2019届高考数学一轮复习 第八章 解析几何 课堂达标48 定点、定值、探索性问题 文 新人教版
高考数学一轮总复习 第8章 解析几何 第八节 第三课时 定点、定值、探索性问题课件 文 新人教A版
考点一 定点问题 重点保分型考点——师生共研
[典例引领]
(2015·汕头期末联考)已知抛物线C:y2=2px(p>0)的焦点
F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点.
(1)求抛物线C的方程;
(2)若直线OA,OB的斜率之积为-
1 2
,求证:直线AB过x
Байду номын сангаас
x2 a2
+by22
=1(a>b>0)的右焦点为
F(1,0),右顶点为A,且|AF|=1.
(1)求椭圆C的标准方程;
(2)若动直线l:y=kx+m与椭圆C有且
只有一个交点P,且与直线x=4交于点
Q,问:是否存在一个定点M(t,0),使
得 MP ·MQ =0.若存在,求出点M的坐
标;若不存在,说明理由.
(1)求椭圆 E 的方程.
(2)设 O 为坐标原点,过点 P 的动直线与椭圆交于 A,B 两点.是
否存在常数 λ,使得OA·OB+λ PA·PB为定值?若存在,求 λ
的值;若不存在,请说明理由.
解析
解析
考点二 定值问题 重点保分型考点——师生共研
[典例引领]
(2016·衡水模拟)已知F1,F2为椭圆C:
x2 a2
+
y2 b2
=1(a>b>0)
的左、右焦点,过椭圆右焦点F2且斜率为k(k≠0)的直线l与
椭圆C相交于E,F两点,△EFF1的周长为8,且椭圆C与圆 x2+y2=3相切.
(1)求椭圆C的方程;
(2)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,
求证:|A1B|+|C1D|为定值.
解析
考点三 存在性问题 重点保分型考点——师生共研
2019届高考数学一轮复习第8单元解析几何作业理
第八单元解析几何课时作业(四十六)第46讲直线的倾斜角与斜率、直线的方程基础热身1.已知直线l过点(0,0)和(3,1),则直线l的斜率为()A.3B.C.-D.-32.如果A·B<0,B·C>0,那么直线Ax-By-C=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.[2017·绵阳二诊]直线x-y-3=0的倾斜角α是.4.[2017·郑州一中调研]点(,4)在直线l:ax-y+1=0上,则直线l的倾斜角为.5.已知等边三角形ABC的两个顶点为A(0,0),B(4,0),且第三个顶点在第四象限,则BC边所在的直线方程是.能力提升6.[2017·通化二模]已知角α是第二象限角,直线2x+y tan α+1=0的斜率为,则cos α等于()A.B.-C.D.-7.过点(-10,10)且在x轴上的截距是在y轴上的截距的4倍的直线的方程为()A.x-y=0B.x+4y-30=0C.x+y=0 或x+4y-30=0D.x+y=0或x-4y-30=08.若<α<2π,则直线+=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.直线l:mx-m2y-1=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角的一条直线的方程是()A.x-y-1=0B.2x-y-3=0C.x+y-3=0D.x+2y-4=010.已知点A(1,-2)和B,0在直线l:ax-y-1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是()A.B.C.D.∪11.[2017·黄冈质检]已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是线段AB上的点,则P到AC,BC的距离的乘积的最大值为()A.3B.2C.2D.912.不论k为何实数,直线(2k-1)x-(k+3)y-(k-11)=0恒过一个定点,则这个定点的坐标是.13.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为.14.[2017·绵阳南山中学一诊]在平面直角坐标系xOy中,点A(0,1),B(0,4),若直线2x-y+m=0上存在点P,使得|PA|=|PB|,则实数m的取值范围是.难点突破15.(5分)已知直线l:x-my+m=0上存在点M满足与A(-1,0),B(1,0)两点连线的斜率k MA 与k MB之积为3,则实数m的取值范围是()A.[-,]B.∪C.∪D.16.(5分)[2017·河南安阳调研]直线y=m(m>0)与y=|log a x|(a>0且a≠1)的图像交于A,B 两点,分别过点A,B作垂直于x轴的直线交y=(k>0)的图像于C,D两点,则直线CD的斜率()A.与m有关B.与a有关C.与k有关D.等于-1课时作业(四十七)第47讲两直线的位置关系、距离公式基础热身1.[2017·永州一模]已知直线l1:x+y+1=0,l2:x+y-1=0,则l1与l2之间的距离为()A.1B.C.D.22.[2017·南昌一模]两直线3x+2y-2a=0与2x-3y+3b=0的位置关系是()A.垂直B.平行C.重合D.以上都不对3.[2017·河北武邑中学月考]过点P(1,2),且到原点的距离最大的直线的方程是()A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.3x+y-5=04.[2017·大庆实验中学一模]与直线x+y+2=0垂直的直线的倾斜角为.5.[2017·重庆一中期中]点(-1,-2)关于直线x+y=1对称的点的坐标是.能力提升6.已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m=-2”是“l1∥l2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件7.[2018·南昌二中月考]已知直线l1:mx-y+3=0与l2关于直线y=x对称, l2与l3:y=-x+垂直,则m=()A.-B.C.-2D.28.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0互相垂直,则ab的最小值为()A.1B.2C.2D.29.点P在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为,则点P的坐标为()A.(1,2)B.C.或D.或10.[2017·台州中学月考]设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线的方程分别是x=0,y=x,则直线BC的方程是()A.y=3x+5B.y=2x+3C.y=2x+5D.y=-+11.[2017·莱芜期末]已知直线l:Ax+By+C=0(A,B不全为0),两点P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)(Ax2+By2+C)>0,且|Ax1+By1+C|>|Ax2+By2+C|,则()A.直线l与直线P1P2不相交B.直线l与线段P2P1的延长线相交C.直线l与线段P1P2的延长线相交D.直线l与线段P1P2相交12.已知直线3x+4y-3=0,6x+my+14=0平行,则它们之间的距离是.13.[2017·蚌埠质检]在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a,b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.14.[2017·六安一中月考]已知曲线y=在点P(1,4)处的切线与直线l平行且两直线之间的距离为,则直线l的方程为.难点突破15.(5分)[2017·南昌一模]已知点P在直线x+3y-2=0上,点Q在直线x+3y+6=0上,线段PQ 的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.B.C.D.∪16.(5分)已知x,y为实数,则代数式++的最小值是.课时作业(四十八)第48讲圆的方程基础热身1.方程x2+y2-2x+m=0表示一个圆,则m的取值范围是()A.m<1B.m<2C.m≤D.m≤12.已知点P是圆(x-3)2+y2=1上的动点,则点P到直线y=x+1的距离的最小值是()A.3B.2C.2-1D.2+13.[2017·天津南开区模拟]圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是()A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=04.[2017·武汉三模]若直线2x+y+m=0过圆x2+y2-2x+4y=0的圆心,则m的值为.5.[2017·郑州、平顶山、濮阳二模]以点M(2,0),N(0,4)为直径的圆的标准方程为.能力提升6.[2017·湖南长郡中学、衡阳八中等十三校联考]圆(x-2)2+y2=4关于直线y=x对称的圆的方程是()A.+=4B.+=4C.x2+=4D.+=47.已知两点A(a,0), B(-a,0)(a>0),若曲线x2+y2-2x-2y+3=0上存在点P,使得∠APB=90°,则正实数a的取值范围为()A.(0,3]B.[1,3]C.[2,3]D.[1,2]8.[2017·九江三模]已知直线l经过圆C:x2+y2-2x-4y=0的圆心,且坐标原点O到直线l的距离为,则直线l的方程为()A.x+2y+5=0B.2x+y-5=0C.x+2y-5=0D.x-2y+3=09.[2017·海南中学、文昌中学联考]抛物线y=x2-2x-3与坐标轴的交点在同一个圆上,则该圆的方程为()A.x2+=4B.+=4C.+y2=4D.+=510.[2017·广州一模]已知圆C:x2+y2+2x-4y+1=0的圆心在直线ax-by+1=0上,则ab的取值范围是()A.B.C.D.11.已知直线l1:x+2y-5=0与直线l2:mx-ny+5=0(n∈Z)相互垂直,点(2,5)到圆C:(x-m)2+(y-n)2=1的最短距离为3,则mn= .12.已知圆C:(x-3)2+(y-4)2=25,圆C上的点到直线l:3x+4y+m=0(m<0)的最短距离为1,若点N(a,b)在直线l位于第一象限的部分,则+的最小值为.13.(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求该圆圆心的纵坐标的最小值.14.(15分)已知曲线C1:x2+y2=1,点N是曲线C1上的动点,O为坐标原点.(1)已知定点M(-3,4),动点P满足=+,求动点P的轨迹方程;(2)设点A为曲线C1与x轴正半轴的交点,将A沿逆时针旋转得到点B,若=m+n,求m+n的最大值.难点突破15.(5分)[2018·赣州红色七校联考]已知圆C:x2+y2-2ax-2by+a2+b2-1=0(a<0)的圆心在直线x-y+=0上,且圆C上的点到直线x+y=0的距离的最大值为1+,则a2+b2的值为()A.1B.2C.3D.416.(5分)[2017·北京朝阳区二模]已知过定点P(2,0)的直线l与曲线y=相交于A,B 两点,O为坐标原点,当△AOB的面积最大时,直线l的倾斜角为()A.150°B.135°C.120°D.30°课时作业(四十九)第49讲直线与圆、圆与圆的位置关系基础热身1.直线y=2x+1与圆x2+y2-2x+4y=0的位置关系为()A.相交且经过圆心B.相交但不经过圆心C.相切D.相离2.[2017·惠州调研]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离3.[2017·大连一模]直线4x-3y=0与圆(x-1)2+(y-3)2=10相交所得弦的长为()A.6B.3C.6D.34.圆心为(4,0)且与直线x-y=0相切的圆的方程为.5.[2017·昆明一中模拟]若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是.能力提升6.[2017·洛阳二模]已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l的夹角为45°的直线交l于A,则的最小值为()A.B.1C.-1D.2-7.[2017·天津红桥区八校联考]若直线2ax-by+2=0 (a>0,b>0)经过圆x2+y2+2x-4y+1=0的圆心,则+的最小值是()A.B.4C.D.28.[2017·湖北六校联考]过点P(1,2)的直线与圆x2+y2=1相切,且与直线l:ax+y-1=0垂直,则实数a的值为()A.0B.-C.0或D.9.[2017·广州模拟]已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2-2k+3的公共点,则ab 的最大值为()A.15B.9C.1D.-10.[2017·安阳二模]已知圆C 1:x2+y2+4x-4y-3=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为()A.2B.4C.8D.2011.[2017·宜春二模]已知圆x2+y2=1和圆外一点P(1,2),过点P作圆的切线,则切线方程为.12.[2017·长沙雅礼中学模拟]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线mx-y-2m-1=0(m>0)相切的所有圆中,半径最大的圆的标准方程为.13.(15分)[2017·汕头三模]已知圆C经过点(2,4),(1,3),圆心C在直线x-y+1=0上,过点A(0,1),且斜率为k的直线l与圆相交于M,N两点.(1)求圆C的方程.(2)①请问·是否为定值?若是,请求出该定值;若不是,请说明理由.②若O为坐标原点,且·=12,求直线l的方程.14.(15分)已知圆O:x2+y2=9及点C(2,1).(1)若线段OC的垂直平分线交圆O于A,B两点,试判断四边形OACB的形状,并给出证明;(2)过点C的直线l与圆O交于P,Q两点,当△OPQ的面积最大时,求直线l的方程.难点突破15.(5分)[2017·汉中质检]已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 ()A.2B.2C.3D.316.(5分)[2017·重庆巴蜀中学三模]已知P为函数y=的图像上任一点,过点P作直线PA,PB 分别与圆x2+y2=1相切于A,B两点,直线AB交x轴于M点,交y轴于N点,则△OMN的面积为.课时作业(五十)第50讲椭圆基础热身1.[2017·陕西黄陵中学二模]已知椭圆的标准方程为x2+=1,则椭圆的焦点坐标为()A.(,0),(-,0)B.(0,),(0,-)C.(0,3),(0,-3)D.(3,0),(-3,0)2.[2017·河南息县一中模拟]已知圆O:x2+y2=4经过椭圆C:+=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为 ()A.+=1B.+=1C.+=1D.+=13.[2017·淮北模拟]椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.4.[2017·河南师范大学附属中学模拟]椭圆C: +=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为.5.[2017·南宁期末]定义:椭圆上一点与两焦点构成的三角形为椭圆的焦点三角形.已知椭圆C:+=1(a>b>0)的焦距为4,焦点三角形的周长为4+12,则椭圆C的方程是.能力提升6.[2017·株洲一模]已知椭圆+=1(a>b>0),F1为左焦点,A为右顶点, B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一个圆上,则此椭圆的离心率为()A.B.C.D.7.[2017·韶关二模]在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,点P为椭圆上一点,且△PF1F2的周长为12,那么C的方程为()A.+y2=1B.+=1C.+=1D.+=18.[2017·郑州三模]椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.9.[2017·泉州模拟]已知椭圆C:+=1(a>b>0)的左焦点为F,若点F关于直线y=-x的对称点P在椭圆C上,则椭圆C的离心率为 ()A.B.C.D.10.[2017·沈阳东北育才学校九模]椭圆+=1的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆的周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为 () A.B.C.D.11.[2017·泉州质检]已知椭圆C:+=1的左顶点、上顶点、右焦点分别为A,B,F,则·= .12.[2017·运城二模]已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是.13.(15分)[2018·海南八校联考]如图K50-1,点M(,)在椭圆+=1(a>b>0)上,且点M到两焦点的距离之和为6.(1)求椭圆的方程;(2)设与MO (O为坐标原点)垂直的直线交椭圆于A,B (A,B不重合),求·的取值范围.图K50-114.(15分)[2017·南宁质检]已知椭圆C:+=1(a>b>0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)若圆O:x2+y2=1的切线l与椭圆C相交于A,B两点,线段AB的中点为M,求的最大值.难点突破15.(5分)[2017·长沙模拟]已知F是椭圆+=1的左焦点,设动点P在椭圆上,若直线FP 的斜率大于,则直线OP(O为坐标原点)的斜率的取值范围是()A.B.∪C.∪D.16.(5分)[2017·郑州模拟]某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xOy中,已知椭圆x2+2y2=1的左顶点为A,过点A作两条斜率之积为2的射线与椭圆交于B,C……”②解:“设直线AB的斜率为k……点B,,D-,0……”据此,请你写出直线CD 的斜率为.(用k表示)课时作业(五十一)第51讲双曲线基础热身1.[2017·浙江名校联考]双曲线-=1的渐近线方程是()A.y=±xB.y=±xC.y=±xD.y=±x2.若双曲线C:x2-=1(b>0)的离心率为2,则b=()A.1B.C.D.23.[2017·泉州一模]在平面直角坐标系xOy中,双曲线C的一个焦点为F(2,0),一条渐近线的倾斜角为60°,则C的标准方程为()A.-y2=1B.-x2=1C.x2-=1D.y2-=14.已知双曲线经过点(2,1),其一条渐近线方程为y=x,则该双曲线的标准方程为.5.[2017·柳州模拟]设双曲线-=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|AF2|+|BF2|的最小值为.能力提升6.[2017·洛阳模拟]已知双曲线C:-=1(a>0,b>0)的离心率为2,则C的两条渐近线的方程为()A.y=±xB.y=±xC.y=±2xD.y=±x7.[2017·汉中二模]如图K51-1,F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两个分支分别交于点B,A.若△ABF2为等边三角形,则双曲线的离心率为()图K51-1A.4B.C.D.8.[2017·泸州三诊]已知在Rt△ABC中,|AB|=3,|AC|=1,A=,以B,C为焦点的双曲线-=1(a>0,b>0)经过点A,且与AB边交于点D,则的值为 ()A.B.3C.D.49.已知O为坐标原点,F是双曲线C:-=1(a>0,b>0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线BM与y 轴交于点N,若=2,则C的离心率为()A.3B.2C.D.10.[2017·重庆一中期中]已知A(-2,0),B(2,0),若在斜率为k的直线l上存在不同的两点M,N,满足|MA|-|MB|=2,|NA|-|NB|=2,且线段MN的中点为(6,1),则k的值为 ()A.-2B.-C.D.211.[2017·衡阳联考]双曲线的两条渐近线的方程为x±2y=0,则它的离心率为.12.[2017·石家庄二模]双曲线-=1(a>0,b>0)上一点M(-3,4)关于一条渐近线的对称点恰为右焦点F2,则该双曲线的标准方程为.13.(15分)[2017·海南一模]双曲线C的一条渐近线方程是x-2y=0,且双曲线C过点(2,1).(1)求双曲线C的方程;(2)设双曲线C的左、右顶点分别是A1,A2,P为C上任意一点,直线PA1,PA2分别与直线l:x=1交于M,N,求|MN|的最小值.14.(15分)[2017·菏泽模拟]双曲线C的中心在原点,右焦点为F,0,渐近线方程为y=±x.(1)求双曲线C的方程.(2)设直线l:y=kx+1与双曲线C交于A,B两点,当k为何值时,以线段AB为直径的圆过原点?难点突破15.(5分)[2017·重庆一中月考]已知F2是双曲线E:x2-=1的右焦点,过点F2的直线交E的右支于不同的两点A,B,过点F2且垂直于直线AB的直线交y轴于点P,则的取值范围是()A. B.C. D.16.(5分)[2017·日照三模]在等腰梯形ABCD中,AB∥CD且|AB|=2,|AD|=1,|CD|=2x,其中x ∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1),不等式m<e1+e2恒成立,则m的最大值为()A.B.C.2D.课时作业(五十二)第52讲抛物线基础热身1.[2017·渭南质检]抛物线y=x2的焦点到准线的距离为()A.2B.C.D.42.