顺时针方向旋转到,旋转过程中交⊙于点,记为,弓形的面积,那么的大致图象是 ( )【答案】A【解析】由题意得,则,当和时,,取得极值,则函数在上为增函数,当和时,取得极值.结合选项,A正确.故选A.【考点】函数的图象与图象变化.24.已知函数满足,且时,,则当时,与的图象的交点个数为( )A.13B.12C.11D.10【答案】C【解析】∵满足,且x时,,分别作出函数与的图像如图:由图象可知与的图象的交点个数为11个.故选:C.【考点】 1.抽象函数;2.函数图象.25.为了得到函数的图象,可以把函数的图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动个单位长度C.向左平行移动2个单位长度D.向左平行移动个单位长度【答案】B【解析】因为,所以只需将函数的图象上所有的点向右平移一个单位即可得到的图像(注意变换的只是自变量x)。

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。

理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。

下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。

练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。

1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。

它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。

它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。

它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。

它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。

1.图像描述:一条斜率为1,截距为2的直线段。

解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。

解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。

解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。

解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。

1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。

答案:是奇函数。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间与火车在隧道内的长度之间的关系用图象描述大致是( )【答案】A【解析】根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选A.2.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是()A B C D【答案】D【解析】依题意,0-20分钟散步,离家路程增加到900米, 20-30分钟看报,离家路程不变,30-45分钟返回家,离家路程减少为0米.故选D.3.(本小题满分5分)如图所示,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东, 在M的南偏东方向上有一点A,以A为圆心、500米为半径的圆形区域为居民区,在MN上另一点B ,测得 BA 的方向为南偏东.已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?【答案】200+200>500,不会穿过居民区【解析】地铁路线不会穿过居民区.理由:过A作AC⊥MN于C,设AC的长为xm,∵∠AMN=30°∴AM=2xm,MC=xm∵测得BA的方向为南偏东75°∴∠ABC=45°∴∠ABC=∠BAC=45°∵MB=400m∴x-x=400,解得:x==200(+1)(m)≈546(m)>500(m)∴不改变方向,地铁线路不会穿过居民区.4.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<3【答案】A.【解析】经过第二、三、四象限是3-k<0,-k<0,∴k>3,k>0,取公共解k>3,故选A.【考点】一次函数图像性质.5.点A(3,)和点B(-2,)都在直线y=3x+2上,则,的大小关系是(选填“>”“=”“<”).【答案】y1 >y2.【解析】解析式中K=3,y随x的增大而增大,3>-2,∴y1 >y2.【考点】一次函数的增减性.6.(10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?【答案】(1)440;(2)y2=40x﹣80;(3)4.4小时【解析】(1)观察图形结合点(0,80)(0,360)可知:B、C之间的距离为80千米,A、C之间的距离为360千米,所以A,B两地相距360+80=440千米;(2)先根据条件求出点P的坐标(11,360),设y2=kx+b,代入点(2,0)、(11,360)解方程组即可;(3)求得y1的函数解析式,然后与(2)中的函数解析式联立方程,解方程组即可.试题解析:(1)填空:A,B两地相距:360+80=440千米;(2)由图可知货车的速度为80÷2=40千米/小时,货车到达A地一共需要2+360÷40=11小时,设y2=kx+b,代入点(2,0)、(11,360)得,解得,所以y2=40x﹣80;(3)设y1=mx+n,代入点(6,0)、(0,360)得解得,所以y1=﹣60x+360由y1=y2得,40x﹣80=﹣60x+360解得x=4.4答:客、货两车经过4.4小时相遇.【考点】一次函数的应用.7.直线y=kx+3与y=-x+3的图象如图所示,则方程组的解集为.【答案】【解析】根据题意可知方程组得解集即为两个一次函数的图像的交点坐标,因此可直接求得方程组得解为.【考点】二元一次方程组与一次函数的图像8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.已知一次函数经过两点(,)(,),若,则当时,().A.B.C.D.无法比较【答案】B.【解析】一次函数当时,y随x的增大而减小,若,则,故选B.【考点】一次函数性质.10.(本题12分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k 的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.【答案】(1)P(,);(2);(3)【解析】(1)把k=1代入l2解析式,然后与l1组成方程组,方程组的解即为p点坐标;(2)此题求出P点坐标是解题的关键,由点D为PA的中点即PD=AD,作PG⊥DF于点G,可证△PDG≌△ADE,得DE=DG=DF,PG是DF的垂直平分线,于是PD=PF得到对应两个底角相等,根据等角的余角相等,得到∠FCA=∠PAC,于是PC=PA,过点P作PH⊥CA于点H,因为点C和点A坐标可求。

