动力学的两类基本问题(讲课用正式版)
(完整版)动力学的两类基本问题
![(完整版)动力学的两类基本问题](https://img.taocdn.com/s3/m/cb206ca9ccbff121dc368311.png)
动力学的两类基本问题一、基础知识1、动力学有两类问题:⑴是已知物体的受力情况分析运动情况;⑵是已知运动情况分析受力情况,程序如下图所示。
2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________求出________,然后利用______________确定物体的运动情况(如位移、速度、时间等).3.根据运动情况确定受力情况,先分析物体的运动情况,根据____________求出加速度,再利用______________确定物体所受的力(求合力或其他力).其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。
解题步骤(1)确定研究对象;(2)分析受力情况和运动情况,画示意图(受力和运动过程);(3)用牛顿第二定律或运动学公式求加速度;(4)用运动学公式或牛顿第二定律求所求量。
例1. 一个静止在水平面上的物体,质量是2kg ,在8N 的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为0.25。
求物体4s 末的速度和4s 内的位移。
例2. 滑雪者以v 0=20m/s 的初速度沿直线冲上一倾角为30°的山坡,从刚上坡即开始计时,至3.8s 末,滑雪者速度变为0。
如果雪橇与人的总质量为m=80kg ,求雪橇与山坡之间的摩擦力为多少?g=10m/s 2 .运动学公式 a (桥梁) 运动情况:如v 、t 、x 等 受力情况:如F 、m 、μ m F a v = v o +atx= v o t + at 2 21v 2- v o 2 =2ax二、练习1、如图所示,木块的质量m=2 kg,与地面间的动摩擦因数μ=0.2,木块在拉力F=10 N作用下,在水平地面上从静止开始向右运动,运动5.2 m后撤去外力F.已知力F与水平方向的夹角θ=37°(sin 37°=0.6,cos 37°=0.8,g取10 m/s2).求:(1)撤去外力前,木块受到的摩擦力大小;(2)刚撤去外力时,木块运动的速度;(3)撤去外力后,木块还能滑行的距离为多少?(1)2.8N(2)5.2m/s (3)6.76m2、如图所示,一个放置在水平台面上的木块,其质量为2 kg,受到一个斜向下的、与水平方向成37°角的推力F=10 N 的作用,使木块从静止开始运动,4 s 后撤去推力,若木块与水平面间的动摩擦因数为 0.1.(取g=10 m/s2)求:(1)撤去推力时木块的速度为多大?(2)撤去推力到停止运动过程中木块的加速度为多大?(3)木块在水平面上运动的总位移为多少?3、如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)4、如图所示,有一足够长的斜面,倾角α=37°,一小物块从斜面顶端A处由静止下滑,到B 处后,受一与小物块重力大小相等的水平向右的恒力作用,小物块最终停在C点(C点未画出).若AB长为2.25 m,小物块与斜面间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s2.求:(1)小物块到达B点的速度多大?(2)B、C距离多大?5、如图所示,在倾角θ=30°的固定斜面的底端有一静止的滑块,滑块可视为质点,滑块的质量m=1kg,滑块与斜面间的动摩擦因数μ=36,斜面足够长.某时刻起,在滑块上作用一平行于斜面向上的恒力F=10N,恒力作用时间t1=3s后撤去.求:从力F开始作用时起至滑块返冋斜面底端所经历的总时间t及滑块返回底端时速度v的大小(g=10m/s2)6、(2013山东)如图所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10 m/s2.(1)求物块加速度的大小及到达B点时速度的大小;(2)拉力F与斜面夹角多大时,拉力F最小?拉力F的最小值是多少?7、如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1 C.∶1 D.1∶8、如下图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为( )A.μmg B.2μmg C.3μmg D.4μmg9、物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m B=2kg,A、B间动摩擦因数μ=0.2,如图所示.现用一水平向右的拉力F作用于物体A上,则下列说法中正确的是(g=10m/s2)()A.当拉力F<12N时,A相对B静止不动B.当拉力F>12N时,A一定相对B滑动C.无论拉力F多大,A相对B始终静止D.当拉力F=24N时,A对B的摩擦力等于6N10、物体A的质量m1=1kg,静止在光滑水平面上的木板B的质量为m2=0.5kg、长L=1m,某时刻A以v0=4m/s的初速度滑上木板B的上表面,为使A不致于从B上滑落,在A滑上B的同时,给B施加一个水平向右的拉力F,若A与B之间的动摩擦因数μ=0.2,试求拉力F大小应满足的条件。
动力学的两类基本问题
![动力学的两类基本问题](https://img.taocdn.com/s3/m/bd7ec701e418964bcf84b9d528ea81c758f52eb8.png)
自行车运动员通过蹬踏产生力矩, 使自行车快速旋转,根据角动量定 理可以优化运动员的蹬踏方式和节 奏。
04
机械能守恒定律
机械能守恒定律的表述
机械能守恒定律表述为
在一个孤立系统内,外力所做的功和内力所做的功的总和为零,机械能保持不变 。
机械能守恒定律也可以表述为
在一个系统内,除重力或弹力做功外,其他力对物体所做的功等于物体动能的改 变量。
动力学的重要性
动力学在工程技术和日常生活中有着广泛的 应用,如车辆、航空航天、机械、土木等领 域的设计和优化都需要用到动力学的理论和 方法。
动力学对于理解自然现象和解决实际问题具 有重要意义,如地球引力对物体运动的影响 、天体运动规律等都需要用到动力学的知识 。
动力学的发展推动了其他相关学科的发展, 如物理、化学、生物学等学科的发展都与动 力学密切相关。
飞行控制
研究如何通过控制飞机的 副翼、升降舵、方向舵等 系统,实现飞机的精确操 控。
飞行效率
研究如何通过优化飞行姿 态和轨迹,降低油耗,提 高飞行效率。
航天动力学
轨道力学
研究航天器在地球、太阳系等不 同引力场中的运动规律和轨道设
计。
姿态动力学
研究航天器在空间中的姿态稳定 和控制技术。
碰撞预警
研究如何通过监测航天器的轨道 和速度,预警可能发生的碰撞事
数学表达式为
MΔt=L2−L1,其中M表示作用在质点上的力矩,Δt表示力矩作用时间,L1和 L2分别表示质点初末角动量。
角动量定理的应用场景
卫星轨道
卫星绕地球运行时,受到地球的 引力作用,根据角动量定理可以 计算卫星的轨道半径和运行周期。
陀螺仪
陀螺仪利用角动量定理来保持自身 的旋转轴稳定,广泛应用于导航、 姿态控制等领域。
高考物理复习 动力学的两类基本问题
![高考物理复习 动力学的两类基本问题](https://img.taocdn.com/s3/m/aa64a462fe4733687e21aaad.png)
2007高考物理复习动力学的两类基本问题一、动力学的两类基本问题1、已知物体的受力情况求物体运动中的某一物理量:应先对物体受力分析,然后找出物体所受到的合外力,根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量.2、已知物体的运动情况求物体所受到的某一个力:应先根据运动学公式求得加速度a,再根据牛顿第二定律求物体所受到的合外力,从而就可以求出某一分力.综上所述,解决问题的关键是先根据题目中的已知条件求加速度a,然后再去求所要求的物理量,加速度象纽带一样将运动学与动力学连为一体.二、牛顿运动定律的解题步骤应用牛顿第二定律解决问题时,应按以下步骤进行.1.分析题意,明确已知条件和所求量2、选取研究对象;所选取的对象可以是一个物体,也可以是几个物体组成的系统,同一个题目,根据题意和解题需要也可以先后选取不同的研究对象。