若抛物线y2=2px(p>0)的焦点在圆C:(x+2)2+y2=16上,则p的值为()A.1B.2C.4D.83.[2017·合肥六校联考]抛物线y=x2的焦点到双曲线y2-=1的渐近线的距离为 ()A.B.C.1D.4.焦点坐标为(-2,0)的抛物线的标准方程为.5.已知抛物线y2=6x上的一点到焦点的距离是到y轴距离的2倍,则该点的横坐标为.能力提升6.已知点A的坐标为(5,2),F为抛物线y2=x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,点P的坐标是 ()A.(1,)B.(,2)C.(,-2)D.(4,2)7.若抛物线y2=2px的焦点到双曲线-=1的渐近线的距离为p,则抛物线的标准方程为()A.y2=16xB.y2=8xC.y2=16x或y2=-16xD.y2=8x或y2=-8x8.[2017·豫南九校联考]设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A,B两点,点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若=4,则直线l的方程为()A.y=2x+1B.y=x+1C.y=x+1D.y=2x+29.[2017·蚌埠三模]设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为-,则|PF|=()A.4B.6C.8D.1610.[2018·长沙模拟]已知F为抛物线C: y2=4x的焦点,过F的直线l与C相交于A,B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若=6,则= ()A.2B.C.2D.11.[2017·漳州八校联考]已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF= .12.[2017·天津河西区二模]已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,+=3,则线段AB的中点到y轴的距离为.13.(15分)[2017·孝感模拟]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=,过F2作垂直于x轴的直线交椭圆C于A,B两点,△F1AB的面积为3,抛物线E:y2=2px(p>0)以椭圆C的右焦点F2为焦点.(1)求抛物线E的方程;(2)若点P-,t(t≠0)为抛物线E的准线上一点,过点P作y轴的垂线交抛物线于点M,连接PO并延长交抛物线于点N,求证: 直线MN过定点.14.(15分)[2017·广东海珠区调研]已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.难点突破15.(5分)[2017·长沙三模]已知抛物线y2=4x,焦点为F,过点F作直线l交抛物线于A,B 两点,则|AF|-的最小值为()A.2-2B.C.3-D.2-216.(5分)[2017·抚州二模]已知直线y=2x-2与抛物线y2=8x交于A,B两点,抛物线的焦点为F,则·的值为.课时作业(五十三)第53讲曲线与方程基础热身1.在平面直角坐标系中,已知定点A(0,-),B(0,),直线PA与直线PB的斜率之积为-2,则动点P的轨迹方程为()A.+x2=1B.+x2=1(x≠0)C.-x2=1D.+y2=1(x≠0)2.过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹方程为()A.x2=12yB.y2=-12xC.y2=12xD.x2=-12y3.设P为双曲线-y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是()A.x2-4y2=1B.4y2-x2=1C.x2-=1D.-y2=14.[2017·沈阳模拟]平面直角坐标系中,已知O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足=λ+μ,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A.x-y=0B.x+y=0C.x+2y-3=0D.+=55.[2017·北京海淀区期中]已知F1(-2,0),F2(2,0),满足||PF1|-|PF2||=2的动点P的轨迹方程为.能力提升6.[2017·上海普陀区二模]动点P在抛物线y=2x2+1上移动,若P与点Q(0,-1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x27.到直线3x-4y-1=0的距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+9=0C.3x-4y+11=0或3x-4y-9=0D.3x-4y-11=0或3x-4y+9=08.[2017·马鞍山质检]已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,则椭圆的另一个焦点F的轨迹方程是()A.y2-=1B.x2-=1C.y2-=1D.x2-=19.[2017·襄阳五中月考]已知||=3,A,B分别在x轴和y轴上运动,O为坐标原点,=+,则动点P的轨迹方程是()A.x2+=1B.+y2=1C.x2+=1D.+y2=110.[2017·黄山二模]在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程.下表给出了一些条件及方程:条件方程①△ABC的周长为C1:y2=2510②△ABC的面积为C2:x2+y2=4(y≠0)10③△ABC中,∠C3:+=1(y≠0)A=90°则分别满足条件①②③的轨迹方程依次为()A.C3,C1,C2B.C1,C2,C3C.C3,C2,C1D.C1,C3,C211.[2017·浙江名校一联]已知两定点A(-2,0),B(2,0)及定直线l:x=,点P是l上一个动点,过B作BP的垂线与AP交于点Q,则点Q的轨迹方程为.12.[2017·哈尔滨三模]已知圆C:x2+y2=25,过点M(-2,3)作直线l交圆C于A,B两点,分别过A,B两点作圆的切线,当两条切线相交于点Q时,点Q的轨迹方程为.13.(15分)[2017·石家庄模拟]已知P,Q为圆x2+y2=4上的动点,A(2,0),B(1,1)为定点.(1)求线段AP的中点M的轨迹方程;(2)若∠PBQ=90°,求线段PQ的中点N的轨迹方程.14.(15分)[2017·合肥二模]如图K53-1,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B 两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.(1)求p的值;(2)求动点M的轨迹方程.图K53-1难点突破15.(5分)[2017·湖南师大附中月考]已知圆O的方程为x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为()A.-=1B.+=1C.-=1D.+=116.(5分)[2017·太原三模]已知过点A(-2,0)的直线与直线x=2相交于点C,过点B(2,0)的直线与x=-2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为.课时作业(五十四)第54讲第1课时直线与圆锥曲线的位置关系基础热身1.[2017·大庆一模]斜率为的直线与双曲线-=1恒有两个公共点,则双曲线离心率的取值范围是()A.B.C.D.2.若直线l:mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点有()A.0个B.至多1个C.1个D.2个3.已知过抛物线y2=4x焦点F的直线l交抛物线于A,B两点(点A在第一象限),若=3,则直线l的斜率为()A.2B.C.D.4.[2017·锦州质检]设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B 两点,且点P恰为AB的中点,则||+||= .5.已知抛物线C:y2=4x,直线l与抛物线C交于A,B两点,若线段AB的中点坐标为(2,2),则直线l的方程为.能力提升6.若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则等于()A.5pB.10pC.11pD.12p7.[2017·太原二模]已知双曲线Γ:-=1(a>0,b>0)的焦距为2c,直线l: y=kx-kc.若k=,则l与Γ的左、右两支各有一个交点;若k=,则l与Γ的右支有两个不同的交点.Γ的离心率的取值范围为()A.B.C.D.8.已知椭圆E:+=1的一个顶点为C(0,-2),直线l与椭圆E交于A,B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x-5y-14=0B.6x-5y+14=0C.6x+5y+14=0D.6x+5y-14=09.[2017·石家庄模拟]已知双曲线C:-=1(a>0,b>0),过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为 ()A.2B.C.D.10.过抛物线y2=2px(p>0)的焦点作一条斜率为1的直线交抛物线于A,B两点,过A,B分别向y轴引垂线交y轴于D,C,若梯形ABCD的面积为3,则p= ()A.1B.2C.3D.411.[2017·洛阳一模]已知椭圆C:+=1的左、右顶点分别为A,B,F为椭圆C的右焦点.圆x2+y2=4上有一动点P,P不同A,B两点,直线PA与椭圆C交于点Q(异于点A),若直线QF 的斜率存在,则的取值范围是.12.[2017·三湘名校联考]已知双曲线-=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差的绝对值为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-,则m的值为.13.(15分)[2017·东北三省二联]已知在平面直角坐标系中,O是坐标原点,动圆P经过点F(0,1),且与直线l:y=-1相切.(1)求动圆圆心P的轨迹C的方程;(2)过F(0,1)的直线m交曲线C于A,B两点,过A,B分别作曲线C的切线l1,l2,直线l1,l2交于点M,求△MAB面积的最小值.14.(15分)已知直线l:y=kx+m与椭圆C:+=1(a>b>0)相交于A,P两点,与x轴、y轴分别相交于点N和点M,且|PM|=|MN|,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别作x轴的垂线,垂足分别为A1,B1.(1) 若椭圆C的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点D1,在椭圆C 上,求椭圆C的方程;(2)当k=时,若点N平分线段A1B1,求椭圆C的离心率.难点突破15.(5分)[2017·武汉三模]已知椭圆E:+=1(a>b>0)内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足=λ,=λ(其中λ>0且λ≠1),若λ变化时直线AB的斜率总为-,则椭圆E的离心率为()A.B.C.D.16.(5分)已知抛物线C1:y2=8x的焦点为F,椭圆C2:+=1(m>n>0)的一个焦点与抛物线C1的焦点重合,若椭圆C2上存在关于直线l:y=x+对称的两个不同的点,则椭圆C2的离心率e的取值范围为.课时作业(五十四)第54讲第2课时最值﹑范围﹑证明问题基础热身1.(12分)[2017·重庆调研]如图K54-1,已知椭圆E:+=1(a>b>0)的左顶点为A,右焦点为F(1,0),过点A且斜率为1的直线交椭圆E于另一点B,交y轴于点C,=6.(1)求椭圆E的方程;(2)过点F作直线l与椭圆E交于M,N两点,连接MO(O为坐标原点)并延长交椭圆E于点Q,求△MNQ面积的最大值及取最大值时直线l的方程.图K54-12.(12分)[2017·临汾模拟]已知动圆C与圆C1:(x-2)2+y2=1相外切,又与直线l:x=-1相切.(1)求动圆圆心轨迹E的方程;(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交于A,B两点,求证:k MA+k MB=2k MP.能力提升3.(12分)[2017·广州模拟]已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.(1)求动圆圆心M的轨迹C的方程;(2)过点F的直线与曲线C相交于A,B两点,分别过点A,B作曲线C的切线l1,l2,两条切线相交于点P,求△PAB外接圆面积的最小值.4.(12分)[2017·永州一模]已知曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.(1)求曲线C的方程;(2)设直线y=kx+m(m>0)与曲线C交于A,B两点,若对任意k∈R,都有·<0,求m的取值范围.5.(12分)[2017·蚌埠二模]已知椭圆+=1(a>b>0)的左、右顶点分别是A(- ,0),B(,0),离心率为.设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点是O.(1)证明:OP⊥BC;(2)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.难点突破6.(12分)[2017·石嘴山三模]经过原点的直线与椭圆C:+=1(a>b>0)交于A,B两点,点P 为椭圆上不同于A,B的一点,直线PA,PB的斜率均存在,且直线PA,PB的斜率之积为-.(1)求椭圆C的离心率;(2)设F1,F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M,N两点,若点F1在以线段MN为直径的圆内部,求k的取值范围.课时作业(五十四)第54讲第3课时定点﹑定值﹑探索性问题基础热身1.(12分)[2017·岳阳一中月考]过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,=2.(1)求抛物线C的方程.(2)若直线l的斜率为2,则抛物线C上是否存在一点M,使得MA⊥MB?并说明理由.2.(12分)[2017·重庆二诊]如图K54-2,已知A,B分别为椭圆C:+=1的左、右顶点,P为椭圆C上异于A,B的任意一点,直线PA,PB的斜率分别记为k1,k2.(1)求k1·k2.(2)过坐标原点O作与直线PA,PB分别平行的两条射线,分别交椭圆C于点M,N,△MON的面积是否为定值?请说明理由.图K54-2能力提升3.(12分)[2017·遂宁三诊]已知点F是拋物线C:y2=2px(p>0)的焦点,若点M(x0,1)在C上,且=.(1)求p的值;(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点, 证明: 直线AM与直线BM的斜率之积为常数.4.(12分)[2017·长沙质检]已知P是抛物线E:y2=2px(p>0)上一点,P到直线x-y+4=0的距离为d1,P到E的准线的距离为d2,且d1+d2的最小值为3.(1)求抛物线E的方程;(2)直线l1:y=k1(x-1)交E于A,B两点,直线l2:y=k2(x-1)交E于C,D两点,线段AB,CD的中点分别为M,N,若k1k2=-2,直线MN的斜率为k,求证:直线l:kx-y-kk1-kk2=0恒过定点.5.(12分)[2017·哈尔滨二模]椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,且离心率为,点M为椭圆上一动点,△F1MF2内切圆面积的最大值为.(1)求椭圆的方程.(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆交于A,B两点,连接A1A,A1B并延长分别交直线x=4于P,Q两点,以线段PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.难点突破6.(12分)[2017·孝义模拟]设椭圆C:+=1(a>b>0)的左顶点为(-2,0),且椭圆C与直线y=x+3相切,(1)求椭圆C的标准方程.(2)过点P(0,1)的动直线与椭圆C交于A,B两点,O为坐标原点,是否存在常数λ,使得·+λ·=-7?请说明理由.课时作业(四十六)1.B[解析] 由斜率公式可得,直线l的斜率k==,故选B.2.A[解析] ∵直线在x轴、y轴上的截距分别为<0,-<0,∴直线Ax-By-C=0不经过的象限是第一象限,故选A.3.60°[解析] 由题意得,直线的斜率k=,即tan α=,所以α=60°.4.60°[解析] ∵点(,4)在直线l:ax-y+1=0上,∴a-4+1=0,∴a=,即直线l的斜率为,∴直线l的倾斜角为60°.5.y=(x-4)[解析] 易知直线BC的倾斜角为,故斜率为,由点斜式得直线方程为y=(x-4).6.D[解析] 由题意,得k=-=,故tan α=-,故cos α=-,故选D.7.C[解析] 由题意,当直线经过原点时,直线的方程为x+y=0;当直线不经过原点时,设直线的方程为+=1,则+=1,解得a=,此时直线的方程为+=1,即x+4y-30=0.故选C. 8.B[解析] 令x=0,得y=sin α<0,令y=0,得x=cos α>0,所以直线过点(0,sin α),(cos α,0)两点,因而直线不过第二象限,故选B.9.C[解析] 将(2,1)代入得2m-m2-1=0,所以m=1,所以直线l的方程为x-y-1=0,所以直线l 的斜率为1,倾斜角为,则所求直线的斜率为-1,故选C.10.D[解析] 设直线l的倾斜角为θ,则θ∈[0,π).易知直线l:ax-y-1=0(a≠0)经过定点P(0,-1),则k PA==-1,k PB==.∵点A(1,-2),B,0在直线l:ax-y-1=0(a≠0)的两侧,∴k PA<a<k PB,∴-1<tan θ<,tan θ≠0,得0<θ<或<θ<π,故选D.11.A[解析] 以C为坐标原点,CB所在直线为x轴建立直角坐标系(如图所示),则A(0,4),B(3,0),直线AB的方程为+=1.设P(x,y)(0≤x≤3),所以P到AC,BC的距离的乘积为xy,因为+≥2,当且仅当==时取等号,所以xy≤3,所以xy的最大值为3.故选A.12.(2,3)[解析] 直线(2k-1)x-(k+3)y-(k-11)=0,即k(2x-y-1)+(-x-3y+11)=0,根据k的任意性可得解得∴不论k取什么实数,直线(2k-1)x-(k+3)y-(k-11)=0都经过定点(2,3).13.x+2y-2=0或2x+y+2=0[解析] 设直线方程为+=1,得+=1.由题意知|ab|=1,即|ab|=2,所以或所以直线方程为x+2y-2=0或2x+y+2=0.14.[-2,2][解析] 设P,y,∵|PA|=|PB|,∴4|PA|2=|PB|2,又∵|PA|2=+(y-1)2,|PB|2=+(y-4)2,∴(y-m)2=16-4y2,其中4-y2≥0,故m=y±2,y∈[-2,2].令y=2sin θ,θ∈-,,则m=2sin θ±4cosθ=2sin(θ±φ),其中tan φ=2,故实数m的取值范围是[-2,2].15.C[解析] 设M(x,y),由k MA·k MB=3,得·=3,即y2=3x2-3.联立得-3x2+x+6=0(m≠0),则Δ=-24-3≥0,即m2≥,解得m≤-或m≥.∴实数m的取值范围是-∞,-∪,+∞.16.C[解析] 由|log a x|=m,得x A=a m,x B=a-m,所以y C=ka-m,y D=ka m,则直线CD的斜率为==-k,所以直线CD的斜率与m无关,与k有关,故选C.课时作业(四十七)1.B[解析] 由平行线间的距离公式可知,l1与l2之间的距离d==.2.A[解析] 直线3x+2y-2a=0的斜率为-,直线2x-3y+3b=0的斜率为,∵两直线斜率的乘积为-1,∴两直线垂直,故选A.。
高考数学一轮复习 第8章 解析几何 第9讲 第3课时 定点、定值、探索性问题课件
3.解决探索性问题的答题模板
12/11/2021
〔变式训练3〕 (2020·河南省八市重点高中联盟联考)已知抛物线C:y2=4x的准线为l,M为l上
一动点,过点M作抛物线C的切线,切点分别为A,B.
(1)求证:△MAB是直角三角形; (2)x轴上是否存在一定点P,使A,P,B三点共线.
12/11/2021
(2)不存在,理由如下: 若|AC|=|BD|,则 1=|AB|=|AC|+|CB|=|DB|+|CB|=|DC|.
y=kx- 3
联立x42+y2=1
,整得,
得(4k2+1)x2-8 3k2x+12k2-4=0.
12/11/2021
设 C(x1,y1),D(x2,y2),
x1+x2=48k2+3k12
12/11/2021
∴y1·y2=-34x1x2,3m3+2-4k42k2=-34·43m+2-4k32 , ∴2m2-4k2=3,满足①, ∵|AB|= 1+k2[x1+x22-4x1·x2] = 1+k2[-3+8km4k22-4×43m+2-4k122]=2 3·|m1| +k2, ∴S△OAB=12·d·|AB|=12× 1|m+| k2×2 3·|m1| +k2= 3为定值.
12/11/2021
(2)由(1)可得 y2=4x,设 M(14y20,y0), ∴直线 OM 的方程 y=y40x, 当 x=-2 时,∴yH=-y80, 代入抛物线方程 y2=4x,可得 xN=1y620 , ∴N(1y620 ,-y80),
12/11/2021
∴直线 MN 的斜率 k=yy4200-+1yy86020 =y204-y08, 直线 MN 的方程为 y-y0=y204-y08(x-14y20), 整理可得 y=y204-y08(x-2),故直线 MN 过点(2,0).
