2014–2015学年第一学期初三数学期中考试模拟试卷三(含答案)

合集下载

2014—2015学年第一学期九年级期中考试数学试题(新人教版)

2014—2015学年第一学期九年级期中考试数学试题(新人教版)

2014—2015学年第一学期九年级期中考试数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算.★参考公式:抛物线c bx ax y ++=2的对称轴是a b x 2-=,顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22 一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.将图1按顺时针方向.....旋转90°后得到的是2.下列方程中是一元二次方程......的是A .012=+xB .12=+x yC .0532=++x xD .0122=++x x3.如图,已知点A 、B 、C 在⊙O 上,∠AO B =100°,则∠ACB 的度数是A .50°B .80°C .100°D .200° 4.下列美丽的图案,既是轴对称图形又是中心对称.............图形的是 A .B .C .D .5.一元二次方程0342=+-x x 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定6.已知⊙O 的半径为10cm ,如果圆心O 到一条直线的距离为10cm ,那么这条直线和这个圆的位置关系为A .相离B .相切C .相交D .无法确定第3题7.将抛物线241x y =向左平移2个单位,再向下平移1个单位,则所得的抛物线的解析式为A. ()12412++=x y B. ()12412-+=x yC. ()12412+-=x yD. ()12412--=x y8.要组织一次篮球联赛,赛制为单循环形式.....(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是A. 5个B. 6个C. 7个D. 8个9.一个运动员打高尔夫球,若球的飞行高度(m)y 与水平距离(m)x 之间的函数表达式为()10309012+--=x y ,则高尔夫球在飞行过程中的最大..高度为 A .10m B .20m C .30m D .60m 10.方程013)2(=+++mx x m m 是关于x 的一元二次方程......,则m 的值为 A .2-=m B .2=m C .2±=m D .2±≠m二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡...的相应位置)11.点A (-2,3)与点1A 是关于原点O 的对称点,则1A 坐标是 . 12.二次函数2)5(32+-=x y 的顶点坐标是 .13.已知关于x 的一元二次方程062=-+mx x 的一个根是2,则m =_ __. 14.如图所示,四边ABCD 是圆的内接四边形.....,若∠ABC=50°则∠ADC= . 15.如图所示,在小正方形组成的网格中,图②是由图①经过旋转变换得到的,其旋转中心是点 (填“A”或“B”或“C”).16.如图所示,一个油管的横截面,其中油管的半径是5cm ,有油的部分油面宽AB为8cm ,则截面上有油部分油面高CD 为 ___cm .17. 如图,用等腰直角三角板画∠AOB=450,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为__________________.18.一列数1a ,2a , 3a ,…,其中211=a ,111--=n n a a (n 为大于1的整数),则=100a . 三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答) 19.(1)(7分)915)2(2--+⨯-π.(2)(7分) 先化简,再求值:)2)(2()2(2a a a -+++, 其中3=a . 20.(8分)解方程:0562=++x x .21.(8分)已知:如图,在⊙O 中,弦AB=CD ,那么∠AOC 和∠BOD 相等吗...? 请说明理由.......22. (10分)如图,在平面直角坐标系中,△ABC 的三个顶都在格点上,点A 的坐标为(2,4),请解答下列问题: (1)画出ABC ∆关于x 轴对称的111C B A ∆,并写出点1A 的坐标.(2)画出111C B A ∆绕原点O 旋转180°后得到的222C B A ∆,并写出点2A 的坐标.22 17题23.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,2014年该商城1月份销售自行车64辆,3月份销售了100辆.(1)求1月到3月自行车销量的月平均增长率;(2)若按照(1)中自行车销量的增长速度,问该商城4月份能卖出多少辆自行车?24. (10分)已知:如图已知点P是⊙O外一点,PO交圆O于点C,OC=CP=2,点B在⊙O上,∠OCB=600,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.(12分)已知四边形 ABCD 中, AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,将∠MBN 绕点B 旋转.当∠MBN 旋转到如图的位置,此时∠MBN 的两边分别交AD、DC 于 E、F,且AE≠CF.延长 DC 至点 K,使 CK=AE,连接BK.求证:(1)△AB E≌△CBK;(2)∠KBC+∠CBF=600 ;(3)CF+AE=EF.26.(14分)如图,在平面直角坐标系中, A(0,2),B(-1,0),Rt△A OC的面积为4.(1)求点C的坐标;(2)抛物线c+=2经过A、B、C三点,求抛物线的解析式和对称轴;axbxy+(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.2014—2015学年第一学期九年级期中考试数学试题参考答案及评分说明说明:(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.C ; 3.A ; 4.D ; 5.A ; 6.B ; 7.B ; 8.C ; 9. A ; 10.B . 二、填空题(本大题共8小题,每小题3分,共24分)11.)3,2(-; 12.)2,5(; 13.1; 14.130°;15.B ; 16.2 ; 17.22°;18.21三、解答题(本大题共8小题,共86分) 19.(1)解:原式=3154--+⨯π ················································································ 4分 =420-+π ························································································· 6分=π+16 ································································································ 7分 (2)解:原式22444a a a -+++ ············································································· 3分84+=a ································································································ 5分 当208343=+⨯==时,原式a ······················································ 7分20.解:∵5,6,1===c b a∴01642>=-ac b ···························································································· 4分 ∴2462166±-=±-=x ················································································· 6分 ∴5,121-=-=x x ······························································································· 8分21.答:∠AOC=∠BOD ……………………………………………………1分 理由:∵AB=CD ∴弧AB=弧CD …………………………………………………………………………3分 ∴∠AOB=∠COD ………………………………………………………………………5分 ∴∠AOB-∠BOC=∠CDO-∠BOC …………………………………………………… 7分 即∠AOC=∠BOD ……………………………………………………………………… 8分 22.解:(1)图略,)4,2(1-A ………………………………………………………………5分 (2)图略,)4,2(2-A ………………………………………………………………5分 23.解:(1)设1月到3月自行车销量的月平均增长率为x ,依题意得…………………1分 100)1(642=+x解得 不符合题意,舍去)(49%,254121-===x x …………………………6分 答:1月到3月自行车销量的月平均增长率为25%.………………………………7分 (2)125%251100=+⨯)(……………………………………………………9分 答:商城4月份能卖出125辆自行车.……………………………………………10分 24.(1)解:连接OB ……………………………………………………………………1分 ∵OB=OC,∠OCB=60°∴△OBC 是等边三角形………………………………………………………3分 ∴BC=OC=2……………………………………………………………………4分 (2)证明:∵BC=OC,OC=CP∴BC=CP …………………………………………………………………5分 ∴∠CBP=∠P ……………………………………………………………6分 又∵∠OCB=60°∴∠CBP=30°由(1)可知△OBC 是等边三角形…………………7分 ∴∠OBC=60°…………………………………………………………8分 ∴∠OBC+∠CBP=90°…………………………………………………9分 ∴OB ⊥BP∴BP 是圆O 的切线……………………………………………………10分 25.证明:(1)∵AB ⊥AD,BC ⊥CD∴∠BAE=∠BCK=90°……………………………………………………1分 又∵AB=BC,AE=CK∴△ABE ≌△CBK …………………………………………………………4分(2)由(1)可知△ABE ≌△CBK∴∠KBC=∠EBA …………………………………………………………5分 又∵∠ABC=120°,∠MBN=60°∴∠CBF+∠ABE=60°……………………………………………………7分∴∠KBC+∠CBF=60°……………………………………………………8分 (3)由(1)可知△ABE ≌△CBK∴BK=BE ………………………………………………………………………9分 又∵∠KBF=∠MBN=60°,BF=BF∴△BKF ≌△BEF ……………………………………………………………10分 ∴KF=EF ………………………………………………………………………11分 又∵KF=KC+CF,CK=AE∴CF+AE=EF …………………………………………………………………12分 26.(1)C (4,0)……………………………………………………………………………3分 (2)抛物线的解析式:223212++-=x x y ,对称轴 23=x .……………………9分(3)设直线AC 的解析式为:b kx y +=,代入点A (0,2),C (4,0),得: ∴直线AC :221+-=x y ;……………………………………………………………11分 过点P 作PQ ⊥x 轴于H ,交直线AC 于Q , 设P (m ,223212++-m m ),Q (m ,221+-m ) 则m m PQ 2212+-= ∴4)2(44)221(2121222+--=+-=⨯+-⨯=⨯⨯=m m m m m OC PQ S ∴当m=2,即 P (2,3)时,S 的值最大.……………………………………………14分。