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数的图象大致是()A. B. C. D.【答案】C.【解析】当时,,故函数图象过原点,可排除A,又∵,故函数的单调区间呈周期性变化,可排除B,且当,,可排除D,故选C.【考点】函数的图象.2.[2014·黑龙江重点中学质检]用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为________.【答案】6【解析】画出y=2x,y=x+2,y=10-x的图象,观察图象可知f(x)=,∴f(x)的最大值在x=4时取得,为6.3.对任意实数,定义运算“⊙”:设,若函数的图象与轴恰有三个交点,则的取值范围是()A.B.C.D.【答案】D【解析】∵,∵函数的图象与轴恰有三个交点,∴的图像与的图像有三个交点,∴的图像如图所示,根据图像得:,∴.【考点】函数图像.4.对任意实数,定义运算“⊙”:设,若函数的图象与轴恰有三个交点,则的取值范围是( )A.B.C.D.【答案】D【解析】∵,∵函数的图象与轴恰有三个交点,∴的图像与的图像有三个交点,∴的图像如图所示,根据图像得:,∴.【考点】函数图像.5.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM AB于M,EN AD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()【答案】A【解析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选:A.【考点】动点问题的函数图象;二次函数的图象.6.函数的图象为【答案】A【解析】函数既不是奇函数也不是偶函数,所以,其图象不关于原点或轴对称,排除;当接近时,,函数图象位于轴下方,故选.【考点】函数的图象7.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.8.函数的所有零点之和为.【答案】8【解析】设,则,原函数可化为,其中,因,故是奇函数,观察函数与在的图象可知,共有4个不同的交点,故在时有8个不同的交点,其横坐标之和为0,即,从而.【考点】1.函数零点;2.正弦函数、反比例函数.9.函数的图象向右平移1个单位长度,所得图象与曲线关于y轴对称,则( ) A.B.C.D.【答案】D【解析】与曲线关于轴对称的图象对应的函数为,再将的图象向左平移1个单位得到,∴.10.右图可能是下列哪个函数的图象()A.y=2x-x2-1B.C.y=(x2-2x)e x D.【答案】C【解析】函数图象过原点,所以D排除,当开始时函数是负数,而B函数原点右侧开始时正数,所以B排除,当时,,所以A排除,而C都满足,故选C.【考点】函数图象的识别11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.函数的图象大致为()【答案】A【解析】因为函数满足,,故函数为奇函数,所以函数的图象关于原点对称可排除,当时,函数,可排除,故选.【考点】函数的奇偶性,函数图像.13.如图,已知正方体的棱长是1,点是对角线上一动点,记(),过点平行于平面的截面将正方体分成两部分,其中点所在的部分的体积为,则函数的图像大致为( )A BC D【答案】D【解析】由题意可知截面下面部分的体积为,不是的线性函数,可采用排除法,排除,又当时截面的面积最大,故在上,增加的速度越来越大,在上,增加的速度越来越小,故排除C,故选D.【考点】函数的图象与图象变化.14.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).15.作出函数y=2-x-3+1的图象.【答案】【解析】由于y=+1,只需将函数y=的图象向左平移3个单位,再向上平移1个单位,得到函数y=2-x-3+1的图象,如图③.③16.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.17.给出下列四个函数:①y=2x;②y=log2x;③y=x2;④y=.当0<x1<x2<1时,使f>恒成立的函数的序号是________.【答案】②④【解析】由题意知满足条件的图像形状为:故符合图像形状的函数为y=log2x,y=.18.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,xn,使得==…=,则n的取值范围为().A.{3,4}B.{2,3,4}C.{3,4,5}D.{2,3}【答案】B【解析】==…=的几何意义是指曲线上存在n个点与坐标原点连线的斜率相等,即n为过原点的直线与曲线的交点个数,由图可得n的取值为2,3,4,故选B.19.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.20.函数f(x)=|log2(x+1)|的图象大致是().【答案】A【解析】因为g(x)=|log2x|的图象如图.把g(x)的图象向左平移一个单位得到f(x)的图象,故选A.21.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:①x2-y2=1;②y=x2-|x|,③y=3sin x+4cos x;④|x|+1=对应的曲线中存在“自公切线”的有().A.①②B.②③C.①④D.③④【答案】B【解析】函数y=x2-|x|的图象如图(1),由图可知满足要求,函数y=3sin x+4cos x的一条自公切线为y=5;x2-y2=1为等轴双曲线,不存在自公切线.而对于方程|x|+1=,其表示的图形为图(2)中实线部分,不满足要求.22.已知函数f(x)=x-,则函数y=f(x)的大致图象为().【答案】A【解析】因为函数f(x)为非奇非偶函数,所以排除B、C.又f(-1)=-1<0,排除D23.函数的大致图像为()【答案】D【解析】显然这是一个偶函数.当时,.所以选D.【考点】函数的性质及图象.24.若直线与曲线有公共点,则的取值范围是()A.B.C.D.【答案】D【解析】对于曲线得,所以,等式两边平方得,即,即,故曲线表示圆的下半圆,如下图所示,当直线与圆相切时,则有,即,解得或,结合图象知,为直线在轴上的截距,当直线与轴的交点位于点之上时,则此时直线与曲线无公共点,当直线经过点时,,因此实数的取值范围是,故选D.【考点】1.函数图象;2.直线与圆的位置关系25.如图是函数的部分图像,函数的零点所在的区间是,则的值为()A.1或0B.0C.1或1D.0或1【答案】C.【解析】由于函数经过点(-1,0),代入得;并且由的图像可以知,即有;从而有,;所以易知在区间上单调递减;在区间,而,所以把0,1,-1分别代入验证的值为1或1.【考点】函数图象及零点问题.26.已知函数,当时,取得最小值,则函数的图象为()【答案】B.【解析】由题意,当且仅当即时等号成立,则,可得,由选项的图像可得B正确.【考点】函数的图像.27.若直角坐标系中有两点满足条件:(1)分别在函数、的图象上,(2)关于点(1,0)对称,则称是一个“和谐点对”.函数的图象与函数的图象中“和谐点对”的个数是()A.4B.6C.8D.10【答案】A【解析】易知函数的图象关于点(1,0)成中心对称,若是一个“和谐点对”,且在函数的图象上,则在函数的图象的另一支上.即是函数的图象与函数的交点.在同一坐标系中作出函数与函数的图象.由图可知,函数与函数有8个交点,且这8个交点关于点(1,0)对称.所以“和谐点对”的个数是4对.【考点】新概念的理解、函数的图像28.函数的图像可能是( )【答案】B【解析】因为函数,所以函数是奇函数,排除选项A和选项C.当时,在区间是增函数,所以选B.【考点】1.分段函数的图像与性质;2.函数奇偶性的判断;3.对数函数的图像与性质29.设定义在R上的偶函数满足,是的导函数,当时,;当且时,.则方程根的个数为( )A.12B.1 6C.18D.20【解析】函数的图像如图所示:可知函数在区间和上的图像在直线与直线之间.由且时,可知,函数在区间上是单调递增的,在区间上的单调递减的,又因为当时,,且已知函数是周期为的偶函数,所以已知函数在区间上的图像在直线与直线之间,与函数的图像在区间与上分别有1个交点,在区间,,,,,,,上分别有2个交点,所以一共有18个交点,即方程根的个数为.【考点】1.对数函数的图形与性质;2.函数单调性与导数的关系;3.数形结合思想30.已知函数,若,则a的取值范围是____________.【答案】【解析】函数的图像如图所示:其中红色直线表示的是取不同值时的函数的图像,由图可知,当时,.【考点】1.对数函数的图像与性质;2.数形结合思想31.已知两个实数满足且,则三个数从小到大的关系是(用“”表示).【答案】【解析】,,由下面图象知函数的图象与与的图像交点的横坐标分别为、,故.【考点】函数、与、及的图象性质.32.已知为的导函数,则的图像是()【解析】,,为奇函数,图像关于原点对称,故只能选A,C,当时,,故答案选A.【考点】函数与导数,函数图像.33.已知是函数f(x)=lnx-()x的零点,若的值满足( )A.B.C.D.的符号不确定【答案】C【解析】由与的图像可知:在之间,∴,即.【考点】1.函数图像;2.函数零点问题.34.已知函数的图像是下列四个图像之一,且其导函数的图像如左图所示,则该函数的图像是()A. B. C. D.【答案】B.【解析】根据导函数的图像可知在上递增先增加的速度越来越快,然后越来越慢,故选B.【考点】函数的图象及其性质.35.函数的图像可能是()【答案】B【解析】显然函数为定义域上的奇函数,可排除A、C,而当时,,所以答案选B.【考点】函数的图像与性质.36.定义域为的偶函数满足对任意,有,且当时,,若函数在上至少有三个零点,则的取值范围是()A.B.C.D.【答案】B【解析】令则又为定义域在上的偶函数,所以,即,所以函数的周期为,又,所以函数的图像关于对称,根据()作出的图像与函数则在上至少有三个零点也就是函数的图像与至少有三个交点,如图所示,则,所以.【考点】分段函数、零点、函数的图象37.函数的大致图象是()【答案】B.【解析】由函数的定义域为或,值域为R,又当时,函数为单调增函数,所以只有选项B正确.【考点】函数的图像.38.函数的大致图象为()(A)(B)(C)(D)【答案】D【解析】因函数为非奇非偶函数,排除选项A、C;原函数求导得,由得,即或.当时,,说明原函数递增,当时,,原函数递减,所以是函数的极大值点.因此选D.【考点】1.函数的奇偶性;2.利用导数判函数单调性;3.函数极值.39.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点,,,.若,则实数的值为.【答案】【解析】由偶函数的性质,得到.由题意知所以,则.【考点】函数的图象与基本性质.40.若函数且有两个零点,则实数的取值范围是.【答案】【解析】构造函数且,要保证两个函数图象有不同的两个交点,则需.【考点】函数的图象.41.函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,(1)的取值范围是_______________.(2)是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.【答案】(1);(2)1.【解析】如图,由得即,解得,或,所以,由图象可知要使直线与函数的图像有三个不同的交点,则有,即实数的取值范围是.不妨设,则由题意可知,所以,由得,,当取最大值1时,.【考点】1.分段函数;2.函数的图象.42.设函数,则函数的极大值点为()A.B.C.D.【答案】B【解析】当0<x<1时,f(x)=x(x-1)2(x-2)3(x-3)4<0,当x=1时,f(x)=x(x-1)2(x-2)3(x-3)4=0,当1<x<2时,f(x)=x(x-1)2(x-2)3(x-3)4<0,其函数f(x)=x(x-1)2(x-2)3(x-3)4大致如图所示.结合图象可知,当0<x<1时,函数是增,当1<x<2时,函数是减函数,根据函数极值的概念可知,x=1是函数y=f(x)的极大值点.是极小值点,不是极值点。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,小手盖住的点的坐标可能为A B C D【答案】A【解析】解:小手盖住的点在第三象限,故选A。