高考数学一轮复习第八章 解析几何答案
第八章解析几何第40讲直线的方程及位置关系链教材·夯基固本激活思维1. ABCD 【解析】对于A,该方程不能表示过点P且垂直于x轴的直线,即点斜式只能表示斜率存在的直线,所以A不正确;对于B,该方程不能表示过点P且平行于x轴的直线,即该直线不能表示斜率为零的直线,所以B不正确;对于C,斜截式不能表示斜率不存在的直线,所以C不正确;对于D,截距式的使用条件是能表示在两坐标轴上都有非零截距的直线,所以D不正确;对于E,经过任意两个不同的点P1(x1,y1),P(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示,是正确的,该方程没有任何限制条件,所以E 正确.故选ABCD.2. B 【解析】化直线方程为y=3x+a,所以k=tan α=3.因为0°≤α<180°,所以α=60°.3. B 【解析】由已知得k1=1,k2=m+15.因为l1⊥l2,所以k1·k2=-1,所以1×m+15=-1,即m=-6. 故选B.4. C 【解析】由直线l的倾斜角为3π4得l的斜率为-1,因为直线l与l1平行,所以l1的斜率为-1.又直线l1经过点A(3,2)和B(a,-1),所以l1的斜率为33-a,故33-a=-1,解得a=6.5. ABC 【解析】当直线经过原点时,斜率为k=2-0 1-0=2,所求的直线方程为y=2x,即2x-y=0;当直线不过原点时,设所求的直线方程为x±y=k,把点A(1,2)代入可得1-2=k或1+2=k,解得k=-1或k=3,故所求的直线方程为x-y+1=0或x+y-3=0.综上可知,所求的直线方程为2x-y=0,x-y+1=0或x+y-3=0.故选ABC.知识聚焦1. (1) 向上方向平行或重合(2) [0,π)2. (1) tan α (2) y2-y1x2-x13. y -y 0=k (x -x 0) y =kx +b Ax +By +C =0 A 2+B 2≠04. (1) ①l 1∥l 2 l 1⊥l 2 k 1=k 2,b 1=b 2②A 1B 2=A 2B 1且A 1C 2≠A 2C 1A 1A 2+B 1B 2=0 A 1B 2=A 2B 1且A 1C 2=A 2C 1 (2) ⎩⎪⎨⎪⎧A1x +B1y +C1=0,A2x +B2y +C2=05. (1) (x 2-x 1)2+(y 2-y 1)2(2) |Ax0+By0+C|A2+B2(3)|C1-C2|A2+B2研题型·融会贯通 分类解析(1) 【答案】 B【解析】 设直线的倾斜角为θ,因为θ∈⎣⎢⎢⎡⎦⎥⎥⎤ π3,3π4,所以当θ∈⎣⎢⎢⎡⎭⎪⎪⎫π3,π2时,k =tan θ>3.当θ∈⎝ ⎛⎦⎥⎥⎤π2,3π4时,k =tan θ<-1,所以其斜率的取值范围为(-∞,-1]∪[3,+∞).故选B.(2) 【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,56∪[2,+∞) 【解析】若要使l 过点P (2,2),且与线段AB 相交,则k ≥k AP =4-23-2=2或k ≤k BP =-3-2-4-2=56,即k ≥2或k ≤56.所以直线l 的斜率k 的取值范围是⎝ ⎛⎦⎥⎥⎤-∞,56∪[2,+∞).(1) 【答案】 D 【解析】 因为sin θ+cos θ=55,①所以(sin θ+cos θ)2=1+2sin θ cos θ=15,所以2sin θcos θ=-45,所以(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0,所以sin θ-cos θ=355,②由①②解得⎩⎪⎨⎪⎧sin θ=255,cos θ=-55,所以tan θ=-2,即l 的斜率为-2.故选D. (2) 【答案】 AD【解析】 方法一:如图,当l 过点B 时,k l =-1,当l 过点A 时,k l =1,所以k l ∈[-1,1],又k =tan α(α∈[0,π)),所以α∈⎣⎢⎢⎡⎦⎥⎥⎤0,π4∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,π.(变式(2))方法二:由题可知l 的斜率存在,可设l :y =kx -1,即kx -y -1=0,易知A ,B 两点在直线l 两侧,所以(k +1)·(2k -2)≤0,所以-1≤k ≤1,以下同方法一.【解答】 (1) 由点斜式方程得y -3=3(x -5),整理得3x -y +3-53=0;(2) x =-3,即x +3=0;(3) y =4x -2,即4x -y -2=0; (4) y =3,即y -3=0;(5) 由两点式方程得y -5-1-5=x -(-1)2-(-1),整理得2x +y -3=0;(6) 由截距式方程得x-3+y-1=1,整理得x +3y +3=0.【解答】(1)由题意知,直线的点斜式方程为y -5=4(x -2),整理得4x -y -3=0.(2) 由题意可知,直线的斜率k =tan 150°=-33,所以直线的斜截式方程为y =-33x -2,整理得3x +3y +6=0.(3) 根据题意可得,直线的两点式方程为y +12+1=x +22+2,整理得3x -4y +2=0.【解答】 方法一: (1) 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),由l 1∥l 2可得⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1.综上可知,a =-1.(2) 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合; 当a ≠1时,l 1:y =-a2x -3,l 2:y =11-a x -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎪⎫-a 2·11-a =-1⇒a =23. 方法二:(1) 由l 1∥l 2知⎩⎪⎨⎪⎧A1B2-A2B1=0,A1C2-A2C1≠0,即⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇒⎩⎪⎨⎪⎧a2-a -2=0,a (a 2-1)≠6⇒a =-1.(2) 因为l1⊥l2,所以A1A2+B1B2=0,即a+2(a-1)=0,解得a=2 3.【答案】-10【解析】因为l1∥l2,所以4-m m+2=-2(m≠-2),解得m=-8(经检验,l1与l2不重合).因为l2⊥l3,所以2×1+1×n=0,解得n=-2,所以m+n=-10.(1) 【答案】x+3y-5=0或x=-1【解析】方法一:当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0.由题意知|2k-3+k+2|k2+1=|-4k-5+k+2|k2+1,即|3k-1|=|-3k-3|,解得k=-13,所以直线l的方程为y-2=-13(x+1),即x+3y-5=0.当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.故直线l的方程为x+3y-5=0或x=-1.方法二:当AB∥l时,有k=k AB=-13,直线l的方程为y-2=-13(x+1),即x+3y-5=0.当l过AB中点时,AB的中点为(-1,4),所以直线l的方程为x=-1.故所求直线l的方程为x+3y-5=0或x=-1.(2) 【答案】 2或-6【解析】依题意知,63=a-2≠c-1,解得a=-4,c≠-2,即直线6x+ay+c=0可化为3x-2y+c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪⎪⎪c2+132+(-2)2=21313,解得c=2或-6.(1) 【答案】 BC【解析】直线l 1:x +3y +m =0,即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172或-232,故选BC.(2) 【答案】 2 2x -y -2=0或2x +3y -18=0 【解析】显然直线l 的斜率不存在时,不满足题意.设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k|1+k2=|4k +2+4-3k|1+k2,所以k =2或k =-23. 所以直线l 的方程为2x -y -2=0或2x +3y -18=0. 课堂评价 1.D【解析】由题意,直线的斜率为k =-33,即直线倾斜角的正切值是-33.又倾斜角∈[0°,180°),因为tan 150°=-33,故直线的倾斜角为150°,故选D.2.C【解析】因为A (1,-2)和B (m,2)的中点⎝ ⎛⎭⎪⎪⎫1+m 2,0在直线x +2y -2=0上,所以1+m2+2×0-2=0,所以m =3.故选C.3.A【解析】若l 1∥l 2,则(3+m )(5+m )=4×2,解得m =-1或m =-7.经检验,当m =-1时,l 1与l 2重合,所以m =-7.故“l 1∥l 2”是“m <-1”的充分不必要条件,故选A.4.x +2y -3=05【解析】 当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以当l 1,l 2间的距离最大时,直线l 1的斜率为k =-12,所以当l 1,l 2间的距离最大时,直线l 1的方程是y -1=-12(x -1),即x +2y -3=0,最大距离为AB =5.5. 【解答】 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m|1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0,则点C 到直线3x -y +n =0的距离d =|-3+n|9+1=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.第41讲 圆的方程链教材·夯基固本 激活思维 1. D 2. D 3.A【解析】根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.4. (x -2)2+y 2=10【解析】 设圆心坐标为(a,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,所以圆心为(2,0),半径为10,所以圆C 的标准方程为(x -2)2+y 2=10.5.5【解析】方法一:设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0).因为圆C 经过点M (-1,0)和N (2,3),所以⎩⎨⎧(a +1)2+b 2=r 2,(a -2)2+(b -3)2=r 2,所以a +b -2=0,① 又圆C 截两坐标轴所得弦长相等,所以|a |=|b |,②由①②得a =b =1,所以圆C 的半径为5. 方法二:因为圆C 经过点M (-1,0)和N (2,3),所以圆心C 在线段MN 的垂直平分线y =-x +2上,又圆C 截两坐标轴所得弦长相等,所以圆心C 到两坐标轴的距离相等,所以圆心C 在直线y =±x 上,因为直线y =-x 和直线y =-x +2平行,所以圆心C 为直线y =x 和直线y =-x +2的交点(1,1),所以圆C 的半径为5.知识聚焦1. 定点 定长 (a ,b ) r D 2+E 2-4F >0 ⎝ ⎛⎭⎪⎪⎫-D 2,-E 2 12D2+E2-4F研题型·融会贯通 分类解析(1) 【答案】 AB 【解析】由题知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,a ),半径为r (r >0),则r sinπ3=1,r cosπ3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝ ⎛⎭⎪⎪⎫y ±332=43. (2) 【答案】 213【解析】 设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),所以⎩⎪⎨⎪⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1,所以△ABC 外接圆的圆心为⎝ ⎛⎭⎪⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝ ⎛⎭⎪⎪⎫2332=213. (1) 【答案】 ⎝ ⎛⎭⎪⎪⎫x -762+⎝ ⎛⎭⎪⎪⎫y -562=16918 【解析】设圆的标准方程为(x -a )2+(y -b )2=r 2.把点A ,B 的坐标代入,得⎩⎨⎧(-1-a )2+(3-b )2=r 2,(4-a )2+(2-b )2=r 2,消去r 2,得b =5a -5.① 令x =0,则(y -b )2=r 2-a 2,y =b ±r2-a2, 所以在y 轴上的截距之和是2b .令y =0,则(x -a )2=r 2-b 2,x =a ±r2-b2, 所以在x 轴上的截距之和是2a . 所以2a +2b =4,即a +b =2.② ①代入②,得a =76,所以b =56.所以r 2=⎝ ⎛⎭⎪⎪⎫-1-762+⎝ ⎛⎭⎪⎪⎫3-562=16918.所以圆的标准方程为⎝ ⎛⎭⎪⎪⎫x -762+⎝ ⎛⎭⎪⎪⎫y -562=16918. (2) 【答案】 x 2+y 2+2x -4y +3=0.【解析】 由题知圆心C ⎝ ⎛⎭⎪⎪⎫-D 2,-E 2,因为圆心在直线x +y -1=0上,所以-D 2-E 2-1=0,即D +E =-2.①又因为半径长r =D2+E2-122=2,所以D 2+E 2=20.②由①②可得⎩⎪⎨⎪⎧D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2.又因为圆心在第二象限,所以-D2<0,即D >0.则⎩⎪⎨⎪⎧D =2,E =-4.故圆的一般方程为x 2+y 2+2x -4y +3=0.【解答】 (1) 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .如图(1),当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k2+1=3,解得k =±3.所以yx的最大值为3,最小值为-3.(例2(1))(2)y -x 可看作是直线y =x +b 在y 轴上的截距,如图(2),当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b|2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2-6.(例2(2))(3)如图(3),x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-43.(例2(3))【解答】(1) 因为x2+y2-4x-14y+45=0可化为(x-2)2+(y-7)2=8,所以圆心C(2,7),半径r=2 2.设m+2n=t,将m+2n=t看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=|1×2+2×7-t|12+22≤22,解得16-210≤t≤16+210,所以m+2n的最大值为16+210.(2) 记点Q(-2,3).因为n-3m+2表示直线MQ的斜率,设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0,n-3m+2=k.由直线MQ与圆C有公共点,知|2k-7+2k+3|1+k2≤22,解得2-3≤k≤2+3.所以n -3m +2的最大值为2+3,最小值为2-3.(1) 【答案】 BC【解析】 由题意知AB =(-1)2+(-2)2=5,l AB :2x -y +2=0,圆心坐标为(1,0),所以圆心到直线l AB 的距离d =|2-0+2|4+1=45=455,所以S △PAB 的最大值为12×5×⎝ ⎛⎭⎪⎪⎫455+1=2+52, S △PAB 的最小值为12×5×⎝ ⎛⎭⎪⎪⎫455-1=2-52. (2) 【答案】 5-27【解析】如图,以点A 为原点,AB 边所在直线为x 轴建立平面直角坐标系.则A (0,0),B (4,0),C (1,3),设P (x ,y ),则PB→=(4-x ,-y ),PC →=(1-x ,3-y ),所以PB →·PC →=(4-x )(1-x )-y (3-y )=x 2-5x +y 2-3y +4=⎝ ⎛⎭⎪⎪⎫x -522+⎝ ⎛⎭⎪⎪⎫y -322-3,其中⎝ ⎛⎭⎪⎪⎫x -522+⎝ ⎛⎭⎪⎪⎫y -322表示圆A 上的点P 与点M⎝ ⎛⎭⎪⎪⎫52,32之间距离PM 的平方,由几何图形可得PM min =AM -1=⎝ ⎛⎭⎪⎪⎫522+⎝ ⎛⎭⎪⎪⎫322-1=7-1,所以(PB →·PC →)min=(7-1)2-3=5-27.(例3(2))(1) 【答案】 A【解析】由点P 是x 轴上任意一点,知PM 的最小值为PC 1-1,同理PN 的最小值为PC 2-3,则PM +PN 的最小值为PC 1+PC 2-4.作C 1关于x 轴的对称点C ′1(2,-3),所以PC 1+PC 2=P C 1′+PC 2≥C 1′C 2=52,即(PM +PN )min =PC 1+PC 2-4≥52-4,故选A.(2) 【答案】 22【解析】设P (x ,y ),因为PA→·PB→≤3,所以x 2+y 2≤4,即点P 在以原点为圆心,2为半径的圆O 上或圆内,又因为点P 在圆C 上,所以圆O 与圆C 内切或内含,即圆心距(-a )2+a2≤2-1,所以-22≤a ≤22,所以a 的最大值为22.课堂评价 1.A【解析】 由题意可知圆心为⎝ ⎛⎭⎪⎪⎫1,a +32,因为该圆过原点,所以12+⎝ ⎛⎭⎪⎪⎫a +322=1242+(a -3)2,解得a =1,所以12+⎝ ⎛⎭⎪⎪⎫a +322=5,所以该圆的标准方程为(x -1)2+(y -2)2=5,故选A.2.ABD【解析】由圆M 的一般方程为x 2+y 2-8x +6y =0,化为标准形式得(x -4)2+(y +3)2=25.圆M 的圆心坐标为(4,-3),半径为5.令y =0,得x =0或x =8,故圆M 被x 轴截得的弦长为8;令x =0,得y =0或y =-6,故圆M 被y 轴截得的弦长为6,显然选项C 不正确.ABD 均正确.3.CD【解析】 由x 2+y 2+2x =0,得(x +1)2+y 2=1,表示以(-1,0)为圆心、1为半径的圆,y x -1表示圆上的点P (x ,y )与点M (1,0)连线的斜率,如图,易知,y x -1的最大值为33,最小值为-33.故选CD.(第3题)4. (0,-1)【解析】 因为圆C 的方程可化为⎝ ⎛⎭⎪⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时圆C 的面积最大,此时圆心为(0,-1).5.3【解析】因为cos 2θ+sin 2θ=1,所以P 为以原点为圆心的单位圆上一点,而直线x -my -2=0过定点A (2,0),所以d 的最大值为OA +1=2+1=3.第42讲 直线与圆、圆与圆的位置关系链教材·夯基固本 激活思维 1.D【解析】圆C :x 2+y 2-4x -6y +9=0的圆心坐标为(2,3),半径为2,因为直线l 过点(0,2),被圆C :x 2+y 2-4x -6y +9=0截得的弦长为23,所以圆心到所求直线的距离为1,易知所求直线l 的斜率k 存在,设所求直线方程为y =kx +2,即kx -y +2=0,所以|2k -1|k2+1=1,解得k =0或43,所以所求直线方程为y =43x +2或y =2.故选D.2. C 【解析】 直线2tx -y -2-2t =0恒过点(1,-2), 因为12+(-2)2-2×1+4×(-2)=-5<0,所以点(1,-2)在圆x 2+y 2-2x +4y =0内部,所以直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交. 3.D【解析】圆C 1:(x +1)2+(y +1)2=4,所以圆心C 1(-1,-1),半径长r 1=2;圆C 2:(x -2)2+(y -1)2=1,所以圆心C 2(2,1),半径长r 2=1.