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)时间:100分钟 满分:110分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.计算(3)2的结果是A. -3B .3C .±3D .92.若二次根式x 2在实数范围内有意义,则x 的取值范围是A. x ≤2B. x ≥2C. x <2D. x ≠2 3.下列二次根式中是最简二次根式的是 A. 8B.31 C. 01 D.214.下列根式中, 与3是同类二次根式的是A. 12B. 18C. 30D.235.下列运算正确的是A .6+3=3 B. 32-2=3 C .2×8=4 D .6÷3=2 6. 方程x 2=9x 的解是A. x =0B. x =9C. x 1=-3,x 2=3D. x 1=0,x 2=9 7.若x =-2是一元二次方程x 2=m 2的一个根,则常数m 是A. -2B. 2C. ±2D. 48.将一元二次方程x 2-6x -5=0化成(x +h )2=k 的形式,则k 等于 A .-4B .4C .-14D .149.关于x 的一元二次方程x 2+p x -3=0的一个根为1,则p 的值为A .2B .-2C .1D .-110.某公司2008年缴税60万元,2010年缴税80万元,求该公司这两年缴税的年平均增长率. 若设该公司这两年缴税的年平均增长率为x ,则得到方程 A .60x 2=80 B .60(1+x )2=80C .60(1+2x )=80D .60+60(1+x )+60(1+x )2=80 11. 下列各组线段的长度成比例的是A. 2cm , 4cm , 6cm ,8cmB. 10cm , 20c m , 30cm , 40cmC. 0.2m , 0.3m , 0.5m , 0.8mD. 0.2m , 0.6m , 0.3m , 0.4m 12. 如图1,在△ABC 中,D 是AB 的中点,DE ∥BC ,若DE =4,则BC 的长等于A .6B .8C .10D .1213. 为了估算河的宽度,小明画了测量示意图(如图2). 若测得BD =120m ,DC =60m ,EC =50m ,则两岸间的大致距离AB 等于 A. 50m B. 90mC. 100mD. 110m14. 如图3,D 、E 两点分别在AC 、AB 上,且DE 与BC 不平行,那么添加下列一个条件后,仍无法..判定△ADE ∽△ABC 的是 A.AB ADAC AE = B. BCED AC AE =C. ∠1=∠BD. ∠2=∠C二、填空题(每小题3分,共12分) 15. 计算:105⨯= . 16. 若53=b a ,则bba += . 17. 学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图4),要使种植面积为600平方米,求小道的宽. 若设小道的宽为x 米,则可列方程为 .ABCDE 图1 图2ABCD E21图3图4ABDC 图5118. 如图5,∠ACB =∠CBD =90°,∠A =∠1,BC =3,AC =4,则BD = . 三、解答题(共56分)19.计算(每小题4分,共12分)(1) 327+; (2) )82(3-⨯; (3)2126⨯ .20.(6分)已知 -1<a <3, 化简2)3(1-++a a .21. (12分)请从以下四个一元二次方程中任选..三.个.,并用适当的方法解这三个方程. (1)x 2-x -2=0 ; (2)(y +3)2=16; (3)t 2-4t +1= 0; (4)(m -3)2+m -3=0. 我选择第 小题.22.(8分)如图6,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形顶点上.(1)填空:∠ABC = °,∠DEF = °,DE = ,BC = ; (2)判断△ABC 和△DEF 是否相似,并证明你的结论; (3)求△ABC 和△DEF 的面积比.23.(8分)小明把一张边长为10cm 的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(如图7). 如果这个无盖的长方体底面积为81cm 2,那么该长方体盒子体积是多少?AEDBFC图6图23.3.1 图7图23.3.124.(10分)如图8,E 是矩形ABCD 的边DC 延长线上一点,连结AE 分别交BC ,BD 于F ,G .(1)写出所有..与△ABF 相似的三角形,并选择其中一对......相似三角形加以证明; (2)若DC =2CE ,求GFAG的值.ADCEFBG图82014—2015学年度第一学期九年级数学科期中检测题参考答案一、BACAC DCDAB DBCB二、15.52 16.58 17. (35-2x )(20-x )=600 18.49 三、19. (1) 43 (2)-6 (3)620. 421.(1)x 1=-1,x 2=2 (2)y 1=-7,y 2=1; (3)t 1=2+3,t 2=2-3 (4)m 1=2,m 2=3. 22.(1)135°,135°,2,22;(2)△ABC 与△DEF 相似.∵ ∠ABC =∠DEF =135°,AB =2,EF =2,∴22==EF BC DE AB ,∴ △ABC ∽△DEF . (3)△ABC 和△DEF 的面积比为2:1.23. 设剪去的小正方形边长为x cm ,根据题意,得 (10-2x )2=81. 解这个方程,得x 1=0.5,x 2=9.5 .当x 2=9.5时,2x =19cm >10cm ,所以x 2=9.5不合题意舍去,只取x =0.5 . 长方体盒子体积=81×0.5=40.5cm 3. 答:该长方体盒子体积是40.5cm 3.24.(1)① △ABF ∽△ECF ,② △ABF ∽△EDA .① 证明:∵ 四边形ABCD 是矩形, ∴ AB ∥DE ,∴ ∠ABF=∠ECF ,∠BAF=∠E , ∴ △ABF ∽△ECF .② 证明:∵ 四边形ABCD 是矩形, ∴ ∠ABF=∠EDA , AD ∥BC , ∴ ∠AFB=∠EAD , ∴ △ABF ∽△EDA . (2)23 .。

2014-2015年九年级上数学期中考试试题及答案

2014-2015年九年级上数学期中考试试题及答案

2014—2015学年度第一学期阶段检测..九年级数学试题..注意事项: ..1.答卷前,请考生务必将自己的姓名、考号、考试科目及选择题答案涂写在答题卡上,并同时将学校、姓名、考号、座号填写在试卷的相应位置。

2.本试卷分为卷I (选择题)和卷II (非选择题)两部分,共120分。

考试时间为90分钟。

第Ⅰ卷(选择题 共45分).一、选择题(本大题共15小题,每小题3分,满分45分) 1.方程x (x +1)=0的解是A. x =0B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=-1 2.图中三视图所对应的直观图是3.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是 A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16..4.如果反比例函数xky 的图像经过点(-3,-4),那么函数的图象应在 A .第一、三象限 B .第一、二象限C .第二、四象限D .第三、四象限..B.5.若函数xmy =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A .m >1B . m >0C . m <1D .m <06.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7.如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:28.一元二次方程2x 2 + 3x +5=0的根的情况是 A .有两个不相等的实数 B .有两个相等的实数 C .没有实数根D .无法判断9.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是A .(1)(2)(3)(4)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(3)(4)(1)10. 下列各点中,不在反比例函数xy 6-=图象上的点是 A .(-1,6) B .(-3,2) C .)12,21(- D .(-2,5)11.如右图,在△ABC 中,看DE ∥BC ,21=AB AD ,DE =4 cm ,则BC 的长为A .8 cmB .12 cmC .11 cmD .10 cmA .B .C .D .AB12.下列结论不正确的是A .所有的矩形都相似B .所有的正方形都相似11题图C .所有的等腰直角三角形都相似D .所有的正八边形都相似 13.在函数y=xk(k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是A . y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 14.如图所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是A.525 B.625C.1025D.192514题图15.如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x =>的图象上,则点E 的坐标是A .1122⎛⎫⎪ ⎪⎝⎭; B .3322⎛+ ⎝⎭C .11,22⎛⎫ ⎪ ⎪⎝⎭;D .3322⎛ ⎝⎭15题图第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中的横线上。

九年级2014-2015学年上学期期中考试数学试卷

九年级2014-2015学年上学期期中考试数学试卷

第1页 共4页(九年级数学) 第2页 共4页(九年级数学)九年级2014-2015学年上学期期中考试数 学 试 卷(全卷满分:100分,考试时间:120分钟)一、精心选一选(每小题3分,共30分)1.一元二次方程的二次项系数、一次项系数、常数项分别是( )A.3,2,1B.C.D. 2.用配方法解方程0522=--x x ,原方程应变为( )A .6)1(2=+x B.9)1(2=+x C.6)1(2=-x D. 9)1(2=-x3.已知一个三角形的两边长是方程x 2-8x +15=0的两根,则第三边y 的取值范围是( ). A .y<8 B .3<y<5 c .2<y<8 D .无法确定 4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A 、正三角形B 、平行四边形C 、等腰梯形D 菱形5. 关于x 的一元二次方程013)1(22=-++-m x x m 的一根为0,则m 的值是( ) A 、1± B 、2± C 、-1 D 、-26. 若菱形的两条对角线分别为6cm 和8cm ,则它的面积为( )A. 248cmB. 224cmC. 212cmD. 26cm7.小丽要在一幅长为80cm ,宽为50cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边制成一幅矩形挂图,使整幅挂图面积是5400cm 2,设金色纸边的宽度为x cm ,则x 满足的方程是( )。

A 、014001302=-+x x B 、0350652=-+x x C 、014001302=--x x D 、0350652=--x x 8.顺次连接矩形四条边的中点,所得到的四边形一定是( )。