2.已知正比例函数和反比例函数的图象交于点A(m,一2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.【答案】(1)反比例函数的解析式为y=;(2)-1<x<0或x>1;(3)四边形OABC是菱形.证明见解析.【解析】(1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状.试题解析:(1)设反比例函数的解析式为y=(k>0),∵A(m,-2)在y=2x上,∴-2=2m,∴m=-1,∴A(-1,-2),又∵点A在y=上,∴k=2,∴反比例函数的解析式为y=;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为-1<x<0或x>1;(3)四边形OABC是菱形.证明:∵A(-1,-2),∴OA=,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y=上,∴n=1,∴C(2,1),OC=,∴OC=OA,∴四边形OABC是菱形.【考点】反比例函数综合题.3.在平面直角坐标系中,把直线沿y轴向上平移两个单位后,得到的直线的函数关系式为____________________.【答案】y="2x-1"【解析】根据平移法则上加下减可得出平移后的解析式.由题意得:平移后的解析式为:y=2x-3+2=-2x-1.【考点】函数图像的平移4.如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1与y2的大小.【答案】(1)(1,2);y=;(2)当0<x<1时,;当x=1时,;当x>1时,;【解析】首先将点A的坐标代入一次函数解析式得出点A的坐标,将点A的坐标代入反比例函数解析式得出反比例函数的解析式;根据函数图象进行比较大小.试题解析:(1)将点A(m,2)代入一次函数可得:2=m+1 解得:m=1 ∴A(1,2),将A(1,2)代入反比例函数解析式可得:k=2 则反比例函数的解析式为:(2)根据函数图象可得:当0<x<1时,;当x=1时,;当x>1时,.【考点】反比例函数与一次函数.5.一次函数y=2x﹣4的图象与两坐标轴交点的距离是()A.B.C.D.【答案】B【解析】令y=2x﹣4=0,则x=2,令x=0,则y=-4,∴一次函数y=2x﹣4的图象与坐标轴交于A、B两点的坐标是A(0,﹣4),B(2,0),∴OA=4,OB=2,∴AB=,故选:B【考点】一次函数图象上点的坐标特征.6.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()【答案】A【解析】∵当k>0时,正比例函数y=kx的函数值y随x的增大而增大,∴一次函数y=x+k中,x的系数1>0,b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选:A.【考点】1.一次函数的图象;2.正比例函数的性质.7.(10分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,(1)求直线y=kx+b的表达式;(2)求不等式>kx+b>-2的解集.【答案】(1)y=x-1;(2)-1<x<2【解析】(1)由于直线y=kx+b经过点A(2,1),和B(-1,-2)两点,利用待定系数法求出函数解析式;(2)再组成不等式方程组解答.试题解析:(1)直线y=kx+b经过a(2,1),B(-1,-2)得方程组:解得:k=1,b=-1,∴y=x-1,(2)不等式x>kx+b>-2可化为不等式组:解得:-1<x<2.【考点】一次函数,不等式组8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.请写出一个图像经过第一、三象限的正比例函数的解析式____________________.【答案】y=2x(答案不唯一,只要k>0即可).【解析】根据正比例函数的性质可得只要k>0即可.【考点】正比例函数的性质.10.(10分)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图像回答下列问题:(1)汽车行驶__________h后加油,中途加油__________L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?【答案】(1)2,190;(2)y=-20x+100;(3)该车从出发到现在已经跑了1120km,用时14h.【解析】(1)观察图象可知,汽车行驶2h后加油,所加油量为250-(100-25×1.6)=190L;(2)根据题意可得大巴车每公里油耗为0.25L;大巴车以速度为80km/h行驶x小时的油耗为0.25×80xL,所以加油前油箱剩余油量y与行驶时间x的函数解析式为y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,所以加油前和加油后的函数解析式的k值相同,加油后的解析式经过(2,250),可求得加油后y与x的函数关系式,把y=10代入求得大巴车油箱中剩余油量为10L时行驶的时间,再根据路程=速度×时间即可求得大巴车所跑的最远路程.试题解析:(1)2,190;(2)y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b,把k=-20代入,得到y="-20x+b"再把(2,250)代入,得b=290所以y="-20x+290"当y=10时,x=14,所以14×80=1120因此该车从出发到现在已经跑了1120km,用时14h.【考点】一次函数的应用.11.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.12.(9分)为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y是x的一次函数,下表列出两套符合条件的课桌椅的高度.(1)请确定课桌高度与椅子高度的函数关系式;(2)现有一张高80cm的课桌和一张高为43cm的椅子,它们是否配套?为什么?【答案】y=x+32;不配套.【解析】本题利用待定系数法求出一次函数的解析式;求x=43代入函数解析式求出y的值,看求出的y值是否等于80,若相等则说明配套,否则不配套.试题解析:(1)设一次函数的解析式为y=kx+b,把点(42,74)(38,70)代入,得到,解得:,∴函数解析式为:y=x+32,(2)当x=43时,y=43+32=75≠80,∴它们不能配套.【考点】一次函数的应用13.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积v时,气体的密度也随之改变.与v在一定范围内满足,图象如图所示,该气体的质量m为 kg.【答案】7.【解析】由图象可知,的图象经过(5,1.4),代入即可得m=7.【考点】反比例函数的应用.14.(本题满分8分)如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(l)如果∠BAC=300,∠DAE=l050,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(l)中y与x之间的函数关系式还成立?试说明理由.【答案】(1);(2)当α、β满足关系式时,函数关系式成立,理由见解析.【解析】(1)根据已知条件证明△ADB∽△EAC即可得,代入x、y得值即可得y与x之间的函数关系式;(2)要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又因∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.试题解析:(l)在△ABC中,AB="AC" =1,∠BAC=300,∴∠ABC=∠ACB=750,∴∠ABD=∠ACE=1050,1分∵∠DAE=1050.∴∠DAB+∠CAE=750,又∠DAB+∠ADB=∠ABC=750,∴∠CAE=∠ADB∴△ADB∽△EAC∴即;(2)当α、β满足关系式时,函数关系式成立理由如下:要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.【考点】相似三角形的综合题.15.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【答案】B.【解析】∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.【考点】反比例函数图象上点的坐标特征.16.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.17.在平面直角坐标系中,直线y1=x+a和y2=﹣x+b交于点E(3,3),点P(m,n)在直线y1=x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣x+b于点F.(1)若n=2,求△PEF的面积;(2)若PF=2,求点P的坐标.【答案】(1);(2)P(﹣,)或P(,).【解析】(1)已知直线y1=+a和直线y2=﹣+b的交点为E(3,3),代入即可得a、b的值,点P(m,n)在直线y1=x+a上且n=2,即可求得m的值,所以可得点P的坐标,根据已知条件可得点F的坐标,根据三角形的面积公式即可得△PEF的面积;(2)已知点P在y1=x+2,点F在y2=,可设(m,),F(m,),根据PF=|()﹣()|=2即可得m的值,再求点P的坐标即可.试题解析:(1)解:∵直线y1=+a和直线y2=﹣+b的交点为E(3,3)∴3=×3+a,3=﹣×3+b,∴a=2,b=,得直线y1=和直线y2=,如图所示,又∵n=2,∴2=,m=0,∴P(0,2),过点P(0,2)作x轴的垂线,交y2=直线于点F,F(0,),∴PF=,∴,(2)解:由(1)知,点P在y1=x+2,点F在y2=,∵PF⊥x轴,可设P(m,),F(m,),∴PF=|()﹣()|=2,∴m=﹣或m=,∴P(﹣,)或P(,).【考点】一次函数的综合题.18.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.【答案】m=5,n=3;5.【解析】先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.试题解析:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.【考点】两条直线相交或平行问题;二元一次方程组的解.19.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则▱ABCD的面积为()A.3B.5C.7D.9【答案】B【解析】连结OA、OB,如图,AB交y轴于E,根据反比例函数k的几何意义得到S△OAE=1,S△OBE =,则S△OAB=,然后根据平行四边形的面积公式求解.连结OA、OB,如图,AB交y轴于E,∵AB∥x轴,∴S△OAE =×|2|=1,S△OBE=×|﹣3|=,∴S△OAB=,∵四边形ABCD为平行四边形,∴▱ABCD的面积=2S△OAB=5.【考点】反比例函数系数k的几何意义20.要使y=(m-2)是关于x的一次函数,则m= .【解析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m 的值.根据一次函数的定义可得:m﹣2≠0,=1,由=1,解得:m=0或2,又m﹣2≠0,m≠2,∴m=0.【考点】一次函数的定义21.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是.【答案】﹣1.【解析】∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1.【考点】一次函数图象上点的坐标特征.22.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为()A.3B.6C.D.【答案】A【解析】根据一次函数图象上点的坐标特点,直线y=﹣x+3与x轴、y轴的交点坐标分别为(2,0),(0,3),故可求出三角形的面积.当x=0时,y=3,即与y轴交点是(0,3),当y=0时,x=2,即与x轴的交点是(2,0),所以与x轴、y轴所围成的三角形的面积为×2×3=3.【考点】一次函数图象上点的坐标特征23.如图,一次函数y1=mx+n的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=(x<0)交于点C,过点C分别作x轴、y轴的垂线,垂足分别为点E、F.若OB=2,CF=6,.(1)求点A的坐标;(2)求一次函数和反比例函数的表达式.【答案】(1)(-2,0);(2)y=-x-2、y=-.【解析】利用,OE=CF=6,可计算出OA=2,于是得到A点坐标为(﹣2,0);由于B 点坐标为(0,﹣2),则可利用待定系数法求出一次函数解析式为y1=﹣x﹣2,再利用一次函数解析式确定C点坐标为(﹣6,4),根据反比例函数图象上点的坐标特征计算出k=﹣24,所以反比例函数解析式为y2=﹣.试题解析:(1)∵,而OE=CF=6,∴OA=2,∴A点坐标为(﹣2,0);(2)B点坐标为(0,﹣2),把A(﹣2,0)B(0,﹣2)代入y1=mx+n得,解得:,∴一次函数解析式为y1=﹣x﹣2;把x=﹣6代入y1=﹣x﹣2得y=6﹣2=4,∴C点坐标为(﹣6,4),∴k=﹣6×4=﹣24,∴反比例函数解析式为y2=﹣.【考点】反比例函数与一次函数的交点问题24.已知点(a,1)在函数y=3x+4的图象上,则a= .【答案】-1.【解析】把(a,1)代入y=3x+4得3a+4=1,解得a=﹣1.故答案为:﹣1.【考点】一次函数图象上点的坐标特征.25.直线y=x+3与x轴,y轴所围成的三角形的面积为.【答案】3.【解析】当x=0时,y=x+3=3,则直线与y轴的交点坐标为(0,3),当y=0时,x+3=0,解得x=﹣2,则直线与x轴的交点坐标为(﹣2,0),所以直线y=x+3与x轴,y轴所围成的三角形的面积=×3×2=3.故答案为:3.【考点】一次函数图象上点的坐标特征.26.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【答案】(1)(6,0);(2)4.【解析】(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.试题解析:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.【考点】两条直线相交或平行问题.27.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的().A.B.C.D.【答案】B.【解析】根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,即B图形满足题意.故选:B.【考点】函数的图象.28.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是 .【答案】(2,0),(0,4).【解析】令y=0,得x=2,令x=0,得y=4;所以,图象与x轴交点坐标是(2,0),图象与y轴交点坐标是(0,4).【考点】一次函数图象上点的坐标特征.29.在直角坐标系中,直线与坐标轴围成的三角形的面积为 .【答案】【解析】先求出直线与x轴,y轴的交点为(,0)(0,-2),根据面积公式计算即可得出三角形的面积【考点】一次函数30.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .【答案】15.【解析】由图象可得出:进水速度为:20÷4=5(升/分钟),出水速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分钟),(a﹣4)×(5﹣3.75)+20=(24﹣a)×3.75,解得:a=15.故答案为:15.【考点】一次函数的应用.31.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=3x+2.【解析】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x﹣1+3,即y=3x+2.故答案为:y=3x+2.【考点】一次函数图象与几何变换.32.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【答案】(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)方案一【解析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.试题解析:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.【考点】一次函数的应用.33.已知反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,试写出一个符合条件的整数k= .【答案】﹣1(答案不唯一).【解析】∵反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,∴k<0,∴k可以为﹣1.故答案为:﹣1(答案不唯一).【考点】反比例函数的性质.34.已知一次函数中,随着的增大而减小,则这个函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】已知一次函数y=kx-3,y随x的增大而减小可得k<0,b=-3<0,即可得此函数的图象经过二、三、四象限,不经过第一象限.故答案选A.【考点】一次函数的性质;一次函数的图象与系数的关系.35.(本题满分8分)已知一次函数(1)为何值时,随的增大而减小?(2)为何值时,它的图象经过原点?【答案】k>4;k=-4【解析】对于一次函数y=kx+b,y随x的增大而减小,则k>0;当图象经过原点,则b=0且k≠0.试题解析:(1)∵一次函数y=(4﹣k)x﹣2k2+32,y随x的增大而减小,∴4﹣k<0 ∴k>4;(2)∵一次函数y=(4﹣k)x﹣2k2+32,它的图象经过原点∴﹣2k2+32=0 解得:k=±4∵4﹣k≠0∴k=﹣4.【考点】一次函数的性质36.已知函数y=k x+b和y=k x+b图像如图所示,直线y与直线 y交于A点(0,3)(1)求函数y和y的函数关系式(2)求三角形ABC的面积(3)已知点D在x轴上,且满足三角形ACD是等腰三角形,直接写出D点坐标【答案】(1)y=—3x+3,y=—x+3;(2)3;(3)(0,0)(—3,0)(3—3,0)(3+3,0)【解析】(1)根据图像可知B、C点的坐标,代入函数解析式分别求出解析式;(2)根据图像可知三角形的底为BC,高为AO,然后由三角形的面积公式可求解;(3)由图像可知,当AC=CD1,AC=CD2,AC=CD3,AD4=CD4时,分别写出点的坐标.试题解析:【考点】由图像,根据勾股定理AC=,当AC=CD1时,D1为(-3,0);当AC=CD2时,D2为(3+2);当AC=CD3时,D3为(3-2);当AD4=CD4时,D4为(0,0).【考点】勾股定理,等腰三角形,一次函数的图像与性质37.若直线经过二、三、四象限,则m的取值范围是()A.B.m>0C.D.m<0【答案】D.【解析】试题分析∵直线经过第二,三,四象限;∴m<0,2m﹣1<0,即m<0.故选D.【考点】一次函数图象与系数的关系.38.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.39.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)乙车休息的时间为;(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)求行驶多长时间两车相距100km.【答案】(1)y=-80x+400;(2)0.5小时;(3)y=100x,y乙=80x;(4)x=1或x=3.125.【解析】(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,利用待定系数法解答即可;(2)先把y=200代入甲的函数关系式中,可得x的值,再由图象可知乙车休息的时间;(3)根据待定系数法,可得休息前,休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)分类讨论,0≤x≤2.5,y甲减y乙等于100千米,2.5≤x≤5时,y乙减y甲等于100千米即可.试题解析:(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,可得:,解得:.所以函数解析式为:y=-80x+400;(2)把y=200代入y=-80x+400中,可得:200=-80x+400,解得:x=2.5,所以乙车休息的时间为:2.5-2=0.5小时;(3)设休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=kx,∴200=2k,∴k=100,∴休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=100x,设休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x;(4)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于100千米,即400-80x-100x=100,解得 x=1;2.5≤x≤5时,y乙减y甲等于100千米,即2.5≤x≤5时,80x-(-80x+400)=100,解得x=3.125,综上所述:x=1或x=3.125.【考点】一次函数的应用.40.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.41.已知过点(-2,4)的直线()不经过第三象限.设,则s的取值范围是.【答案】-4≤s﹤4.【解析】由题意得m<0且n≥0,把(﹣2,4)代入y=mx+n得﹣2m+n=4,则n=2m+4,所以2m+4≥0,解得m≥﹣2,所以m的取值范围为﹣2≤m<0,因为s=2m+n=2m+2m+4=4m+4,所以﹣4≤s<4.故答案为:﹣4≤s<4.【考点】一次函数图象与系数的关系.42.已知y-3与4x-2成正比例,且当x=1时,y=5.(1)求与的函数关系式;(2)求当时的函数值.【答案】(1)y=4x+1;(2)函数值-7.【解析】(1)由正比例函数的定义设出函数解析式,再把当x=1时,y=5代入求出k的值;(2)把x=﹣2代入(1)中的解析式进行计算即可.试题解析:(1)设y﹣3=k(4x﹣2)(k≠0),把x=1,y=5代入,得:5﹣3=k(4×1﹣2),解得k=1,则y与x之间的函数关系式是y=4x+1;(2)由(1)知,y=4x+1.当x=﹣2时,y=4×(﹣2)+1=﹣7.即当x=﹣2时的函数值是7.【考点】待定系数法求一次函数解析式.43.一棵新栽的树苗高1米,若平均每年都长高5厘米.请写出树苗的高度y(cm)与时间x (年)之间的函数关系式:.【答案】y=5x+100.【解析】由题意得,树苗x年后长高5xcm,1米=100cm,所以树苗的高度y(cm)与时间x (年)之间的函数关系式是y=5x+100.【考点】列一次函数关系式.44.表示函数的方法一般有、、.【答案】列表法;关系式法;图象法.【解析】根据函数的定义,可得答案.表示函数的方法一般有列表法、关系式法、图象法.故答案为:列表法、关系式法、图象法.【考点】函数的表示方法.45.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.【答案】y=20-2x;5<x<10.【解析】试题解析:∵2x+y=20∴y=20-2x,即x<10,∵两边之和大于第三边∴x>5,综上可得5<x<10.【考点】根据实际问题列一次函数关系式.46.杨佳明周日骑车从家里出发,去图书馆看书,(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第分钟,并求出她在骑行30分钟时的路程是.【答案】(1)杨佳明在图书馆看书的时间为20min;(2)杨佳明在图书馆看书的时间为20min;(3)20-30;2km.【解析】(1)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(2)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(3)根据图中提供的信息即可得到结论.试题解析:(1)如图1,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(2)如图2,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(3)当她离家最远时,时间是在第20-30分钟,并求出她在骑行30分钟时的路程是2km.【考点】一次函数的应用.47.直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】B.【解析】试题解析:由于k=-1<0,b=1>0,故函数过一、二、四象限,故选B.【考点】一次函数图象与系数的关系.48.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.【答案】(﹣,﹣).【解析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).【考点】一次函数综合题.49.(2015秋•常熟市校级月考)如图是某汽车行驶的路程s(km)与时间t(m/n)的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 km/min;(2)汽车在中途停了 min;(3)当16≤t≤30时,s与t的函数关系式:.【答案】(1)km/min;(2)7min.(3),7,S=2t﹣20.【解析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20,故答案为:,7,S=2t﹣20.【考点】一次函数的应用.50.若有一条直线与直线y=2x平行,且过点A(-1,2),则该直线解析式为_____________.【答案】y=2x+4【解析】根据两直线平行,可知k=2,设该直线的解析式为y=2x+b,把A(-1,2)代入可得2×(-1)+b=2,解得b=4,因此可得该一次函数的解析式为y=2x+4.【考点】一次函数的解析式51.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.(1)求A、B两点的坐标;(2)求直线AE的解析式;(3)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.【答案】(1)A(0,3),B(-1,0);(2)AE:y=-x+3;(3)(-3,4)(-4,1)(-2,2)。