所以圆心距d =(-1-2)2+(-1-1)2=13,r 1+r 2=3,所以d >r 1+r 2,所以两圆相离,所以两圆有4条公切线.4. A 【解析】 联立⎩⎪⎨⎪⎧x2+y2-4x +1=0,x2+y2-2x -2y +1=0,解得x -y =0.圆C 1可化成(x -2)2+y 2=3,故C 1(2,0),半径为3,圆心(2,0)到直线x -y=0的距离为d =|2|12+12=2,故弦长为23-(2)2=2.5.ACD【解析】将点(0,1)代入方程(x -2)2+(y +3)2=16的左边,则得4+16=20>16,所以点(0,1)在圆C 外,故A 不正确;由圆C :(x -2)2+(y +3)2=16知圆心为(2,-3),半径为r =4,则圆心(2,-3)到直线3x +4y -14=0的距离d =|3×2+4×(-3)-14|32+42=4=r ,故B 正确;将点(2,5)代入方程(x -2)2+(y +3)2=16的左边,则得0+64=64>16,所以点(2,5)在圆C 外,故C 不正确;圆心(2,-3)到直线x +y +8=0的距离d =|2-3+8|12+12=72≠r ,故D 不正确,故选ACD.知识聚焦1. < > = = > <2. d >r 1+r 2 无 d =r 1+r 2 一组 |r 1-r 2|<d <r 1+r 2 两组不同的 |r 1-r 2| ≤<研题型·融会贯通 分类解析(1) 【答案】 26【解析】 圆C 的方程为x 2+(y -1)2=8,圆心C (0,1),直线l :kx -y -k +2=0,即k (x -1)-(y -2)=0,过定点P (1,2),当AB 取最小值时,AB ⊥PC ,此时CP =2,故AB min =2CA2-CP2=26.(2) 【答案】 ⎝ ⎛⎭⎪⎪⎫-53,53【解析】 因为A (0,a ),B (3,a +4),所以AB =5,直线AB 的方程为y =43x +a .因为S△ABC =12AB ·h =52h =5,故h =2,因此,问题转化为在圆上存在4个点C ,使得它到直线AB 的距离为2.因为圆的半径为3,因此,圆心O 到直线AB 的距离小于1,即|3a|5<1,解得-53<a <53.(1) 【答案】 1023 【解析】易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且PC =2,所以最短弦的长为2r2-PC2=225-2=223.故所求四边形的面积S =12×10×223=1023.(2) 【答案】 3 【解析】圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线的距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.【解答】 (1) 设切线方程为x +y +b =0, 则|1-2+b|2=10,所以b =1±25,所以切线方程为x +y +1±25=0. (2) 设切线方程为2x +y +m =0, 则|2-2+m|5=10,所以m =±52,所以切线方程为2x +y ±52=0.(3) 因为k AC =-2+11-4=13,所以过切点A (4,-1)的切线斜率为-3,所以过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.【解答】由方程x 2+y 2+2x -4y +3=0知,圆心为(-1,2),半径长为2.当切线过原点时,设切线方程为y =kx ,则|k +2|k2+1=2,所以k =2±6,即切线方程为y =(2±6)x .当切线不过原点时,设切线方程为x +y =a ,则|-1+2-a|2=2,所以a =-1或a =3,即切线方程为x +y +1=0或x +y -3=0.综上所述,切线方程为y =(2±6)x 或x +y +1=0或x +y -3=0.【解答】因为两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m .(1) 当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2) 当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m-11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0,故两圆的公共弦长为2(11)2-⎝⎛⎭⎪⎫|4×1+3×3-23|42+322=27. (1) 【答案】 9或-11 【解析】依题意可得C 1(0,0),C 2(3,4),则C 1C 2=32+42=5.又r 1=1,r 2=25-m,25-m >0.当两圆外切时,r 1+r 2=25-m +1=5,解得m =9;当两圆内切时,|r 2-r 1|=5,即|25-m -1|=5,得25-m=6,解得m =-11.(2) 【答案】 1 【解析】将x 2+y 2+2ay -6=0与x 2+y 2=4两式相减得2ay =2,则y =1a.由题知22-(3)2=⎪⎪⎪⎪⎪⎪⎪⎪1a ,a >0,解得a =1. 课堂评价 1.C【解析】圆C 2化简得(x -4)2+(y -5)2=35-m ,由圆的方程得C 1(1,1),C 2(4,5),半径分别为2和35-m ,因为两圆外切,所以(4-1)2+(5-1)2=35-m +2,解得m =26.故选C. 2.B【解析】由题意,过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则点(3,1)在圆上,代入可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.3. A【解析】因为圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为(-2,0),(0,-2),所以AB=22,所以△ABP 的面积S =12AB ·d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP 面积的取值范围是[2,6].4.BD【解析】 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a|12+(-2)2=1,所以a =±5,故选BD.5. 4【解析】 连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,OA =5,O 1A =25,所以OO 1=5,所以AC =5×255=2,所以AB =4.(第5题) 第43讲 椭 圆链教材·夯基固本 激活思维1. C2. D3. 724. x236+y227=15. 45 18 【解析】 由椭圆方程知a =5,b =3,c =4,所以其离心率e =c a =45.△PF 1F 2的周长为2a +2c =10+8=18.知识聚焦1. (1) 焦点 焦距 (2) PF 1+PF 2=2a (2a >F 1F 2)2. F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) c 2=a 2-b 2ca=1-b2a21 0研题型·融会贯通 分类解析(1) 【答案】 C 【解析】 设椭圆方程为x2a2+y2b2=1(a >b >0),由已知设BF 的方程为x c +y b=1,因为点O 到直线BF 的距离为3,所以bc a =3,又因为过F 垂直于椭圆长轴的弦长为2,所以2b2a=2,结合a 2=b 2+c 2,知a =4,b =2,故选C.(2) 【答案】x236+y216=1 【解析】 依题意,设椭圆方程为x2a2+y2b2=1(a >b >0),右焦点为F ′,连接PF ′.由已知,半焦距c =25.又由OP =OF =OF ′,知∠FPF ′=90°.在Rt△PFF ′中,PF ′=FF ′2-PF2=(4 5 )2-42=8.由椭圆的定义可知2a =PF +PF ′=4+8=12,所以a =6,于是b 2=a 2-c 2=62-(25)2=16,故椭圆C 的方程为x236+y216=1.(1) 【答案】x24+y23=1【解析】因为3AF1=5AF2,由椭圆定义有AF1+AF2=4,解得AF2=32,又AF2⊥x轴,故AF2=b2a=b22,所以b2=3,故椭圆方程为x24+y23=1.(2) 【答案】x23+y22=1【解析】如图,由已知可设F2B=n,则AF2=2n,BF1=AB=3n,由椭圆的定义有2a=BF1+BF2=4n,所以AF1=2a-AF2=2n.在△AF1B中,由余弦定理推论得cos∠F1AB=4n2+9n2-9n22·2n·3n=13.在△AF1F2中,由余弦定理得4n2+4n2-2·2n·2n·13=4,解得n=32.所以2a=4n=23,所以a=3,所以b2=a2-c2=3-1=2,所以椭圆C的方程为x23+y22=1.(变式(2))(1) 【答案】 C【解析】椭圆方程可化为x211+m+y21m=1,由题意知m>0,所以11+m<1m,所以a=mm,所以椭圆的长轴长2a=2mm.故选C.(2) 【答案】 8【解析】 因为椭圆x2m -2+y210-m=1的长轴在x 轴上,所以⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.(3) 【答案】 3【解析】由椭圆的方程可知a =2,由椭圆的定义可知AF 2+BF 2+AB =4a =8,所以AB =8-(AF 2+BF 2)≥3,由椭圆的性质可知2b2a=3,所以b 2=3,即b =3.(1) 【答案】 D【解析】 由题意可得椭圆的焦点在x 轴上,如图所示, 设F 1F 2=2c ,因为△PF 1F 2为等腰三角形,且∠F 1F 2P =120°, 所以PF 2=F 1F 2=2c ,因为OF 2=c ,所以点P 的坐标为(c +2c cos 60°,2c sin 60°),即点P (2c ,3c ). 因为点P 在过点A ,且斜率为36的直线上,所以3 c 2c +a=36,解得c a=14,所以e =14,故选D.(例3(1))(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,1 【解析】不妨设椭圆焦点在x 轴上,设椭圆方程为x2a2+y2b2=1(a >b >0),PF 1=m ,PF 2=n ,则m +n =2a .在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°=(m +n )2-3mn =4a 2-3mn ≥4a 2-3·⎝ ⎛⎭⎪⎪⎫m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号),所以c2a2≥14,即e ≥12.又0<e <1,所以e 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12,1. (1) 【答案】255【解析】 不妨设点P 在第一象限,O 为坐标原点,由对称性可得OP =PQ 2=a 2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =OP OA=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎪⎫a 4,3a 4,代入椭圆方程得116+3a216b2=1,故a 2=5b 2=5(a 2—c 2),所以椭圆C 的离心离e =255.(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫13,1 【解析】 由椭圆的定义知PF 1+PF 2=2a ,PF 1=2PF 2, 所以PF 1=43a ,PF 2=23a ,又PF 1-PF 2≤F 1F 2,即23a ≤2c ,所以e ≥13,又0<e <1,所以椭圆的离心率e 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫13,1.【解答】(1)由题意得c =3,c a=32,所以a =23,又因为a 2=b 2+c 2,所以b 2=3,所以椭圆的方程为x212+y23=1.(2) 由⎩⎪⎨⎪⎧x2a2+y2b2=1,y =kx ,得(b 2+a 2k 2)x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=0,x 1x 2=-a2b2b2+a2k2,依题意易知,OM ⊥ON ,四边形OMF 2N 为平行四边形,所以AF 2⊥BF 2. 因为F2A →=(x 1-3,y 1),F2B →=(x 2-3,y 2), 所以F2A →·F2B →=(x 1-3)(x 2-3)+y 1y 2=(1+k 2)x 1x 2+9=0. 即-a2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,将其整理为k 2=a4-18a2+81-a4+18a2=-1-81a4-18a2.因为22<e ≤32,所以23≤a <32,即12≤a 2<18.所以k 2≥18,即k ∈⎝ ⎛⎦⎥⎥⎤-∞,-24∪⎣⎢⎢⎡⎭⎪⎪⎫24,+∞. 课堂评价 1. A2. C 【解析】 由椭圆x216+y2m=1的焦距为27,可得216-m =27或2m -16=27,解得m =9或23.故选C.3. ACD【解析】由已知得2b =2,b =1,c a =63,又a 2=b 2+c 2,解得a 2=3,所以椭圆C 的方程为y23+x 2=1.如图,PQ =2b2a=23=233,△PF 2Q 的周长为4a =43.故选ACD.(第3题)4.C【解析】 由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ×b =12(2a +2c )×b3,得a =2c ,即e =ca =12,故选C.5.4【解析】如图,设AB 的方程为ty =x ,F (c,0),A (x 1,y 1),B (x 2,y 2),则y 1=-y 2.联立⎩⎪⎨⎪⎧ty =x ,x2a2+y2b2=1,可得y 2=a2b2b2t2+a2=-y 1y 2,所以△ABF 的面积S =12c |y 1-y 2|=12c (y 1+y 2)2-4y 1y 2=ca2b2b2t2+a2≤cb ,当且仅当t =0时取等号.所以bc =2,所以a 2=b 2+c 2≥2bc =4, 当且仅当b =c 时取等号,此时a =2. 所以椭圆E 的长轴长的最小值为4.(第5题) 第44讲 双曲线链教材·夯基固本 激活思维 1.A【解析】由双曲线的离心率为2,焦点是(-4,0),(4,0),知c =4,a =2,b 2=12,即双曲线的方程为x24-y212=1,故选A.2.A【解析】 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a±y b =0,即bx ±ay =0,所以2a =bc a2+b2=b .又a 2+b 2=c 2,所以5a 2=c 2,所以e 2=c2a2=5,所以e =5.3. AC 【解析】 设双曲线方程为x29-y23=λ,代入(3,2)得λ=13,即x23-y 2=1,故A 正确;由a =3,c =2,得e =23,故B 错误;焦点(2,0)在y =e x -2-1上,故C 正确;联立⎩⎪⎨⎪⎧x23-y2=1,x -2y -1=0,消去x 得y 2-22y +2=0,可得Δ=0,所以直线x -2y -1=0与曲线C 只有1个交点,故D 错误.故选AC.4. A 【解析】 不妨设点P 在第一象限,根据题意可知c 2=6,所以OF =6.又tan ∠POF =ba =22,所以等腰三角形POF 的高h =62×22=32,所以S △PFO =12×6×32=324.故选A.5. 5+12 【解析】 将x =±c 代入双曲线的方程得y 2=b4a2⇒y =±b2a,则2c =2b2a,即有ac =b 2=c 2-a 2,由e =c a,可得e 2-e -1=0,解得e =5+12或e =1-52(舍去).知识聚焦 1. 焦点 焦距2. |x |≥a ,y ∈R |y |≥a ,x ∈R F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a )ca =1+b2a2研题型·融会贯通 分类解析(1) 【答案】 B 【解析】由y28+x22=1,得a 2=8,b 2=2,所以c 2=6,得c =6,即椭圆的半焦距为6.设与双曲线x22-y 2=1有相同渐近线的双曲线方程为x22-y 2=λ,因为所求双曲线的焦点在y 轴上,则λ<0,双曲线方程化为y2-λ-x2-2λ=1,设双曲线的实半轴长为m ,虚半轴长为n ,则m 2=-λ,n 2=-2λ, 所以m 2+n 2=-λ-2λ=(6)2,解得λ=-2.所以所求双曲线的方程为y22-x24=1.故选B.(2) 【答案】 x24-y26=1【解析】不妨设B (0,b ),由BA→=2AF →,F (c,0),可得A ⎝ ⎛⎭⎪⎪⎫2c 3,b 3,代入双曲线C 的方程可得49×c2a2-19=1,即49·a2+b2a2=109,所以b2a2=32①.又|BF →|=b2+c2=4,c 2=a 2+b 2,所以a 2+2b 2=16②.由①②可得a 2=4,b 2=6,所以双曲线C 的方程为x24-y26=1.(1) 【答案】 y22-x24=1【解析】因为所求双曲线与已知双曲线x22-y 2=1有公共的渐近线,故可设双曲线方程为x22-y 2=λ(λ≠0),代入点(2,-2),得λ=-2,所以所求双曲线的方程为x22-y 2=-2,即y22-x24=1.(2) 【答案】 x 2-y23=1【解析】 设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0),由题意得B (2,0),C (2,3),所以⎩⎪⎨⎪⎧4=a2+b2,4a2-9b2=1,解得⎩⎪⎨⎪⎧a2=1,b2=3,所以双曲线的标准方程为x 2-y23=1.(1) 【答案】 (0,2) 【解析】对于焦点在x 轴上的双曲线x2a2-y2b2=1(a >0,b >0),它的一个焦点(c,0)到渐近线bx ±ay =0的距离为|bc|b2+a2=b .本题中,双曲线x28-m+y24-m=1,即x28-m-y2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2).故焦点到渐近线距离的取值范围是(0,2).(2) 【答案】 y =±2x 【解析】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为x 2-y24=1,所以渐近线方程为y =±2x .(1) 【答案】 D 【解析】不妨设P 为双曲线右支上一点,则PF 1>PF 2.由双曲线的定义得PF 1-PF 2=2a .又PF 1+PF 2=6a ,所以PF 1=4a ,PF 2=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理可得(4a )2+(2c )2-(2a )22·4a ·2c =32, 即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .故选D. (2) 【答案】 x23-y29=1【解析】 因为双曲线x2a2-y2b2=1(a >0,b >0)的离心率为2,所以e 2=1+b2a2=4,所以b2a2=3,即b 2=3a 2,所以c 2=a 2+b 2=4a 2,由题意可设A (2a,3a ),B (2a ,-3a ), 因为b2a2=3,所以渐近线方程为y =±3x .则点A 与点B 到直线3x -y =0的距离分别为d 1=|2 3 a -3a|2=2 3 -32a ,d 2=|2 3 a +3a|2=23+32a .又因为d 1+d 2=6, 所以23 -32a +23+32a =6,解得a =3, 所以b 2=9.所以双曲线的方程为x23-y29=1.(1) 【答案】655【解析】 设BF 1=x ,则AF 2=3x .