A .矩形B .菱形C .正方形D .平行四边形 9.甲、乙两人赛跑,则开始起跑时都迈出左腿的概率是( ) A.12 B.13 C.14 D.18 10. 下列说法中错误的是( )A. 一组对边平行且一组对角相等的四边形是平行四边形B. 每组邻边都相等的四边形是菱形C. 四个角相等的四边形是矩形D. 对角线互相垂直的平行四边形是正方形二、耐心填一填(每小题3分,共30分)11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得12.方程22(2)(3)20mm x m x --+--=是一元二次方程,则____m =.13.已知方程22155k x x =+-的一个根是2,则k 的值是 ,方程的另一个根为 .14.当x=________时,代数式3x 2-6x 的值等于12.15.如果()4122++-x m x 是一个完全平方公式,则=m 。

2014-2015学年人教版九年级上期中教学质量检测数学试题及答案

2014-2015学年人教版九年级上期中教学质量检测数学试题及答案

2014—2015学年度上学期期中教学质量检测九年级数学试卷(满分:120分 答题时间:120分钟)一、选择题(每小题2分,共12分) 1.一元二次方程()()5252-=-x x 的根是 ( )A.7B.5C.5或3D.7或52.用配方法解下列方程时,配方有错误的是 ( ) A.09922=--x x化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t化为1681472=⎪⎭⎫ ⎝⎛-t D.02432=--y y 化为910322=⎪⎭⎫ ⎝⎛-y 3.某经济开发区2014年1月份的工业产值达50亿元,第一季度总产值为175亿元, 问:2,3月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程 ( ) A.()1751502=+x B.()175150502=++xC.()()1751501502=+++x x D.()()175150150502=++++x x4.在抛物线442--=x x y 上的一个点是 ( ) A.(4,4) B.(3,-1) C.(-2,-8) D.(21-,47-) 5.如图,在平面直角坐标系中,抛物线所表示的函数解析式为()k h x y +--=22,则下列结论正确的是 ( )A.h >0,k >0B.h <0,k >0C.h <0,k <0D.h >0,k <0题号 一 二 三 四 五 六 总分 得分得分密封线内不要答题密封线外不要写考号姓名第5题6.如图所示,某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8m,两侧距离地面4m高各有一个挂校名横匾用的铁环P.两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)() A.9.2m B.9.1m C.9m D.5.1m二、填空题(每小题3分,共24分)7.若方程02=-xx的两个根为1x,2x(1x<2x),则2x-1x= .8.在平面直角坐标系中,点A(-1,2)关于原点对称的点为B(a,-2),则a= .9.将抛物线232+=xy先向右平移4个单位,再向下平移2个单位,所得抛物线的解析式为 .10.抛物线322--=xxy与x轴分别交于A、B两点,则AB的长为 .11.如图,在等边△ABC中,D是边AC上的一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是 .12.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8).以点A为圆心,以AB长为半径画弧交x轴正半轴于点C,则点C的坐标为 .13.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是°(写出一个即可)14.如图,将半径为3的圆形纸片,按下列顺序折叠.若AB和BC都经过圆心O,则阴影部分的面积是(结果保留π)得分第6题第11题B三、解答题(每小题5分,共20分) 15.解方程:(1)()()03232=-+-x x x (2)012=--x x16.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有361人受到感染, 问每轮传染中平均一个人传染了几个人?17.已知二次函数c bx x y ++=2的图象经过点(-3,4),(-1,0).求其函数的解析式.18.如图,在半径为50mm 的⊙O 中,弦AB 长50mm ,求:(1)∠AOB 的度数;(2)点O 到AB 的距离.得分 第18题四、解答题(每小题7分,共28分)19.图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点.点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动.(1)请在图①中用圆规画出光点P经过的路径;(2)在图①中,所画图形是图形(填“轴对称”或“中心对称”),所画图形的周长是(结果保留π).20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD,BD的长. 得分第20题21.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出AE所在⊙O的半径r.第21题22.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形的一边长为x(m),面积为s(m2).(1)写出s与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.五、解答题(每小题8分,共16分)23.如图,四边形OABC是平行四边形.以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点 E,连接CD、CE.若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.24.如图,抛物线nxxy++-=42经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式和顶点坐标;(2)若P是x轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.(直接写出答案) 得分第24题得分六、解答题(每小题10分,共20分)25.如图所示,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2cm的速度向左运动,最终点A与点M重合.(1)求重叠部分面积(即图中阴影面积)y(cm2)与时间t(s)之间的函数关系式.(2)经过几秒钟重叠部分面积等于8cm2?第25题26.如图①,直线λ:y=mx+n(m<0,n>0)与x,y轴分别交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD.过点A,B,D的抛物线P叫做λ的关联抛物线,λ叫做P的关联直线. (1)若λ:y=-2x+2,则P表示的函数解析式为,若P:y=-x2-3x+4,则λ表示的函数解析式为;(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若λ:y=-2x+4,P的对称轴与CD相交于点E,点F在λ上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若λ:y=mx-4m,G为AB中点.H为CD中点,连接GH,M为GH中点,连接OM.若OM=10,直接写出λ,P表示的函数解析式.九年级数学答案一、1.D 2.B 3.D 4.D 5.A 6.B二、7.1 8.1 9.()243-=x y 10. 4 11. 19 12.(4,0) 13. 答案不唯60°~75°即可14. 3π15.解:(1)()()0133=--x x 31=x ,1=x (2)251±=x 16.解:设每轮传染中平均一个人传染了x 人,根据题意得:()36112=+x ∴191±=+x 181=x 202=x (舍去)答:每轮传染中平均一个人传染了18人 17.122++=x x y18.(1)∠AOB=60° (2)点O 到AB 的距离为325mm.19.解:(1) (2)轴对称 4π评分说明:(1)不用圆规,画图正确,可不扣分; (2)每答对一空得2分20.解:如图连接OD. ∵AB 是直径,∴∠ACB=∠ADB=90°. 在Rt △ABC 中, ()cm AC AB BC 86102222=-=-=∵CD 平分∠ACB , ∴∠ACD=∠BCD , ∴∠AOD=∠BOD ∴AD=BD.又 在Rt △ABD 中,222AB BD AD =+,∴()cm AB BD AD 25102222=⨯=== 21.解:∵弓形的跨度AB=3m ,EF 为弓形的高, ∴OE ⊥AB , ∴AF=21AB=23m. ∵设所在的⊙O 的半径为r ,弓形的高EF=1m , ∴AO=r ,OF=r-1,在Rt △AOF 中,222OF AF AO += 即()222123-+⎪⎭⎫ ⎝⎛=r r ,解得m r 813=.22.(1)设矩形一边长为x ,则另一边长为(6-x). ∴()x x x x S 662+-=-=, 其中0<x <6.(2)()93622+--=+-=x x x S 当矩形的一边长为3m 时,矩形面积最大,最大为9m 2. 眼时设计费为900010009=⨯(元). 因此,当该广告牌为边长为3m 的正方形时,设计费最多. 23. 解:(1)连接OD ,则OD=OA=OE ,∴∠ODA=∠A. ∵AB ∥OC , ∴∠A=∠EOC ,∠ODA=∠DOC. ∴∠DOC=∠EOC ,∵CO=CO.∴ △CEO ≌△CDO. ∵CE 是⊙O 的切线,∴∠CDO=∠CEO=90°. ∵CD 为⊙O 的切线. (2)在 OABC 中,OA=BC=3,∵CE ⊥OA ,CE=CD=4, ∴S OABC=OA ·CE=3×4=12.评分说明:辅助线画成实线,可不扣分.24.解:(1)342-+-=x x y .顶点坐标为(2,1). (2)(-1,0) (110+,0) (101-,0)25.(1)()222021t y -=(2)当y=8时,即()8220212=-t ,解得81=t ,122=t (舍去) = 2(t-10)226.(1)22+--=x x y 44+-=x y (2)如图①,∵直线λ:y=mx+n ,当x=0时,y=n ,∴B(o,n). 当y=0时,mnx -= ∴A(m n -,o).由题意得D(-m,0).设抛物线对称轴与x 轴交点为N(x,o), ∵DN=AN ∴m n --x=x-(-n). ∴2x=-n-mn-. ∴P 的对称轴mnmn x 2+-=. (3)∵λ:y=-2x+4, ∴2-=m ,4=n . 由(2)可知,P 的对称轴122482-=⨯-+--=+-=m n mn x . 如图②,当点Q 1在直线λ下方时,∵直线42+-=x y 与x ,y 轴交点分别为A(2,0),B(0,4).由题意得C(0,2),D(-4,0).设直线CD:y=kx+2, 则-4k+2=0.解得k=21,∴221+=x y 过B 作BQ 1∥CE. ∴BQ 1的函数解析式为 421+=x y . 当x=-1时,()274121=+-⨯=y . ∴Q 1(-1,27)综上所述点Q 的坐标为(-1,217)或(-1,27).(4)λ:y=-2x+8. P:y=-8412+-x x . 评分说明:不画草图或画划图不正确,可不扣分.。