3.对其进行受力情况分析和运动情况分析(切莫多力与缺力);4.根据牛顿第二定律列出方程;说明:如果只受两个力,可以用平行四边形法则求其合力,如果物体受力较多,一般用正交分解法求其合力,如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力;当求某一个力时,可沿该力的方向分解加速度;5.把各量统一单位,代入数值求解;注意事项:①由于物体的受力情况与运动状态有关,所以受力分析和运动分析往往同时考虑,交叉进行,在画受力分析图时,把所受的外力画在物体上(也可视为质点,画在一点上),把v0和a的方向标在物体的旁边,以免混淆不清。
②建立坐标系时应注意:A.如果物体所受外力都在同一直线上,应建立一维坐标系,也就是选一个正方向就行了。
如果物体所受外力在同一平面上,应建立二维直角坐标系。
B.仅用牛顿第二定律就能解答的问题,通常选加速度a的方向和垂直于a的方向作为坐标轴的正方向,综合应用牛顿定律和运动学公式才能解答的问题,通常选初速度V0的方向和垂直于V0的方向为坐标轴正方向,否则易造成“十”“一”号混乱。
动力学的两类基本问题
![动力学的两类基本问题](https://img.taocdn.com/s3/m/f50f29c376a20029bd642d9a.png)
03-4 动力学的两类基本问题【基础导学】1、已知物体的受力情况分析物体的运动情况和已知物体的运动情况分析物体的受力情况是动力学最基本的两类问题,联系力和运动的桥梁是 。
2、牛顿运动定律两类基本问题解题的一般步骤①确定研究对象,对研究对象进行受力分析,并画出物体的受力图. ②根据力的合成或分解求出合外力(大小、方向). ③根据牛顿第二定律列方程,并求出物体的加速度.④结合题中所给的物体运动的初始条件,选择运动学公式求出所需要的运动学量或根据牛顿第二定律确定物体所受的合外力从而求出未知力. 【典例剖析】例1、如图所示,一个人用与水平方向成θ=30°角的斜向下的推力F 推一个质量为20 kg 的箱子匀速前进,如图(a)所示,箱子与水平地面间的动摩擦因数为μ=0.40.求:(1)推力F 的大小;(2)若该人不改变力F 的大小,只把力的方向变为与水平方向成30°角斜向上去拉这个静止的箱子,如图(b)所示,拉力作用2.0 s 后撤去,箱子最多还能运动多长距离?(g 取10 m/s 2).例2、航模兴趣小组设计出一架遥控飞行器,其质量m =2 kg ,动力系统提供的恒定升力F =28 N .试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g 取10 m/s 2.(1)第一次试飞,飞行器飞行t 1 = 8 s 时到达高度H = 64 m .求飞行器所受阻力f 的大小;(2)第二次试飞,飞行器飞行t 2 = 6 s 时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h ;例3、在某一旅游景区,建有一山坡滑草运动项目. 该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m =80 kg ,他从静止开始匀加速下滑,在时间t =5 s 内沿斜面滑下的位移x =50 m. (不计空气阻力,取g =10 m/s 2,结果保留2位有效数字)问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F 为多大? (2)滑草装置与草皮之间的动摩擦因数μ为多大?例4、如图所示,物体从光滑斜面上的A 点由静止开始下滑,经过B 点后进入水平面(设经过B 点前后速度大小不变),最后停在C 点.每隔0.2 s 通过速度传感器测量物体的瞬时速度.下表给出了部分测量数据.(重力加速度g =10 m/s 2求:(1)斜面的倾角α;(2)物体与水平面之间的动摩擦因数μ; (3)t =0.6 s 时的瞬时速度v .【课堂精练】1、如图所示,物体沿着倾角不同而底边相同的光滑斜面由顶端从静止开始滑到底端(( ) A.斜面倾角越大,滑行时间越短 B.斜面倾角越大,滑行时间越长 C.斜面倾角越大,滑行的加速度越大 D.斜面倾角越大,滑行的平均速度越大2、如图所示,传送带保持1 m/s的速度运动,现将一质量为0.5 kg的小物体从传送带左端放上,设物体与皮带间动摩擦因数为0.1,传送带两端水平距离为2.5 m ,则物体从左端运动到右端所经历的时间为( )A. 5 s B .(6-1)s C .3 s D .5 s3、质量m =2.0 kg 的物体静止在水平地面上,用F =18 N 的水平力推物体,t =2.0 s 内物体的位移s =10 m ,此时撤去力F .求:(1)推力F 作用时物体的加速度; (2)撤去推力F 后物体还能运动多远. 4、如图所示,左图表示用水平恒力F 拉动水平面上的物体,使其做匀加速运动.当改变拉力的大小时,相对应的匀加速运动的加速度a 也会变化,a 和F 的关系如下图所示.(1)图线的斜率及延长线与横轴的交点表示的物理意义分别是什么?(2)根据图线所给的信息,求物体的质量及物体与水平面的动摩擦因数;(3)在该物体上放一个与该物体质量相同的砝码,保持砝码与该物体相对静止,其他条件不变,请在右图的坐标上画出相应的a —F 图线.(不要求写出作图过程)。
动力学的两类基本问题·超重和失重
![动力学的两类基本问题·超重和失重](https://img.taocdn.com/s3/m/60a36a2a647d27284b735129.png)
学科:物理教学内容:动力学的两类基本问题·超重和失重【教学指导】1应用牛顿运动定律求解的问题主要有两类:一类是已知受力情况求运动情况;另一类是已知运动情况求受力情况.在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.2在平衡状态时,物体对水平支持物的压力(或对悬绳的拉力)大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力了.当物体的加速度向上时,物体对支持物的压力大于物体的重力,这种现象叫做超重现象;当物体的加速度向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.特别的,当物体向下的加速度为g时,物体对支持物的压力变为零,这种状(1(2(3)在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、3.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点).分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程.隔离法和整体法是互相依存、互相补充的.两种方法互相配合交替应用,常能更有效地解决有关连接体的问【方法解析】1.对物体进行受力分析时,强调较多的是隔离法,但采用整体法求解,常能化难为易,化繁为简.如图3—2—1,物块b 沿静止的粗糙斜面a 匀速下滑,判断地面与斜面间有无摩擦力.由于系统处于平衡状态,系统的重力与地面对它们的支持力平衡,水平方向无其他外力,故在水平方向不存在相对运动的趋势,图3—2—12(1)选取研究对象.所选的研究对象可以是一个物体,也可以是多个物体组成的系统.同一题目,(2(3)根据牛顿第二定律和运动学公式列方程.由于所用的公式均为矢量,所以列方程过程中,要特别注意各量的方向.一般情况均以加速度的方向为正方向,分别用正负号表示式中各量的方向,将矢量运(4【典型例题精讲】[例1]静止在水平地面上的物体的质量为2 kg ,在水平恒力F 推动下开始运动,4 s 末它的速度达到4 m/s ,此时将F 撤去,又经6 s 物体停下来,如果物体与地面的动摩擦因数不变,求F 【解析】 物体的整个运动过程分为两段,前4 s 物体做匀加速运动,后6 s前4 sa 1=4401=-t v m/s 2=1 m/s2设摩擦力为FfF -F f =ma 1后6sa 2=6402-=-t v m/s 2=-32m/s2-F f =ma 2由①②可求得水平恒力FF =m (a 1-a 2)=2×(1+32) N =3.3 N【说明】 (1)本例属于已知运动情况求受力情况的问题.分析思路为:先由运动情况求加速度,再(2)在分析物体的运动过程中,一定弄清整个运动过程中物体的加速度是否相同,若不同,必须分段处理,加速度改变时的瞬时速度即是前后过程的联系量.分析受力时要注意前后过程中哪些力发生了变【设计意图】本题是已知运动情况求受力情况.通过本例帮助学生掌握这类问题的解题方法.