由图及双曲线的定义知AF 1-AF 2=2a ,BF 2-BF 1=2a ,则AB +x -3x =2a ,BF 2-x =2a .因为AF 2⊥BF 2,所以AB 2=AF2+BF 2,即(2a +2x )2=9x 2+(2a +x )2,解得a =3x 2,所以AB =5x ,BF 2=4x ,所以cos ∠BAF 2=35.在△AF 1F 2中,由余弦定理知AF 21+AF 2-2·AF 1·AF 2·cos ∠BAF 2=F 1F 22=4c 2,所以36x 2+9x 2-108x25=4c 2,所以c =313x 2 5,所以双曲线的离心率为e =c a =655.(例3(1))(2) 【答案】3【解析】不妨设双曲线的一条渐近线方程为y =b ax ,则F 2到y =b a x 的距离d =|bc|a2+b2=b .在Rt △F 2PO 中,F 2O =c ,所以PO =a ,所以PF 1=6a .又F 1O =c ,所以在△F 1PO 与Rt△F 2PO 中,根据余弦定理得cos∠POF 1=a2+c2-( 6 a )22ac =-cos ∠POF 2=-a c ,即3a 2=c 2,所以e =ca=3.(1) 【答案】 (1,2) 【解析】若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,AF =b2a,FE =a +c ,则b2a<a +c ,b 2<a 2+ac,2a 2-c 2+ac >0,e 2-e -2<0,解得-1<e <2.又e >1,则1<e <2.(2) 【答案】 53【解析】 由双曲线定义知PF 1-PF 2=2a ,又PF 1=4PF 2,所以PF 1=83a ,PF 2=23a ,在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=649a2+49a2-4c22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值.因为cos ∠F 1PF 2≥-1,所以cos ∠F 1PF 2=178-98e 2≥-1,解得e ≤53,即e 的最大值为53.【题组强化】 1.D【解析】由条件知y =-b ax 过点(3,-4),所以3b a=4,即3b =4a ,所以9b 2=16a 2,所以9c 2-9a 2=16a 2,所以25a 2=9c 2,所以e =53.故选D.2. C 【解析】 由F 1F 2=2OP ,可得OP =c ,故△PF 1F 2为直角三角形,PF 1⊥PF 2,则PF 21+PF 2=F 1F 2.由双曲线的定义可得PF 1-PF 2=2a ,则PF 1=2a +PF 2,所以(PF 2+2a )2+PF 22=4c 2,整理得(PF 2+a )2=2c 2-a 2.又PF 1≥3PF 2,即2a +PF 2≥3PF 2,可得PF 2≤a ,所以PF 2+a ≤2a ,即2c 2-a 2≤4a 2,可得c ≤102a .由e =ca ,且e >1,可得1<e ≤102.故选C.3.2【解析】由题知双曲线的渐近线方程为y =±b a x ,不妨设右焦点F (c,0),过点F 与渐近线平行的直线为l :y =b a(x -c ).由⎩⎪⎨⎪⎧y =-b ax ,y =b a (x -c ),得x =c 2,则y =-b a×c 2=-bc 2a ,所以P ⎝ ⎛⎭⎪⎪⎫c 2,-bc 2a ,PF 的中点为A ⎝ ⎛⎭⎪⎪⎫3c 4,-bc 4a .又点A 在双曲线上,所以⎝ ⎛⎭⎪⎪⎫3c 42a2-⎝ ⎛⎭⎪⎪⎫-bc 4a 2b2=1,化简得c2a2=2,即e =c a=2.4.53【解析】由线段PF 1的垂直平分线恰好过点F 2,可得PF 2=F 1F 2=2c ,由直线PF 1与以坐标原点O 为圆心、a 为半径的圆相切于点A ,可得OA =a ,设PF 1的中点为M ,由中位线定理可得MF 2=2a ,在Rt △PMF 2中,可得PM =4c2-4a2=2b , 即有PF 1=4b ,由双曲线的定义可得PF 1-PF 2=2a ,即4b -2c =2a ,即2b =a +c ,即有4b 2=(a +c )2, 即4(c 2-a 2)=(a +c )2,可得a =35c ,即e =53.(第4题)课堂评价 1. B 2. C【解析】 根据渐近线方程为x ±y =0,可得a =b ,所以c =2a ,则该双曲线的离心率为e =ca=2,故选C. 3. A 【解析】 由题意知,e =ca=3,所以c =3a ,所以b =c2-a2=2a ,所以b a =2,所以该双曲线的渐近线方程为y =±bax =±2x ,故选A.4. x28-y28=1 【解析】 由离心率为2,可知a =b ,c =2a ,所以F (-2a,0),由题意知k PF =4-00-(-2a )=42a=1,解得a =22,所以双曲线的方程为x28-y28=1.5. 23 23 【解析】 由题意知a =2,b =23,c =4,F (4,0),PF =b =23,△POF 的面积为12ab =12×43=23.第45讲 抛物线链教材·夯基固本 激活思维 1. C2. AC 【解析】根据抛物线定义知选项A 正确;对于B ,符合条件的抛物线的焦点可能在x 轴上也可能在y 轴上,故B 错误;对于C ,抛物线焦点为(-1,0),所以p =2,抛物线方程是y 2=-4x ,故C 正确;对于D ,因为p 的符号不确定,所以方程不唯一,故D 错误.故选AC.3.B【解析】因为M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516. 4.B【解析】抛物线y 2=6x 的焦点坐标为⎝ ⎛⎭⎪⎪⎫32,0,准线方程为x =-32,设A (x 1,y 1),B (x 2,y 2),因为AF =3BF ,所以x 1+32=3⎝ ⎛⎭⎪⎪⎫x2+32,所以x 1=3x 2+3, 因为|y 1|=3|y 2|,所以x 1=9x 2,所以x 1=92,x 2=12,所以AB =⎝ ⎛⎭⎪⎪⎫x1+32+⎝ ⎛⎭⎪⎪⎫x2+32=8.故选B. 5.y 2=8x 6【解析】由抛物线C :y 2=2px (p >0)的焦点为F (2,0),可得p =4,则抛物线C 的方程是y 2=8x .由M 为FN 的中点,得M 的横坐标为1,所以FN =2FM =2(x M +2)=2×(1+2)=6.知识聚焦1. 相等 焦点 准线 研题型·融会贯通 分类解析(1) 【答案】 22【解析】 因为抛物线y 2=2px (p >0)的准线方程是x =-p2,双曲线x 2-y 2=1的一个焦点为F 1(-2,0),且抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,所以-p 2=-2,解得p =22.(2) 【答案】 13 【解析】由题意得抛物线的焦点为F (2,0),准线方程为x =-2.因为AF =(6-2)2+32=5,所以求△PAF 周长的最小值即求PA +PF 的最小值.设点P 在准线上的射影为D ,如图,连接PD ,根据抛物线的定义,可知PF =PD ,所以PA +PF 的最小值即PA +PD 的最小值.根据平面几何的知识,可得当D ,P ,A 三点共线时PA +PD 取得最小值,所以PA +PF 的最小值为x A -(-2)=8,所以△PAF 周长的最小值为8+5=13.(例1(2))(1) 【答案】 A 【解析】设焦点为F ,准线为l ,过P 作PA⊥l ,垂足为A ,则PF =PA ,PF +PQ =PQ +PA ,当且仅当A ,P ,Q 三点共线时,和最小,此时P ⎝ ⎛⎭⎪⎪⎫14,-1,故选A. (2) 【答案】 4 【解析】因为双曲线的右焦点为(2,0),所以抛物线y 2=2px (p >0)的焦点坐标为(2,0),所以p =4.【解答】 (1) 由已知得抛物线焦点坐标为⎝ ⎛⎭⎪⎪⎫p 2,0. 由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝⎛⎭⎪⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 易知y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 2=2px 2, 所以y 21y 2=4p 2x 1x 2,所以x 1x 2=y21y224p2=p44p2=p24.(2) 由题意知AF =x 1+p2,BF =x 2+p2,所以1AF +1BF=1x1+p 2+1x2+p 2=x1+x2+px1x2+p 2(x 1+x 2)+p24.因为x 1x 2=p24,x 1+x 2=AB -p ,所以1AF +1BF =ABp24+p 2(AB -p )+p 24=2p(定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则MN =12(AC +BD )=12(AF +BF )=12AB .所以以AB 为直径的圆与抛物线的准线相切.(例2)【解答】 (1) 设P (x 1,y 1),Q (x 2,y 2),因为PQ 为焦点弦,所以y 1y 2=-p 2.因为直线OP 的方程为y=y1x1·x ,它与准线的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫-p 2,y0,所以y 0=y1x1·⎝ ⎛⎭⎪⎪⎫-p 2=2p y1·⎝ ⎛⎭⎪⎪⎫-p 2=-p2y1=y1y2y1=y 2,故直线MQ ∥x 轴.(2) 设M ⎝ ⎛⎭⎪⎪⎫-p 2,y2,则k OM =y2-p 2=-2y2p ,k OP =y1x1=2p y1. 因为PQ 为焦点弦,所以y 1y 2=-p 2,所以y 2=-p2y1,所以k OM =-2y2p =2py1,所以k OM =k OP ,所以P ,O ,M 三点共线. (3)如图,连接PF 并延长交抛物线于Q ′,由(1)知MQ ′∥x 轴,所以Q 与Q ′重合,故PQ 为焦点弦.(例3)【解答】 (1) 由题意,设A ⎝ ⎛⎭⎪⎪⎫x1,x212p ,B ⎝ ⎛⎭⎪⎪⎫x2,x222p ,x 1<x 2,M (x 0,-2p ). 由x 2=2py 得y =x22p ,则y ′=xp ,所以k MA =x1p ,k MB =x2p.因此直线MA 的方程为y +2p =x1p (x -x 0),直线MB 的方程为y +2p =x2p (x -x 0).所以x212p +2p =x1p (x 1-x 0),①x222p +2p =x2p (x 2-x 0).② 由①②得x1+x22=x 1+x 2-x 0,因此x 0=x1+x22,即2x 0=x 1+x 2.所以A ,M ,B 三点的横坐标成等差数列.。
2019年高考数学(人教版文)一轮复习课件:第8章 解析几何8.4
2.圆的切线方程 若圆的方程为 x2+y2=r2,点 P(x0,y0)在圆上,则过 P 点且与圆 x2+y2=r2 相切的切线方程为⑦____________ x0x+y0y=r2。 3.直线与圆相交 直线与圆相交时,若 l 为弦长,d 为弦心距,r 为半径,则有 r2= l 2 2 ⑧____________ ,即 l=2 r2-d2,求弦长或已知弦长求解问题,一般 d +2 用此公式。
解析:(1)正确。直线与圆组成的方程组有一组解时,直线与圆相 切,有两组解时,直线与圆相交。 (2)错误。因为除外切外,还可能内切。 (3)错误。因为除小于两半径和还需大于两半径差的绝对值,否则 可能内切或内含。 (4)错误。只有当两圆相交时,方程才是公共弦所在的直线方程。 x02 (5)正确。由已知可得 O, P,A, B 四点共圆,其方程为x- 2 y02 x02 y02 +y- 2 = 2 + 2 ,即 x2+y2-x0x-y0y=0①,又圆 O 方程:x2 2 2 +y =r ②,②-①得:x0x+y0y=r2,而两圆相交于 A,B 两点,故直 线 AB 的方程是 x0x+y0y=r2。
5.已知直线 l:x-y+4=0 与圆 C:(x-1)2+(y-1)2=2,则 C 上各点到 l 距离的最小值为__________。
解析:由数形结合可知:所求最小值为圆心到直线的距离减圆的 |1-1+4| 半径。 由圆心 C(1,1)到直线 x-y+4=0 的距离 d= =2 2, 故 2 最小值为 2 2- 2= 2。 答案: 2
3.直线 3x-y+m=0 与圆 x2+y2-2x-2=0 相切,则实数 m 等 于( ) A. 3或- 3 B.- 3或 3 3 C.-3 3或 3 D.-3 3或 3 3
高考数学一轮复习教案(含答案) 第8章 第8节 第3课时 定点、定值、探索性问题
第3课时 定点、定值、探索性问题【例1y =-1相切.(1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.[解] (1)由题意,得点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p 2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明:由题知,直线l 的斜率存在,∴设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),联立⎩⎨⎧ x 2=4y ,y =kx -2,得x 2-4kx +8=0,∴⎩⎨⎧x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24, 则直线AC 的方程为y -y 1=x 1-x 24(x -x 1),即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24.∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24x +2,故直线AC 恒过定点(0,2).已知抛物线C :y 2=2px (p >0)的焦点F (1,0),B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p 2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立方程组⎩⎨⎧y 2=4x ,y =kx +b 消去x ,得ky 2-4y +4b =0. 由根与系数的关系得y A y B =4b k, 因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B=-12,即x A x B +2y A y B =0,即y 2A 4·y 2B 4+2y A y B =0, 解得y A y B =-32或y A y B =0(舍去).所以y A y B =4b k =-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB过定点(8,0).【例2】已知椭圆C:xa2+yb2=1,过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线P A与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.[解](1)由椭圆过点A(2,0),B(0,1)知a=2,b=1.所以椭圆方程为x24+y2=1,又c=a2-b2= 3.所以椭圆离心率e=ca=3 2.(2)证明:设P点坐标为(x0,y0)(x0<0,y0<0),则x20+4y20=4,由B点坐标(0,1)得直线PB方程为:y-1=y0-1x0(x-0),令y=0,得x N=x01-y0,从而|AN|=2-x N=2+x0y0-1,由A点坐标(2,0)得直线P A方程为y-0=y0x0-2(x-2),令x=0,得y M=2y02-x0,从而|BM|=1-y M=1+2y0x0-2,所以S四边形ABNM =12|AN|·|BM|=12(2+x0y0-1)(1+2y0x0-2)=x20+4y20+4x0y0-4x0-8y0+42(x0y0-x0-2y0+2)=2x0y0-2x0-4y0+4x0y0-x0-2y0+2=2.即四边形ABNM的面积为定值2.上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1,得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.【例3】 如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.[解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ).又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1.(2)①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =kx +1得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 此时OA →·OB →+λOA →·PB →=-3为定值.②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →·OB →+λP A →·PB→=OC →·OD →+PC →·PD →=-2-1=-3,故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.[解] (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎨⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎨⎧ c =2.a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎪⎨⎪⎧ y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3×(t 2-12)≥0,解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4, 解得t =±213. 由于±213∉[-43,43],所以符合题意的直线l 不存在.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .[解] (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1.又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .。
2019届高考数学一轮复习第8单元解析几何增分微课承上启下破解解析几何课件理
2 0
+4������ 8
0
+32
.
因为 y=1x2,所以 y'=������,所以抛物线在点 H 处切线的
4
2
斜率为������0
2
.
由 kNH·���2���0=-1,得������03-2������02-8x0=0,
因为 x0≠0,x0≠4,所以 x0=-2,所以 H 点坐标为(-2,1).
解:设 P(x,y),则点 N(2x,2y)在抛物线 y2=8x 上, 所以 4y2=16x,即 y2=4x, 所以曲线 C 的方程为 y2=4x.
课堂考点探究
角度四 圆与圆锥曲线
示例
命题角度
解题关键
已知抛物线 C:y2=2x,过点(2,0)的直线 l (1)设出 l:x=my+2,代入抛物线方程,使用 m
解:依题意,|NM|=|NF|,即轨迹 C 为抛物线,其焦点为 F(1,0),准线方程为 x=-1, ∴轨迹 C 的方程为 y2=4x.
课堂考点探究
2.[2017·云南师大附中月考节选] 已知抛物线 E:y2=8x,点 N 为抛 物线 E 上的动点,O 为坐标原点, 线段 ON 的中点 P 的轨迹为曲 线 C,求曲线 C 的方程.
M:xa
2 2
+by
2
2=1(a>b>0)右焦点的直线
(2)设 A(x1,y1),B(x2,y2),P(x0,y0),使用“点差
x+y- 3=0 交 M 于 A,B 两点,P 为 AB 的中 法”可得 a,b 的一个方程.
