(整理)镍在不锈钢中作用

合集下载

镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用

镍在中的主要作用

镍在中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于23C304M3.5mm3.5mm0℃5℃-25℃内外近期研制成功的超级铁素体钢化学成分如表5。

表表5 超级铁素体钢的化学成分(wt%)

美国标准ASTMA493-88已经纳入XM-27(000Cr26Mo)、S44700(000Cr29Mo3)和S44800(000Cr29Ni2Mo3)3个超纯铁素体牌号,其化学成分如表6。

表6 ASTMA493中超纯铁素体钢化学成分wt%

5 超级奥氏体钢

超级奥氏体钢指Cr、Mo、N含量显着高于常规不锈钢的奥氏体钢,其中比较着名的是含6%Mo的钢(254SMo),这类钢具有非常好的耐局部腐蚀性能,在海水、充气、存在缝隙、低速冲刷条件下,有良好的抗点蚀性能(PI≥40)和较好的抗应力腐蚀性能,是Ni基合金和钛合金的代用材料。超级奥氏体钢的化学成分如表7。

表7 超级奥氏体钢的化学成分

注:①点蚀指数PI =Cr%+%+30N%。②临界缝隙腐蚀温度CCT = -(45±5)+11Mo%。

超级奥氏体不锈钢热加工难度较大,一般认为杂质和低熔点金属在晶界富集、沉淀是造成奥氏体钢热脆性的主要原因,控制Mn≈%、Cu≤%、Si≤%、S≤%、Bi≤5×10-6、Pb≤15×10-6有利于热加工。超级奥氏体钢的冷加工性能良好,其抗拉强度偏高,

不锈钢主要组成元素

不锈钢主要组成元素

不锈钢主要组成元素

不锈钢是一种具有耐腐蚀性能的合金材料,主要由铁(Fe)和铬(Cr)等主要组成元素和其他元素如镍(Ni)、钼(Mo)、锌(Zn)、锰(Mn)

等一起组成。不同类型的不锈钢具有不同的成分配比,以满足不同的应用

需求。以下是不锈钢主要组成元素的详细介绍:

1.铁(Fe):不锈钢的主要基本元素,通过其提供的强度和磁性使得

不锈钢具有很好的机械性能和加工性能。

2.铬(Cr):铬是不锈钢最主要的合金元素,其添加可以增加不锈钢

的耐腐蚀性能。当铬的含量达到一定程度时,可以形成一层致密的氧化铬膜,阻止氧气的进一步渗入,从而有效降低了钢材的腐蚀速度。

3.镍(Ni):镍的加入可以提高不锈钢的耐腐蚀性能,并且增强了不

锈钢的塑性和延展性。镍还能够提高不锈钢的强度和韧性。

4.钼(Mo):钼的加入主要是增强不锈钢的耐腐蚀性能,特别是在氯

离子腐蚀介质中的耐蚀性。钼还能够提高不锈钢的高温强度和耐热性能。

5.锌(Zn):锌的添加可以提高不锈钢的耐腐蚀性能,特别是在氧化

性介质中的耐蚀性。锌还能够提高不锈钢的强度和塑性。

6.锰(Mn):锰的加入可以提高不锈钢的强度和硬度,同时还能够改

善不锈钢的加工性能和耐蚀性能。

除了以上主要组成元素外,不锈钢中还可能含有少量的其他元素,如

硅(Si)、铝(Al)、磷(P)、硫(S)、碳(C)等。这些元素的加入

可以调节不锈钢的组织和性能,满足不同应用场合的需求。

综上所述,不锈钢的主要组成元素是铁和铬,也包括镍、钼、锌和锰等其他合金元素。这些元素的添加和配比可以使得不锈钢具有优异的耐腐蚀性能、力学性能和加工性能,广泛应用于各个领域。

镍在不锈钢中的作用(精)

镍在不锈钢中的作用(精)

镍在不锈钢中的作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC结构,加入镍,促使晶体结构从体心立方(BCC 结构转变为面心立方(FCC 结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:

奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%

从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。

从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。

镍元素不锈钢的主要组成部分

镍元素不锈钢的主要组成部分

镍元素不锈钢的主要组成部分镍元素不锈钢是一种特殊的合金材料,它由铁、铬、镍等元素组成。镍元素在不锈钢中起着至关重要的作用,不仅提高了不锈钢的耐腐蚀

性能,还对其力学性能和物理性能产生显著影响。下面将详细介绍镍

元素在不锈钢中的主要组成部分。

一、铁

铁是不锈钢的主要基础元素,它占据了不锈钢合金组成中的最大比例。铁是一种重要的结构材料,具有良好的强度和塑性。作为不锈钢

的主要组成部分,铁提供了整个合金的基础性质,并且与其他元素共

同作用,形成了不锈钢的特殊性能。

二、铬

铬是不锈钢中的关键合金元素,它的含量决定了不锈钢的耐腐蚀能力。铬能够与空气中的氧气形成一层致密的氧化膜,这层膜具有良好

的耐腐蚀性能,可以防止进一步的腐蚀作用。一般情况下,铬的含量

在不锈钢中占据较大比例,通常为10%以上。

三、镍

镍是镍元素不锈钢中的主要合金元素。镍能够显著提高不锈钢的耐

腐蚀性能,并且对抗拉伸强度、塑性和磁性也有一定影响。镍能够改

善不锈钢的热加工性能,增强其韧性和可焊性。此外,镍还可以提高

不锈钢的高温性能和机械强度。

四、其他元素

除了铁、铬和镍之外,镍元素不锈钢中还含有一些其他的合金元素。钼(Mo)能够提高不锈钢的耐腐蚀性能和强度,适用于一些特殊环境

下的应用。钛(Ti)和铌(Nb)可以抑制不锈钢的晶间腐蚀,提高其

焊接性能。磷(P)、硫(S)等元素的含量需要控制在合理的范围内,以保证不锈钢的机械性能和成形性能。

总结:

镍元素不锈钢的主要组成部分是铁、铬和镍。其中,铁是不锈钢的

主要基础元素,铬是关键合金元素,而镍则是不锈钢的主要合金元素

镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

ni在合金钢中的作用

ni在合金钢中的作用

ni在合金钢中的作用

合金钢是一种重要的材料,它具有很高的硬度、强度、耐磨性和耐腐蚀性,被广泛应用于机械制造、航空航天、汽车工业、建筑工程等领域。其中,镍(Ni)是合金钢中最常用的合金元素之一,它的添加可以改善钢的物理性能和化学性能,提高钢的使用寿命和可靠性。本文将从镍在合金钢中的作用、镍对钢的影响以及镍在不同类型合金钢中的应用等方面进行探讨。

一、镍在合金钢中的作用

1、改善机械性能

镍可以改善钢的机械性能,使其具有更高的强度、硬度和韧性。在合金钢中,镍可以与其他元素形成固溶体或沉淀物,增加钢的晶格稳定性和强度。同时,镍还可以提高钢的韧性和冲击韧性,使其具有更好的抗拉伸、弯曲和扭转能力。

2、提高耐腐蚀性

镍可以提高钢的耐腐蚀性能,使其在恶劣环境下具有更好的耐蚀性。镍可以与氧化物和氧化膜反应,形成稳定的复合物,防止钢材表面的氧化和腐蚀。此外,镍还可以提高钢的耐高温性能,使其在高温环境下不易变形和失效。

3、改善加工性能

镍可以改善钢的加工性能,使其易于加工和成形。镍可以降低钢的硬度和强度,使其易于切削、铣削和冷锻。同时,镍还可以提高钢的热稳定性和塑性,使其在高温下不易变形和开裂。

二、镍对钢的影响

1、影响钢的化学成分

镍的添加会改变钢的化学成分,使其成分更加复杂。镍可以与铁、碳、铬、钼、钴等元素形成合金,改变钢的晶体结构和物理性质。同时,镍的添加还可以改变钢的相变温度和热处理特性,使其在热处理过程中更加稳定和均匀。

2、影响钢的晶体结构

镍的添加会影响钢的晶体结构,使其具有更加稳定和均匀的结构。镍可以与铁形成固溶体,提高钢的晶格稳定性和强度。同时,镍还可以与其他元素形成沉淀物,形成更加均匀的晶体结构,提高钢的韧性和冲击韧性。

镍元素对不锈钢的影响

镍元素对不锈钢的影响

镍元素对不锈钢的影响

镍是的主要合金元素,其主要作用是稳定奥氏体,使钢获得完全奥氏体组织,从而使钢具有良好的强度和塑性,韧性的配合,并具有优良的冷,热加工性和冷形成性以及焊接,低温与无磁等性能,同时提高奥氏体不锈钢的热力学稳定性,使之不仅比相同铬,钼含量的铁素体,马氏体等类不锈钢肯有更好的不锈性和耐氧化性介质的性能,而且于表面膜稳定性的提高,从而使钢还具有更加优异的耐一些还原性介质的性能。