同时,[例2]质量为m =2 kg 的木块原来静止在粗糙水平地面上,现在第1、3、5…奇数秒内给物体施加方向向右、大小为F 1=6 N 的水平推力,在第2、4、6…偶数秒内给物体施加方向仍向右、大小为F 2=2 N 的水平推力,已知物体与地面间的动摩擦因数μ=0.1,取g =10 m/s 2,问:(1)木块在奇数秒和偶数秒内各做什么运动? (2)经过多长时间,木块位移的大小等于40.25 m?【解析】 以木块为研究对象,它在竖直方向受力平衡,水平方向仅受推力F 1(或F 2)和摩擦力F f 的作用.由牛顿第二定律可判断出木块在奇数秒内和偶数秒内的运动,结合运动学公式,即可求出运动时(1a1=21021.0611⨯⨯-=-=-m mg F mF F fμm/s 2=2 m/s 2a2=21021.0222⨯⨯-=-=-m mg F mF F fμm/s 2=0所以,木块在奇数秒内做a =a 1=2 m/s 2的匀加速直线运动,在偶数秒内做匀速直线运动.(2)在第1 ss 1=22122121⨯⨯=at m =1 m至第1 sv1=at =2×1 m/s =2 m/s在第2 s 内,木块以第1 s 末的速度向右做匀速运动,在第2 ss2=v 1t =2×1 m =2 m 至第2 sv2=v 1=2 m/s在第3 s 内,木块向右做初速度等于2 m/s 的匀加速运动,在第3 ss3=v 2t +21at 2=2×1 m +21×2×12 m =3 m至第3 sv3=v 2+at =2 m/s +2×1 m/s =4 m/s在第4 s 内,木块以第3 s 末的速度向右做匀速运动,在第4 ss4=v 3t =4×1 m =4 m 至第4 sv4=v 3=4 m/s由此可见,从第1 s 起,连续各秒内木块的位移是从1开始的一个自然数列.因此,在n ss n =1+2+3+…+n =2)1(+n n当sn =40.25 m 时,n 的值为8<n <9.取n =8,则8 ss 8=2)18(8+m =36 m至第8 s 末,木块的速度为v 8=8 m/s设第8 s 后,木块还需向右运动的时间为t x ,对应的位移为s x =40.25 m -36 m =4.25 m ,由s x =v 8t x +21atx 2即4.25=8tx +21×2t x 2解得tx =0.5 s所以,木块位移大小等于40.25 m 时需运动的时间T =8 s +0.5 s =8.5 s【思考】 若根据v -t【思考提示】 物体的v -t由v -t 图象不难求出物体在第1 s 、第2 s 、第3 s 、第4 s …第n s 内的位移分别为1 m 、2 m 、3 m 、4 m…nm .则前n ssn =(1+2+3+…+n )m =2)1(nn +m当sn =40.25 m 时,8<n <9,前8 ss8=28)18(⨯+m =36 m8 s 后物体的位移为:sx =s -s 8=40.25 m -36 m =4.25 msx =v 8t x +21at x 2求得tx =0.5 s ,则物体发生40.25 m 的位移所需时间为8.5 s.【说明】 (1)本题属于已知受力情况求运动情况的问题,解题思路为先根据受力情况由牛顿第二定(2)根据物体的受力特点,分析物体在各段时间内的运动情况,并找出位移的一般规律,是求解本题的关键.【设计意图】 (1(2)应用数学知识解决物理问题的能力是高考考查的能力之一,当然也是高三复习重点培养的能力之一.通过本例说明了应用数列知识解决物理问题的方法.[例3]某人在地面上最多能举起60 kg 的重物,当此人站在以5 m/s 2的加速度加速上升的升降机中,最多能举起多少千克的重物?(g 取10 m/s 2)【解析】 本题属于超重的问题,分析时要抓住一点,即在不同的环境下人的最大上举力(人对物体的推力)是不变的. 这一点想明白了,之后列方程求解就简单了.某人在地面上能举起60 kg 的重物.则他的最大举力为F =600 N .设在加速上升的升降机中最多能举起质量为m 的物体.取物体m 为研究对象,它只受重力mg 和举力F 的作用,由牛顿第二定律可得:F -mg =ma所以m =510600+=+ag F kg =40 kg【思考】【思考提示】 当升降机的加速度方向向下时,此人可举起质量更大的物体,向下的加速度越接近重【说明】 (1(2)物体是处于超重状态还是处于失重状态,与物体的运动速度大小及方向无关,仅与加速度方向【设计意图】 虽然新大纲中不再把超重和失重作为知识点出现,但仍然要求做超重和失重的演示实验,这说明新大纲仍然把超重和失重作为牛顿运动定律的应用,要求学生掌握.通过本例帮助学生进一步理解超[例4]如图3—2—2所示,在倾角θ=37°的足够长的固定的斜面上,有一质量m =1 kg 的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细线的拉力F =9.6 N 的作用,从静止开始运动,经2 s 绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s .(sin37°=0.6,g =10 m/s 2图3—2—2【解析】 本题为典型的已知物体受力求物体运动情况的动力学问题,物体运动过程较为复杂,应分阶段进行过程分析,并找出各过程的相关量,从而将各过程有机地串接在一起.第一阶段:在最初2 s 内,物体在F =9.6 N 拉力作用下,从静止开始沿斜面做匀加速运动,据受力分析图3—2—3图3—2—3沿斜面方向:F -mg sin θ-Ff =ma 1 沿y 方向:FN =mg cos θ 且Ff =μF Na1=m mg mg F θμθcos sin --=2 m/s 22 s 末绳断时瞬时速度v1=a 1t 1=4 m/s第二阶段:从撤去F 到物体继续沿斜面向上运动到达速度为零的过程,设加速度为a 2则a2=m mg mg )cos sin (θμθ+-=-7.6 m/s 2设从断绳到物体到达最高点所需时间为t2v2=v 1+a 2t 2所以 t 2=210a v -=0.53 s第三阶段:物体从最高点沿斜面下滑,该第三阶段物体加速度为a 3,所需时间为t 3由牛顿第二定律可知:a 3=g sin θ-μg cos θ=4.4 m/s 2,速度达到v 3=22 m/s ,所需时间t 3==-330a v 5 s综上所述:从绳断到速度为22 m/s 所经历的总时间t =t 2+t 3=0.53 s +5 s =5.53 s 【思考】 若本题的问题改为:“绳断后多长时间物体的速度大小为2 m/s ”结果如何?【思考提示】 绳断后物体的速度从4 m/s 减小到2 m/s 所用时间为:t2′=6.742212--=-'a v v s =0.26 s物体的速度减小到零后,又反向增大2 m/s 所用时间为t3′=4.42033=-'a v s =0.45 s t ′=t2+t 3′=0.53 s +0.45 s =0.98 s则从绳断后物体的速度大小达到2 m/s 所用的时间分别为0.26 s 、0.98 s【设计意图】 通过本例培养学生分析综合问题的能力.[例5]如图3—2—4所示,传输带与水平间的倾角为θ=37°,皮带以10 m/s 的速率运行,在传输带上端A 处无初速地放上质量为0.5 kg 的物体,它与传输带间的动摩擦因数为0.5 ,若传输带A 到B 的长度为16 m ,则物体从A 运动到B图3—2—4【解析】 首先判定μ与tan θ的大小关系,μ=0.5,tan θ=0.75,所以物体一定沿传输带对地下滑,不可能对地上滑或对地相对静止.其次皮带运行速度方向未知,而皮带运行速度方向影响物体所受摩擦力方向,所以应分别讨论. 当皮带的上表面以10 m/s 速度向下运行时,刚放上的物体相对皮带有向上的相对速度,物体所受滑动摩擦力方向沿斜坡向下,(如图3—2—5所示)图3—2—5a 1=m mg mg θμθcos sin +=10 m/s2物体赶上皮带对地速度需时间t 1=1a v=1s在t 1ss 1=21a 1t 12=5 ma 2=m mg mg θμθcos sin -=2 m/s2物体以2 m/s 2加速度运行剩下的11 m 位移需时间t2则s 2=v t 2+21a 2t 22即11=10t 2+21×2t 22t 2=1 s (t 2′=-11 s所需总时间t =t 1+t 2=2 s当皮带上表面以10 m/s 速度向上运行时,物体相对于皮带一直具有沿斜面向下的相对速度,物体所受滑动摩擦方向沿斜坡向上且不变,设加速度为a3则a 3=m mg mg θμθcos sin -=2 m/s2物体从传输带顶滑到底所需时间为t则s =21a 3t ′2 ; t ′=216223⨯=a s s =4 s【说明】 本题中物体在本身运动的传送带上的运动,因传输带运动方向的双向性而带来解答结果的多重性.