认识有理数 ppt

合集下载

认识有理数ppt课件

认识有理数ppt课件



2、负数的相反数是正数


3、0的相反数是0


4、一个字母的相反数只需要在这个字母前面添一个“-”

5、一个式子的相反数只需要将这个式子用括号括起来,在前面添一个“-”
结论
原点
一个数的数量大小叫做这个数的绝对值. 有理数a 的绝对值记


练习:
|+2|=
;
|-3|=
;
|0|=
;
|1.5|=
.
1、正数的绝对值是它本身


2、负数的绝对值是它的相反数


3、0的绝对值是0


4、任何一个数都有唯一的绝对值

5、绝对值相等的两个数(一正一负)互为相反数。
思考: 相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5 |-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
;
(2)1.7与
互为相反数;
(3)x的相反数是
.
例2:求下列各数的相反数和绝对值:
-2, ,0,-3.8,30.
解:-2, ,0,-3.8,30的相反数分别为 2, ,0,3.8,-30
认识相反数
一、利用相反数的概念求值。 例1:已知 是-3的相反数, 是最小的正整数,则
① 已知 的相反数是-0.5, 是-2的相反数,则 ② 已知 的相反数是它本身, 是最小的质数,则
结论
两个负数比较大小,绝对值大的反而小。
练习:
1.-5 -4; 2.-2.3 -2.2; 3.-2 2; 4.2021 2022; 5.-2021 0。

有理数的概念ppt课件

有理数的概念ppt课件
有理数
整数
−9


−2.35

0


+5


2
3

分数
正整数

负分数
自然数





linggy
探索二:有理数的分类
引入负数后,我们对数的认识就扩大到了有理数范围.
正有理数
思考:你能对有理数进
有理数

行分类吗?
负有理数
linggy
思考:
学了有理数的分类后,聪明的你想过没有——是否有一些数
不是有理数呢?
负整数


分数 正分数
负分数
3.注意0的特殊性
正整数
正有理数

正分数

0

负整数
负有理数
负分数



0既不是正数,也不是负数.
正数和0统称为非负数.
linggy
那么还剩4只;下周打猎一无所获,找首领借了
2只,再次将6只野兔分给部落成员,此时野兔
的数量是0,但是还欠首领2只,也就是
-2只.晚上他们一起吃烤野兔,他掰下来半只给
1
儿子,儿子得到了 2 只野兔;忧心忡忡的他,一
4
边将上次存粮的 5 拿出来给部落家庭,一边祈
祷着明天打猎收获满满......
思考
这以上情景中出现了哪些数字,
负整数:
3
1
13,4.3,− ,8.5%,−30,−12%, ,−7.5,20,−60,1.2ሶ
8
9
1

解:正有理数:13,4.3 ,8.5% , ,20, 1. 2;

《有理数》PPT课件 (共10张PPT)

《有理数》PPT课件 (共10张PPT)
601 4
133 5.32= 25
150 .25=

思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。

有理数课件ppt

有理数课件ppt

在物理中的应用
有理数在描述物理现象和规律时具有重要的作用,如时间、速度、加速度等物理量 都可以用有理数表示。
在解决物理问题时,有理数也是计算各种物理量的基础,如力、能量、动量等。
物理学中的许多公式和定律都涉及到有理数的运算,如牛顿第二定律、欧姆定律等 。
在日常生活中的应用
有理数在日常生活中的应用非常 广泛,如时间、金钱、度量衡等
VS
详细描述
有理数乘法是指将两个有理数相乘,得到 一个新的有理数。同号数相乘时,取相同 的符号,并将绝对值相乘;异号数相乘时 ,取绝对值较大的数的符号,并将绝对值 相乘。
有理数的除法
总结词
有理数除法是通过乘法来实现的,即用乘法代替除法。
详细描述
有理数除法是指将一个有理数除以另一个有理数,得到一个新的有理数。具体操作是将除数变为相应 的乘法运算,例如:$a / b = a times (1/b)$。
有理数课件
contents
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之比的数,包括整数和分数。
详细描述
有理数定义为可以表示为两个整数之比的数。其中,分子和 分母都是整数,分母不为零。整数属于有理数,例如:-5、0 、5都是有理数。
都涉及到有理数的计算。
在商业中,有理数被用于计算成 本、利润和折扣等。
在科学实验和工程设计中,有理 数也被用于测量、计算和分析数
据。
05
有理数的扩展知识
有理数的历史与发展
早期数学文明中的有理数
古埃及和巴比伦数学中已经有了分数和比例 的概念。