镍是稳定奥氏体且扩大奥氏体相区的元素,为了获得单一的奥氏体组织,当钢中含有0.1%碳和18%铬时所需的最低镍含量约为8%,这便是最著名18-8铬镍奥氏体不锈钢的基本分,奥氏体不锈钢中,随着镍含量的增加,残余的铁素体可完全消除,并显著降低σ相形成的倾向;同时马氏体转烃温度降低,甚至可不出现λ→M相变,但是镍含量的增加会降低碳在奥氏体不锈钢中的溶解度,从而使碳化物析出倾向增强。

镍对奥氏体不锈钢特别是对铬镍负数氏体不锈钢力学性能的影响,主要是由镍对奥氏体稳定性的影响来决定。在钢中可能发生马氏体转变的镍含量范围内,随着镍含量的增加,钢的强度降低页塑性提高,具有稳定奥氏体组织的铬镍奥氏体不锈钢韧性(包括极低温韧性)非常优良,因而可作为低温钢使用,这是众所周知的,对于具有稳定奥氏体组织的铬锰奥氏体不锈钢,镍的加入可进一步改善其韧性.镍还可显著降低奥氏体不锈钢的冷加工硬化倾向,这主要是由于奥氏体稳定性增大,减少以至消除了冷加工过程中的马氏体转变,同时对奥氏体本身的冷加工硬化作用不太明显,不锈钢冷加工硬化倾向的影响,镍降低奥氏体不锈钢冷加工硬化速率,与降低钢的室温及低温强度,提高塑性的作用,决定了镍含量的提高有利于奥氏体不锈的冷加工成形性能,提高镍含量还可减少以至消除18-8和17-14-2型铬镍9钳)奥氏体不锈钢中的δ铁素体,从而提高其热加工性能,但是,δ铁素体的减少对这些钢种的可焊接性不利会增大焊接热裂纹丝倾向,此外,镍还可显著提高铬锰氮(铬锰镍氮)奥氏体不锈钢的热加工性能,从而显著提高钢的成材率。

镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

合金元素Ni在不锈钢中的作用

合金元素Ni在不锈钢中的作用

不锈刚含有10%-30%的铬、少量的碳,这两种元素含量增加了不锈钢抗高温、抗腐蚀的性能。其余的合金例如镍、钛、锰、硅、铌、铜、硫、磷、硒能增加合金在特殊环境中的抗腐蚀性能,提高合金抗氧化能力,使其具备其他一些特殊性能。

Ni

单纯的镍钢,目前在工业上很少使用。这是由于镍和其他合金元素配合使用时,效果更好。镍的主要作用在于它改变不锈钢的晶体结构。在不锈钢中增加镍元素可显著提高不锈钢的可塑性、可焊接性、韧性等属性。镍使奥氏体具有面心立方结构(FCC)。因此镍元素被称为奥氏体形成元素。普通碳钢晶体结构称为铁氧体,具有体心立方(BCC)结构,加入镍促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。除此之外,镍还能扩大不锈钢在非氧化性介质中的钝化范围,有效提高不锈钢的再钝化能力。

镍是优良的耐腐蚀材料,尤其是对强碱性介质。镍的强度和塑性也很好,可承受各种压力加工。除了起到形成奥氏体的作用,在不锈钢中镍还能扩大不锈钢在非氧化性介质中的钝化范围,有效提高不锈钢的再钝化能力。但镍作为单独合金元素要使不锈钢达到某些介质环境的耐蚀要求却必须要达到相当浓度(约27%),所以,镍一般不单独作为唯一合金元素来构成不锈钢。通常和铬同时存在与不锈钢中,成为不锈钢中的一个重要分支铬镍奥氏体不锈钢。实验证明,含镍不锈钢特别适用于需要表面硬化处理的渗碳零件,它能得到硬度高、韧性好的表面层来抵抗磨损和腐蚀。含镍钢容易出现带状组织和白点缺陷,在生产过程中需要采用必要的措施来对上述不良进行预防。

镍在不锈钢中作用

镍在不锈钢中作用

镍在不锈钢中作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:

奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%

从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。

从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。

镍不锈钢基础知识介绍

镍不锈钢基础知识介绍

镍不锈钢基础知识介绍

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奧氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奧氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要

意义。日前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:

奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%

从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶问腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中村火生命减少和焊接的问题。

从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮米代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数