物体所受滑动摩擦力的方向与物体相对于传输带的相对速度方向相反,而对物体进行动力学运算【设计意图】 (1)加深对摩擦力概念的理解;(2)引导学生注意问题的多解性,培养学生严谨、细致、全面的思维品质.【达标训练】【基础练习】1.一物块靠在竖直墙壁上,受到变化规律为F=kt(k>0)的水平外力作用.设物块从t=0时刻起由静止开始沿墙壁竖直下落,物块与墙壁间的摩擦力F随时间的变化图象如图3—2—6图3—2—6A.在0~t1B.在0~t1C.物块的重力大小等于aD.物块受到的最大静摩擦力恒等于b【解析】0~t1内:F增大,则F f增大,竖直方向合力向下且减小,物体做加速度减小的加速运动;t 1~t2内F f大于G,故合力向上,物体做加速度增大的减速运动;t2时刻以后,物体静止,故F f=G=a.【答案】 C2.放在光滑水平面上的物体受三个平行于水平面的共点力作用而处于静止状态,已知F2垂直于F3.若三个力中去掉F1,物体产生的加速度为2.5 m/s2;若去掉F2,物体产生的加速度为1.5 m/s2;若去掉F3,A.1.5 m/s2B.2.0 m/s2C.2.5 m/s2D.4.0 m/s2【解析】由于物体受F1、F2、F3作用而处于静止状态,故三力的合力为零.根据题意画出三个力的示意图如下图所示,去掉F时,F2、F3的合力大小等于F1F1=ma1①去掉F 2时,F1、F3的合力的大小等于F2F2=ma②去掉F 3时,F1、F2的合力的大小等于F3F 3=ma 3 ③又有F3=2221F F -a3=2222215.15.2-=-a a m/s 2=2.0 m/s 2【答案】 B3.如图3—2—7所示,一根轻弹簧的一端系着一个物体,手拉弹簧的另一端,使弹簧和物体一起在图3—2—7A B C D【解析】 当手突然停止运动则F 消失,物体仍受弹簧拉力,故仍加速向右运动;当弹簧恢复原长后,继续被压缩,则物体受弹簧弹力,故减速向右运动.【答案】 C4.如图3—2—8所示,一物体从竖直平面内圆环的最高点A 处由静止开始沿光滑弦轨道AB 下滑至B图3—2—8③只要知道倾角θA .只有① BC .①③D【解析】 设直径为d ,当物体沿与竖直方向成θ角的弦下滑时,加速度a =g cos θ,弦长s =d cos θ所以物体沿弦滑动时间t =gd a s 22=.可见,t 的大小仅由直径d 决定,而与θ无关.【答案】 D5.一间新房即将建成时要封顶,考虑到下雨时落至房项的雨滴能尽快地淌离房顶,要设计好房顶的坡度.设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么,图3—2—9中所示的四种情况中符合要求的图3—2—9【解析】 如下图所示,设斜面底边长为l ,倾角为θa =g sin θs =θcos lt =θθθ2sin 4cos sin 22g l g la s ==由于l 、g 一定,所以当θ=45°时,tt min =gl 4 选项C【答案】 C6.质量为0.8 kg 的物体在一水平面上运动,图3—2—10所示的两条直线分别表示物体受到水平拉力作用和不受拉力作用的v —t 图线.则图线b 与上述的_______状态相符.该物体所受到的拉力是_______N图3—2—10【解析】 由图知,图线b 表示加速运动,图线a 表示减速运动.由图线a 知a 减=1.5 m/s 2,所以摩擦力F f =ma 减=1.2 N .由图线b 知a 加=0.75 m/s 2,因F -F f =ma 加,所以F =ma 加+F f =1.8 N【答案】 受F 拉力作用;1.87.小磁铁A 重10 N ,吸在一块水平放置的固定铁板B 的下面,如图3—2—11所示.要竖直向下将A 拉下来,至少要用15 N 的力,若A 、B 间的动摩擦因数为0.3,现用5 N 的水平力推A 时,A 的加速度大小是______m/s 2.(g =10 m/s 2图3—2—11【解析】 以小磁铁为研究对象,受力分析如下图A 、B 间弹力F N =15 N .F水-μF N =maa =1153.05⨯-=-mF F Nμ水m/s 2=0.5 m/s 2【答案】 0.58.质量为60 kg 的人站在升降机中的台秤上,升降机以2 m/s 的速度竖直下降,此人突然发现台秤的读数变为630 N ,并持续2 s ,求升降机在这2 s 内下降了多少米?(g =10 m/s 2)【解析】 人处于超重状态,升降机的加速度方向向上,它正减速下降,取运动方向为正方向,由牛mg -FN =maa =606301060-⨯=-m F mg N m/s 2=-0.5 m/s 22 svt =v 0+at =2 m/s +(-0.5)×2 m/s =1 m/s升降机在2 s 末正继续下降,它在开始减速下降的2 sh =21220+=+t v v t ×2 m =3 m【答案】 3 m【能力突破】9.在建筑工地上,有六人一起打夯,其中四个人牵绳,绳跟竖直方向成60°角,扶夯的两人用力方向竖直向上.设每人用力F 均为300 N ,每次用力时间为0.2 s ,夯重400 N .求夯上升的高度.又设夯落地时跟地面接触的时间为0.1 s ,求夯每次打击地面所受到的力.(g =10 m/s 2,【解析】 夯加速上升时的加速度为a 12F +4F cos60°-mg =ma 1a1=4040030044-⨯=-m mg F m/s 2=20 m/s 2h1=21a 1t 12=21×20×0.22 m =0.4 mv1=a 1t 1=20×0.2 m/s =4 m/sh 2=10216221⨯=gv m =0.8 mH =h1+h 2=1.2 mv2=2.11022⨯⨯=gH m/s=26m/sa2=1.062=∆∆t v m/s 2=206m/s 2F -mg =maF =m (g +a )=40×(10+206) N=2360 N【答案】 1.2 m ;2360 N10.如图3—2—12所示,在倾角为θ的光滑坡面上放一块上表面粗糙,下表面光滑的木板,木块质量为m 1,质量为m 2的人在木板上应向_____以加速度____奔跑时,可使木板不动.图3—2—12【解析】 因木板有下滑的趋势,故人对木板的摩擦力应沿斜面向上,即人应沿斜面向下奔跑.对木板进行受力分析知,人对木板的摩擦力应为m 1g sin θ.以人为研究对象,人所受的合力为:m 1g sin θ+m 2g sin θ,利用牛顿第二定律:F 合=ma 得m 1g sin θ+m 2g sin θ=m 2a ,可得a =221m m m +g sin θ【答案】 沿斜面向下;221m m m +g sin θ11.滑雪运动员依靠手中的撑杆用力往后推地,获得向前的动力.一运动员的质量是60 kg ,撑杆对地面向后的平均作用力是300 N ,力的持续作用时间是0.4 s ,两次用力之间的间隔时间是0.2 s ,不计摩擦阻力.若运动员从静止开始做直线运动,求6 s 内的位移是多少?【解析】a =60300=m F m/s 2=5 m/s 2第一个0.4 ss1=21at 2=21×5×0.42 m =0.4 m第一个0.2 ss 1′=at ·t ′=5×0.4×0.2 m =0.4 m 第二个0.4 s ,运动员的位移是:s2=at ·t +21a ·t 2=5×0.42 m +21×5×0.42 m=1.2 m =3s1第二个0.2 ss 2′=a ·2t ·t ′=0.8 m =2s 1 第三个0.4 ss3=a ·2t ·t +21a ·t 2=5s 1第三个0.2 ss 2′=a ·3t ·t ′=3s 1┇6 s 内共有10个0.6 ss =s 1+3s 1+…+19s 1+1s 1′+2s 1′+…10s 1′=62 m【答案】 62 m12.如图3—2—13所示,在倾角为θ的光滑斜面上端系一劲度系数为k 的轻弹簧,弹簧下端连有一质量为m 的小球,球被一垂直于斜面的挡板A 挡住,此时弹簧没有形变.若手持挡板A 以加速度a (a <g sin θ图3—2—13(1(2【解析】 (1mg sin θ-kx =max =k a g m )sin (-θ当x =21at 2得从挡板开始运动到球与挡板分离所经历的时间为t =kaa g m a x )sin (22-=θ(2kx ′=mg sin θx ′=k mg θsin【答案】 (1)ak )a sin g (m 2-θ(2)k mg θsin※13.