八下函数的图象习题(含答案和解析)

八下函数的图象习题(含答案和解析)

函数的图象习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出弹簧长度y(cm)与所挂物体质量x(kg)的关系式.(3)当所挂重物为3 kg 时,弹簧有多长?不挂重物呢?(4)若弹簧的长度为30 cm 时,所挂重物的质量是多少?(在弹簧的允许范围内).【答案】解:(1)上述表格反映了弹簧的长度y cm 与所挂物体的质量x kg 这两个变量之间的关系.其中所挂物体的质量x kg 是自变量,弹簧的长度y cm 是因变量.(2)设弹簧长度y(cm)与所挂物体质量x(kg)的关系式为y = kx + b,将x = 0,y = 18;x = 1,y = 20代入得:k = 2,b = 18,∴y = 2x + 18.(3)当x = 3时,y = 24;当x = 0时,y = 18.所以,当所挂重物为3 kg 时,弹簧有24 cm 长;不挂重物时,弹簧有18 cm 长.(4)把y = 30代入y = 2x + 18,得出:x = 6,所以,弹簧的长度为30 cm 时,所挂重物的质量是 6 kg.【解析】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.(1)上述表格反映了弹簧的长度y cm 与所挂物体的质量x kg 这两个变量之间的关系.其中所挂物体的质量x kg 是自变量,弹簧的长度y cm 是因变量;(2)设y = kx + b,然后将表中的数据代入求解即可;(3)从图表中直接得出当所挂重物为3 kg 时,弹簧的长度和不挂重物时弹簧的长度;(4)把y = 30代入(2)中求得的函数关系式,求出x 的值即可.2. 等腰三角形中,周长为18 cm,设底边为x,腰长为y,(1)求y 与x 之间的函数关系式;(2)求自变量x 的取值范围;(3)在平面直角坐标系中画出函数的图象.【答案】解:(1) ∵等腰三角形周长为18 cm,底边为x cm,腰长为y cm,∴y= 9 − 12 x;(2) ∵两边之和大于第三边,两边之差小于第三边,∴{18 − x > x x > 0 ,解得:0 < x < 9;(3)y= 9 − 12 x(0 < x < 9).∵x = 9,y = 4.5,x = 0,y = 9,∴如图所示:【解析】此题考查了等腰三角形的性质以及画函数的图象,画图象时要注意自变量的取值范围.(1)根据等腰三角形的性质可得y= 9 − 12 x;(2)根据两边之和大于第三边两边之差小于第三边,得0 < x < 9;(3)画函数图象注意取值范围.3. 图1 中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图 2 所示,根据图中的信息,回答问题:(1)根据图2 补全表格:(2)如表反映的两个变量中,自变量是______,因变量是______;(3)根据图象,摩天轮的直径为______m,它旋转一周需要的时间为___min 【答案】(1)70 54 (2)旋转时间x 高度y (3)65 6【解析】解:(1)由图象可知,当x = 3时,y = 70,当x = 8时,y = 54,故答案为:70;54;(2)表反映的两个变量中,自变量是旋转时间x,因变量是高度y;故答案为:旋转时间x;高度y;(3)由图象可知,摩天轮的直径为:70 − 5 = 65 m,旋转一周需要的时间为6 min.故答案为:65;6.【分析】(1)根据图象得到x = 3和x = 8时,y 的值;(2)根据常量和变量的概念解答即可;(3)结合图象计算即可.本题考查的是函数的概念与图象,正确理解常量和变量的概念、读懂函数图象是解题的关键.。

28道初中数学函数及其图像检测题每道都是经典(内含答案)

28道初中数学函数及其图像检测题每道都是经典(内含答案)