2014-2015年九年级数学第三次统一模拟试卷及答案

2014-2015年九年级数学第三次统一模拟试卷及答案

2014—2015学年上学期第三次统一模拟九年级数学试卷(满分:100分,考试时间:120分钟,)一、选择题:(本大题共8小题,每小题3分,共24分) 1.-5的绝对值是( ) A .51 B .5 C .5- D .51- 2.要使式子2+a 有意义,a 的取值范围是( )A .2-<aB .2->aC .2-≤aD .2-≥a3.下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅= D .527a b ab += 4.如图,直线21//l l ,∠1=40°,∠2=75°,则∠3等于( ) A .55° B .60° C .65° D .70°5.观察下列图案,既是轴对称图形又是中心对称图形的有( )6、不等式组31526x x ->⎧⎨⎩,≤的解集在数轴上表示正确的是( )7.已知三角形两边的长是3和4,第三边的长是方程035122=+-x x 的根,则该三角形的周长是A .14B .12C .12或14D .以上都不对8、如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2. 下列判断: ①当x >2时,M =y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在;④若M =2,则x = 1 .其中正确的有 ( ) A .1个 B .2个 C . 3个 D .4个第4题图A .B .C .D .二、填空题:(本大题共6小题,每小题3分,共18分)9.已知x 、y 是实数,并且096132=+-++y y x ,则2014)(xy 的值是_______10.今年参加我州中考考生总数约为107300人,这个数据用科学记数法表示为_________ 11.分解因式:=-2282b a ___________________. 12.如图,已知AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC = .13.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 有 一个根是0,则m 的值得____________。

2015学年第一学期九年级数学期中试卷及答案

2015学年第一学期九年级数学期中试卷及答案

2015学年第一学期九年级数学学科期中考试卷(时间:100分钟 总分:150分)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知25=b a ,那么下列等式中,不一定正确的是………………………………………( ▲ ) (A )b a 52=; (B )25b a =; (C )7=+b a ; (D )27=+b b a . 2.如果点G 是ABC ∆的重心,联结AG 并延长,交对边BC 于点D ,那么AD AG :是( ▲ ) (A )3:2; (B )2:1; (C )3:1; (D )4:3.3.已知点D 、E 分别在ABC ∆的边AB 、AC 上,下列给出的条件中,不能判定BCDE //的是…………………………………………………………………………………………( ▲ ) (A )AC CE AB BD ::=; (B )AD AB BC DE ::=; (C )AE AD AC AB ::=; (D )EC AE DB AD ::=.4.如图,在四边形ABCD 中,BC AD //,如果添加一个条件,不能使ABC ∆∽DCA ∆成立的是………………………………………………………………………………………( ▲ ) (A )ADC BAC ∠=∠; (B )ACD B ∠=∠; (C )BC AD AC ⋅=2; (D )BCABAC DC =. 5.如果二次函数c bx ax y ++=2的图像如图所示,那么下列判断正确的是………( ▲ ) (A )0>b ,0>c ; (B )0>b ,0<c ; (C )0<b ,0>c ; (D )0<b ,0<c .6.将抛物线22x y -=向右平移1个单位,再向上平移2个单位后,抛物线的表达式为( ▲ ) (A )2)1(22+--=x y ; (B )2)1(22---=x y ; (C )2)1(22++-=x y ; (D )2)1(22-+-=x y .BCDA第4题第5题学 班级 姓 学 _____________________________________________________装____________订___________线________________________________________________二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直线填入答题纸的相应位置】7.已知线段cm a 4=,cm b 9=,那么线段a 、b 的比例中项等于 ▲ cm . 8.如图,在ABC ∆中,BC DE //,8:5:=BC DE ,那么=EC AE : ▲ . 9.已知点P 是线段AB 的黄金分割点(BP AP >),如果2=AP ,那么线段=AB ▲ .10.如图,321////l l l ,2=AB ,3=BC ,那么DFDE的值是 ▲ . 11.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则=∠+∠21 ▲ 度.12.如图,在ABC ∆中,BC DE //,2:3:=DB AD ,则=∆B D E CA D ES S 梯形: ▲ .第8、12题 第10题 第11题13.如果抛物线5)3(2-+=x a y 图像开口向下,那么a 的取值范围是 ▲ . 14.已知二次函数722-+=x x y 的一个函数值是8,那么对应自变量的值是 ▲ . 15.如果抛物线2)1(212+--+=m x m x y 的对称轴是y 轴,那么m 的值是 ▲ . 16.若点A (3-,1y )、B (0,2y )是二次函数1)1(22--=x y 图像上的两点,那么1y 与2y 的大小关系是 ▲ (填21y y >,21y y =或21y y <).17.如图,有一座抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中,则抛物线的解析式为 ▲ .18.如图,在ABC ∆中,BC AD ⊥,5=BC ,3=AD ,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 和AC 上,如果设边EF 的长为x (30<<x ),矩形EFGH 的面积为y ,那么y 关于x 的解析式为 ▲ .第17题第18题三、解答题:(本大题共7题,满分78分)BAE D C BA21HGF E D C B A DE CF B A l 3l 2l 119.(本题满分10分)已知抛物线经过(1-,0),(3,0),(1,2)三点,求抛物线的解析式.20.(本题满分10分,第(1)题4分,第(2)题6分) 已知二次函数27212+--=x x y . (1)用配方法把该二次函数的解析式化为k m x a y ++=2)(的形式; (2)指出该二次函数的开口方向、顶点坐标和对称轴.21.(本题满分10分,每小题5分)如图,ABC ∆中,PC 平分ACB ∠,PC PB =, (1)求证:APC ∆∽ACB ∆;(2)若2=AP ,6=PC ,求AC 的长.第21题 22.(本题满分10分)如图,在ABC △中,D 是BC 的中点,E 是AC 上一点,2:1:=EC AE ,BE 交AD 于点F ,求FDAF的值.第22题 23.(本题满分12分,每小题6分) 已知:如图,在梯形ABCD 中,BC AD //,︒=∠90BCD ,对角线AC 、BD 相交于点E ,且BD AC ⊥.(1)求证:AD BC CD ⋅=2;(2)点F 是边BC 上一点,联结AF ,与BD 相交于点G ,如果DBF BAF ∠=∠,求证:BD BGADAG =22. 第23题24.(本题满分12分,第(1)小题6分,第(2)小题6分)CB PAF E D C B AFDCB如图,已知抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,D 为OC 的中点,直线AD 交抛物线于点(2,6)E ,且ABE ∆与ABC ∆的面积之比为3:2. (1)求直线AD 和抛物线的解析式;(2)抛物线的对称轴与x 轴相交于点F ,点Q 为直线AD 上一点,且ABQ ∆与ADF ∆相似,求点Q 的坐标.备用图 25.(本题满分14分,第(1)小题4分,第(2)小题第一问5分,第(2)小题第二问5分)直角三角形ABC 中,30A ∠=︒,1BC =,将其绕直角顶点C 逆时针旋转一个角α(0120α︒<<︒且90α≠︒),得到'''C B A Rt ∆.(1)如图1,当''A B 边经过点B 时,求旋转角α的度数; (2)在三角形旋转过程中,边'A C 与AB 所在直线交于点D ,过点D 作//''DE A B 交'CB 边于点E ,联结BE .①当090α︒<<︒时,设AD x =,BE y =,求y 与x 之间的函数解析式及定义域; ②当ABC BDE S S ∆∆=31时,求AD 的长.第25题 备用图 备用图A B'ABA B2015学年第一学期九年级数学期中试卷答案要点与评分标准1. 解答只列出试题的一种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;3. 第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5. 评分时,给分或扣分均以1分为基本单位. 一.选择题:(本大题共6题,满分24分)1. C ; 2.A ; 3.B; 4.D; 5.B; 6.A . 二.填空题:(本大题共12题,满分48分) 7.6; 8.3:5(或35); 9.15+; 10.52; 11.︒45; 12.16:9(或169); 13.3-<a ; 14.3和5-; 15.1; 16.>;17.x x y 582512+-=; 18.x x y 5352+-=.三.解答题:(本大题共7题,满分78分)19. 解:(1)设二次函数解析式为c bx ax y ++=2(0≠a ),………………………(1分) 把(1-,0),(3,0),(1,2)分别代入c bx ax y ++=2, 得 c b a +-=0c b a ++=390 ………………………………………………………………………(2分) c b a ++=2解得 21-=a ………………………………………………………………………………(2分) 1=b …………………………………………………………………………………(2分)23=c …………………………………………………………………………………(2分) 所以二次函数解析式为23212++-=x x y .……………………………………………(1分)20..解:(1)27)2(212++-=x x y …………………………………………………(2分) 4)1(212++-=x ……………………………………………………(2分)(2)开口向下,…………………………………………………………………………(2分)顶点坐标(1-,4),……………………………………………………………………(2分) 对称轴:直线1-=x (不写直线得1分).……………………………………………(2分)21.解:(1)∵PC 平分ACB ∠,∴BCP ACP ∠=∠,………………………………………………………………………(1分) ∵PC PB =,∴BCP B ∠=∠,…………………………………………………………………………(1分) ∴B ACP ∠=∠,…………………………………………………………………………(1分) 在APC ∆与ACB ∆中A A ∠=∠B ACP ∠=∠……………………………………………………………………………(1分)∴APC ∆∽ACB ∆.………………………………………………………………………(1分) (2)∵PC BP =,6=PC ,2=AP ,∴8=AB ,…………………………………………………………………………………(1分) ∵APC ∆∽ACB ∆, ∴ABACAC AP =,……………………………………………………………………………(2分) ∴162=⋅=AB AP AC ,…………………………………………………………………(1分) ∴4=AC 或4-=AC (舍). …………………………………………………………(1分)22.解:过点D 作AC DG //,交BE 于点G ,………………………………………(2分) ∵D 是BC 中点,∴CD BD =,………………………………………………………………………………(2分) ∵AC DG //, ∴21==C E DG BC BD ,………………………………………………………………………(2分) ∵21=EC AE , ∴1=DGAE,………………………………………………………………………………(2分) ∵AC DG //, ∴1==DGAEFD AF .…………………………………………………………………………(2分)23.证明:(1)∵BC AD //,︒=∠90BCD ,∴︒=∠=∠90BCD ADC ,………………………………………………………………(1分) ∵BD AC ⊥, ∴︒=∠90BEC ,∴︒=∠+∠90BCE CBE ,………………………………………………………………(1分) ∵︒=∠+∠90BCE ACD , ∴ACD CBE ∠=∠,………………………………………………………………………(1分) 在ACD ∆与DBC ∆中 D C B A D C ∠=∠ D B C A C D ∠=∠ ∴ACD ∆∽DBC ∆,………………………………………………………………………(1分) ∴BCCDCD AD =,……………………………………………………………………………(1分) ∴AD BC CD ⋅=2.………………………………………………………………………(1分) (2)∵BC AD //, ∴DBF ADB ∠=∠, ∵DBF BAF ∠=∠, ∴ADB BAF ∠=∠, 在BAG ∆与BDA ∆中 D B A ABG ∠=∠ B D A BAG ∠=∠∴BAG ∆∽BDA ∆,………………………………………………………………………(1分)∴DBA ABG S S ADAG ∆∆=22,…………………………………………………………………………(2分) ∵BDBGS S DBA ABG =∆∆,……………………………………………………………………………(2分) ∴BDBGAD AG =22.……………………………………………………………………………(1分)24.解:∵2:3:=∆∆ABC ABE S S ,E (2,6),∴C (0,4),………………………………………………………………………………(1分) ∵D 是OC 中点, ∴D (0,2),………………………………………………………………………………(1分) 求出AD 的解析式:22+=x y ,…………………………………………………………(1分) ∴A (1-,0),……………………………………………………………………………(1分) 求出抛物线解析式:432++-=x x y ……………………………………………………(2分) (2)由题意可得:B (4,0),F (23,0),…………………………………………(1分)当点Q 在x 轴下方的直线AD 上时,ABQ ∆是钝角三角形,不可能与ADF ∆相似,因此点Q 一定在x 轴上方.此时ABQ ∆与ADF ∆有一个公共的A ∠,两个三角形相似存在两种情况:①当ADAFAQ AB =时,由于F 是AB 的中点,所以此时D 是AQ 的中点,即点Q 与点A 关于点D 对称,所以点Q 的坐标为(1,4). ………………………………………………(1分)②当AF AD AQ AB =时,2555=AQ ,解得255=AQ . 过点Q 作x QH ⊥轴,垂足为点H . ∵QH DO //,∴AQADHQ OD AH AO ==, 即255521==HQ AH , 解得25=AH ,………………………………………………………………………………(1分) 5=HQ ,……………………………………………………………………………………(1分) ∴点Q 坐标为(23,5),…………………………………………………………………(1分) 综上所述,Q 点的坐标为(1,4)或(23,5)…………………………………………(1分)25.解:(1)在ABC Rt ∆中,∵︒=∠30A ,∴︒=∠60ABC .………………………(1分) 旋转过程中,对应边'CB CB =,对应角︒=∠=∠60'ABC B ,旋转角'BCB ∠=α.(1分) 当''B A 边经过点B 时,'BCB ∆是等边三角形,…………………………………………(1分) 此时旋转角︒=60α.………………………………………………………………………(1分) (2)①当︒<<︒900α时,点D 在AB 上.∵''//B A DE ,∴''CB CECA CD =. 在旋转过程中,对应边'CA CA =,'CB CB =,对应角'BCB ACD ∠=∠.∴CB CECA CD =,∴CA D ∆∽CBE ∆,……………………………………………………(1分) ∴ACBCAD BE =.…………………………………………………………………(1分) 在ABC Rt ∆中,︒=∠30A ,1=BC ,所以3=AC ,可得33=AC BC ,…………(1分) 因此33=x y ,所以y 与x 之间的函数解析式为x y 33=,…………………………(1分)定义域为20<<x .………………………………………………………………………(1分) ②23=∆ABC S , )(I 当︒<<︒900α时,CAD ∆∽CBE ∆,CBE A ∠=∠,所以BDE ∆是直角三角形.因此)2(63)2(2121x x x y BD BE S BDE -=-=⋅=∆.…………………………………(1分) 当ABC BDE S S ∆∆=31时,解方程63)2(63=-x x ,解得1=x .………………………(1分) )(II 当︒<<︒12090α时,同理可证CAD ∆∽CBE ∆,AD BE 33=,所以BDE ∆是直角三角形. 此时)2(63)2(332121-=-⨯=⋅=∆AD AD AD AD BD BE S BDE ,………………(1分) 当ABC BDE S S ∆∆=31时,解方程63)2(63=-AD AD ,解得21+=AD 或21-(舍)…………………………………………………………………………………………(1分) 综上所述,当ABC BDE S S ∆∆=31时,1=AD 或21+=AD .…………………………(1分)。