有理数ppt课件

有理数ppt课件

03
有理数的混合运算
顺序法则
总结词
在进行有理数的混合运算时,应遵循运算的顺序法则,即先进行乘除运算,再进 行加减运算。
详细描述
在数学中,有理数的混合运算需要遵循一定的顺序,即先进行乘除运算,再进行 加减运算。这是由于乘除运算是全域性的,而加减运算不是。因此,在进行混合 运算时,必须先完成乘除运算,然后再进行加减运算。
有理数的性质
总结词
有理数具有封闭性、有序性、可数性等性质。
详细描述
有理数具有封闭性,即有理数的四则运算结果仍为有理数。有理数具有有序性 ,可以比较大小和排列。有理数还具有可数性,即有理数集与自然数集之间存 在一一对应关系。
有理数在数学中的地位
总结词
有理数是数学中基本且重要的概念之一,是解决实际问题的重要 工具。
04
有理数的应用
在日常生活中的应用
80%
购物时找零钱
在购物时,我们经常使用到有理 数,如找零钱,计算折扣等。
100%
测量和计算
在日常生活中,我们经常需要进 行测量和计算,如长度、重量、 时间等,这些都需要用到有理数 。
80%
金融计算
在金融领域,如股票交易、保险 计算等,都需要用到有理数进行 计算。
有理数可以用于描述几何图形的长度、面积和体 积等属性。
有理数在数学中的未来发展
数学教育改革
01
随着数学教育的发展,有理数作为基础数学知识,将在数学教
育中得到更加广泛的重视和应用。
数学与其他学科的交叉
02
有理数作为数学的基础概念,将进一步与其他学科进行交叉融
合,促进跨学科的发展。
数学研究的新领域
03
随着数学研究的不断深入,有理数理论将进一步发展,并应用

有理数教学ppt课件

有理数教学ppt课件

详细描写
有理数是数学分析中函数和极限理论的基础,也是代数中方 程和不等式理论的基础。有理数的概念和性质是数学教育中 不可或缺的一部分,对于培养学生的逻辑思维和数学素养具 有重要意义。
02
有理数的运算
加法运算
总结词
理解有理数的加法法则,掌握加法运算的步骤和技能。
详细描写
介绍有理数的加法法则,包括同号数相加、异号数相加以及整数与分数相加的情 况。通过例题演示加法运算的步骤,强调结果的符号和绝对值,并总结加法运算 的技能和注意事项。
详细描写
在气象、科学实验和工业生产等领域中,温 度测量是重要的环节之一。使用有理数来表 示温度,可以方便地记录和比较不同位置的 温度值。同时,通过将实际温度与标准单位 进行比较,可以得出有理数的数值,从而得
到准确的测量结果。
05
有理数的扩大知识
分数与小数的关系
1 2
分数与小数是可以相互转化的
任何一个分数都可以表示为小数,小数也可以表 示为分数。
同级运算从左到右
当运算式中存在同级的运 算(如乘除和加减)时, 应从左到右依次进行,确 保运算的正确性。
括号优先
在运算式中遇到括号时, 应优先进行括号内的运算 ,再继续进行其他运算。
运算技能
灵活运用交换律、结合律
在进行有理数的混合运算时,可以灵 活运用交换律和结合律,改变运算的 顺序或分组,简化计算进程。
除法运算
总结词
理解有理数的除法法则,掌握除法运算的步骤和技能。
详细描写
介绍有理数的除法法则,即除以一个数等于乘以这个数的倒数。通过例题演示除法运算的步骤,强调 结果的符号和绝对值,并总结除法运算的技能和注意事项。
03
有理数的混合运算