据报道,1989年在美国加利福尼亚州发生的6.9级地震,中断了该地尼米兹高速公路的一段,致使公路上高速行驶的约200辆汽车发生了重大的交通事故,车里的人大部分当即死亡,只有部分系安全带的人幸免.假设汽车高速行驶的速度达到108 km/h ,乘客的质量为60 kg ,当汽车遇到紧急情况时,在2s【解析】 刹车时汽车的加速度大小为a =230=∆t v m/s 2=15 m/s 2F =ma =60×15 N =900 N【答案】 使人随汽车刹车做减速运动的力的大小为900 N ,这个力只有靠安全带提供,否则,人将由于惯性而发生事故.※14.如图3—2—14所示,质量相同的木块A 、B 用轻弹簧连接置于光滑的水平面上,开始弹簧处于自然状态.现用水平恒力F 推木块A ,则从开始到弹簧第一次被图3—2—14①两木块速度相同时,加速度aA =aB ②两木块速度相同时,加速度aA <aB ③两木块加速度相同时,速度vA <vB ④两木块加速度相同时,速度vA >v BA .只有② BC .①③D【解析】 在弹簧第一次压缩到最短的过程中,A 做加速度逐渐减小的加速运动,B 做加速度逐渐增大的加速运动,在a A =a B 之前a A >a B ,故经过相等的时间,A 增加的速度大,B 增加的速度小,所以,在a A =a B 时v A >v B ,④正确.当v A =v B 时,弹簧的压缩量最大,弹力最大,设为F m ,若F >F m ,则A 在此之前一直做加速度逐渐减小的加速运动,B 做加速度逐渐增大的加速运动,由于a A =a B 时v A >v B ,所以v A=v B 时a A <a B ;若F <F m 时,则a A =m Fa m F F B mm ,=-,虽然a A <a B .总之,在v A =v B 时,a A <a B ,②正确.所以D【答案】 D※15.某市规定卡车在市区一特殊路段的速度不得超过36 km/h ,有一辆卡车在危急情况下紧急刹车,车轮抱死滑动一段距离后停止.交警测得刹车过程中车轮在路面上擦过的笔直痕迹长9 m ,从厂家的技术手册中查得该车轮胎和地面的动摩擦因数是0.8.(1)假若你就是这位交警,请你判断卡车是否超速行驶?(2)减小刹车距离是避免交通事故的最有效的途径,刹车距离除与汽车的初速度、制动力有关外,还须考虑驾驶员的反应时间:即从发现情况到肌肉动作操纵制动器的时间.假设汽车刹车制动力是定值F ,驾驶员的反应时间为t0,汽车的质量为m ,行驶的速度为v 0.请你推导出刹车距离s【解析】 (1)急刹车时汽车做减速运动的加速度为a =mmg μ=μg =8 m/s 2v0=9822⨯⨯=as m/s =12 m/s >36 km/h(2a =mFs 1=F mv av 22220=s2=v 0t 0s =s 1+s 2=v 0t 0+Fm v 22【答案】 (1)违犯规定超速行驶;(2)s =v 0t 0+Fmv 22※16.法国人劳伦特·菲舍尔在澳大利亚伯斯的冒险世界进行了超高空特技跳水表演,他从30 m 高的塔上跳下准确地落入水池中.已知水对他的阻力(包括浮力)是他重力的3.5倍,他在空中时空气对他的阻力是他重力的0.2倍,试计算需要准备一个至少多深的水池?(g =10 m/s 2)【解析】a 1=m mgmg 2.0-=0.8 g =8 m/sv =304m/s 3082211=⨯⨯=h am/sa 2=m mg mg -5.3=2.5 g =25 m/s2h 2=252480222⨯=a v m =9.6 m即水池的深度至少为9.6 m .【答案】 9.6 m※17.如图3—2—15所示,一辆长L =2 m ,高h =0.8 m ,质量为M =12 kg 的平顶车,车顶光滑,在牵引力为零时,仍在向前运动,车与路面间的动摩擦因数μ=0.2,当车速为v 0=7 m/s 时,把一个质量为m =1 kg 的物块(视为质点)轻轻放在车顶的前端.问物块落地时,落地点距车前端多远?(重力加速g 取10 m/s 2)图3—2—15【解析】 由于m 与M 无摩擦,所以开始m 在车上静止,离开车后做自由落体运动,放上m 后地面对M 的摩擦力F 1=μ(m +M )g ,则Ma 1=)1(1M m g mF +=μ=0.3×10×)1211(+m/s 2=3.25 m/s 2 ①m 离开M 前,M 做减速运动,位移s 1=L ,设m 即将落地时车速度为v ,则由运动学公式v 02-v 2=2a 1L,v =L a v 1202-=6 m/s②物块m 下落时间t =108.022⨯=g h s =0.4 sm 离开M 后,M 的加速度a2=g M Mg M F μμ==2=3 m/s 2在0.4 ss2=v t -21a 2t 2=6×0.4 m -21×3×0.42 m =2.16 ms =s2+L =2.16 m +2 m =4.16 m【答案】 4.16 m。
高一物理动力学两类基本问题
![高一物理动力学两类基本问题](https://img.taocdn.com/s3/m/355f8e1df18583d049645971.png)
孙恒芳教你学物理-----动力学的两类基本问题专题【考点自清】一、两类动力学问题牛顿第二定律确定了运动和力的关系,使我们能够把物体的受力情况与运动情况联系起来。
利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向。
1、已知受力情况求运动情况已知物体的受力情况,根据牛顿第二定律,可以求出物体的运动情况;已知物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位移,也就可以求解物体的运动情况。
可用程序图表示如下:2、已知物体的运动情况求物体的受力情况根据物体的运动情况,由运动学公式可以求出加速度,再根据牛顿第二定律可确定物体的受力情况,从而求出未知的力,或与力相关的某些物理量。
如动摩擦因数、劲度系数、力的方向等。
可用程序图表示如下:二、解答两类动力学问题的基本方法及步骤1.基本方法⑴明确题目中给出的物理现象和物理过程的特点,如果是比较复杂的问题,应该明确整个物理现象是由几个物理过程组成的,找出相邻过程的联系点,再分别研究每一个物理过程.⑵根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.图中应注明力、速度、加速度的符号和方向.对每一个力都应明确施力物体和受力物体,以免分析力时有所遗漏或无中生有.⑶应用牛顿运动定律和运动学公式求解,通常先用表示物理量的符号运算,解出所求物理量的表达式来,然后将已知物理量的数值及单位代入,通过运算求结果.应事先将已知物理量的单位都统一采用国际单位制中的单位.⑷分析流程图两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:2、应用牛顿第二定律的解题步骤(1)明确研究对象。
根据问题的需要和解题的方便,选出被研究的物体。
(2)分析物体的受力情况和运动情况,画好受力分析图,明确物体的运动性质和运动过程。
(3)选取正方向或建立坐标系,通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向。
(完整版)动力学两类基本问题
![(完整版)动力学两类基本问题](https://img.taocdn.com/s3/m/efdb7cb7f61fb7360b4c655b.png)
动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
3.2牛二应用一:动力学的两类问题
![3.2牛二应用一:动力学的两类问题](https://img.taocdn.com/s3/m/7a587027227916888486d7ba.png)
3.2牛二应用一:动力学的两类基本问题一、学习目标会用牛顿第二定律分析和解决两类基本问题:已知受力情况求解运动情况,已知运动情况求解受力情况。
二、知识梳理1.已知力求运动:知道物体受到的作用力,应用牛顿第二定律求加速度,如果再知道物体的初始运动状态,应用运动学公式就可以求出物体的运动情况——任意时刻的位置和速度,以及运动轨迹。
2.已知运动求力:知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
3.两类基本问题的解题步骤:(1)确定研究对象,明确物理过程;(2)分析研究对象的受力情况和运动情况,必要时画好受力图和运动过程示意图;(3)根据牛顿第二定律和运动学公式列方程;合力的求解常用合成法或正交分解法;要特别注意公式中各矢量的方向及正负号的选择,最好在受力图上标出研究对象的加速度的方向;(4)求解、检验,必要时需要讨论。