2014年新人教初三数学上册期中考试试卷及答案

2014年新人教初三数学上册期中考试试卷及答案

学校: 班级: 姓名: 考场: 考号: (密封线内请不要答题) …………⊙…………密…………⊙…………封…………⊙…………装…………⊙…………订…………⊙…………线…………⊙………商城县思源实验实验学校2014—2015年学年度第一学期九年级数学期中考试题卷 出题人:刘春林 杨成超一、选择题:(每小题3分,共24分)1,下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .菱形D .正五边形2,关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则a 的值是( ) A .±1 B.-1 C.1 D.03,对抛物线y =-x 2+2x -3 而言,下列结论正确的是( )A .与x 轴有两个交点B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1,-2)4,如图,在正方形ABCD 中有一点E ,把△ABE 绕点B 旋转到△CBF ,连接EF ,则△EBF 的形状是( )A . 等边三角形B . 等腰三角形C . 直角三角形D . 等腰直角三角形5,三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数根,则三角形的周长是( )A . 24B . 26或16C . 26D . 166,某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x ,则可列方程为( )A 、225(1)64x += B 、225(1)64x -= C 、264(1)25x += D 、264(1)25x -= 7,设a 和b 是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A.2006B.2007C. 2008D.20098,已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,在下列五个结论中:①2a﹣b <0;②abc<0;③a+b+c<0;④a﹣b+c >0;⑤4a+2b+c>0,错误的个数有( )A . 2个B . 1个C . 4个D . 3个二、填空题(每小题3分,共21分)9,如图,已知二次函数y 1=ax 2+bx +c 与一次函数y 2=kx +m 的图象相交于A (-2,4)、B (8,2)两点,则能使关于x 的不等式ax 2+(b -k )x +c -m >0成立的x 的取值范围是_____________.10,把抛物线y =x 2-2x -5向右平移2个单位,向上平移3个单位后,所得抛物线的解析式是 。