28道初中数学函数及其图像检测题,每道都是经典(内含答
案)
函数是初中数学中的一个基本概念,也是代数学里面最重要的概念之一。

函数就是设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。

我们将自变量x取值的集合叫做函数的定义域,和自变量x 对应的y的值叫做函数值,函数值的集合叫做函数的值域。

函数对于很多初中同学还说都是一个重难点,下面是小编今天带来的28道初中数学函数及其图像检测题,同学们赶紧练习一下,看自己掌握的如何。

初中数学对函数的学习只是基本的知识学习,进入高中后还会更深入的学习函数知识。

同学们在初中学习的时候一定要掌握好,打好基础,不然高中学习函数的时候就无法跟上老师的进度!如果您的孩子在学科知识点记忆上存在问题、学习效率不高,。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图是一次函数=kx+b和反比例函数的图象,观察图象写出时,x的取值范围()A.x<-2或x>3B.x<-2或x<3C.-2<x<0或x>3D.-2<x<0或0<x<3【答案】C【解析】∵y1>y2,∴ x的取值范围为-2<x<0或x>3.故选C.2.(8分)下面的图象记录了某地一月份某天的温度随时间变化的情况,请你仔细观察图象回答下面的问题:⑴20时的温度是℃,温度是0℃的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为小时.⑵你从图象中还能获取哪些信息(写出3~4条即可)?【答案】(1)-1; 12,18;14;8(2)例如:(1)这天10时的气温是-1℃;(2)这天的最高气温为2℃;(3)这天的最低气温是-4.8℃;(4)这一天中,从凌晨4时到14时气温在逐渐升高。

【解析】略3.在反比例函数的图像上,到轴和轴的距离相等的点有A.1个B.2个C.4个D.无数个【答案】B.【解析】根据k=xy求值即可.试题解析:∵到x轴和y轴的距离相等∴x2=9解得:x=3或x=3.故选B.【考点】函数图象上点的坐标特征.4.如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为,点An的坐标为.【答案】(7,8),().【解析】由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.A1的纵坐标是:1=20,A1的横坐标是:0=20-1;A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).据此可以得到An 的纵坐标是:2n-1,横坐标是:2n-1-1,即点An的坐标为(2n-1-1,2n-1).【考点】一次函数与正方形结合的规律题.5.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()【答案】A【解析】∵当k>0时,正比例函数y=kx的函数值y随x的增大而增大,∴一次函数y=x+k中,x的系数1>0,b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选:A.【考点】1.一次函数的图象;2.正比例函数的性质.6.(7分)已知一次函数的图象经过点A(1,1)和点B(2,﹣1),求这个一次函数的解析式.【答案】y=﹣2x+3.【解析】把A(1,1)和点B(2,﹣1),代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,即可得到一次函数的解析式.试题解析:解:设一次函数y=kx+b的图象经过两点A(1,1)和点B(2,﹣1)∵A(1,1)和点B(2,﹣1),∴,解得:,∴一次函数解析式为:y=﹣2x+3.【考点】用待定系数法求一次函数解析式.7.若A(-1,y1)、B(-2,y2)是反比例函数y=(m为常数,m≠)图象上的两点,且y1>y2,则m的取值范围是.【答案】m>0.5.【解析】因为-1>-2,y1>y2,所以y随x的增大而增大,所以反比例函数y=中,1-2m<0,解得m>0.5.【考点】反比例函数的性质.8.(本题14分)如图①,直线:分别与轴、轴交于A、B两点,与直线:交于点.(1)求A、B两点坐标及、的值;(2)如图②,在线段BC上有一点E,过点E作轴的平行线交直线于点F,过E、F分别作EH⊥轴,FG⊥轴,垂足分别为H、G,设点E的横坐标为,当为何值时,矩形EFGH的面积为;(3)若点P为轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【答案】(1)A(8,0);B(0,4);;;(2)1或3 ;(3)(5,4)、(0,-4)、(,4)或(-,4).【解析】(1)把点代入直线和,即可求得k和b的值,根据直线的解析式求得其与两坐标轴的交点A和B的坐标;(2)用m的代数式分别表示点E和点F的坐标,求出EF的长,应用矩形的面积公式表示矩形EFGH的面积,然后求出面积为时的m值;(3)分情况讨论,当PA=PB时,当BP=BA时,当AB=AP时,分别求出点Q的值.试题解析:解:(1)把点代入直线和,可得,,解得k=2,b=4,即,,直线:与x轴的交点A的坐标为A(8,0),与y轴的交点B的坐标为B(0,4);(2)由题意得,点E的坐标为(m,),点F的坐标为(m,2m-6),所以EF=,EH=m,所以矩形EFGH的面积为:S=m(),当S=时,,解得m=1或m=3,答:当为1或3时,矩形EFGH的面积为;(3)当PA=PB时,设OP=a,则PA=PB=8-a,在Rt△PAB中:,解得:,所以BQ=PA=5,得Q(5,4),当BP=BA时,因为PA⊥OB,所以OP=OA=4,则Q、B关于x轴对称,得Q(0,-4),当AB=AP时,因为AB=,所以BQ=,得Q(,4)或(-,4),综上:符合条件的Q点坐标为(5,4)、(0,-4)、(,4)或(-,4).【考点】待定系数法求解析式;坐标与图形.9.在y=5x+a﹣2中,若y是x的正比例函数,则常数a= .【答案】a=2【解析】本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.【考点】正比例函数的定义.10.函数y=中自变量x的取值范围是.【答案】x≠3【解析】根据分式的分母不等于0列式即可得出答案.根据题意得,x﹣3≠0,解得x≠3.【考点】函数自变量的取值范围.11.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.-1C.3D.-3【答案】A.【解析】:一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.故选A.【考点】一次函数图象上点的坐标特征.12.(3分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.【答案】:2或﹣7.【解析】分k>0和k<0两种情况,•当k>0时,此函数是增函数,由一次函数的性质可知当x=1时,y=3;当x=4时,y=6,所以,解得k=1,b=2,即可得=2; 当k<0时,此函数是减函数,一次函数的性质可知当x=1时,y=6;当x=4时,y=3,所以,解得k=—1,b=7,即可得=﹣7.【考点】一次函数的性质.13. (11分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x 棵,到两家林场购买所需费用分别为y 甲(元)、y 乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;(2)分别求出y 甲、y 乙与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么? 【答案】(1)5900,6000; (2)y 甲=;y 乙=;(3)当0≤x≤1000或x=3000时,两家林场购买一样, 当1000<x <3000时,到甲林场购买合算; 当x >3000时,到乙林场购买合算.【解析】(1)根据购买树苗需要的费用=树苗的单价×数量分别计算甲、乙的费用;(2)根据购买树苗需要的费用=树苗的单价×数量,分别求出当0≤x≤1000,或x >1000时,y 甲与x 之间的函数关系式;当.0≤x≤2000,或x >2000时y 乙与x 之间的函数关系式;(3)分类讨论,当0≤x≤1000,1000<x≤2000时,x >2000时,根据y 甲、y 乙的关系式列出不等式或方程,即可得结论.试题解析:解:(1)由题意,得.y 甲=4×1000+3.8(1500﹣1000)=5900元, y 乙=4×1500=6000元; 故答案为:5900,6000; (2)当0≤x≤1000时, y 甲=4x ,x >1000时.y 甲=4000+3.8(x ﹣1000)=3.8x+200, ∴y 甲=;当0≤x≤2000时, y 乙=4x当x >2000时,y 乙=8000+3.6(x ﹣2000)=3.6x+800 ∴y 乙=;(3)由题意,得当0≤x≤1000时,两家林场单价一样, ∴到两家林场购买所需要的费用一样.当1000<x≤2000时,甲林场有优惠而乙林场无优惠, ∴当1000<x≤2000时,到甲林场优惠;当x >2000时,y 甲=3.8x+200,y 乙=3.6x+800, 当y 甲=y 乙时3.8x+200=3.6x+800, 解得:x=3000.∴当x=3000时,到两家林场购买的费用一样; 当y 甲<y 乙时,3.8x+200<3.6x+800, x <3000.∴2000<x <3000时,到甲林场购买合算; 当y 甲>y 乙时,3.8x+200>3.6x+800, 解得:x >3000.∴当x >3000时,到乙林场购买合算.综上所述,当0≤x≤1000或x=3000时,两家林场购买一样, 当1000<x <3000时,到甲林场购买合算; 当x >3000时,到乙林场购买合算. 【考点】一次函数的应用.14. 如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.【答案】(1)直线AB 的解析式为y=2x ﹣2;(2)点C 的坐标是(2,2).【解析】(1)设直线AB 的解析式为y=kx+b ,根据直线AB 过点A (1,0)、点B (0,﹣2),列出方程组,解方程组求得k 、b 的值,即可得直线AB 的解析式;(2)设点C 的坐标为(x ,y ),根据三角形面积公式可得•2•x=2,解得x 的值再代入直线即可求出y 的值,即可得点C 的坐标.试题解析:解:(1)设直线AB 的解析式为y=kx+b (k≠0), ∵直线AB 过点A (1,0)、点B (0,﹣2), ∴, 解得,∴直线AB 的解析式为y=2x ﹣2. (2)设点C 的坐标为(x ,y ), ∵S △BOC =2, ∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C 的坐标是(2,2).【考点】待定系数法求一次函数解析式.15. 在同一平面直角坐标系中,观察以下直线:y=2x ,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k 值. 【答案】k=﹣.【解析】把其中任意两个函数表达式联立,组成方程组,解方程组可得到这两个函数图像的交点坐标,再将交点坐标代入其它两个函数解析式,计算后发现均经过这个交点坐标,由此可得直线y=2x ,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点是都经同一点,把这点的坐标代入y=kx+5求出k 的值即可.试题解析:解:解法一:∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4,∴验证发现此组直线均经过(2,4),∴把把(2,4)代入y=kx+5得4=2k+5,得k=﹣.解法二:在同一直角坐标系中,正确画出y=2x,y=﹣x+6,y=x+2与y=4x﹣4其中任意的两条图象,观察它们的图象发现这些直线交于同一点(2,4)…(3分)验证其余直线也交于同一点(2,4),把(2,4)代入y=kx+5得4=2k+5,得k=﹣.【考点】一次函数的性质;一次函数的图象.16.(3分)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A、B两地之间的距离为千米.【答案】450.【解析】本题考查了一次函数图象的运用,行程问题的数量关系速度×时间=路程的运用,二元一次方程组的解法的运用,解答时求出二元一次方程组的解是关键.设甲的速度为x千米/小时,乙的速度为y千米/小时,根据函数图象反应的数量关系建立方程组求出其解即可.解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意,得,解得:.∴A、B两地之间的距离为:5×90=450千米.故答案为:450.【考点】一次函数的应用.17.(10分)已知2y﹣3与﹣3x﹣1成正比例,且x=2时,y=5.(1)求y与x之间的函数关系式,并在坐标系中画出图象;(2)若﹣1≤y≤2,求x的取值范围;(3)若把直线向下平移3个单位长度,那么平移后的直线的解析式为,请画出图象.【答案】y=+2;-2≤x≤0;y=-1【解析】由2y﹣3与﹣3x﹣1成正比例,设2y﹣3=k(﹣3x﹣1),将x=2,y=5代入求出k的值,代入即可确定出y与x的函数关系式;先分别计算出函数值为﹣1和1所对应的自变量的值,然后根据一次函数的性质求解;根据平移的性质即可求得.试题解析:(1)由2y﹣3与﹣3x﹣1成正比例,设2y﹣3=k(﹣3x﹣1),将x=2,y=5代入得:10﹣3=k(﹣6﹣1),解得:k=﹣1,则y与x的关系式为y=+2;画图如下:(2)当y=﹣1时,+2=﹣1,解得x=﹣2;当y=2时+2=2,解得x=0,所以当﹣1≤y≤2时,x的取值范围为﹣2≤x≤0.(3)根据平移的性质得出y=﹣1;如图:【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象与几何变换18.使函数y=有意义的x的取值范围是()A.x<2B.x>2C.x≤2D.x≥2【答案】D【解析】当函数表达式是二次根式时,被开方数为非负数是解题的关键.根据二次根式的性质被开方数大于或等于0可得:x-2≥0,解得:x≥2.【考点】函数自变量的取值范围19.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。