七年级数学《有理数》图文详解PPT

七年级数学《有理数》图文详解PPT

知3-讲
分析:对数集A中的每一个数应逐个分析.如-2即 不属于B,也不属于C,所以应写在圆A内, 但不在圆B和圆C中,-4同是属于三个数集. 应写在三个数集的公共区域内;-8属于数集 A和数集C,应写在圆A和C的公共区域内,但 不在圆B内,其它数的写法以此类推.
解:如图所示:
总结
知3-讲
本题考查数集的表示方法,注意渗透元素与 集合,集合与集合的关系知识.
(2)通常把正数和0统称为非负数,负数和0统称为非正 数,正整数和0统称为非负整数(也叫做自然数),负 整数和0统称为非正整数.
(3)在对有理数进行分类时,要严格按照同一分类标准, 做 到不重复、不遗漏.
知2-练
1 把下列各数分别填入相应的大括号内.
5,-3,3 ,-0.373 737…,3.14,0,9 2 ,- 6 .
小林说“以大堤为基准,记为0米,则芳芳所在的位 置高为-20米,徐伟所在的位置高为+58米.”
徐伟说:“以铁塔顶为基准,记为0米,则芳芳所在 的位置高为-58米,小林所在的位置高为-38米.”
芳芳说:“徐伟的位置比我高58米.” 他们说的数有一个统一的名称吗?
知识点 1 有理数及相关概念
知1-讲
正数中的“+”可以省略不写,如+1.8可以写成1.8,
知3-练
3 把下列各数分别填入相应的大括号内.
-100,1,8
2 3
,6,0
,+3 1,-2.25, 4
- 10%, 3 ,- 18, 2019 ,- 0.01 .
100 正数:{1, 6,+3 1
4
3 ,100 , 2019, …};
负分数:{ 8 2 ,-2.25, -10%,- 0.01 ,…};

北师大版七年级数学上册《有理数》课件(共29张PPT)

北师大版七年级数学上册《有理数》课件(共29张PPT)
(3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 _____ ,第320个数的符号 为___,规律是______________;
199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。

有理数ppt课件

有理数ppt课件

03
有理数的混合运算
运算顺序
先算乘方或开方,再 算乘除,最后算加减 。
同一级运算按从左到 右的顺序进行。
如果有括号,先算括 号里面的,再算括号 外面的。
运算律
加法交换律:a+b=b+a
分配律:a(b+c)=ab+ac 乘法结合律:(ab)c=a(bc)
加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba
几何应用
有理数在几何学中常被用于描述 长度、面积和体积等几何量。
借助有理数的运算,可以方便地 求解几何量之间的关系,如计算 两点之间的距离、三角形或四面
体的面积和体积等。
有理数在几何作图中的应用也十 分广泛,如绘制直线、圆、椭圆 等图形时,有理数可以提供重要
的数学依据。
实际应用
有理数在实际生活中有着广泛的应用 ,如物理学中的力学、热学、电磁学 等都离不开有理数的运算。
有理数ppt课件
目录
• 有理数的定义 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义
整数
整数的分类
整数可以分为正整数、负整数和 零。
整数的性质
整数具有封闭性、可数性等性质。
整数的运算
整数可以进行加、减、乘、除等运 算。
分数
01
02
03
分数的定义
在信息科学领域,有理数被用于计算 机编码、信息压缩、加密和纠错等技 术中。
在金融领域,有理数被用于计算利息 、汇率、投资回报等经济指标。
在统计学中,有理数被用于描述数据 分布特征、进行假设检验和回归分析 等。
05

有理数ppt课件

有理数ppt课件

重量测量中的应用
总结词
有理数在重量测量中同样扮演着重要的角色 ,它使我们能够准确地表示和比较物体的重 量。
详细描述
在购物时,我们经常需要比较不同商品之间 的重量,以确定哪个更重或更轻。这时,我 们通常会使用天平或电子秤等工具来测量商 品的重量,而这些工具的读数通常是有理数 。通过比较有理数的大小,我们可以准确地 比较不同商品之间的重量。
联系
有理数和无理数都是实数的子集,实数包括有理数、无理数和无穷小数
等。有理数和无理数在一定条件下可以相互转化,例如开方运算可以将
有理数转化为无理数,反之亦然。
THANKS
感谢观看
有理数的性质
总结词
有理数具有一些基本的性质,如加法、减法、乘法和除法的封闭性。
详细描述
有理数可以进行加法、减法、乘法和除法运算,并且运算结果仍然是有理数。例如,两个有理 数相加、相减、相乘或相除,其结果仍然是有理数。此外,有理数还有序的性质和稠密的性质 。
有理数在数学中的地位
总结词
有理数在数学中具有重要地位,是数学的基础和重要组成部分。
除法运算
总结词
有理数除法运算的基本法则
详细描述
有理数的除法运算可以通过乘法来实现,即除以一个数等于乘以这个数的倒数。此外,除以一个数等 于减去这个数与被除数的乘积也是除法运算的重要法则。
03
有理数的混合运算
顺序法则
总结词
先乘除后加减,同级运算按照从左到 右的顺序进行。
详细描述
在进行有理数的混合运算时,应先进 行乘除运算,再进行加减运算。对于 同级的运算,如加法或减法,应按照 从左到右的顺序进行,以避免混淆和 错误。
减法运算
总结词
有理数减法运算的基本法则