2014-2015学年度 上学期期中考试九年级数学试卷

2014-2015学年度  上学期期中考试九年级数学试卷

A .B .C .D . 2014-2015学年度上学期期中考试九年级数学试卷一、 选择题:(共12小题,每小题3分,共36分。

下列各题的四个选项中只有一个正确)1x 的取值范围是 A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且2. 已知x =2是一元二次方程x 2+x +m =0的一个解,则m 的值是A .―6B .6C .0D .0或6 3.用配方法解方程3x 2+6x ―5=0时,原方程应变形为A .(3x +1)2=4B .3(x +1)2=8C .(3x ―1) 2=4D .3(x ―1)2=5 4. 在下列图形中,既是轴对称图形又是中心对称图形的是5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .182)1(502=+xB .182)1(50)1(50502=++++x x C .50(1+2x)=182D .182)21(50)1(5050=++++x x6.如图,在Rt △ABC 中,∠ABC=90°,∠BAC=30°,AB=,将△ABC 绕顶点C 顺时针旋转至△A ′B ′C ′的位置,且A 、C 、B ′三点在同一条直线上,则点A 经过的路线的长度是 A .4 B. C .323π D .43π7.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 A .14k >- B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 8.3最接近的整数是 A .0 B .1 C .2 D .39.如图所示,将正方形图案绕中心旋转后,得到的图案是A B C D10.已知两圆的半径分别为,且这两圆有公共点,则这两圆的圆心距为A .4B .10C .4或10D .104≤≤d 11.如图所示,已知扇形的半径为,圆心角的度数为,若将此扇形围成一个4=1+3 9=3+616=6+10 第17题图 …圆锥,则围成的圆锥的侧面积为 A .B .C .D .12.如图;用一把带有刻度的直角尺,①可以画出两条平行的直线a 与b ,如图(1);②可以画出∠AOB 的平分线OP ,如图(2);③可以检验工作的凹面是否成半圆,如图(3);•④可以量出一个圆的半径,如图(4).上述四个方法中,正确的个数是( )A .1个B .2个C .3个D .4个数 学 第Ⅱ卷一、填空题(共5小题,每小题3分,共15分)13.如图所示,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为 . 14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD=30°,则∠BCD 的度数是 .第13题 第14题 第16题15.三角形的每条边的长都是方程的根,则三角形的周长是_______________.16.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.17.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是___________(填序号) ①13 = 3+10 ②25 = 9+16 ③36 = 15+21 ④49 = 18+31B二、解答题(共4小题,每小题6分,共24分)18.计算:(1)⎛÷ ⎝ (2101|2|(2π)2-⎛⎫-+-+ ⎪⎝⎭19.用适当的方法解下列方程.2350x x --= (2)(1) 23(5)(5)x x -=-三、20.(本题共7分)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =四、班级 姓名 考号 考场号密 封 线 内 不 得 答 题D 第22题图21.(本小题8分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)请直接写出点A 关于原点O 对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.五、22.(本小题8分)已知:如图所示,AB 是⊙O 的弦,∠OAB =45°,点C 是优弧»AB上的一点,OA BD //,交CA 延长线于点D ,连接BC (1)求证:BD 是O ⊙的切线六.23.(本小题10分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD ﹦6, AC ﹦8,求⊙O的半径为及CE的长.七、24.(本小题12分)要对一块长60m 、宽40m 的矩形荒地ABCD 进行绿化和硬化.(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O 1和O 2,且O 1到AB ,BC ,AD 的距离与O 2到CD ,BC ,AD 的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.第24题图①第24题图②。

2014-2015学年上学期 期中考试九年级数学试卷

2014-2015学年上学期  期中考试九年级数学试卷

2014-2015学年上学期期中考试九年级数学试卷1、 的倒数是( )A、76B 、67 C 、6 D 、162、下列运算正确的是()A 、623a a a ÷= B 、22532a a a -= C 、235()a a a -⋅= D 、527a b ab += 3A 、24B 、32 CD 、34、已知一元二次议程2420x x -+=两根为12x x 、则12x x ⋅=( ) A 、-4 B 、 4 C 、-2 D 、25、已知相交两圆的半径分别4和7,则它们的圆心距可能是( ) A 、6 B 、3 C 、2 D 、126、函数y =中自变量的取值范围是( )A 、2x ≥B 、2x ≤C 、20x x ≤≠且D 、2x7、下列图形中,不是中心对称图形的是( )A 、平行四边形B 、正方形C 、线段D 、等边三角形21世纪教育网8、抛物线21(3)12y x =+-的顶点坐标为( )A 、(3,-1)B 、(3,1)C 、(-3、-1)D 、(-3,1)9、如图(1)△ABC 的内接于⊙O ,AD 是⊙O 的直径,25OABC ∠=,则CA D ∠的度数是( )A 、20°B 、60°C 、65°D 、70°10、已知二次出数2y ax bx c =++(a ≠0)的图象如图(2)所示,现有下列结论:①0a ②0b ③0c ④240b ac-⑤420a b c ++其中结论正确的有( )个A 、2个B 、3个C 、4个D 、5个二、填空题(每小题3分,共24分) 11、4的平方根是1612、分解因式:24a -=13、方程2540x x -=的解是 14、一组数据4,x , 5, 10, 11,共有5个数,其平均数是7,这组数据的众数是15、若关于x 的方程220x x m --=有两个相等实数根,则m 的值是 16、已知菱形的两条对角线长分别为2cm 、3cm ,则它的面积是 cm2 17、圆锥底面半径为3,高为4,该圆锥侧面积为18、如图(3),弦AB=6,半径为5,C 为弧AMB 上的一点(不与A 、B 重合)则△ACB 的最大面积为三、解答题(每小题6分,共12分)19、先化简,再求值:111()111a a a -÷+--,其中1a =20、解方程:2(3)3(3)x x x -=-四、解答题(每小题8分,共16分)21、如图(4),正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且45EDF ∠=︒,将DAE ∠绕点D 逆时针旋转90°,得到DCM ∆。

2014--2015学年度第一学期期中考试试卷九年级数学

2014--2015学年度第一学期期中考试试卷九年级数学

AB2014--2015学年度第一学期期中考试九 年 级 数 学一、选择题(每小题3分,共21分)1、下面运算错误的是 ( )ABCD .2=2( 2、若关于x 的方程2(1)10m x mx -+-=是一元二次方程方程,则m 的取值范围是( )A.0m ≠ B. 1m ≠ C. 1m ≥ D. 1m =3、三角形的两边分别为3和6,第三边长是方程2680x x -+= 的一个根,这个三角形的周长是( )A.11或13 B .11 C .13D .以上答案都不对 4( ) A .9到10之间 B .8到9之间 C .7到8之间 D .6到7之间5、下列说法中,正确的有 ( ) ①所有的正三角形都相似 ②所有的正方形都相似 ③所有的等腰直角三角形都相似 ④所有的矩形都相似 ⑤所有的菱形都相似 A .2个 B.3个 C .4个 D .5个6、某种服装原价200元,连续两次涨价%a 后,售价为242元,则a 的值为 ( ) A .21 B .15 C .10 D .57、如图,ABC ∆中,090C∠=,将ABC ∆沿着MN 折叠后,顶点C的D 处,已知MN//AB,MC=6 , NC=则ABC ∆的面积是 ( )A .B .C .D .二、填空题(每小题3分,共27分) 8(1x >)9、小华在解一元二次方程240x x -=时,只得出一个根是x=4,则被他漏掉的另外一个根是x=___________. 10、若3a4b =,则ba b=+11、计算:=⋅(___________.F EA12=-x 的取值范围是______13是同类二次根式,则a_______。

14、如图所示:在梯形ABCD 中,AD//BC,AD=12cm, BC=27cm,E 、F 分别在两腰AB 、CD 上,且EF//AD ,如果梯形AEFD ∽梯形EBCF,则EF= 。

15、小明设计了一个魔术盒,当任意实数对(a,b )进入其中时,会得到一个新的实数223a b +-。

2014-2015学年度上学期期中考试九年级 数学试卷

2014-2015学年度上学期期中考试九年级 数学试卷

2014-2015学年度上学期期中考试九年级数学试卷一、选择题(每小题3分,共30分)1.方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是( )A. ①和②B. ②和③C. ③和④D. ①和③2. 若x=2是关于x 的一元二次方程08mx x 2=+-的一个解,则m=( )A .6B .5C .2D .-63.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形。

B .有一个角是直角的菱形是正方形。

C .对角线相等且垂直的四边形是正方形。

D .有一个角是60°的等腰三角形是等边三角形。

4.正方形具有而菱形不具有的性质是( )A .四个角都是直角B .两组对边分别相等C .内角和为0360D .对角线平分对角5.如图,在△ABC 中,点O 是∠ABC 与∠ACB 的角平分线,若∠BAC=80,则∠BOC=( )度A .130,B .100C .65D . 50 6.某超市一月份的营业额为30万元,三月份的营业额为56平均增长率为x ,则可列方程为()A .56(1+x)² =30B .56(1-x)²=30C .30(1+x)² =56D .30(1+x)³=567. 百位数字是a ,十位数字是b ,个位数字是c ,这个三位数是 ( )A .abc B. a+b+c C.100a+10b+c D. 100c+10b+a8.如图,空心圆柱的左视图是( )9. 如图,如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则△BCD 的周长是( )A .10B .24C .12D .1410.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图(2).下列关于图(2)的结论中,不一定成立的是 ( )A. DE ∥BCB. △DBA 是等腰三角形C. 点A 落在BC 边的中点D. ∠B+∠C+∠1=180°二、填空题(每小题4分,共32分).11.方程224x x =的根为 _________.12.若等腰三角形两边长分别是2和7,则它的三条中位线所围成三角形的周长是 .13.关于x 的方程01)1(212=-++-+a x x a a 是一元二次方程,则a =14.在上午的某一时刻身高1.7米的小刚在地面上的投影长为3.4米,小明测得校园中旗杆在地面上的影子长16米,还有2米影子落在墙上,根据这些条件可以知道旗杆的高度为_________________米.15.在平行四边形ABCD 中,若∠A+∠C=︒210,则∠A= , ∠B= .16. 关于x 的一元二次方程0122=++x kx 有两个不相等的实数根, 则k 的取值范围是_______。

2014-2015学年上学期期中九年级数学试卷(新人教版)

2014-2015学年上学期期中九年级数学试卷(新人教版)