新人教版初二下《函数图像》课时练习含答案

新人教版初二下《函数图像》课时练习含答案

新人教版初二下《函数图像》课时练习含答案一、选择题(每小题5分,共30分)1.下列函数关系中,属于正比例函数关系的是() A.圆的面积与它的半径B.面积为常数S 时矩形的长y 与宽xC.路程是常数时,行驶的速度v 与时刻tD. 三角形的底边是常数a 时它的面积S 与这条边上的高h答案:D.知识点:函数的图象解析:解答:A.s =πr 2,s 是r 的二次函数B.y =x s ,y 是x 的反比例函数C.v=ts ,v 是t 的反比例函数 D.s =21ah ,s 是h 的正比例函数 分析:将每个选项的关系式列出来,然后再判定即可.故选D.2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h (厘米)与点燃时刻t 之间的函数关系的是( ).答案:C.知识点:函数的图象解析:解答:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是h =20-5t ,是一次函数图象,即t 越大,h 越小,符合此条件的只有C.分析:能够列出蜡烛点燃后,剩下的长度h 与点燃时刻t 的函数关系式,利用函数的性质判定即可.故选C.3.下列四个点中在函数y =2x -3的图象上有( )个.(1,2) , (3,3) , (-1, -1), (1.5,0)A.1 B.2 C.3 D.4答案:B.知识点:函数的图象解析:解答:分别代入:2≠2×1-3;3=2×3-3;-1≠2×(-1)-3;0=2×1.5-3;共两个满足.分析:分别将各选项代入函数关系式,能满足左边等于右边的即在函数图象上.故选B.4.假如A、B两人在一次百米赛跑中,路程s(米)与赛跑的时刻t(秒)的关系如图所示,则下列说法正确的是()A .A比B先动身 B.A、B两人的速度相同 C.A先到达终点 D.B比A跑的路程多答案:C.知识点:函数的图象解析:解答:结合图象可得出,A、B同时动身,A比B先到达终点,A的速度比B的速度快.分析:依照图象法表示函数,观看A、B的动身时刻相同.故选C.5.函数y=3x+1的图象一定通过( )A.(2,7)B.(4,10)C.(3,5)D.(-2,3)答案:A.知识点:函数的图象解析:解答:将A、B、C、D的坐标分别代入解析式只A符合左边等右边,故A选项正确.分析:将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点.故选A.6.下列各点中,在函数y=2x-6的图象上的是( )A.(-2,3)B.(3,-2)C.(1,4)D.(4,2)答案:D.知识点:函数的图象解析:解答:将A、B、C、D的坐标分别代入解析式只D符合左边等右边,故D选项正确.分析:将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点.故选D.7. 一艘轮船和一艘快艇沿相同路线从甲港动身到乙港,行驶过程随时刻变化的图象如图所示,下列结论错误的是( )A.轮船的速度为20千米/小时B.快艇的速度为380千米/小时 C.轮船比快艇先动身2小时 D.快艇比轮船早到2小时答案:B.知识点:函数的图象解析:解答:轮船的速度:160÷8=20千米/小时, 快艇的速度为. 160÷(6-2)=40千米/小时,故A 正确,B 错误;由函数图象可知,C 、D 正确.分析:先运算轮船和快艇的速度,再结合图象,逐一判定.故选B.8.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家动身步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y (公里)和所用的时刻x (分)之间的函数关系.下列说法错误的是( )A.小强从家到公共汽车在步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟答案:D.知识点:函数的图象解析:解答:A.依题意得小强从家到公共汽车步行了2公里,故选项正确;B.依题意得小强在公共汽车站等掌上小明用了10分钟,故选项正确;C.公交车的速度为30公里/小时,故选项正确;D.小强和小明一起乘坐公共汽车,时刻为30分钟,故选项错误.分析:依照图象能够确定小强离公共汽车站2公里,步行用了多长时刻,等公交车的时刻是多少,两人乘车运行的时刻和对应的路程,然后确定各自的速度.故选D.9.小张的爷爷每天坚持体育锤炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反应当天爷爷离家的距离y (米)与时刻t (分钟)之间的大致图象是( )A . B. C. D.答案:B. 知识点:函数的图象解析:解答:依照题意中信息可知,相同的路程,跑步比闲逛的速度快;在一定时刻内没有移动距离,则速度为0.故小华的爷爷跑步到公园的速度最快,即单位时刻内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为0,还要注意出去和回来时的方向不同,故B 符合要求.分析:生活中比较运动快慢通常有两种方法,即比较相同时刻内通过的路程多少或通过相同路程所用时刻的多少,但统一的方法是直截了当比较速度的大小.故选B.10.如图,某个函数的图象由线段AB 和BC 组成,其中点A (0,34),B (1,21),C (2,35),由此函数的最小值是( ) A.0 B.21 C.1 D.35答案:B.知识点:函数的图象解析:解答:由函数图象的纵坐标,得 35>34>21. 分析:依照函数图象的纵坐标,可得答案.故选B.11.平均地向如图的容器中注满水,能反应在注水过程中水面高度h 随时刻t 变化的图象是( ) A.B. C. D.答案:A. 知识点:函数的图象解析:解答:最下面的容器较粗,第二个容器最粗,那么第二时期的函数图象水面高度h 随时刻t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.分析:由于三个容器的高度相同,粗细不同,那么水面高度h 随时刻t 变化而分三个时期. 故选A.12.小明骑自行车内学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽搁上课,加快了速度,下面是小明离家后他到学校剩下的路程s 关于时刻t 的函数的图象,那么符合小明行驶情形的图象大致是( )A.B. C. D.答案:D.知识点:函数的图象 解析:解答:因为开始以正常速度匀速行驶――停下修车――加快速度行驶,可得S 先缓慢减小,再不变,再加速减小.分析:由于开始以正常速度行驶,接着停下修车,后来加快速度匀速,因此开始行驶路S 是平均减小的,接着不变,后来速度加快,因此S 变化也加快变小,由此即可作出选择. 故选D.13.小亮家与学校相距1500m,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽搁几分钟,与小强辞别后他就改为匀速慢跑,最后回到了家,设小亮从学校动身后所用的时刻为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是()A. B. C. D.答案:C.知识点:函数的图象解析:解答:由题意得,最初与家的距离s随时刻t的增大而减小,与小强说话时,时刻增大而s不变,慢跑时,与家的距离s随时刻t的增大而减小.分析:分三段分析,最初步行、与小强说话、匀速慢跑,分析函数的性质,进行判定即可. 故选C.14.如图,将一个高度为12c m的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10c m,则水槽中的水面高度y(c m)随注水时刻x(s)的变化图象大致是()A. B. C. D.答案:D.知识点:函数的图象解析:解答:由题意,得锥形瓶中水满之前,水槽中水的高度为0,锥形瓶中水满之后,水槽中的水逐步增加,水槽中的水满之后,水槽中的水的高度不变.分析:依照锥形瓶中水满之前,水槽中水的高度为零,锥形瓶中水满之后,水槽中的水逐步增加,水槽中水满之后,水槽中的水的高度不变.故选D.15.如图,李老师早晨出门锤炼,一段时刻内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离动身点M的距离与时刻x之间的函数关系的大致图象是()A.B. C. D.答案:D. 知识点:函数的图象解析:解答:由题意,得从M 到A 距离再增加,由A 经B 到C 与M 的距离差不多上半径,由B 到M 距离逐步减少,故D 符合题意.分析:依照半圆的关系,可得从M 到A 距离再增加,由A 经B 到C 与M 的距离差不多上半径,由B 到M 距离逐步减少,可得答案.故选D.二、填空题(每小题5分,共25分) 16.放学后,小明骑车回家,他通过的路程s (千米)与所用时刻t (分钟)的函数关系如图所示,则小明的骑车速度是 千米/分钟.答案:0.2知识点:函数的图象解析:解答:由纵坐标看出路程是2千米,由横坐标看出时刻是10分钟,小明的骑车速度是102=0.2(千米/分钟). 分析:依照函数图象的纵坐标,可得路程,依照函数图象的横坐标,可得时刻,依照路程与时刻的关系,可得答案.故答案为:0.217.一慢车和一快车沿相同路线从A 地到B 地,所行的路程与时刻图象如图,则慢车比快车早动身 小时,快车追上慢车行驶了 千米,快车比慢车早 小时到达B 地.答案:2,276,4知识点:函数的图象解析:解答:由图象直截了当可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时刻图象如图,则慢车比快车早动身2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.分析:依照横坐标的意义,分别分析得出即可.故答案为:2,276,4.18.园林队在公园进行绿化,中间休息了一段时刻.已知绿化面积S与时刻t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.答案:100知识点:函数的图象解析:解答:由纵坐标看出:休息前绿化面积是60平方米,休息后绿化面积160-60=100平方米.分析:依照函数图象的纵坐标,即可求得.故答案为:100.19.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升元.答案:7.09知识点:函数的图象解析:解答:单价=709÷100=7.09元.分析:依照函数图象明白100升油花费了709元,由此可求出这种汽油的单价.故答案为:7.09.20.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时刻(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快千米.答案:0.4知识点:函数的图象解析:解答:依照图示知,甲的速度是:8÷(5-1)=2(千米/小时),乙的速度是:8÷5=1.6(千米/小时).则:2-1.6=0.4(千米/小时).故答案是:0.4.分析:依照“速度=路程÷时刻”分别求甲、乙的速度,然后求其差.故答案为:7.09元.三、解答题(每题10分,共50分)21.小明从家里动身到超市买东西,再回到家,他离家的距离y(千米)与时刻t(分钟)的关系如图所示.请你依照图象回答下列问题:(1)小明家离超市的距离是千米;(2)小明在超市买东西时刻为小时;(3)小明去超市时的速度是千米/小时.答案:解答:(1)由纵坐标看出,小明家离超市的距离是3千米;(2)由横坐标看出到达超市是12,离开超市是72,在超市的时刻为72-12=60分钟=1小时;(3)由纵坐标看出,小明家离超市的距离是3千米,由横坐标看出到达超市是12分钟=0.2小时,小明去超市时的速度是3÷0.2=15千米/小时. 故答案为3,1,15.知识点:函数的图象解析:分析:(1)依照函数图象的纵坐标,可得答案;(2)依照函数图象的横坐标,可得答案;(3)依照函数图象的纵坐标,可得距离,依照函数的横坐标,可得时刻,依照路程与时刻的关系,可得答案.22.一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s (米)与时刻t (秒)的关系如图,结合结合图象,求图中S 1和S 0的位置.答案:解答:由图象可得出:(1)小刚比李明早到终点100秒;(2)两匀速跑时,小刚的速度大于李明的速度; ∵1S -1450200×100-1S -1600300×100=150, ∴S 1=2050, ∴S 0=1450+1S -1450200×100=1750. 故答案为2050,1750.知识点:函数的图象解析:分析:(1)依照图象可得出小刚和李明第一次相遇的时刻是100秒;小刚比李明早到终点100秒;两人匀速跑时,小刚的速度大于李明的速度;(2)求得小刚和李明速度,再乘以相遇时刻,两个路程相减即可得出两人的路程之差150.23.李老师为锤炼躯体一直坚持步行上下班.已知学校到李老师家总路程2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下来聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时刻t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时刻.答案:解答:由图象可得出:(1)李老师停留地点离他家的路程为:2000-900=1100(米),900÷45=20(分).a=20,b=1100,c=20+30=50;(2)20+30+1100/110=60(分)故答案为(1)a=20,b=1100,c=50(2)60分钟.知识点:函数的图象解析:分析:(1)依照函数图象和题中给出的信息算出a的值以及b、c的值;(2)依照等式“时刻=路程/速度”分段求出时刻,再累加起来算出到家的时刻.24.小强骑自行车去交游,下图表示他离家的距离y(千米)与所用的时刻x(小时)之间的函数图象,依照图象所提供的数据,请你写出3个信息.答案:解答:1.小强从早上9时动身;2.他在10时30分开始第一次休息;3.第一次休息11-10.5=0.5小时;4.小强离家最远为30千米;5.他在15时回到家等.知识点:函数的图象解析:分析:(1)一样应选取最容易得到的答案,比如什么时刻动身,到达离家多远的地点;什么时候开始休息,休息了多长时刻.25.某天早晨,王老师从家动身步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走的路程S(米)与时刻t(分)之间的关系.(1)学校离他家米,从动身到学校,王老师共用了分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐往常的速度快依旧吃完早餐以后的速度快?吃完早餐后的平均速度是多少?答案:解答:(1)学校距他家1000米,王老师用25分钟;(2)王老师吃早餐用了20-10=10分钟;(3)吃完早餐以后速度快,(1000-500)÷(25-20)=100(米/分).知识点:函数的图象解析:分析:(1)由于步行前往学校,途中在路边一饭店吃早餐,那么行驶路程S(米)与时刻t(分)之间的关系图象中有一段平行x轴的线段,然后学校,依照图象能够直截了当得到结论;(2)依照图象中平行线x轴的线段即可确定王老师吃早餐用了多少时刻;(3)依照图象能够分别求出吃早餐往常的速度和吃完早餐以后的速度,然后比较即可得到结果.。