三、典型例题1.有三个光滑斜轨道1、2、3,它们的倾角依次是60°,45°,30°,这些轨道交于O点.现有位于同一竖直线上的三个小物体甲、乙、丙分别沿这三个轨道同时从静止自由下滑,如图所示,物体滑到O点的先后顺序是()A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后2.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速率v0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,g取10 m/s2,根据图象可求出()A.物体的初速率v0=3 m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x的最小值x min=1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上3.我国歼-15舰载战斗机首次在“辽宁舰”上成功降落,有关资料表明,该战斗机的质量m=2.0v=80 m/s减小到零所用时间t=2.5 ×104 kg,降落时在水平甲板上受阻拦索的拦阻,速度从s.若将上述运动视为匀减速直线运动,求:该战斗机在此过程中(1)加速度的大小a;(2)滑行的距离x;(3)所受合力的大小F.4.如图所示,一质量为m =2kg 的物体静止在水平地面上,物体与水平地面间的动摩擦因数μ=0.2,现对物体施加一水平向右的恒定拉力F =12N ,取g =10m/s 2。
动力学两类基本问题
![动力学两类基本问题](https://img.taocdn.com/s3/m/f1dc4d074431b90d6c85c7d8.png)
动力学的两类基本问题一、 已知物体的受力情况,求解物体的运动情况 【例1】质量m =1.5kg 的物体,在水平恒力F =15N 的作用下,从静止开始运动0.5s 后撤去该力,物体继续滑行一段时间后停下来。
已知物体与水平面的动摩擦因数为μ=0.2,g 取10m/s 2,求:(1)恒力作用于物体时的加速度大小;(2)撤去恒力后物体继续滑行的时间;(3)物体从开始运动到停下来的总位移大小。
【变式拓展1】质量m =4kg 的物块,在一个平行于斜面向上的拉力F =40N 作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数µ=0.2,力F 作用了5s ,求物块在5s 内的位移及它在5s 末的速度。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)【变式拓展2】如图所示,质量m =2kg 的物体与水平地面间的动摩擦因数为μ=0.5,在与水平成θ=37°,大小F =10N 的恒力作用下,从静止开始向右运动,经过t 1=4.0s 时撤去恒力F ,求物体在地面上滑行的总位移s .(g =10m/s 2,sin37°=0.6,cos37°=0.8)【变式拓展3】如图所示,放在水平面上质量为G=10N 的物体受到一个斜向下方的10N 的推力F 作用,这个力与水平方向成θ=37°角,在此恒力的作用下,物体匀速滑动.(g=10m/s 2,要求保留两位有效数字,sin37°=0.6 cos37°=0.8)求:(1)物体与水平面间的滑动摩擦因数?(2)若将此力改为水平向右,从静止开始求10s 末物体速度和10s 内物体的位移?【变式拓展4】如图所示,质量m=2kg 的物体静止于水平地面的A 处,A 、B 间距L=20m.用大小为30N,沿水平方向的外力拉此物体,经t 0=2s 拉至B 处.(取g=10m/s 2)(1)求物体与地面间的动摩擦因数μ;(2)该外力作用一段时间后撤去,使物体从A 处由静止开始运动并能到达B 处,求该力作用的最短时间t .【变式拓展6】质量为10kg的物体在F=200N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°.力F作用2秒钟后撤去,物体在斜面上继续上滑了1.25秒钟后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移s.(已知sin37°=0.6,cos37°=0.8.g=10m/s2)二、已知运动情况求物体的受力情况【例1】质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s停在B点.已知A、B两点间的距离s=5.0m,物块与水平面间的动摩擦因数μ=0.20,取重力加速度g=10m/s2,求恒力F【变式拓展1】如图所示,质量为0.5kg的物体在与水平面成300角的拉力F作用下,沿水平桌面向右做直线运动,经过0.5m的距离速度由0.6m/s变为0.4m/s,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F的大小。
第6讲 动力学两类基本问题
![第6讲 动力学两类基本问题](https://img.taocdn.com/s3/m/f9f8997648d7c1c708a145a9.png)
第六讲动力学两类基本问题一、力F和运动速度v的动态分析过程1.由牛顿运动定律可知,力是改变物体运动状态的原因,即:力→加速度→速度变化(运动状态改变),从而可以更加深刻地理解加速度与速度无关的说法,即物体受到的合外力决定了物体的加速度的大小,而加速度的大小决定了单位时间内速度的变化量,而与物体当时的速度无关。
2.力越大,则产生的加速度越大,速度变化越快,可能增加的越快,也可能是减小的越快;力的方向与加速度的方向一定相同,但不一定与物体的速度方向相同,当二者相同时,物体做加速运动,当二者相反时,物体做减速运动。
1、下述力、加速度、速度三者的关系中,正确的是( )A.合外力发生改变的一瞬间,物体的加速度立即发生改变B.合外力一旦变小,物体的速度一定也立即变小C.合外力逐渐变小,物体的速度可能变小,也可能变大D.多个力作用在物体上,只改变其中一个力,则物体的加速度一定改变.2、下列说法正确的是( )A.由a=Δv/Δt可知,a与Δv成正比,a与Δt成反比B.由a=F/m可知,a与F成正比,a与m成反比C.a、F、Δv的方向总是一致的D.a、F、v的方向总是一致的3、静止在光滑水平面上的物体,受到一个水平拉力的作用,当力刚开始作用的瞬间,下列说法正确的是( )A.物体同时获得速度和加速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度都仍为零4、(2013•海南)一质点受多个力的作用,处于静止状态,现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其它力保持不变,则质点的加速度大小a和速度大小v的变化情况是()A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大5、静止在光滑水平面上的物体,在水平推力F作用下开始运动,推力随时间变化的规律如图所示,关于物体在0~t1时间内的运动情况,正确的描述是()A.物体先做匀加速运动,后做匀减速运动B.物体的速度一直增大C.物体的速度先增大后减小D.物体的加速度一直增大6、如图(a)所示,物块静止在粗糙水平面上.某时刻(t=0)开始,物块受到水平拉力F的作用.拉力F在0 ~ t0间内随时间变化情况如图(b)所示,则物块的速度—时间图象可能是图c中的( )A. B. C. D.7、某物体在多个力的作用下处于静止状态,如果使其中某个力F方向保持不变,而大小先由F随时间均匀减小到零,然后又从零随时间均匀增大到F,在这个过程中其余各力均保持不变,在下列各图中,能正确描述该过程中物体的加速a或速度v的变化情况的是()A.B.C.D.8、如图甲所示,放在光滑水平面上的木块受到两个水平力F1与F2的作用,静止不动,现保持力F1不变,使力F2逐渐减小到零,再逐渐恢复到原来的大小,在这个过程中,能正确描述木块运动情况的图象是图乙中的()9、在光滑水平面上,有一个物体同时受到两个水平力F1与F2的作用,在第1s内物体保持静止状态。
动力学的两大基本问题PPT教学课件
![动力学的两大基本问题PPT教学课件](https://img.taocdn.com/s3/m/dbd69e5d05087632311212f0.png)
一辆汽车质量为4t,在水平路面上匀速行驶, 从某个时刻关闭发动机开始计时,经过20s钟 滑行40 m停止,求车受的阻力多大?