有理数课件ppt课件

有理数课件ppt课件
详细描述
有理数的乘法运算可以表示为 a × b = c,其中 a 和 b 是两个有 理数,c 是它们的积。在进行乘 法运算时,应将被乘数 a 和乘数 b 相乘,得到一个新的有理数 c 。
有理数的除法运算
总结词
有理数的除法运算是将一个有理数除以另一个有理数,得到一个新的有理数。
详细描述
有理数的除法运算可以表示为 a / b = c,其中 a 和 b 是两个有理数,c 是它们的商。在进行除法运 算时,应将被除数 a 除以除数 b,得到一个新的有理数 c。
有理数的减法运算
总结词
有理数的减法运算是两个有理数相减,得到一个新的有理数。
详细描述
有理数的减法运算可以表示为 a - b = c,其中 a 和 b 是两个有理数,c 是它们的差。在进行减法运算时,应将 被减数 a 放在减数 b 的上方,然后进行相减,得到一个新的有理数。
有理数的乘法运算
总结词
有理数的乘法运算是将两个或多 个有理数相乘,得到一个新的有 理数。
详细描述
距离是空间几何的基本概念之一,它可以通 过有理数进行测量和表示。在现实生活中, 我们经常需要测量和表示各种距离,例如公 路里程、航空里程等。这些距离的测量和表 示都需要用到有理数。
时间的测量与表示
总结词
有理数在时间的测量与表示中有着广泛的应 用。
详细描述
时间是有理数的一个重要应用领域。时间的 测量和表示需要用到日、时、分、秒等单位 ,这些单位都是基于有理数进行定义的。此 外,在金融领域,利息的计算也需要用到有
01
02
03
04
加法
有理数的加法运算满足交换律 和结合律。
减法
有理数的减法运算满足交换律 和结合律。

有理数ppt课件

有理数ppt课件
有理数ppt课件
汇报人:
2023-12-25

CONTENCT

• 有理数基本概念 • 有理数四则运算 • 有理数在生活中的应用 • 有理数与无理数的关系 • 分数与小数之间的转换 • 典型例题解析与练习题
01
有理数基本概念
定义与性质
定义
有理数是可以表示为两个整数之 比的数,其中分母不为零。
性质
答案3
由$xy < 0$可知,$x$、$y$异 号。又因为$|x| = 3$,$|y| = 2$ ,所以有两种情况:$x = 3, y = -2$或$x = -3, y = 2$。因此,
$x - y = 5$或$-5$。
THANK YOU
感谢聆听
02
有理数四则运算
加法运算规则
同号相加:取相同的符 号,并把绝对值相加。
异号相加:取绝对值较 大数的符号,并用较大 的绝对值减去较小的绝 对值。
互为相反数的两个数相 加得0。
一个数与0相加,仍得 这个数。
减法运算规则
02
01
03
减去一个数,等于加上这个数的相反数。 互为相反数的两个数相减,差为被减数的2倍。 0减去一个数,仍得这个数的相反数。
科学实验
在物理、化学等科学实验中,有理数 可以用来表示测量结果的精确值,如 长度、质量、电量等。
04
有理数与无理数的关系
无理数定义及性质
无理数定义
无法表示为两个整数之比的数,即不是有理数的实数。
无理数性质
无法精确表示为小数或分数形式,具有无限不循环的小数部分。
有理数与无理数的区别与联系
区别
有理数可以表示为两个整数之比,而无理数则不能;有理数 的小数部分是有限或循环的,而无理数的小数部分是无限不 循环的。

有理数ppt课件

有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则

有理数ppt课件

有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-27
目 录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之比的 数,包括整数和分数。
详细描述
有理数包括所有可以表示为两个整数 之比的数。这意味着有理数包括整数 和分数。整数可以看作是特殊的分数 ,分子和分母相同。
有理数在数学中的地位
总结词
有理数在数学中占据重要地位,是数学研究和应用的基础。
详细描述
有理数在数学中占据着非常重要的地位。它们是数学研究和应用的基础,特别是在代数、几何和三角 学等领域。有理数是实数的一个子集,是研究连续数学模型的基础。在物理学、工程学和其他科学领 域中,有理数也广泛应用于测量、计算和建模等方面。
数学教育改革
随着数学教育的发展,有理数作为基础数学知识,将在数学教育 中占据更加重要的地位。
数学与其他学科的交叉
有理数作为数学的基础概念,将进一步与其他学科如物理、工程和 计算机科学等交叉融合。
数学研究的新方向
随着数学研究的深入发展,有理数理论可能会涌现出新的研究方向 和应用领域。
THANKS
感谢观看
03
有理数的混合运算
顺序法则
总结词
先乘除后加减,同级运算按从左到右 的顺序进行。
进 行乘法和除法运算,再进行加法和减 法运算。如果存在同级的运算,如加 法和减法,应按照从左到右的顺序进 行计算。
结合律与交换律
总结词
结合律允许改变有理数混合运算中的括 号和组合方式,交换律允许改变加法和 乘法的顺序。
05