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数的图象大致是()A. B. C. D.【答案】C.【解析】当时,,故函数图象过原点,可排除A,又∵,故函数的单调区间呈周期性变化,可排除B,且当,,可排除D,故选C.【考点】函数的图象.2.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质3.设表示不超过实数的最大整数,则在直角坐标平面上满足的点所形成的图形的面积为()A.10B.12C.10D.12【答案】B【解析】首先对任意的,满足的点组成的图形是单位正方形(,),面积为1,而椭圆上整点有,,,共12个,因此所求图形面积为12.选B.【考点】函数图象,图形面积.4.函数的大致图象为 ( )【答案】D【解析】∵,∴,∴,又∵,∴,∴,∴选D.【考点】函数图象.5.若直角坐标平面内的两不同点、满足条件:①、都在函数的图像上;②、关于原点对称,则称点对是函数的一对“友好点对”(注:点对与看作同一对“友好点对”).已知函数=,则此函数的“友好点对”有()对.A.0B.1C.2D.3【答案】B【解析】根据题意可知只须作出函数的图象关于原点对称的图象,确定它与函数交点个数即可,由图象可知,只有一个交点.选B【考点】新定义题、函数图象.6.某公司的一品牌电子产品,2013年年初,由于市场疲软,产品销售量逐渐下降,五月份公司加大了宣传力度,销售量出现明显的回升,九月份,公司借大学生开学之际,采取了促销等手段,产品的销售量猛增,十一月份之后,销售量有所回落.下面大致能反映出公司2013年该产品销售量的变化情况的图象是( )【答案】C【解析】由于销售量逐渐下降,所以图象呈下降趋势;公司借大学生开学之际,采取了促销等手段,产品的销售量猛增,所以图象以更陡的向上走向;五月份公司加大了宣传力度,销售量出现明显的回升,即图象有向上的趋势;十一月份之后,销售量有所回落,所以图象向下的趋势.故选C.【考点】1.函数的图象.2.实际问题的应用.7.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题8.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】由于函数的最小正周期为,所以.所以函数.所以将函数向右平移即可得到.故选B.【考点】1.函数的平移.2.函数的诱导公式.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.函数的所有零点之和为.【答案】8【解析】设,则,原函数可化为,其中,因,故是奇函数,观察函数与在的图象可知,共有4个不同的交点,故在时有8个不同的交点,其横坐标之和为0,即,从而.【考点】1.函数零点;2.正弦函数、反比例函数.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.函数的图象大致是()【答案】A【解析】函数为奇函数,令,解得,即函数有唯一零点,排除C、D选项;当时,,排除B选项,故选A.【考点】1.函数的奇偶性;2.函数的图象13.已知函数f(x)=,则y=f(x)的图象大致为().【答案】A【解析】令g(x)=x-ln (x+1),则g′(x)=1-,由g′(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,由g′(x)<0,得-1<x<0,即函数g(x)在(-1,0)上单调递减,所以当x=0时,=g(0)=0,于是对任意的x∈(-1,0)∪(0,+∞),有g(x)≥0,故排除函数g(x)有最小值,g(x)minB,D;因函数g(x)在(-1,0)上单调递减,则函数f(x)在(-1,0)上递增,故排除C,故选A.14.已知函数f(x)=x-,则函数y=f(x)的大致图象为().【答案】A【解析】因为函数f(x)为非奇非偶函数,所以排除B、C.又f(-1)=-1<0,排除D15.如图,半径为1的圆切直线于点,射线从出发绕着点顺时针方向旋转到,旋转过程中交⊙于点,记为,弓形的面积,那么的大致图象是 ( )【答案】A【解析】由题意得,则,当和时,,取得极值,则函数在上为增函数,当和时,取得极值.结合选项,A正确.故选A.【考点】函数的图象与图象变化.16.已知函数,若,且,则的取值范围是 .【答案】【解析】如图,在,上均单调递增, 由及知的取值范围是【考点】函数的图象和性质.17.设函数对任意的满足,当时,有.若函数在区间上有零点,则k的值为A.-3或7B.-4或7C.-4或6D.-3或6【答案】D【解析】因为,所以令,则有,即,所以函数的图象关于直线对称.由时,其为单调减函数,且,所以其零点在区间;根据函数图像的对称性知,其在区间也有一个零点.故若函数在区间上有零点,则的值为或,选D.【考点】函数的零点,函数图象的对称性.18.形如的函数因其函数图象类似于汉字中的囧字,故生动地称为“囧函数”。