静止在水平地面上的物体的质量为2 kg,在水
平恒力F推动下开始运动,4 s末它的速度达到 4m/s,此时将F撤去,又经6s物体停下来,如 果物体与地面的动摩擦因数不变,求F的大小。
度的大小,有 `2mg ma②2
设盘刚离开桌布时的速度为v1,移动的距离为x1,离开
桌布后在桌面上再运动距离x2后便停下,有v12 2a③1x1
盘设v桌没12 布有2从从a2④盘桌x2下面抽上出掉所下经的历条时件间是为x2t,12在l⑤这x1 段时间内桌布
移动的距离为x,有 x 1 a⑥t 2
vt / 2
2.应用牛顿运动定律解题的一般步骤 (1)认真分析题意,明确已知条件和所求量,搞清所求 问题的类型. (2)选取研究对象.所选取的研究对象可以是一个物体, 也可以是几个物体组成的整体.同一题目,根据题意和解题 需要也可以先后选取不同的研究对象. (3)分析研究对象的受力情况和运动情况. (4)当研究对象所受的外力不在一条直线上时:如果物 体只受两个力,可以用平行四边形定则求其合力;如果物
动力学的两类基本问题: (1)已知物体的受力情况确定物体的运动情况 (2)已知物体的运动情况确定物体的受力情况
• 动力学问题的解题思路图 牛顿第二定律 加速度a 运动学公式
受力情况
第一类问题 第二类问题
运动情况
牛顿第二定律 加速度a 运动学公式
例1:2003年10月15日我国成功地发射了载人宇 宙飞船,标志着我国的运载火箭技术已跨入世 界先进行列,成为第三个实现“飞天”梦想的 国家。在某一次火箭发射实验中,若该火箭连 同装载物的质量M=3.00×105kg,启动后获得 的推动力恒为F=4.5×106N,火箭发射塔高 H=125m,不计火箭质量的变化和空气阻力。 求: (1)该火箭启动后获得的加速度
高三物理 动力学两类基本问题
![高三物理 动力学两类基本问题](https://img.taocdn.com/s3/m/ca9052358e9951e79a892723.png)
(1)空气阻力与小球重力大小的比值mfg; (2)小球从抛出到落到地面所经过的时间 t.
思路点拨:根据运动情况确定加速度利用牛顿第二定律结合运动中的受力情况求解. 规范解答:(1)从抛出到最高点,2a1h=v20(1 分) 代入数据求得 a1=12 m/s2(1 分) 根据牛顿第二定律:mg+f=ma1(1 分) mfg=0.2.(1 分) (2)上升过程所用时间 t1=va10=1 s(1 分) 下落过程加速度 a2=mgm-f=mg-m0.2mg=8 m/s2(1 分) 下落过程所用时间 t2,则有 h+H=12a2t22(1 分) 得 t2=2 s(1 分) 总时间 t=t1+t2=3 s.(2 分)
8s 3g.
答案:(1)0.5 (2)
8s 3g
考点二:连接体问题的应用
【例2】 (综合题)如图所示,倾角为θ的光滑斜面固 定在水平地面上,质量为m的物块A叠放在物体B 上,物体B的上表面水平.当A随B一起沿斜面下 滑时,A、B保持相对静止.求B对A的支持力N和 摩擦力f.
解析:当A随B一起沿斜面下滑时,物块A受到竖直向下的重力mg、B对A竖直向上的支 持力N和水平向左的摩擦力f的作用而一起做加速运动,如图(甲). 设B的质量为M,以A、B为整体,根据牛顿第二定律,有 (m+M)·gsin θ=(m+M)a,得a=gsin θ. 将加速度沿水平方向和竖直方向进行分解,如图(乙)所示,则ax=acos θ=gsin θcos θ, ay=asin θ=gsin2 θ
(1)小球的加速度;
(2)最初2 s内小球的位移.
解析:(1)小球在斜杆上受力分析如图所示. 垂直杆方向:Fcos θ=mgcos θ+N① 沿杆方向:Fsin θ-mgsin θ-f=ma② 其中:f=μN③ ①②③联立,并代入数据,得 a=0.4 m/s2. (2)最初 2 s 内的位移 s=12at2=0.8 m.