卷Ⅱ·20 点,且 OP 的斜率为12,求 M 的方程
(3)解上述两方程组成的方程组可得 a,b
2019届高考数学一轮复习 第8单元 解析几何听课学案 理
第八单元解析几何第46讲直线的倾斜角与斜率、直线的方程课前双击巩固1.直线的倾斜角(1)定义:在平面直角坐标系中,当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫作直线l的倾斜角.当直线l和x轴平行或重合时,直线l 的倾斜角为.(2)范围:倾斜角α的取值范围是.2.直线的斜率(1)定义:一条直线的倾斜角α(α≠90°)的叫作这条直线的斜率,该直线的斜率k= .(2)过两点的直线的斜率公式:过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k= .若x1=x2,则直线的斜率,此时直线的倾斜角为90°.3.直线方程的五种形式常用结论直线的倾斜角α和斜率k之间的对应关系:题组一常识题1.[教材改编]已知直线经过点A(4,-2),B(1,1),则直线AB的斜率为,倾斜角α为.2.[教材改编]一条直线经过点M(-2,3),且它的斜率是直线y=2x的斜率的3倍,则该直线的方程为.3.[教材改编]若直线l在两坐标轴上的截距互为负倒数,且绝对值相等,则直线l的方程为.题组二常错题◆索引:忽略直线斜率不存在的情况;对倾斜角的取值范围不清楚;忽略截距为0的情况.4.直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是.5.已知A(2,2),B(-1,3),若直线l过点P(1,1)且与线段AB相交,则直线l的倾斜角α的取值范围是.6.过点(-2,4)且在坐标轴上的截距相等的直线的一般式方程是.课堂考点探究探究点一直线的倾斜角和斜率1 (1)设直线l的倾斜角为α,且≤α≤,则直线l的斜率k的取值范围是.(2)[2017·湖北部分重点中学联考]直线l:x-y sin θ+1=0的倾斜角的取值范围是()A.B.∪C.D.∪[总结反思] (1)求倾斜角的取值范围的一般步骤:①求出斜率k=tan α的取值范围,但需注意斜率不存在的情况;②利用正切函数的单调性,借助图像或单位圆,数形结合确定倾斜角α的取值范围.(2)注意倾斜角的取值范围是[0,π),若直线的斜率不存在,则直线的倾斜角为,直线垂直于x轴.式题 (1)平面上有相异两点A(cos θ,sin2θ),B(0,1),则直线AB的倾斜角α的取值范围是.(2)已知两点M(2,-3),N(-3,-2),斜率为k的直线l过点P(1,1)且与线段MN相交,则k的取值范围是.探究点二直线的方程2 求适合下列条件的直线l的方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.[总结反思] (1)求直线方程一般有以下两种方法:①直接法:由题意确定出直线方程的适当形式,然后直接写出其方程.②待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数,即得所求直线方程.(2)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.特别是对于点斜式、截距式方程,使用时要注意分类讨论思想的运用.式题 (1)直线l1:x-y+-1=0绕其上一点(1,)沿逆时针方向旋转15°,则旋转后得到的直线l2的方程为()A.x-y+1=0B.x-y=0C.x+y+1=0D.3x-y-1=0(2)若m,n满足m+2n-1=0,则直线mx+3y+n=0过定点()A.B.C.D.探究点三直线方程的综合应用3 (1)已知直线l:kx-y+1+2k=0(k∈R).若直线l交x轴负半轴于A,交y轴正半轴于B,O 为坐标原点,△AOB的面积为S,则当S取得最小值时直线l的方程为.(2)[2018·江西师大附中月考]已知A,B两点分别在两条互相垂直的直线2x-y-1=0和x+ay+2=0上,且线段AB的中点为P0,,则线段AB的长为.[总结反思] (1)求解与直线方程有关的最值问题,先根据题意建立目标函数,再利用基本不等式(或函数)求解最值;(2)求解直线方程与函数相结合的问题,一般是利用直线方程中x,y 的关系,将问题转化为关于x(或y)的函数,借助函数的性质解决问题.式题 (1)已知直线x-2y+2k=0与两坐标轴所围成的三角形的面积不大于1,则实数k的取值范围是.(2)[2017·遵义四中月考]已知直线l:+=1(a>0,b>0)在两坐标轴上的截距之和为4,则该直线与两坐标轴围成的三角形的面积的最大值是()A.2B.4C.6D.2第47讲两直线的位置关系、距离公式课前双击巩固1.两条直线的位置关系直线l1:y=k1x+b1,l2:y=k2x+b2,l3:A1x+B1y+C1=0,l4:A2x+B2y+C2=0的位置关系如下表:2.两直线的交点设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则两条直线的就是方程组的解.(1)若方程组有唯一解,则两条直线,此解就是;(2)若方程组无解,则两条直线,此时两条直线,反之,亦成立.3.距离公式常用结论1.若所求直线过点P(x0,y0),且与Ax+By+C=0平行,则方程为:A(x-x0)+B(y-y0)=0.2.若所求直线过点P(x0,y0),且与Ax+By+C=0垂直,则方程为:B(x-x0)-A(y-y0)=0.3.过两直线交点的直线系方程若已知直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0相交,则方程A1x+B1y+C1+λ(A2x+B2y+C2)=0(其中λ∈R,这条直线可以是l1,但不能是l2)表示过l1和l2的交点的直线系方程.4.点(x,y)关于原点(0,0)的对称点为(-x,-y).5.点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).6.点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).7.点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).8.点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).9.点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为(k+y,x-k).题组一常识题1.[教材改编]已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为.2.[教材改编]过点(3,1)且与直线x-2y-3=0垂直的直线方程是.3.[教材改编]过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为.4.圆(x+1)2+y2=2的圆心到直线y=2x+3的距离为.题组二常错题◆索引:判断两条直线的位置关系忽视斜率不存在的情况;求两平行线间的距离忽视两直线的系数的对应关系;两直线平行解题时忽略检验两直线重合的情况.5.若直线(a+2)x+(1-a)y-3=0与直线(a-1)x+(2a+3)y+2=0互相垂直,则a= .6.两条平行直线3x-4y-3=0和mx-8y+5=0之间的距离是.7.若直线l1:x+y-1=0与直线l2:x+a2y+a=0平行,则实数a= .课堂考点探究探究点一两条直线的位置关系1 (1)[2017·咸阳二模]已知p:m=-1,q:直线x-y=0与直线x+m2y=0互相垂直,则p是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)[2017·广州二模]已知三条直线2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能构成三角形,则实数m的取值集合为()A.B.C.D.[总结反思] (1)讨论两直线的位置关系时应考虑直线的斜率是否存在;(2)“直线A1x+B1y+C1=0,A2x+B2y+C2=0平行”的充要条件是“A1B2=A2B1且A1C2≠A2C1”,“两直线垂直”的充要条件是“A1A2+B1B2=0”.式题 (1)[2017·湖南长郡中学、衡阳八中等重点中学联考]“a=2”是“直线ax+y-2=0与直线2x+(a-1)y+4=0平行”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件(2)[2017·沈阳二中一模]已知倾斜角为α的直线l与直线x+2y-3=0垂直,则cos-2α的值为()A. B.-C.2 D.-探究点二距离问题2 (1)[2017·河北武邑中学月考]已知两平行直线l1:3x+4y+5=0,l2:6x+by+c=0间的距离为3,则b+c= ()A.-12B.48C.36D.-12或48(2)若(a≠b),则坐标原点O(0,0)到经过两点(a,a2),(b,b2)的直线的距离为.[总结反思] (1)点到直线的距离可直接利用点到直线的距离公式去求,注意直线方程应为一般式;(2)运用两平行直线间的距离公式d=的前提是两直线方程中的x,y的系数对应相等.式题 (1)平面上整点(纵、横坐标都是整数的点)到直线y=x+的距离的最小值是()A.B.C.D.(2)[2017·辽宁锦州中学期中]若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则线段AB的中点M到原点的距离的最小值为 ()A.3B.2C.3D.4探究点三对称问题考向1点关于点的对称3 (1)点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10B.m=3,n=10C.m=-3,n=5D.m=3,n=5(2)直线2x-y+3=0关于定点M(-1,2)对称的直线方程是()A.2x-y+1=0B.2x-y+5=0C.2x-y-1=0D.2x-y-5=0[总结反思] 中心对称问题主要有两类:(1)点关于点的对称:点P(x,y)关于O(a,b)对称的点P'(x',y')满足(2)直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.考向2点关于线对称4 (1)已知直线l的方程为2x-y-3=0,点A(1,4)与点B关于直线l对称,则点B的坐标为.(2)点M(3,-4)和点N(m,n)关于直线y=x对称,则()A.m=-4,n=-3B.m=4,n=-3C.m=-4,n=3D.m=4,n=3[总结反思] 若点A(a,b)与点B(m,n)关于直线Ax+By+C=0(A≠0,B≠0)对称,则直线Ax+By+C=0垂直平分线段AB,即有考向3线关于线对称5 (1)直线l1:2x+y-4=0关于直线l:x-y+2=0对称的直线l2的方程为.(2)直线l1:3x-y+1=0与直线l2:3x-y+7=0关于直线l对称,则直线l的方程为.[总结反思] 求直线l1关于直线l对称的直线l2,有两种处理方法:(1)在直线l1上取两点(一般取特殊点),利用求点关于直线的对称点的方法求出这两点关于直线l的对称点,再用两点式写出直线l2的方程.(2)设点P(x,y)是直线l2上任意一点,其关于直线l的对称点为P1(x1,y1)(P1在直线l1上),若直线l的方程为Ax+By+C=0(A≠0,B≠0),则有从中解出x1,y1,再代入直线l1的方程,即得直线l2的方程.考向4对称问题的应用6 (1)一束光线从原点O(0,0)出发,经过直线l:8x+6y=25反射后通过点P(-4,3),则反射光线所在直线的方程为.(2)将一张坐标纸折叠一次,使得点(3,-2)与点(-1,2)重合,点(7,3)与点(m,n)重合,则mn= .[总结反思] 在对称关系的两类问题中,中心对称的本质是“中点”,体现在中点坐标公式的运用上;轴对称的本质是“垂直、平分”,即“对称点连线与对称轴垂直,对称点构成的线段的中点在对称轴上”.强化演练1.【考向3】与直线x+3y-2=0关于x轴对称的直线方程为()A.x-3y-2=0B.x-3y+2=0C.x+3y+2=0D.3x+y-2=02.【考向2】两点A(a+2,b+2),B(b-a,-b)关于直线4x+3y=11对称,则()A.a=-4,b=2B.a=4,b=-2C.a=4,b=2D.a=2,b=43.【考向3】若直线l1:y-2=(k-1)x和直线l2关于直线y=x+1对称,那么直线l2恒过定点()A.(2,0)B.(1,-1)C.(1,1)D.(-2,0)4.【考向1】直线y=3x+3关于点M(3,2)对称的直线l的方程是.5.【考向4】[2017·西安一中一模]已知点A(x,5)关于点(1,y)的对称点为点(-2,-3),则点P(x,y)到原点的距离是.6.【考向4】已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程是.第48讲圆的方程课前双击巩固1.圆的定义及方程圆心为,2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则.(2)若M(x0,y0)在圆上,则.(3)若M(x0,y0)在圆内,则.常用结论常见圆的方程的设法:题组一常识题1.[教材改编]若原点在圆(x-2m)2+(y-m)2=5的内部,则实数m的取值范围是.2.[教材改编]已知A(-4,-5),B(6,-1),则以线段AB为直径的圆的方程是.3.[教材改编]已知圆C经过点A(1,1)和B(4,-2),且圆心C在直线l:x+y+1=0上,则圆C的标准方程为.4.[教材改编]与圆x2+y2-4x+2y+4=0关于直线x-y+3=0对称的圆的一般方程是.题组二常错题◆索引:忽视表示圆的条件D2+E2-4F>0;遗漏方程的另一个解;忽略圆的方程中变量的取值范围.5.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是.6.半径为2,且与两坐标轴都相切的圆的方程为.7.已知实数x,y满足(x-2)2+y2=4,则3x2+4y2的最大值为.课堂考点探究探究点一圆的方程1 (1)[2017·包头一模]圆E经过三点A(0,1),B(2,0),C(0,-1),则圆E的标准方程为()A.+y2=B.+y2=C.+y2=D.+y2=(2)[2017·广西名校一模]过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4[总结反思] 求圆的方程一般有两种常用方法:(1)几何法,通过研究圆的几何性质,确定圆心坐标与半径长,即得到圆的方程;(2)代数法,用待定系数法求解,其关键是根据条件选择圆的方程,若已知圆上三点,则选用圆的一般方程,若已知条件与圆心及半径有关,则选用圆的标准方程.式题 (1)若圆C过点(0,-1),(0,5),且圆心到直线x-y-2=0的距离为2,则圆C的标准方程为.(2)过点(0,2)且与两坐标轴相切的圆的标准方程为.探究点二与圆有关的最值问题考向1斜率型最值问题2 (1) 若实数x,y满足x2+y2-2x-2y+1=0,则的取值范围为()A.B.C.D.(2)[2017·抚州临川一中二模]点M(x,y)在圆x2+(y-2)2=1上运动,则的取值范围是()A.∪B.∪∪C.∪D.[总结反思] 处理与圆有关的最值问题,应充分探究圆的几何性质,并根据代数式的几何意义,利用数形结合思想求解.求形如k=的最值问题,可转化为求斜率的最值问题,即过点(a,b)和(x,y)的直线斜率的最值问题.考向2截距型最值问题3 (1)已知实数x,y满足方程x2+y2-2x+4y=0,则x-2y的最大值是,最小值是.(2)已知P(x,y)在圆(x-1)2+(y-1)2=5上运动,当2x+ay(a>0)取得最大值8时,其最小值为.[总结反思] 若(x,y)为圆上任意一点,求形如u=ax+by的最值,可转化为求动直线截距的最值.具体方法是:(1)数形结合法,当直线与圆相切时,直线在y轴上的截距取得最值;(2)把u=ax+by代入圆的方程中,消去y得到关于x的一元二次方程,由Δ≥0求得u的范围,进而求得最值.考向3距离型最值问题4 (1)[2017·嘉兴一中联考]已知圆C:(x-2)2+(y+m-4)2=1,当m变化时,圆C上的点与原点O的最短距离是.(2)若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的最大值为()A.4B.6C.3+1D.1+[总结反思] 若(x,y)为圆上任意一点,求形如t=(x-a)2+(y-b)2的最值,可转化为圆上的点到定点的距离的最值,即把(x-a)2+(y-b)2看作是点(a,b)与圆上的点(x,y)连线的距离的平方,利用数形结合法求解.考向4利用对称性求最值5 [2017·赤峰期末]一束光线从点A(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路径的长是()A.4B.5C.3-1D.2[总结反思] 求解形如|PM|+|PN|且与圆C有关的折线段的最值问题(其中M,N均为动点)的基本思路:(1)“动化定”,把与圆上的点的距离,转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.强化演练1.【考向1】设实数x,y满足(x+2)2+y2=3,那么的取值范围是()A.B.∪C.D.(-∞,-]∪[,+∞)2.【考向3】若直线l:ax+by+1=0经过圆M:x2+y2+4x+2y+1=0的圆心,则(a-2)2+(b-2)2的最小值为()A.B.5C.2D.103.【考向4】已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P 为x轴上的动点,则|PM|+|PN|的最小值为()A.5 -4B.-1C.6-2D.4.【考向3】[2017·合肥一中三模]若点P在直线l1:x+y+3=0上,过点P的直线l2与圆C:(x-5)2+y2=16只有一个公共点M,则的最小值为.5.【考向2】[2017·广东华南师大附中月考]已知实数x,y满足(x+2)2+(y-3)2=1,则|3x+4y-26|的最小值为.6.【考向3】已知圆C:x2+(y+1)2=3,设EF为直线l:y=2x+4上的一条线段,若对于圆C上的任意一点Q,∠EQF≥,则的最小值是.探究点三与圆有关的轨迹问题6 (1)动点P与定点A(-1,0),B(1,0)的连线的斜率之积为-1,则点P的轨迹方程是()A.x2+y2=1B.x2+y2=1C.x2+y2=1D.y=(2)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1[总结反思] 与圆有关的轨迹问题的四种常用求解方法:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等的定义列方程.(3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式列方程.式题 (1)[2017·广东广雅中学、江西南昌二中联考]自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的距离,则点P的轨迹方程为()A.8x-6y-21=0B.8x+6y-21=0C.6x+8y-21=0D.6x-8y-21=0(2)已知点A(1,0)和圆C:x2+y2=4上一点P,动点Q满足=2,则点Q的轨迹方程为()A.+y2=1B.x2+=1C.x2+=1D.+y2=1第49讲直线与圆、圆与圆的位置关系课前双击巩固1.直线与圆的位置关系设圆O的半径为r(r>0),圆心到直线l的距离为d,则直线与圆的位置关系可用下表表示:2.两圆的位置关系设两圆的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示:常用结论1.求圆的切线方程,常用两种方法(1)代数法:将直线方程代入圆的方程中,消去一个未知数(x或y),令一元二次方程的判别式等于0,求出相关参数.(2)几何法:将圆的切线方程设为一般式,根据圆心到直线的距离等于半径,求出相关参数. 2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出x M+x N和x M·x N,则|MN|=·.题组一常识题1.[教材改编]直线y=kx+1与圆x2+y2-2x-3=0的位置关系是.2.[教材改编]以点(2,-1)为圆心且与直线x+y=6相切的圆的方程是.3.[教材改编]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为.4.[教材改编]直线x-y-5=0被圆x2+y2-4x+4y+6=0所截得的弦的长为.题组二常错题◆索引:忽视分两圆内切与外切两种情形;忽视切线斜率k不存在的情形;求弦所在直线的方程时遗漏一解.5.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则常数a= .6.已知圆C: x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为.7.若直线过点P-3,-且被圆x2+y2=25截得的弦长是8,则该直线的方程为.课堂考点探究探究点一直线与圆的位置关系1 (1)[2017·海南中学模拟]直线x+ay+1=0与圆x2+(y-1)2=4的位置关系是()A.相交B.相切C.相离D.不能确定(2)[2017·渭南二模]直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是()A.0<m<1B.-4<m<0C.m<1D.-3<m<1[总结反思] 判断直线与圆的位置关系的常用方法:(1)若易求出圆心到直线的距离,则用几何法,利用d与r的关系判断.(2)若方程中含有参数,或圆心到直线的距离的表达式较复杂,则用代数法,联立方程后利用Δ判断,能用几何法求解的,尽量不用代数法.式题 (1)圆2x2+2y2=1与直线x sin θ+y-1=0θ∈R,θ≠+kπ,k∈Z的位置关系是(横线内容从“相交、相切、相离、不确定”中选填).(2)[2017·长沙长郡中学三模]过定点P(-2,0)的直线l与曲线C:(x-2)2+y2=4(0≤x≤3)交于不同的两点,则直线l的斜率的取值范围是.探究点二圆的切线与弦长问题2 (1)[2017·淄博二模]过点(1,1)的直线l与圆(x-2)2+(y-3)2=9相交于A,B两点,当=4时,直线l的方程为.(2)[2017·南充三模]已知圆的方程是x2+y2=1,则经过上一点M,的切线方程是.[总结反思] (1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.(2)处理圆的切线问题时,一般通过圆心到直线的距离等于半径建立关系式解决问题.若点M(x0,y0)在圆x2+y2=r2上,则过点M的圆的切线方程为x0x+y0y=r2.式题 (1)已知直线l:x+y-2=0和圆C:x2+y2-12x-12y+m=0相切,则实数m的值为.(2)[2017·重庆巴蜀中学三诊]设直线y=kx+1与圆x2+y2+2x-my=0相交于A,B两点,若点A,B 关于直线l:x+y=0对称,则= .(3)已知点M在直线x+y+a=0上,过点M引圆O:x2+y2=2的切线,若切线长的最小值为 2,则实数a的值为()A.±2B.±3C.±4D.±2探究点三圆与圆的位置关系3 (1)[2017·银川二模]已知圆C1:x2+y2=4,圆C2:x2+y2+6x-8y+16=0,则圆C1和圆C2的位置关系是()A.相离B.外切C.相交D.内切(2)已知经过点P1,的两个圆C1,C2都与直线l1:y=x,l2:y=2x相切,则这两圆的圆心距C1C2等于.[总结反思] (1)处理两圆的位置关系时多用圆心距与半径的和或差的关系判断,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.