2014-2015学年上学期期中九年级数学试卷注意事项:本卷共三大题,计23小题,满分100分.一、选择题(本题共10小题,每小题3分,满分30分)1、函数y=-x 2-3的图象顶点是( )A 、()0,3B 、39,24-⎛⎫ ⎪⎝⎭C 、()0,3-D 、()1,3-- 2、二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A 、先向左平移2个单位,再向上平移1个单位B 、先向左平移2个单位,再向下平移1个单位C 、先向右平移2个单位,再向上平移1个单位D 、先向右平移2个单位,再向下平移1个单位3、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中正确的结论是( )A 、①②B 、①③④C 、①②③⑤D 、①②③④⑤4、如图所示,抛物线2(0)y ax x c a =-+>的对称轴是直线1=x ,且图像经过点P (3,0),则c a +的值为( )A 、0B 、 -1C 、 1D 、 25、反比例函数y =1k x-的图象,在每个象限内,y 的值随x 值的增大而增大,则k 可以为( )A 、0B 、1C 、2D 、311 1- Oxy 第3题y–1 33Ox第4题P1第8题第6题6、如图,两个反比例函数14y x =和1y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC x ⊥轴于点C ,交C 2于点A ,PD y ⊥轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A 、2B 、 3C 、4D 、57、若ABC DEF △∽△,相似比为2,且ABC △的面积为12,则DEF △的面积为 ( ) A 、3 B 、6 C 、24 D 、48 8、如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC ABCD BC=; ④2AC AD AB =∙.其中单独能够判定ABC ACD △∽△的个数为 ( )A 、1B 、2C 、3D 、49、根据下表中的二次函数2(0)y ax bx c a =++≠的自变量x 与函数y 的对应值,可判断二次函数的图象与x 轴( )x …… -1 0 1 2…… y……-1-74 -274- ……A 、只有一个交点B 、有两个交点,且它们分别在y 轴两侧C 、有两个交点,且它们均在y 轴同侧D 、无交点10、二次函数2y ax bx c =++的图象如下图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )二、填空题(本题共4小题,每小题5分,满分20分)11、3与4的比例中项是______ .12、已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数解析式为 . 13、如图,在□ABCD 中,EF ∥AB, :2:3DE EA =, 4EF =, 则CD 的长为 .14、报幕员在台上时,若站在黄金分割点处,会显得活泼而生动,已知舞台长10米,那么报幕员要至少走____ ____米报幕.三、解答题(满分50分,其中15、16、17、18、19每题8分,20每题10分)15、(本题8分)已知2==dc b a ,求a b a +和d c dc +-的值。

2014-2015学年人教版九年级上数学期中试卷及答案

2014-2015学年人教版九年级上数学期中试卷及答案

九年级上学期期中数学测试题(检测时间:120分钟满分:120分)班级:________ 姓名:_______ 得分:________一、选择题(3分×10=30分)1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2-3xy+4=0,③x2-1x=4,④x2=0,⑤x2-3x+3=0A.①②B.①②④⑤C.①③④D.①④⑤2=x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥03=7-x,则x的取值范围是()A.x≥7 B.x≤7 C.x>7 D.x<74.当x()A.29 B.16 C.13 D.35.方程(x-3)2=(x-3)的根为()A.3 B.4 C.4或3 D.-4或3 6.如果代数式x2+4x+4的值是16,则x的值一定是()A.-2 B.,C.2,-6 D.30,-347.若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A.1 B.-1 C.2 D.-28.从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2,•则原来正方形的面积为()A.100cm2B.121cm2C.144cm2D.169cm29.方程x2+3x-6=0与x2-6x+3=0所有根的乘积等于()A.-18 B.18 C.-3 D.310.三角形两边长分别是8和6,第三边长是一元二次方程x2-16x+60=0一个实数根,则该三角形的面积是()A.24 B.48 C.24或D.二、填空题(3分×10=30分)11=2,且ab<0,则a-b=_______.12.13________.14a和b之间,且<b,那么a、b的值分别是______.15.x2-10x+________=(x-________)2.16.若关于x的一元二次方程(m+3)x2+5x+m2+2m-3=0有一个根为0,则m=______,•另一根为________.17.方程x2-3x-10=0的两根之比为_______.18.已知方程x2-7x+12=0的两根恰好是Rt△ABC的两条边的长,则Rt△ABC•的第三边长为________.19.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.20.某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.三、解答题(共60分)21.计算(每小题3分,共6分)(1)12)-34(2)1422.用适当的方法解下列方程(每小题3分,共12分)(1)(3x-1)2=(x+1)2(2)2x2+x-12=0(3)用配方法解方程:x2-4x+1=0;p(4)用换元法解方程:(x2+x)2+(x2+x)=623.(6分)已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.24.(5分)已知x1,x2是一元二次方程2x2-2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式7+4x1x2>x12+x22,且m为整数,求m的值.25.(5分)已知x=12,求代数式x3+2x2-1的值.26.(6分)半径为R的圆的面积恰好是半径为5与半径为2的两个圆的面积之差,求R的值.27.(6分)某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会?28.(7分)有100•米长的篱笆材料,•想围成一个矩形露天仓库,•要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,•现请你设计矩形仓库的长和宽,使它符合要求.29.(7分)“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况.(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;(2)根据图中所给数据,求我国从1998年到2002年教育经费的年平均数;(3)如果我国的教育经费从2002年的5480亿元,增加到2004年7891亿元,那么这1.440=1.200)两年的教育经费平均年增长率为多少?(结果精确到0.01,答案:1.D 2.C 3.B 4.D 5.C 6.C 7.B 8.A 9.A 10.C11.-7 12.13.4 14.a=3,b=4 15.25,5 16.1,-5417.-52或-2518.519.25或36 20.ax bya b++21.(1)11414(2)43+11222.(1)x1=0,x2=1;(2)x=-14±;(3)(x-2)2=3,x1x2(4)设x2+x=y,则y2+y=6,y1=-•3,y2=2,则x2+x=-3无解,x2+x=2,x1=-2,x2=1.23.△=16m2-8(m+1)(3m-2)=-8m2-8m+16,(1)方程有两个相等的实数根,∴△=0,即-8m2-8m+16=0,求得m1=-2,m2=1;(2)因为方程有两个相等的实数根,所以两根之和为0且△≥0,则-42(1)mm+=0,求得m=0;(3)∵方程有一根为0,∴3m-2=0得m=2 3.24.(1)△=-8m-4≥0,∴m≤-12;(2)m=-2,-125.0 26 27.9个28.方案一:设计为矩形(长和宽均用材料:列方程可求长为30米,宽为20米);•方案二:设计为正方形.在周长相等的条件下,正方形的面积大于长方形的面积,它的边长为25米;方案三:利用旧墙的一部分:如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x 米,则另一边为(100-2x )米,•可求一边长为(,另一边长为14•米;•方案四:•充分利用北面旧墙,•这时面积可达1250平方米.29.(1)由图可见,1998~2002年的五年内,我国教育经费投入呈现出逐年增加的趋势;(2)我国从1998年到2002年教育经费的平均数为:294933493849463854805++++=4053(亿元);(3)设从2002年到2004年这两年的教育经费平均年增长率为x ,则由题意,得5480(1+x 2)=7891,解之得x ≈20%.。

2014-2015学年人教版初三上期中考试数学试卷及答案

2014-2015学年人教版初三上期中考试数学试卷及答案

湛江二中2014-2015学年度第一学期期中考试初三数学试卷(考试时间100分 满分120分)一、 选择题(本题10小题,每小题3分,共30分.每题有四个选项,其中只有一个选项是正确的,请将每小题的正确选项填在括号中)1. 直角坐标系内,点P(-2 ,3)关于原点的对称点Q 的坐标为 ( )A .(2,-3)B .(2,3)C .(3,-2)D .(-2,-3)2. 下列图形中,是中心对称图形但不是轴对称图形的是 ( )3. 下列事件是必然事件的是( )A .某运动员射击一次击中靶心B .抛一枚硬币,正面朝上C .3个人分成两组,一定有2个人分在一组D .明天一定晴天 4.用配方法解方程0242=+-x x ,下列配方正确的是( )A .2)2(2=+xB .2)2(2=-xC .2)2(2-=-xD .6)2(2=-x 5.由二次函数22(3)1y x =-+,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为D .当3x <时,y 随x 的增大而增大6.已知⊙O 的半径为2,圆心O 到直线l 的距离PO=1,则直线l 与⊙O 的位置关系是( ) A . 相切B . 相离C . 相交D . 无法判断7.反比例函数xk y 2-=的图象,当0>x 时,y 随x 的增大而减小,则k 的取值范围是( ) A .2<k B .2≤k C .2>k D .2≥k 8.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′, 若∠AOB=15°,∠AOB ′的度数是( ) A .25° B . 30° C . 35° D . 40°9.如图,⊙O 中,四边形ABDC 是圆内接四边形, ∠BOC=110°,则∠BDC 的度数是 ( )A .110°B .70°C .55°D .125° 10.在半径为3的圆中,150°的圆心角所对的弧长是( ) A .154π B .152π C . 54π D .52π二、填空题(本大题共6题,每小题4分,共24分)11.方程042=+x x 的解为 .12.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°, 则∠BOC 的度数为________________.13.圣诞节时,一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为 .14.将一个正六边形绕着其中心,至少旋转 度可以和原来的图形重合. 15.从1,2,3,…9共9个数字中任取一个数字,取出数字为奇数的概率是 . 16.右图是抛物线c bx ax y ++=2的图象的一部分,请你根据图 象写出方程02=++c bx ax 的两根是 .三、解答题(本大题3小题,每小题6分,共18分)17.解一元二次方程0122=--x x18.已知y 关于x 的反比例函数y =m -5x(m 为常数)经过点A (2,-1),求反比例函数的解析式.19.如图,已知点A 、B 、C 的坐标分别为(0,0),(4,0),(5, 2)将△ABC 绕点A 按逆时针方向旋转90°得到△AB′C′. (1)画出△AB′C′; (2)求点C′的坐标.四、解答题(本大题3小题,每小题7分,共21分)ABCO20.如图,某座桥的桥拱是圆弧形,它的跨度AB为8米,拱高CD为2米,求桥拱的半径。