专题四.动力学的两类基本问题(完整资料).doc
![专题四.动力学的两类基本问题(完整资料).doc](https://img.taocdn.com/s3/m/72a8ddbebcd126fff7050bc6.png)
此文档下载后即可编辑专题四.动力学的两类基本问题应用牛顿运动定律求解的问题主要有两类:一类是已知受力情况求运动情况;另一类是已知运动情况求受力情况.在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.例题评析【例11】质量为m=2 kg的木块原来静止在粗糙水平地面上,现在第1、3、5……奇数秒内给物体施加方向向右、大小为F1=6 N的水平推力,在第2、4、6……偶数秒内给物体施加方向仍向右、大小为F2=2 N的水平推力.已知物体与地面间的动摩擦因数μ=0.1,取g=10 m/s2,问:(1)木块在奇数秒和偶数秒内各做什么运动?(2)经过多长时间,木块位移的大小等于40.25m? 【例12】如图所示,在倾角θ=37°的足够长的固定的斜面上,有一质量m=1 kg 的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细线的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s.(sin37°=0.6,g取10 m/s2)【例13】如图所示,光滑水平面上静止放着长L=1.6 m、质量为M=3 kg的木板.一个质量为m=1 kg的小物体放在木板的最右端,m与M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F.(1)施力F后,要想把木板从物体m 的下方抽出来,求力F的大小应满足的条件;(2)如果所施力F=10 N,为了把木板从m的下方抽出来,此力的作用时间不得少于多少?(g取10 m/s2)【例14】如图所示,传输带与水平面间的倾角为θ=37°,皮带以10 m/s的速率运行,在传输带上端A处无初速地放上质量为0.5 kg的物体,它与传输带间的动摩擦因数为0.5.若传输带A到B的长度为16 m,则物体从A运动到B的时间为多少?能力训练1.如图所示,一根轻弹簧的一端系着一个物体,手拉弹簧的另一端,使弹簧和物体一起在光滑水平面上向右做匀加速运动,当手突然停止运动后的短时间内,物体可能()A.物体继续向右加速运动B.物体开始向右匀速运动C.物体先加速后减速向右运动D.物体先减速后加速向右运动2.放在光滑水平面上的物体受三个平行于水平面的共点力作用而处于静止状态,已知F2垂直于F3.若三个力中去掉F1,物体产生的加速度为2.5 m/s2;若去掉F2,物体产生的加速度为1.5 m/s2;若去掉F3,则物体的加速度大小为()A.1.5 m/s2B.2.0 m/s2C.2.5 m/s2D.4.0 m/s23.小磁铁A重10 N,吸在一块水平放置的固定铁板B的下面,如图所示.要竖直向下将A拉下来,至少要用15 N的力,若A、B间的动摩擦因数为0.3,现用5 N 的水平力推A时,A的加速度大小是_______m/s2.(g取10m/s2)4.汽车在平直公路上从静止开始做匀加速直线运动.当汽车的速度达到v1时关闭发动机,汽车维持滑行一段时间后停止,其运动的速度图线如图所示.若汽车加速行驶时牵引力为F1,汽车整个运动过程所受阻力恒为F2(大小不变),则F1∶F2为()A.4∶1B.3∶1C.1∶1D.1∶45.机车牵引力一定,在平直轨道上以a1=1 m/s2的加速度行驶,因若干节车厢脱钩,加速度变为a2=2 m/s2,设所受阻力为车重的0.1倍,则脱落车厢的质量与原机车总质量之比等于_______.6.据报道,1989年在美国加利福尼亚州发生的6.9级地震,中断了该地尼米兹高速公路的一段,致使公路上高速行驶的约200辆汽车发生了重大的交通事故,车里的人大部分当即死亡,只有部分系安全带的人幸免.假设汽车高速行驶的速度达到108 km/h,乘客的质量为60 kg,当汽车遇到紧急情况时,在2 s内停下来,试通过计算说明系安全带的必要性.7.静止在水平地面上的物体的质量为2 kg,在水平恒力F推动下开始运动,4 s 末它的速度达到4 m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小.。
(完整版)两类动力学问题
![(完整版)两类动力学问题](https://img.taocdn.com/s3/m/04cb42b9e45c3b3566ec8b9d.png)
牛顿运动定律的应用—-两类动力学问题一、引入本单元应以牛顿第二定律为核心,要求学生熟练掌握之.然而,关于物体的“惯性”和作用力与反作用力关系及判断,学生也是极易出错的,因此也要求熟练掌握.二、教学过程1.加深对牛顿第二定律的理解 ①对定律中三个关键字的理解“受”--—是指物体所受的力,而非该物体对其他物体所施加的力。
“合”———是指物体所受的所有外力的合力,而非某一分力或某些分力的合力“外"-——是指物体所受的外力,而非内力(即物体内部各部分间的相互作用力,如一列火车各车厢间的拉力).②牛顿第二定律确定了三个关系大小关系:a ∝mF,加速度的大小与物体所受的合外力成正比,与物体的质量成反比.方向关系:加速度的方向与合外力的方向相同.单位关系:F =kma 中,只有当公式两边的物理量均取国际单位制中的单位时,比例系数k 才等于 1,公式才可简化为 F 合=ma 。
③牛顿第二定律反映了加速度和力的五条性质同体性-—F 合、m 和a 都是相对于同一物体而言的.矢量性—-牛顿第二定律是一个矢量式,求解时应先规定正方向.独立性—-作用在物体上的每个力都将独立地产生各自的加速度,合外力的加速度即是这些加速度的矢量和.同时性——加速度随着合外力的变化而同时变化.瞬时性-—牛顿第二定律是一个瞬时关系式,它描述了合外力作用的瞬时效果.如果合外力时刻变化,则牛顿第二定律反映的是某一时刻加速度与力之间的瞬时关系.④力、加速度和速度的关系关于力、加速度和速度的关系,正确的结论是:加速度随力的变化而变化,但力(或加速度)和速度并没有直接的关系,其变化规律需根据具体情况分析。
例如,在简谐运动中,回复力、加速度最大时,振子的速度为零;而回复力、加速度为零时,振子的速度最大.2.什么样的问题是“牛顿第二定律"的应用问题(即物理问题的归类) 凡是求瞬时力及其作用效果的问题;判断质点的运动性质的问题(除根据质点运动规律判断外)都属“牛顿第二定律”的应用问题.动力学的两类基本问题即:① 由受力情况判断物体的运动状态;②由运动情况判断的受力情况解决这两类基本问的方法是,以加速度(a )为桥梁,由运动学公式和牛顿定律列方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律的应用—动力学的两类基本问题
用牛顿第二定律解动力学的两类基本问题
1、已知物体的受力情况确定物体的运动情况
根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
【重点提示】物体的运动情况是由受力情况和初始状态(初速度的大小和方向)共同决定的. 2、已知物体的运动情况确定物体的受力情况
根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:
第一类
第二类
在匀变速直线运动的公式中有五个物理量,其中有四个矢量。
运动学和动力学中公共的物理量是加速度a。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a。
【重点提示】以上两类问题中a是联结运动学公式和牛顿第二定律的桥梁。
3、注意点:
①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.
②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.
二、由受力情况求解运动学物理量
规律方法
1.明确研究对象,根据问题的需要和解题的方便,选出被研究的物体.
2.全面分析研究对象的受力情况,并画出物体受力示意图,确定出物体做什么运动(定性).
3.根据力的合成法则或正交分解法求出合外力(大小、方向),列出牛顿第二定律方程式,求出物体的加速度.(常以加速度方向为正方向)
4.结合题中给出的物体运动的初始条件,选择合适的运动学公式求出所需的运动学量. 例1.如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求: (1)物体加速度a 的大小;
(2)物体在t =2.0s 时速度v 的大小.
(3) 物体开始运动后t = 2.0 s 内通过的位移x .
变式一:地面上放一木箱,质量为10kg ,用50N 的力与水平方向成37°角拉木箱,使木箱从静止开始沿水平面做匀加速直线运动,假设水平面光滑,(取g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)求物块运动的加速度的大小
(2)求物块速度达到s m v /0.4 时移动的位移
例2.如图7所示,一位滑雪者在一段水平雪地上滑雪。
已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。
从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。
求:
(1)滑雪者做匀减速直线运动的加速度大小;
(2)收起雪杖后继续滑行的最大距离。
图7
变式二:如图11所示,在海滨游乐场里有一种滑沙运动。
某人坐在滑板上从斜坡的高处A 点
由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。
若人和滑板的总质量m=60kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.50,斜坡的倾角)8.037cos ,6.037(sin 37=︒=︒︒=θ,斜坡与水平滑道是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10m/s 2,求:
(1)人从斜坡上滑下的加速度为多大?
(2)若AB 的长度为25m ,人滑到B 处时速度为多大?
(3)若AB 的长度为25m ,求BC 的长度为多少?
三、由运动情况判断受力情况
规律方法
由物体的运动情况,推断或求出物体所受的未知力的步骤:
(1)确定研究对象.
(2)根据运动情况,利用运动学公式求出物体的加速度.
(3)对研究对象分析受力情况.
(4)根据牛顿第二定律确定物体所受的合外力,从而求出未知力.
例3.列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.
(1)求列车的加速度大小.
(2)若列车的质量是1.0×106kg ,机车对列车的牵引力是1.5×105N ,求列车在运动中所受的阻力大小.
变式三:静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做
匀加速直线运动,当物体移动9.0m时,速度达到6.0m/s,求:
(1)物体加速度的大小
(2)物体和地面之间的动摩擦因数
例4.质量为2kg的物体置于水平地面上,用水平力F使它从静止开始运动,第4s末的速度达到24m/s,此时撤去拉力F,物体还能继续滑行72m.
求:(1)水平力F
(2)水平面对物体的摩擦力
变式四:在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:
(1)游客连同滑草装置在下滑过程中受到的摩擦力f为多大?
(2)滑草装置与草皮之间的动摩擦因数μ为多大?
(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.。