式题 (1)[2017·绵阳二诊]已知点O(0,0),M(1,0),且圆C:(x-5)2+(y-4)2=r2(r>0)上至少存在一点P,使得|PO|=|PM|,则r的最小值是.(2)设P(x1,y1)是圆O1:x2+y2=9上的点,圆O2的圆心为O2(a,b),半径为1,则(a-x1)2+(b-y1)2=1是圆O1与圆O2相切的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第50讲椭圆课前双击巩固1.椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫作.这两个定点叫作椭圆的,两焦点间的距离叫作椭圆的.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若,则集合P为椭圆;(2)若,则集合P为线段;(3)若,则集合P为空集.2.椭圆的标准方程和几何性质+=1(a>b>0) +=1(a>b>0)常用结论椭圆中几个常用的结论:(1)焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫作椭圆的焦半径,分别记作r1=,r2=.①+=1(a>b>0),r1=a+ex0,r2=a-ex0;②+=1(a>b>0),r1=a+ey0,r2=a-ey0;③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫作焦点三角形.r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:①当r1=r2时,即点P的位置为短轴端点时,θ最大;②S=b2tan =c,当=b时,即点P的位置为短轴端点时,S取最大值,最大值为bc.(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min=.(4)AB为椭圆+=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则①弦长l==|y1-y2|;②直线AB的斜率k AB=-.题组一常识题1.[教材改编]椭圆36x2+81y2=324的短轴长为,焦点为,离心率为.2.[教材改编]已知动点P(x,y)的坐标满足+=16,则动点P的轨迹方程为.3.[教材改编]若椭圆的对称轴为坐标轴,长轴长与短轴长的和为10,一个焦点的坐标是(-,0),则椭圆的标准方程为.4.[教材改编]椭圆+=1上一点P与椭圆两焦点F1,F2的连线的夹角为直角,则Rt△PF1F2的面积为.题组二常错题◆索引:椭圆的定义中易忽视2a>|F1F2|这一条件;忽视焦点的位置;易忽视椭圆方程中未知数的取值范围.5.平面内一点M到两定点F1(0,-9),F2(0,9)的距离之和等于18,则点M的轨迹是.6.短轴长等于6,离心率等于的椭圆的标准方程为.7.设点P(x,y)在椭圆4x2+y2=4上,则5x2+y2-6x的最大值为.课堂考点探究探究点一椭圆的定义1 (1)过椭圆+y2=1的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为()A.8B.4C.4D.2(2)[2017·西宁一模]在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,-1),则+的最大值为()A.5B.4C.3D.2[总结反思] 椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|,通过整体代入可求其面积等.式题 (1)[2017·汕头三模]若椭圆+=1上一点P与椭圆的两个焦点F1,F2的连线互相垂直,则△PF1F2的面积为()A.36B.16C.20D.24(2)已知椭圆+=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b= .探究点二椭圆的标准方程2 (1) 椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E的标准方程为 ()A.+=1B.+y2=1C.+=1D.+=1(2)[2017·马鞍山三模]已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E 于A,B两点.若线段AB的中点的坐标为(1,-1),则E的方程为()A.+=1B.+=1C.+=1D.+=1[总结反思] 根据条件求椭圆方程常用的主要方法有:(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义;(2)待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1(m>0,n>0,m≠n),再用待定系数法求出m,n的值即可.式题 (1)已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A.+=1B.+=1C.+=1D.+=1(2) 过点A(3,-2)且与椭圆+=1有相同焦点的椭圆的方程为()A.+=1B.+=1C.+=1D.+=1探究点三椭圆的几何性质3 (1)[2017·西宁二模]设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的☉F2交椭圆于点E,且点E恰好是直线EF1与☉F2的切点,则椭圆的离心率为()A.B.C.D.(2)椭圆x2+=1(0<b<1)的左焦点为F,上顶点为A,右顶点为B,若△FAB外接圆的圆心P(m,n)在直线y=-x的左下方,则该椭圆离心率的取值范围为()A.B.C.D.[总结反思] 椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种常用方法:(1)求出a,c,代入公式e=.(2)根据条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为关于a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e的值或取值范围.式题 (1)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e.P是椭圆上一点,位于第一象限,满足PF2⊥F1F2,点Q在线段PF1上,且=2.若·=0,则e2= ()A.-1B.2-C.2-D.-2(2)中心为原点O的椭圆的焦点在x轴上,A为该椭圆右顶点,P为椭圆上一点,若∠OPA=90°,则该椭圆的离心率e的取值范围是()A.B.C.D.探究点四直线与椭圆的位置关系4[2018·合肥一中、马鞍山二中等六校联考]已知点M是圆E:(x+)2+y2=16上的动点,点F(,0),线段MF的垂直平分线交线段EM于点P.(1)求动点P的轨迹C的方程;(2)矩形ABCD的边所在直线与轨迹C均相切,设矩形ABCD的面积为S,求S的取值范围.[总结反思] (1)解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|==(k为直线斜率).(3)直线与椭圆相交时的常见问题的处理方法:式题 [2017·咸阳三模]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点A在椭圆C上,|AF1|=2,∠F1AF2=60°,过F2与坐标轴不垂直的直线l与椭圆C交于P,Q两点,N为线段PQ的中点.(1)求椭圆C的方程;(2)已知点M0,,且MN⊥PQ,求线段MN所在的直线方程.第51讲双曲线课前双击巩固1.双曲线的定义平面内与两个定点F1,F2的等于常数(小于|F1F2|)的点的轨迹叫作双曲线.这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当时,P点的轨迹是双曲线;(2)当时,P点的轨迹是两条射线;(3)当时,P点不存在.2.标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的标准方程为-=1(a>0,b>0);(2)中心在坐标原点,焦点在y 轴上的双曲线的标准方程为-=1(a>0,b>0).3.双曲线的性质-=1(a>0,b>0-=1(a>0,b>0)),常用结论双曲线的几个常用结论:(1)与双曲线-=1(a>0,b>0)有共同渐近线的双曲线系的方程为-=λ(λ≠0).(2)双曲线上的点P(x0,y0)与左(下)焦点F1或右(上)焦点F2之间的线段叫作双曲线的焦半径,分别记作r1=|PF1|,r2=|PF2|,则①-=1(a>0,b>0),若点P在右支上,则r1=ex0+a,r2=ex0-a;若点P在左支上,则r1=-ex0-a,r2=-ex 0+a.②-=1(a>0,b>0),若点P在上支上,则r1=ey0+a,r2=ey0-a;若点P在下支上,则r1=-ey0-a,r2=-ey0+a.题组一常识题1.[教材改编]若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=4,则|PF2|= .2.[教材改编]已知双曲线经过点P(3,-2)和点Q(6,-7),则该双曲线的标准方程为.3.[教材改编]双曲线C:12x2-3y2=24的离心率是,渐近线方程是.。
2019版高考数学一轮复习第八章平面解析几何
七
节
双曲线
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点
课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双 基落实
想一想、辨一辨、试一试、全面打牢基础
必
过
教
材
关
1.双曲线的定义 平面内与两个定点F1, F2的 距离的差的绝对值等于非零 常数 (小于 |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线 ______
2.双曲线的标准方程和几何性质 标准方程 x2 y2 y2 x2 - =1(a>0,b>0) 2- 2=1(a>0,b>0) a2 b2 a b
图形
性 质
范围 对称性
x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R 对称轴: 坐标轴 对称中心: 原点
标准方程 顶点 渐近线 离心率 性 质 a,b,c 的关系
2 y 即其标准方程为x2- = 1. 2 2 y 答案:x2- =1 2
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 双曲线的标准方程
[题组练透]
x2 y2 1. (2017· 天津高考 )已知双曲线 2- 2 = 1(a>0, b>0)的左焦点 a b 为 F,离心率为 2 .若经过 F和 P(0,4)两点的直线平行于双 ( )
x2 y2 解析:设要求的双曲线方程为 2- 2= 1(a>0, b>0), a b x2 y2 由椭圆 + =1,得椭圆焦点为(± 1,0),顶点为(± 2,0). 4 3 所以双曲线的顶点为(± 1,0),焦点为(± 2,0). 所以a= 1, c= 2,所以b2= c2- a2= 3,
2019年高考数学一轮总复习第八章解析几何8.8曲线与方程课时跟踪检测理201805194171
8.8 曲线与方程[课 时 跟 踪 检 测][基 础 达 标]1.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支解析:根据双曲线的定义知动点P 的轨迹类似双曲线,但不满足2c >2a >0的条件,故动点P 的轨迹是一条射线.答案:C2.方程x = 1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分 解析:x =1-4y 2两边平方,可变为x 2+4y 2=1(x ≥0),表示的曲线为椭圆的一部分.答案:B3.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=2解析:如图,设P (x ,y ),圆心为M (1,0).连接MA ,PM ,则MA ⊥PA ,且|MA |=1,又因为|PA |=1,所以|PM |=|MA |2+|PA |2=2,即|PM |2=2,所以(x -1)2+y 2=2.答案:D4.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若MN →2=λAN →·NB →,当λ<0时,动点M 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:设M (x ,y ),则N (x,0),所以MN →2=y 2,λAN →·NB →=λ(x +1,0)·(1-x,0)=λ(1-x 2),所以y 2=λ(1-x 2),即x 2+y 2λ=1.又因为λ<0,所以动点M 的轨迹为双曲线.答案:C5.已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 解析:依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎪⎨⎪⎧ x =x 0-1+13,y =y 03,即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y ,代入x 204+y 203=1, 得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0). 答案:C 6.方程(x 2+y 2-2x )x +y -3=0表示的曲线是( )A .一个圆和一条直线B .一个圆和一条射线C .一个圆D .一条直线解析:依题意,题中的方程等价于①x +y -3=0或②⎩⎪⎨⎪⎧ x +y -3≥0,x 2+y 2-2x =0. 注意到圆x 2+y 2-2x =0上的点均位于直线x +y -3=0的左下方区域,即圆x 2+y 2-2x=0上的点均不满足x +y -3≥0,即②不表示任意图形,因此题中的方程表示的曲线是直线x +y -3=0.答案:D7.已知A (-5,0),B (5,0),动点P 满足|PB →|,12|PA →|,8成等差数列,则点P 的轨迹方程为________.解析:由已知得|PA →|-|PB →|=8<10=|AB |,所以点P 的轨迹是以A ,B 为焦点的双曲线的右支,且a =4,b =3,c =5,所以点P 的轨迹方程为x 216-y 29=1(x ≥4). 答案:x 216-y 29=1(x ≥4) 8.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.解析:设P (x ,y ),因为△MPN 为直角三角形,所以|MP |2+|NP |2=|MN |2,所以(x +2)2+y 2+(x -2)2+y 2=16,整理得x 2+y 2=4.因为M ,N ,P 不共线,所以x ≠±2,所以点P 的轨迹方程为x 2+y 2=4(x ≠±2).答案:x 2+y 2=4(x ≠±2) 9.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过左焦点且倾斜角为45°的直线被椭圆截得的弦长为423. (1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点M (1,0)作l 的垂线,垂足为Q ,求点Q 的轨迹方程.解:(1)因为椭圆E 的离心率为22, 所以a 2-b 2a =22, 解得a 2=2b 2,故椭圆E 的方程可设为x 22b 2+y 2b 2=1, 则椭圆E 的左焦点坐标为(-b,0),过左焦点且倾斜角为45°的直线方程为l ′:y =x +b .设直线l ′与椭圆E 的交点为A ,B ,由⎩⎪⎨⎪⎧ x 22b 2+y 2b 2=1,y =x +b消去y , 得3x 2+4bx =0,解得x 1=0,x 2=-4b 3. 因为|AB |=1+12|x 1-x 2|=42b 3=423, 解得b =1.故椭圆E 的方程为x 22+y 2=1. (2)①当切线l 的斜率存在且不为0时,设l 的方程为y =kx +m ,联立直线l 和椭圆E 的方程, 得⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y 并整理, 得(2k 2+1)x 2+4kmx +2m 2-2=0. 因为直线l 和椭圆E 有且只有一个交点, 所以Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简并整理,得m 2=2k 2+1.因为直线MQ 与l 垂直,所以直线MQ 的方程为y =-1k(x -1). 联立方程组⎩⎪⎨⎪⎧ y =-1k x -1,y =kx +m ,解得⎩⎪⎨⎪⎧x =1-km 1+k 2,y =k +m 1+k 2,所以x 2+y 2=1-km 2+k +m 21+k 22=k 2m 2+k 2+m 2+11+k 22=k 2+1m 2+11+k 22=m 2+11+k 2, 把m 2=2k 2+1代入上式得x 2+y 2=2.(*)②当切线l 的斜率为0时,此时Q (1,1)或Q (1,-1),符合(*)式.③当切线l 的斜率不存在时,此时Q (2,0)或Q (-2,0),符合(*)式.综上所述,点Q 的轨迹方程为x 2+y 2=2.10.(2017届唐山模拟)已知P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标. 解:(1)圆A 的圆心为A (-1,0),半径等于2 2.由已知|MB |=|MP |,于是|MA |+|MB |=|MA |+|MP |=22>2=|AB |,故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆,即a =2,c =1,b =1,所以曲线Γ的方程为x 22+y 2=1. (2)由cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223. 于是直线AP 的方程为y =24(x +1). 由⎩⎪⎨⎪⎧ x 22+y 2=1,y =24x +1,整理得5x 2+2x -7=0,解得x 1=1,x 2=-75. 由于点M 在线段AP 上,所以点M 坐标为⎝ ⎛⎭⎪⎫1,22. [能 力 提 升]1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD 内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线解析:如图,过点P 在平面ABCD 内作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.答案:D2.(2018届郑州质检)已知动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A 、B 两点,直线l :y =mx +n 与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ACBD 的面积是否有最大值?若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.解:(1)设点P (x ,y ),由题意可得, x -12+y 2|x -2|=22, 整理可得x 22+y 2=1. 所以曲线E 的方程是x 22+y 2=1. (2)设C (x 1,y 1),D (x 2,y 2),由已知可得|AB |= 2.当m =0时,不合题意.当m ≠0时,由直线l 与圆x 2+y 2=1相切,可得|n |m 2+1=1,即m 2+1=n 2. 联立⎩⎪⎨⎪⎧ y =mx +n ,x 22+y 2=1消去y 得⎝⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0, Δ=4m 2n 2-4⎝⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0,x 1=-2mn +Δ2m 2+1,x 2=-2mn -Δ2m 2+1, S 四边形ACBD =12|AB ||x 2-x 1|=2|m |2m 2+1=22|m |+1|m |≤22,当且仅当2|m |=1|m |,即m =±22时等号成立,所以四边形ACBD 的面积的最大值为22, 此时n =±62,经检验可知,直线y =22x -62和直线y =-22x +62符合题意.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2019年高考数学一轮复习第八章解析几何课时分层作业四十九8.1直线的倾斜角与斜率、直线的方程理