《有理数》数学教学PPT课件(4篇)

《有理数》数学教学PPT课件(4篇)
什么简便的办法呢?
2000
-500
-1500 0
500 1000 150
0
1000
若单位长度选择上图所示取较大的数时就非常简便
小结
在数轴上取很大(或很小)的数,我们要选适当的单
位长度,并在合适的位置标出。
课堂测试
画出数轴并表示下列有理数:
1.5 ,-2,2 ,-2.5 ,
-2.5 -2
-4 -3 -2
Concise And Concise Do Not Need Too Much Text
前言
学习目标
1.知识与技能:借助数轴理解相反数的概念,会求一个数的相反数,会用相反数的定义进行化简。
2.过程与方法:培养学生分类讨论和数形结合的思想,提高观察、归纳与概括的能力。
3.情感态度价值观:培养学生严谨的治学态度并初步感受数学文化的教育价值,认识对立统一的规律。
-7.5℃
数轴的概念及三要素
一般地,在数学中人们用画图把数“直观化”。通常用一条直线上的点表
示数,这条直线叫做数轴.
它需要满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表
第一章 有理数
1.2 有理数(1.2.2数轴)
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾 & 思考☞
有 整数 理 数
分数
正整数: 1,2,3,…
零:0 负整数:-1,-2,-3,…
正分数: 1 , 1 ,5.2, … 23
负分数: 1 5
, 5 6
,-3.5,

探究一
有边长为1的小正方形中,求a的长。
由勾股定理得
12+12=a2
a2=2
a
1
a究竟是什么数?
1
结论:在等式a2=2中,a既不是整数,也不 是分数,所以a不是有理数。
4 3

..
0.57 ,
0.1010010001000001……(相邻两个1之间0的个数逐次加2)
. . 解:有理数有: 3.14,
4 3
0.57 ;
无理数有:0.1010010001000001……。
练习
1、把下列各数填入相应的集合.
0.351, 2 , 3
..
4. 96,
3.14159,
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; ( √ )
(4)有理数是有限小数. ( ╳ )
强调:无理数是无限不循环小数, 有理数是有限小数或无限循环小数.
小结
本节课你有什么收获?
1.无理数的定义.
2.你是怎样判断一个数是无理数 还是有理数的?
3.请把已学过的数怎样分类?
h,h可能是整数吗?可能是分数吗?
根据等边三角形ABC的性质
A
பைடு நூலகம்
BD=1 由勾股定理得
h2+12=22
2 h
h2=3
B 1D
C
结论:在等式h2=3中,h既不是整数,也不
是分数,所以h不是有理数。
结论
a2=2 b2=5 h2=3 事实上,
a=1.41421356… b=2.23606797… h=1.73205080…
像1.41421356…,2.2360679…,1.73205080… 等这些数的小数位数都是无限的,但又不是 循环的,所以是无限不循环小数.
无限不循环小数叫无理数
圆周率π=3.14159265…也是一个无限不循环 小数,故π是无理数
例题
例1 下列各数中,哪些是无理数?哪些
是有理数?
3.14,
它的出现引起数学史上第一次危机
探究二
做一做
(1) 如图,以直角三角形的斜边为边的正方 形的面积是多少?
22+12=5
(2) 设该正方形的边长为b,b满足什么条 件?
b2=5
(3) b是有理数吗?
b既不是整数, 也不是分数,所以b 不是有理数。
b
2 1
探究三
1、如图,等边三角形ABC的边长为2,高为
6, ,
3
0,
-5.232332…(相邻两个2之间3的个数逐次加1)
12.33456789…(小数部分由相继的正整数组成).
0.351, 2 ,
..
3
4.96, 3.14159,
6, 0,
有理数集合
, -5.232332…, 3 12.3345678…
无理数集合
2、 判断题
(1)有限小数是有理数; ( √ )
相关文档
最新文档