2014-2015第一学期九年级期中数学试题-(人教word版附答案)

2014-2015第一学期九年级期中数学试题-(人教word版附答案)

2014—2015学年度第一学期期中调研考试九年级数 学 试 题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。

1、下列图形中,既是轴对称图形又是中心对称图形的是( )2、某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( ) A .173(1-x %)2=127 B .173(1-2x %)=127 C . 173(1+x %)2=127 D .127(1+x %)2=1733、已知点A(x,y-4)与点B(1-y,2x)关于原点对称,则y x的值是( ) A.2 B.1 C.4 D.84、如图所示,点A 、B 、C 在⊙O 上,AO ∥BC ,∠OAC=20°,则 ∠AOB 的度数 A .10° B .20°C .40°D .70°5、 一元二次方程22350x x ++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断6、一正多边形外角为90°,则它的边心距与半径之比为( )A .1∶2B .1∶2C .1∶ 3D .1∶37、二次函数 中,若 ,则它的图像一定过点( ) A . (-1,-1) B . (1,-1) C . (-1, 1) D .(1, 1)2y x bx c =++0b c +=第10题8、 如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是( ) A 、30° B 、45° C 、60° D 、90°9、如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3, 那么BC =( ).A . 7 B.6 C .5 D. 410、如图小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,则该扇形薄纸板的圆心角为( )A .150°B .180°C . 270°D . 216°11、⊙O 的半径r =5 cm ,圆心到直线l 的距离OM =4 cm ,在直线l 上有一点P ,且 PM =3 cm ,则点P ( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .可能在⊙O 上或在⊙O 内12、现定义运算“★”,对于任意实数a ,b ,都有a ★b a a b ⨯-=2+b ,如:3★553352+⨯-=,若x ★2=10,则实数x 的值为 A .-4或-lB .4或-lC . -4或2D .4或-2二、填空题(每小题3分,共18分.把答案写在题中横线上)13、以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点,若两圆的半径分别为6cm 和10cm ,则AB 的长为 cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014–2015学年第一学期期中考试
初三数学
考试范围:九年级上学期和九年级下学期内容,主要有第一章一元二次方程和第五章二次函数。

题型:选择、填空共十八题(54分),解答题十一题(76分),分值130分,考试时间120分钟。

一、选择题:(每题3分,共30分)
1.下列方程中是关于x 的一元二次方程的是( ) A .x 2+2x =x 2-1 B .ax 2+bx +c =0 C .x(x -1)=1 D .3x 2-2xy -5y 2=0
2.等腰三角形的底和腰是方程x 2-6x +8=0的两根,则这个三角形的周长为( )
A .8
B .10
C .8或10
D .不能确定 3.关于方程88(x -2)2=95的两根,下列判断正确的是( ) A .一根小于1,另一根大于3 B .一根小于-2,另一根大于2 C .两根都小于0 D .两根都大于2
4.下列四个函数图象中,当x>0时,y 随x 的增大而增大的是 ( )
5.函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象大致是 ( )
6.对于二次函数y =2(x +1)(x -3),下列说法正确的是 ( ) A .图象的开口向下 B .当x>1时,y 随x 的增大而减小 C .当x<1时,y 随x 的增大而减小 D .图象的对称轴是直线x =-1 7.一元二次方程022
=-+x x 根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .无实数根
D .无法确定
8.关于x 的方程22k x (2k 1)x 10+-
+=有实数根,则下列结论正确的是( ) A .当1
k 2
=时方程两根互为相反数 B .当k =0时方程的根是x =-1 C .当k =±1时方程两根互为倒数 D .当1
k 4

时方程有实数根
9.小敏在某次投篮中,球的运动路线是抛物线y =-
15
x 2
+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是 ( ) A .3.5 m B .4m C .4.5 m D .4.6 m
10.如图,二次函数y =ax 2
+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点
B 坐标(﹣1,0),下面的四个结论:①OA =3;②a +b +c <0;③ac >0;④b 2
﹣4ac >0.其中正确的结论是 ( )
A .①④
B .①③
C .②④
D .①②
第9题图
第10题图
二、填空题:(每题3分,共24分)
11.已知关于x 的一元二次方程x 2-x+m=0有一个根为2,则m 的值为____ ____,它的另一个根为 ;
12.如果αβ、是一元二次方程2
3 1 0x x +-=的两个根,那么2
+2ααβ-的值是
___________。

13.二次函数y =x 2-mx +3的图象与x 轴的交点如图所示,根据图中信息可得到m 的值是_______.
14.二次函数y =ax 2+(2a +3)x +(a +1)图象与x 轴只有一个交点,则a =_______. 15.二次函数 y =2x 2-bx +3的对称轴是直线x =1,则b 的值为_______.
16x 的一元二次方程x 2
+(2m+3)x+m 2
=0的两个不相等的实数根,且满
m 的值是 。

17.抛物线y =ax +bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表:
从上表可知,下列说法:①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是x =
1
2
;④在对称轴左侧,y 随x 增大而增大,其中正确的是_______(填写序号). 18.如图,是二次函数y =ax 2+bx +c(a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b>2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c>0.其中正确的命题是_______(只要求填写正确命题的序号).
第13题图
第18题图
三、解答题:(共11题,合计76分)
19.解下列一元二次方程:(每题4分,共12分)
(1) 2
620x x --= (2)()()23230x x x -+-= (3)()()2
1516x x -=--
20.(6分)已知:关于x 的方程()()2kx 3k 1x 2k 10--+-= (1)求证:无论k 为何实数,方程总有实数根;
(2)若此方程有两个实数根x 1,x 2,且|x 1﹣x 2|=2,求k 的值.
21.(6分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2012年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2014年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求2014年共建设了多少万平方米廉租房.
22.(本题5分) 已知y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点,求k 的取值范围.
23.(本题6分) 如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数y =-
23
x 2
+bx +c 的图象经过B 、C 两点. (1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x 的取值范围.
24.(本题6分)已知点A(1,1)在二次函数y =x 2-2ax +b 的图象上. (1)用含a 的代数式表示b ;
(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标.
25.(7分)抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF =2,EF =3.
(1)求抛物线所对应的函数解析式; (2)求△ABD 的面积;
(3)将△AOC 绕点C 逆时针旋转90°,点A 对应点为点G ,问点G 是否在该抛物线上?请说明理由.
第25题图第28题图
26.(6分)已知关于x 的方程x 2+2(k -3)x +k 2=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围;
(2)若12129x x x x +-=,求k 的值.
27.(6分)某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。

为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施。

经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

求:
(1)若商场平均每天要赢利1200元,且让顾客感到实惠,每件衬衫应降价多少元? (2)用配方法说明,每件衬衫降价多少元时,商场平均每天赢利最多,最多是多少? 28.(6分)已知:如图,抛物线y =ax 2+bx +c 与x 轴相交于两点A(1,0),B(3,0),与y 轴相交于点C(0,3). (1)求抛物线的函数关系式; (2)若点D (7
2
,m)是抛物线y =ax 2+bx +c 上一点,请求出m 的值,并求出此时△ABD 的面积.
29.(10分)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1)、B(2,0)、O(0,0),将此三角板绕原点O 逆时针旋转90°,得到△A'B'O . (1)一抛物线经过点A'、B'、B ,求该抛物线的解析式; (2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB'A'B 的面积是△A'B'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB'A'B 是哪种形状的四边形?并写出四边形PB'A'B 的
两条性质.
参考答案
1—10:CBACC ,DADDA 。

11、2,m =-另一个根为-1;12、4;13、5;14、9
8
-;15、4;16、3;17、①③④;18、①③。

19.1212(1)33,1;(3)3, 4.x x x x x ===== 20.
21.
22、
23.
24.
25.
26.
27.
28.
29.。

相关文档
最新文档