2019年⾼考数学⼀轮复习第⼋章解析⼏何课时分层作业四⼗九8.1直线的倾斜⾓与斜率、直线的⽅程理2019年⾼考数学⼀轮复习第⼋章解析⼏何课时分层作业四⼗九 8.1 直线的倾斜⾓与斜率、直线的⽅程理⼀、选择题(每⼩题5分,共35分)1.设直线ax+by+c=0的倾斜⾓为α,且sin α+cos α=0,则a,b满⾜( )A.a+b=1B.a-b=1C.a+b=0D.a-b=0【解析】选D.因为sin α+cos α=0,所以tan α=-1.⼜因为α为倾斜⾓,所以斜率k=-1.⽽直线ax+by+c=0的斜率k=-,所以-=-1,即a-b=0.2.直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为 ( )A.[-,1]B.(-∞,-]∪[1,+∞)C.D.∪[1,+∞)【解析】选B.因为k AP==1,k BP==-,所以k∈(-∞,-]∪[1,+∞).3.(xx·开封模拟)过点A(-1,-3),斜率是直线y=3x的斜率的-的直线⽅程为( ) A.3x+4y+15=0 B.4x+3y+6=0C.3x+y+6=0D.3x-4y+10=0【解析】选A.设所求直线的斜率为k,依题意k=-,⼜直线经过点A(-1,-3),因此所求直线⽅程为y+3=-(x+1),即3x+4y+15=0.4.直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.-1B.k>1或k<C.k>1或k<D.k>或k<-1【解析】选D.设直线的斜率为k,则直线⽅程为y-2=k(x-1),令y=0,得直线l在x轴上的截距为1-,则-3<1-<3,解得k>或k<-1.【⼀题多解】选D.当k=0时,该直线在x轴上的截距不存在,不符合题意,所以可排除A,B,C三个选项. 【变式备选】(xx·兰州模拟)若直线+=1(a>0,b>0)过点(1,1),则a+b的最⼩值等于( )A.2B.3C.4D.5【解析】选C.因为直线+=1(a>0,b>0)过点(1,1),所以+=1,所以1=+≥2=(当且仅当a=b=2时取等号),所以≥2.⼜a+b≥2(当且仅当a=b=2时取等号),所以a+b≥4(当且仅当a=b=2时取等号).【⼀题多解】选C.因为直线+=1(a>0,b>0)过点(1,1),所以+=1,所以a+b=(a+b)=2++≥2+2=4.(当且仅当a=b=2时取等号).5.(xx·张家⼝模拟)若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜⾓是直线x-y=3的倾斜⾓的2倍,则( )A.m=-,n=1B.m=-.n=-3C.m=,n=-3D.m=,n=1【解析】选D.对于直线mx+ny+3=0,令x=0得y=-,即-=-3,n=1.因为x-y=3的斜率为60°,直线mx+ny+3=0的倾斜⾓是直线x-y=3的2倍,所以直线mx+ny+3=0的倾斜⾓为120°,即-=-,m=.6.若直线l:kx-y+2+4k=0(k∈R)交x轴负半轴于A,交y轴正半轴于B,则当△AOB的⾯积取最⼩值时直线l 的⽅程为( )A.x-2y+4=0B.x-2y+8=0C.2x-y+4=0D.2x-y+8=0【解析】选B.由l的⽅程,得A,B(0,2+4k).依题意得解得k>0.因为S=|OA|·|OB|=·|2+4k|==≥(2×8+16)=16.当且仅当16k=,即k=时,等号成⽴.此时l的⽅程为x-2y+8=0.7.经过点A(-5,2),且在x轴上的截距等于在y轴上截距的2倍的直线⽅程为( )A.5x+2y=0或x+2y+1=0B.x+2y+1=0C.2x+5y=0或x+2y+1=0D.2x+5y=0【解析】选C.当截距为零时,直线⽅程为y=-x;当截距不为零时,设直线⽅程为+=1,因为直线过点A(-5,2),所以+=1,计算得b=-,所以直线⽅程为+=1,即x+2y+1=0.所以所求直线⽅程为2x+5y=0或x+2y+1=0. 【题⽬溯源】本考题源于教材⼈教A版必修2P100习题3.2A组T5“⼀条直线经过点A(2,-3),并且它的斜率等于直线y=x的斜率的2倍,求这条直线的⽅程”.【变式备选】已知直线l经过点(7,1),且在两坐标轴上的截距之和为零,求直线l的⽅程.【解析】当直线l经过原点时,直线l在两坐标轴上截距均等于0,故直线l的斜率为,所以所求直线⽅程为y=x,即x-7y=0.当直线l不过原点时,设其⽅程为+=1,由题意可得a+b=0, ①⼜l经过点(7,1),且+=1, ②由①②得a=6,b=-6,则l的⽅程为+=1,即x-y-6=0.故所求直线l的⽅程为x-7y=0或x-y-6=0.⼆、填空题(每⼩题5分,共15分)8.若直线y=kx+1与以A(3,2),B(2,3)为端点的线段有公共点,则k的取值范围是________.【解析】由题可知直线y=kx+1过定点P(0,1),且k PB==1,k PA==,结合图象可知,当直线y=kx+1与以A(3,2),B(2,3)为端点的线段有公共点时,k的取值范围是.答案:9.将直线y=x+-1绕它上⾯⼀点(1,)沿逆时针⽅向旋转15°,所得到的直线⽅程是________.【解析】由y=x+-1得直线的斜率为1,倾斜⾓为45°.因为沿逆时针⽅向旋转15°,⾓变为60°,所以所求直线的斜率为.⼜因为直线过点(1,),所以直线⽅程为y-=(x-1),即y=x.答案:y=x10.如图,射线OA,OB分别与x轴正半轴成45°和30°⾓,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=x上时,直线AB的⽅程为________.【解析】由题意可得k OA=tan 45°=1,k OB=tan(180°-30°)=-,所以直线l OA:y=x,l OB:y=-x.设A(m,m),B(-n,n),所以AB的中点C,由点C在直线y=x上,且A,P,B三点共线得解得m=,所以A(,).⼜P(1,0),所以k AB=k AP==,所以l AB:y=(x-1),即直线AB的⽅程为(3+)x-2y-3-=0.答案:(3+)x-2y-3-=01.(5分)(xx·张家⼝模拟)直线l经过A(2,1),B(1,-m2)(m∈R)两点,则直线l的倾斜⾓α的取值范围是( )A. B.C. D.【解析】选C.直线l的斜率k=tan α==1+m2≥1,所以≤α<.2.(5分)已知直线l过点A(1,2),且倾斜⾓为直线l0:3x-y-2=0的倾斜⾓的2倍,则直线l的⽅程为( )A.x-y+=0B.x-y-3=0C.x+y-3=0D.x+y-=0【解析】选C.直线l0的斜率k0=,所以倾斜⾓α0=;故直线l的倾斜⾓α=2α0=,斜率k=-,直线l的⽅程为y-2=-(x-1),即x+y-3=0.【变式备选】已知直线l的斜率为,在y轴上的截距为另⼀条直线x-2y-4=0的斜率的倒数,则直线l的⽅程为( )A.y=x+2B.y=x-2C.y=x+D.y=-x+2【解析】选A.因为直线x-2y-4=0的斜率为,所以直线l在y轴上的截距为2,所以直线l的⽅程为y=x+2.3.(5分)过点P(4,1)作直线l分别交x,y轴正半轴于A,B两点,当△AOB⾯积最⼩时,直线l的⽅程为________.【解析】设直线⽅程为+=1,因为直线过点P(4,1),所以+=1.△AOB的⾯积S=ab.+=1≥2,解得ab≥16,当且仅当=,即a=8,b=2时取等号,此时△AOB的⾯积S有最⼩值8,直线l的⽅程为+=1,即x+4y-8=0.答案:x+4y-8=04.(12分)(xx·泸州模拟)求过点A(1,-1)与已知直线l1:2x+y-6=0相交于B点,且|AB|=5的直线⽅程.【解析】过点A(1,-1)与y轴平⾏的直线为x=1.解⽅程组得B点坐标为(1,4),此时|AB|=5,即x=1为所求.设过点A(1,-1)且与y轴不平⾏的直线为y+1=k(x-1),解⽅程组得(k≠-2,否则与已知直线平⾏).两直线交点B的坐标为.由已知+=52,解得k=-,所以y+1=-(x-1),即3x+4y+1=0.综上可知,所求直线的⽅程为x=1或3x+4y+1=0.5.(13分)已知在△ABC中,点A的坐标为(1,3),AB,AC边上的中线所在直线的⽅程分别为x-2y+1=0和y-1=0,求△ABC各边所在直线的⽅程.【解析】设AB,AC边上的中线分别为CD,BE,其中D,E分别为AB,AC的中点,因为点B在中线y-1=0上,所以设B点坐标为(x,1).⼜因为A点坐标为(1,3),D为AB的中点,所以由中点坐标公式得D点坐标为.⼜因为点D在中线x-2y+1=0上,所以-2×2+1=0?x=5,所以B点坐标为(5,1).同理可求出C点的坐标是(-3,-1).故可求出△ABC三边AB,BC,AC所在直线的⽅程分别为x+2y-7=0,x-4y-1=0和x-y+2=0.2019年⾼考数学⼀轮复习第六章不等式、推理与证明课时分层作业三⼗⼋ 6.5直接证明与间接证明⽂⼀、选择题(每⼩题5分,共25分)1.要证明+<2,可选择的⽅法有以下⼏种,其中最合理的是( )A.综合法B.分析法C.反证法D.归纳法【解析】选B.从要证明的结论——⽐较两个⽆理数⼤⼩出发,证明此类问题通常转化为⽐较有理数的⼤⼩,这正是分析法的证明⽅法.2.(xx·⼴州模拟)⽤反证法证明命题“设a,b为实数,则⽅程x2+ax+b=0⾄少有⼀个实根”时,要做的假设是( )A.⽅程x2+ax+b=0没有实根B.⽅程x2+ax+b=0⾄多有⼀个实根C.⽅程x2+ax+b=0⾄多有两个实根D.⽅程x2+ax+b=0恰好有两个实根【解析】选A. 因为“⽅程x2+ax+b=0⾄少有⼀个实根”等价于“⽅程x2+ax+b=0有⼀个实根或两个实根”,所以该命题的否定是“⽅程x2+ax+b=0没有实根”.3.要证:a2+b2-1-a2b2≤0,只要证明( )A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1)(b2-1)≥0【解析】选D.因为要证a2+b2-1-a2b2≤0,只需要证(a2-1)(b2-1)≥0.4.命题“如果数列{a n}的前n项和S n=2n2-3n,那么数列{a n}⼀定是等差数列”是否成⽴( )A.不成⽴B.成⽴C.不能断定D.能断定【解析】选B. 因为S n=2n2-3n,所以S n-1=2(n-1)2-3(n-1)(n≥2),所以a n=S n-S n-1=4n-5(n=1时,a1=S1=-1符合上式).⼜因为a n+1-a n=4(n≥1),所以{a n}是等差数列.【变式备选】(xx·西安模拟) 不相等的三个正数a,b,c成等差数列,并且x是a,b的等⽐中项,y是b,c的等⽐中项,则x2,b2,y2三数( )A.成等⽐数列⽽⾮等差数列B.成等差数列⽽⾮等⽐数列C.既成等差数列⼜成等⽐数列D.既⾮等差数列⼜⾮等⽐数列【解析】选B. 由已知条件,可得由②③得代⼊①,得+=2b,即x2+y2=2b2.故x2,b2,y2成等差数列.5.设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中⾄少有⼀个⼤于1”的条件是 ( )A.②③B.①②③C.③D.③④⑤【解析】选C.若a=,b=,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中⾄少有⼀个⼤于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2⽭盾,因此假设不成⽴,则a,b中⾄少有⼀个⼤于1.⼆、填空题(每⼩题5分,共15分)6.设a>b>0,m=-,n=,则m,n的⼤⼩关系是________.【解析】(分析法)-?a0,显然成⽴.答案:m【巧思妙解】(取特殊值法)取a=2,b=1,得m答案:m7.已知a,b,µ∈(0,+∞)且+=1,则使得a+b≥µ恒成⽴的µ的取值范围是________.【解析】因为a,b∈(0,+∞)且+=1,所以a+b=(a+b)=10+≥10+2=16,所以a+b的最⼩值为16.所以要使a+b≥µ恒成⽴,需16≥µ,所以0<µ≤16.答案:(0,16]8.(xx·商丘模拟)若⼆次函数f(x)=4x2-2(p-2)x-2p2-p+1,在区间[-1,1]内⾄少存在⼀点c,使f(c)>0,则实数p的取值范围是________.【解析】 (补集法)令解得p≤-3或p≥,故满⾜条件的p的范围为.答案:【⼀题多解】(直接法)依题意有f(-1)>0或f(1)>0,即2p2-p-1<0或2p2+3p-9<0,得-答案:三、解答题(每⼩题10分,共20分)9.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.【证明】要证明2a3-b3≥2ab2-a2b成⽴,只需证:2a3-b3-2ab2+a2b≥0,即2a(a2-b2)+b(a2-b2)≥0,即(a+b)(a-b)(2a+b)≥0.因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从⽽(a+b)(a-b)(2a+b)≥0成⽴,所以2a3-b3≥2ab2-a2b.10.已知四棱锥S-ABCD中,底⾯是边长为1的正⽅形,⼜SB=SD=,SA=1.(1)求证:SA⊥平⾯ABCD.(2)在棱SC上是否存在异于S,C的点F,使得BF∥平⾯SAD?若存在,确定F点的位置;若不存在,请说明理由. 【解析】 (1)由已知得SA2+AD2=SD2,所以SA⊥AD.同理SA⊥AB.⼜AB∩AD=A,所以SA⊥平⾯ABCD.(2)假设在棱SC上存在异于S,C的点F,使得BF∥平⾯SAD.因为BC∥AD,BC?平⾯SAD.所以BC∥平⾯SAD.⽽BC∩BF=B,所以平⾯FBC∥平⾯SAD.这与平⾯SBC和平⾯SAD有公共点S⽭盾,所以假设不成⽴.所以不存在这样的点F,使得BF∥平⾯SAD.1.(5分)设a,b,c均为正实数,则三个数a+,b+,c+ ( )A.都⼤于2B.都⼩于2C.⾄少有⼀个不⼤于2D.⾄少有⼀个不⼩于2【解析】选D.因为a>0,b>0,c>0,所以++=++≥6,当且仅当a=b=c时,等号成⽴,故三者不能都⼩于2,即⾄少有⼀个不⼩于2.2.(5分)(xx·洛阳模拟) 设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值( )A.恒为负值B.恒等于零C.恒为正值D.⽆法确定正负【解析】选A.由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1+x2>0,可知x1>-x2,f(x1)【变式备选】设函数f(x)的导函数为f ′(x),对任意x∈R都有f ′(x)>f(x)成⽴,则( )A.3f(ln 2)>2f(ln 3)B.3f(ln 2)<2f(ln 3)C.3f(ln 2)=2f(ln 3)D.3f(ln 2)与2f(ln 3)的⼤⼩不确定【解析】选B.令F(x)=(x>0),则F′(x)=,因为x>0,所以ln x∈R,因为对任意x∈R都有f ′(x)>f(x),所以f′(ln x)>f(ln x),所以F′(x)>0,所以F(x)为增函数,因为3>2>0,所以F(3)>f(2),即>,所以3f(ln2)<2f(ln 3).3.(5分)(xx·合肥模拟)某同学准备⽤反证法证明如下⼀个问题:函数f(x)在[0,1]上有意义,且f(0)=f(1),如果对于不同的x1,x2∈[0,1],当|f(x1)-f(x2)|<|x1-x2|时,求证:|f(x1)-f(x2)|<.那么他的反设应该是________.【解析】根据反证法,写出相反的结论是:存在x1,x2∈[0,1],当|f(x1)-f(x2)| <|x1-x2|时,则|f(x1)-f(x2)|≥.答案:存在x1,x2∈[0,1],当|f(x1)-f(x2)|<|x1-x2|时,则|f(x1)-f(x2)|≥4.(12分)已知⾮零向量a,b,且a⊥b,求证:≤.【证明】因为a⊥b?a·b=0,要证≤.只需证|a|+|b|≤|a+b|,只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成⽴,故原不等式得证.5.(13分)已知函数f(x)=a x+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)⽤反证法证明⽅程f(x)=0没有负数根. 【证明】 (1)任取x1,x2∈(-1,+∞),不妨设x10.因为a>1,所以>1且>0,所以-=(-1)>0.⼜因为x1+1>0,x2+1>0,所以-==>0.于是f(x2)-f(x1)=-+->0, 故函数f(x)在(-1,+∞)上为增函数.(2)假设存在x0<0(x0≠-1)满⾜f(x0)=0,则=-.因为a>1,所以0<<1,所以0<-<1,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂达标(四十八) 定点、定值、探索性问题[A 基础巩固练]1.(2018·北京西城区模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,短轴长为2 2.(1)求椭圆C 的标准方程;(2)如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点.试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.[解] (1)由短轴长为22,得b =2,由e =c a =a 2-b 2a =22,得a 2=4,b 2=2.所以椭圆C 的标准方程为x 24+y 22=1.(2)以MN 为直径的圆过定点F (±2,0). 证明如下:设P (x 0,y 0),则Q (-x 0,-y 0), 且x 204+y 202=1,即x 20+2y 20=4, 因为A (-2,0),所以直线PA 方程为y =y 0x 0+2(x +2),所以M ⎝ ⎛⎭⎪⎫0,2y 0x 0+2,直线QA 方程为y =y 0x 0-2(x +2), 所以N ⎝⎛⎭⎪⎫0,2y 0x 0-2,以MN 为直径的圆为(x -0)(x -0)+⎝ ⎛⎭⎪⎫y -2y 0x 0+2⎝ ⎛⎭⎪⎫y -2y 0x 0-2=0, 即x 2+y 2-4x 0y 0x 20-4y +4y 2x 20-4=0,因为x 20-4=-2y 20,所以x 2+y 2+2x 0y 0y -2=0, 令y =0,则x 2-2=0,解得x =± 2. 所以以MN 为直径的圆过定点F (±2,0).2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点, 若m ⊥n ,求证:1|AB |+1|CD |为定值.[解析] (1)由已知得⎩⎨⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3. 故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时, 可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k x +,x 24+y23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0.由于Δ>0,设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=+k 2x 1+x 22-4x 1x 2]=+k2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8k 23+4k 22-4×4k 2-123+4k 2=+k 23+4k2.同理|CD |=+k23k 2+4. 所以1|AB |+1|CD |=3+4k2+k2+3k 2+4+k2=+k 2+k 2=712. 当直线m 垂直于坐标轴时,此时|AB |=3,|CD |=4; 或|AB |=4,|CD |=3,所以1|AB |+1|CD |=13+14=712.综上,1|AB |+1|CD |为定值712. 3.(2018·安徽芜湖、马鞍山第一次质量检测)椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点(3,2)为椭圆上的一点.(1)求椭圆E 的标准方程;(2)若斜率为k 的直线l 过点A (0,1),且与椭圆E 交于C ,D 两点,B 为椭圆E 的下顶点,求证:对于任意的k ,直线BC ,BD 的斜率之积为定值.[解] (1)因为e =33,所以c =33a ,a 2=b 2+⎝ ⎛⎭⎪⎫33a 2. ① 又椭圆过点(3,2),所以3a 2+2b2=1. ②由①②,解得a 2=6,b 2=4, 所以椭圆E 的标准方程为x 26+y 24=1.(2)证明:设直线l :y =kx +1,联立⎩⎪⎨⎪⎧x 26+y 24=1,y =kx +1,得(3k 2+2)x 2+6kx -9=0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k 3k 2+2,x 1x 2=-93k 2+2, 易知B (0,-2), 故k BC ·k BD =y 1+2x 1·y 2+2x 2=kx 1+3x 1·kx 2+3x 2=k 2x 1x 2+3k x 1+x 2+9x 1x 2=k 2+3k x 1+x 2x 1x 2+9x 1x 2=k 2+3k ·2k 3-(3k 2+2)=-2.所以对于任意的k ,直线BC ,BD 的斜率之积为定值.4.(高考全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. [解] (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a=a (x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a(x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.[B 能力提升练]1.(2018·山东省实验中学高三段考)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点(0,1),离心率e =32.(1)求椭圆C 的方程;(2)设直线x =my +1与椭圆C 交于A ,B 两点,点A 关于x 轴的对称点为A ′(A ′与B 不重合),则直线A ′B 与x 轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.[解] (1)依题意可得⎩⎪⎨⎪⎧b =1c a =32a 2=b 2+c2,解得a =2,b =1.所以,椭圆C 的方程是x 24+y 2=1(2)由⎩⎪⎨⎪⎧x 24+y 2=1x =my +1,得(my +1)2+4y 2=4,即(m 2+4)y 2+2my -3=0. 设A (x 1,y 1),B (x 2,y 2), 则A ′(x 1,-y 1),且y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4. 经过点A ′(x 1,-y 1),B (x 2,y 2)的直线方程为y +y 1y 2+y 1=x -x 1x 2-x 1.令y =0, 则x =x 2-x 1y 2+y 1y 1+x 1 =x 2-x 1y 1+x 1y 1+y 2y 1+y 2=x 2y 1+x 1y 2y 1+y 2.又∵x 1=my 1+1,x 2=my 2+1,∴当y =0时,x =my 2+y 1+my 1+y 2y 1+y 2=2my 1y 2+y 1+y 2y 1+y 2=-6m m 2+4-2m m 2+4-2m m 2+4=4,这说明,直线A ′B 与x 轴交于定点(4,0).2.如图,椭圆长轴的端点为A ,B ,O 为椭圆的中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为△PQM 的垂心,若存在,求直线l 的方程;若不存在,请说明理由.[解] (1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c =1,又∵AF →·FB →=(a +c )·(a -c )=a 2-c 2=1. ∴a 2=2,b 2=1,故椭圆的标准方程为x 22+y 2=1.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,设P (x 1,y 1),Q (x 2,y 2), ∵M (0,1),F (1,0),∴直线l 的斜率k =1.于是设直线l 为y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,得3x 2+4mx +2m 2-2=0,x 1+x 2=-43m , ①x 1x 2=2m 2-23. ②∵MP →·FQ →=x 1(x 2-1)+y 2(y 1-1)=0.又y i =x i +m (i =1,2),∴x 1(x 2-1)+(x 2+m )(x 1+m -1)=0,即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0.(*)将①②代入(*)式得2·2m 2-23-4m 3(m -1)+m 2-m =0,解得m =-43或m =1,经检验m=-43符合条件.故存在直线l ,使点F 恰为△PQM 的垂心, 直线l 的方程为3x -3y -4=0.[C 尖子生专练]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 的坐标.[解] (1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2.所以椭圆C 的标准方程是x 26+y 22=1.(2)①由(1)可得,F 的坐标为(-2,0), 设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3--=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y22=1,消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.所以PQ 的中点M 的坐标为⎝⎛⎭⎪⎫-6m 2+3,2m m 2+3, 所以直线OM 的斜率k OM =-m3.又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ . ②由①可得,|TF |=m 2+1, |PQ |=x 1-x 22+y 1-y 22,=m 2+y 1+y 22-4y 1y 2]=m 2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4m m 2+32-4·-2m 2+3=24m 2+m 2+3. 所以|TF ||PQ |=124·m 2+2m 2+1=124·⎝⎛⎭⎪⎫m 2+1+4m 2+1+4≥124+=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 所以当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).。