高二数学函数图像试题答案及解析

高二数学函数图像试题答案及解析

高二数学函数图像试题答案及解析1.函数的图象的大致形状是【答案】B【解析】为奇函数,为偶函数,不具有奇偶性,因此的图象不对,由于时,,因此不对,选.【考点】函数的图象.2.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()【答案】C【解析】由f′(x)的图象可得,在(-∞,0)上,f′(x)>0,f(x)是增函数.在(0,2)上,f′(x)<0,f(x)是减函数.在(2,+∞)上,f′(x)>0,f(x)是增函数.故选C.【考点】导数研究函数的单调性3.如图,把周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记弧AM=x,直线AM与x轴交于点N(t,0),则函数的图像大致为()【答案】D【解析】排除法.当M点与A点重合时,N点坐标是不存在的,而M点无线接近A点时,t趋向负无穷大.故选D.【考点】函数图像的性质.4.函数f(x)=ln(x2+1)的图象大致是( )【答案】A【解析】由函数的解析式来判定函数的大致图象,我们一般考虑这几方面,函数的奇偶性、单调性、当自变量趋向某个特殊值时函数值的变化情况,特别是趋于正无穷大时,函数值的变化趋势.由函数的特点可知其与对数函数有关,另外含有,所以验证奇偶性,得函数为偶函数.当时,,故选A.【考点】由函数解析式推断函数图象.5.若函数有两个零点,则实数的取值范围 .【答案】【解析】令,结合图像可知,两条切线为临界点,此时实数的取值范围为【考点】函数图像6.已知图①中的图像对应的函数为,则图②的图像对应的函数为( )A.B.C.D.【答案】B【解析】由图知:当时,图②中图像与图①中一致,即;当时,图②中图像是图①中轴左侧图像关于轴的对称图像,即;故选B.【考点】函数的图像.7.已知则下列函数的图象错误的是()【答案】D【解析】向右平移一个单位可得;与的图像关于轴对称;将的图像在轴左侧的删去,右侧的作出关于轴对称的图像,可得图像;将的图像在轴下方的部分关于轴对称,并将下方的部分删去可得的图像.结合的图像可知错.【考点】分段函数的图像,函数的图像变换.8.设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是()【答案】D【解析】检验易知A、B、C均适合,不存在选项D的图象所对应的函数,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数,故选D.【考点】1.利用导数研究函数的单调性;2.导数的几何意义.9.设函数,则函数的零点的个数为( )A.4B.7C.6D.无穷多个【答案】C【解析】由题意就是求函数与函数交点的个数.作出示意图. 当时,有一个交点,当时,有一个交点,当时,由于,所以有两个交点,当时,由于,所以有两个交点,当时,由于,所以没有交点,当时,递减的速度比递减(按指数函数)的速度慢,所以没有交点,因此一共6个交点.【考点】函数图像10.在下面的四个图象中,其中一个图象是函f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)等于( ).A.B.-C.D.-或【答案】B【解析】因为,所以的图像是开口向上的抛物线,所以从左到右第三个图像为的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范检测(八)函数的图像详解答案
一、选择题(共10个小题,每题5分)
1.(2013·湖南高考) 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )
A .3
B .2
C .1
D .0
解析:选B 作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:
可知,其交点个数为2.
2.(2013·北京高考) 函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =e x 关于y 轴对称,则f(x)=( )
A .e x +
1
B .e x -
1
C .e
-x +1
D .e
-x -1
解析:选D 依题意,f(x)向右平移一个单位长度得到f(x -1)的图像,又y =e x 的图像关于y 轴对称的图像的解析式为y =e -
x ,所以f(x -1)=e -
x ,所以f(x)=e
-x -1
.
3.(2014·佛山模拟)函数y =1-|x -x 2|的图像大致是( )
解析:选C y =1-|x -x 2|=⎩⎪⎨⎪⎧
-x 2
+x +1, x ≤0,x 2
-x +1, 0<x ≤1,
-x 2+x +1,x>1.
y ≤1,故C 正确.
4.已知函数y =f(x)的周期为2,当x ∈[-1,1]时f(x)=x 2,那么函数y =f(x)的图像与函数y =|lg x|的图像的交点共有( )
A .10个
B .9个
C .8个
D .1个
解析:选A 根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:
可验证当x =10时,y =|lg 10|=1,0<x<10时,|lg x|<1,x>10时|lg x|>1.
结合图像知y =f(x)与y =|lg x|的图像交点共有10个.
5.(2014·厦门适应性考试)在同一个坐标系中画出函数y =a x ,y =sin ax 的部分图像,其中a>0且a ≠1,则下列所给图像中正确的是( )
解析:选D 当a>1时,函数y =sin ax 的最小正周期T =2π
a <2π,故A ,C 错;当0<a<1
时,函数y =sin ax 的最小正周期T =2π
a
>2π,故B 错.
6.设D ={(x ,y)|(x -y)(x +y)≤0},记“平面区域D 夹在直线y =-1与y =t(t ∈[-1,1])之间的部分的面积”为S ,则函数S =f(t)的图像大致形状为( )
解析:选C 如图,平面区域D 为阴影部分,当t =-1时,S =0,
排除D ;当t =-12时,S>1
4
S max ,排除A 、B.
7.(2013·厦门双十中学模拟)设定义域为R 的函数f(x)=

⎪⎨⎪⎧
|lg|x -1|| (x ≠1),
0 (x =1),则关于x 的方程f 2(x)+bf(x)+c =0有7个不同的实数根的充要条件是( )
A .b<0,c>0
B .b>0,c<0
C .b<0,c =0
D .b ≥0,c =0
解析:选C 画出f(x)=⎩
⎪⎨⎪⎧
|lg |x -1|| (x ≠1)
0 (x =1)图像,
若关于x 的方程f 2(x)+bf(x)+c =0有7个根,令f(x)=t ,则方程t 2+bt +c =0必有一个根t 1=0,另一个根t 2>0,故b<0,c =0.
8.(2013·福州一中模拟)设函数f(x)=1
x ,g(x)=ax 2+bx(a ,b ∈R ,a ≠0),若y =f(x)的
图像与y =g(x)的图像有且仅有两个不同的公共点A(x 1,y 1),B(x 2,y 2),则下列判断正确的是( )
A .当a<0时,x 1+x 2<0,y 1+y 2>0
B .当a<0时,x 1+x 2>0,y 1+y 2<0
C .当a>0时,x 1+x 2<0,y 1+y 2<0
D .当a>0时,x 1+x 2>0,y 1+y 2>0
解析:选B 当y =f(x)的图像与y =g(x)图像有且仅有两个不同的公共点时,a<0时,其图像为
作出点A 关于原点的对称点C ,则C 点坐标为(-x 1,-y 1),由图像知-x 1<x 2,-y 1>y 2,故x 1+x 2>0,y 1+y 2<0,同理当a>0时,有x 1+x 2<0,y 1+y 2>0.
9.(2012·山东高考)函数y =
cos 6x
2x -2-x
的图像大致为( )
解析:选D 函数为奇函数,所以其图像关于原点对称,排除A.令y =0得cos 6x =0,所以6x =π2+kπ(k ∈Z),x =π12+k
6π(k ∈Z).函数的零点有无穷多个,排除C.函数在y 轴右
侧的第一个零点为⎝⎛⎭⎫π12,0,又函数y =2x -2-x 为增函数,当0<x<π
12时,y =2x -2-x >0,cos 6x>0,所以函数y =
cos 6x
2x -2-x
>0.排除B.
10.(2012·湖北高考)已知定义在区间[0,2]上的函数y =f(x)的图像如图所示,则y =-f(2-x)的图像为( )
解析:选B 将函数y =f(x)向左平移两个单位得到y =f(x +2)的图像,再由关于原点对称即可得y =-f(2-x)的图像,故选B.
二、填空题(共4个小题,每题4分)
11.(2014·潍坊模拟)为了得到函数f(x)=log 2 x 的图像,只需将函数g(x)=log 2x 8的图像
________.
解析:g(x)=log 2x
8=log 2x -3=f(x)-3,因此只需将函数g(x)的图像向上平移3个单位
即可得到函数f(x)=log 2x 的图像.
答案:向上平移3个单位
12.(2013·福建质检)若函数f(x)=⎩
⎪⎨⎪⎧
2x -a ,x ≤0,
ln x , x>0有两个不同的零点,则实数a 的取
值范围是________.
解析:如图a =0时函数f(x)的图像,要使函数f(x)有两个不同的零点,则实数a 的取值范围是:0<a ≤1.
答案:(0,1]
13.使log 2(-x)<x +1成立的x 的取值范围是________.
解析:作出函数y =log 2(-x)及y =x +1的图像.其中y =log 2(-x)与y =log 2x 的图像关于y 轴对称,观察图像(如图所示)知,-1<x<0,即x ∈(-1,0).
也可把原不等式化为⎩
⎪⎨⎪⎧
-x>0,
-x<2x +1.后作图.
答案:(-1,0)
14.(2012·海南三亚)若函数f(x)=
(2-m )x
x 2+m
的图像如图,则m 的取值范围是________.
解析:∵函数的定义域为R , ∴x 2+m 恒不等于零. ∴m>0.
由图像知,当x>0时,f(x)>0, 即2-m>0⇒m<2.
又∵在(0,+∞)上函数f(x)在x =x 0(x 0>1)处取得最大值, 而f(x)=
2-m
x +
m x
, ∴x 0=m>1⇒m>1. 综上1<m<2. 答案:(1,2)。

相关文档
最新文档