量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。

镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

镍与不锈钢基础知识

镍与不锈钢基础知识

镍与不锈钢基础知识

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构

具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:

奥氏体形成能力=Ni%+ 30C %+30N%+0.5Mn%+0.25Cu%

从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。

从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是

一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。

不锈钢中各元素的作用

不锈钢中各元素的作用

不锈钢中各元素的作用

镍在不锈钢中的作用:

镍是形成奥氏体的合金元素,但镍的作用只有与铬配合时才会充分发挥出来,若单独使用镍而不使用铬,低碳镍钢要获得纯奥氏体的单向组织,含镍量需高达24%,事实上含镍量达到27%时才能提高钢的耐

蚀性,故在不锈钢中没有单独以镍作为合金元素的。当镍和铬配合时,镍提高钢的耐蚀作用就显著地表现出来。向铁素体不锈钢中加入少量镍,即可使金相组织有单相铁素体转变为铁素体和奥氏体两相状态,这样就可通过热处理来改善和提高其力学性能。

不锈钢中铬的作用:

决定不锈钢耐蚀性的主要元素是铬。这是由于钢中含有足够量的铬时,钢在氧化性介质中就可形成以Cr2O3为基体的稳定的表面防护膜;同时,铬能够有效地提高固溶体(铁素体、马氏体或奥氏体)的电极电位,从而使钢不受腐蚀。铬对提高钢的电极电位是遵循n/8规律的。即当铬含量达到n/8原子(1/8、2/8、3/8……或12.5%、25%、37.5%……)时,电极电位有一个跃增。铬的原子浓度占1/8(即12.5%),若以

质量计,为11.7%,所以铬在不锈钢中的含量都在12%以上。

不锈钢中锰和氮元素的作用:

锰是镍的代用元素之一。锰和镍一样是形成奥氏体的合金元素,高碳钢中的含锰量大于12%即可获得奥氏体组织(如Mn13钢),但由于

锰对提高固溶体的电极电位的效果不大,形成的氧化膜也没有防护作用,钢中的含锰量在0-10.4%变化时,在空气与酸中的腐蚀率没有多大变化,因此不锈钢中不能单独使用锰作为合金元素。

锰对于奥氏体的作用于镍相似。锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。

不锈钢中各元素作用

不锈钢中各元素作用
• 钨(W)能提高钢的耐磨性
• 铜(Cu)改善普通低合金钢的抗大气腐蚀 性能,特别是和磷配合使用时更为明显。
• 氮(N)能提高钢的强度,低温韧性和焊接 性,增加时效敏感性。
• 从以上图片可以看出:
1、Cr:防锈,不锈钢的主要组成; 2、Ni:奥氏体的形成元素;镍对酸碱有较高 的耐腐蚀能力,在高温下有防锈和耐热能力;
5、对于在低温条件下工作的奥氏体不锈钢,应 保证焊接接头在使用温度的低温冲击韧性,故 采用纯奥氏体焊条。
如A402、A407。
6、双相奥氏体钢焊缝碱性药皮与钛钙型药皮 焊条的差别不像碳钢焊条那样显著。因此在 实际应用中,从焊接工艺性能方面着眼较多,大 都采用药皮类型代号为17或16的焊条
如A102A、A102、A132等。
• 2、由于碳含量对不锈钢的抗腐蚀性能有很 大的影响,因此,一般选用熔敷金属含碳量不 高于母材的不锈钢焊条。 如316L必须选用A022焊条。
• 3、对于工作温度在300℃以上、有较强腐 蚀性的介质,须采用含有Ti或Nb稳定化元素 或超低碳不锈钢焊条。 如A137或A002等。
• 4、对于含有稀硫酸或盐酸的介质,常选用含 Mo或含Mo和Cu的不锈钢焊条。 如:A032、A052等。
• M 马氏体不锈钢 • F 铁素体不锈钢 • A 奥氏体不锈钢 • A一F 双相不锈钢。
三、不锈钢的焊条选用要点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镍在不锈钢中作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:

奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%

从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。

从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有

4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400

系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,

因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。

不锈钢酸洗工艺过程中防腐材料的选择

不锈钢酸洗工艺的酸洗液一般为多种酸的混合物,主要有硫酸、硝酸和氢氟酸等,这些混合酸的腐蚀性很强,同时具有很强的氧化性、较高的腐蚀介质的温度,这对防腐材料的耐蚀性能提出了很高的要求。不锈钢酸洗生产线工艺从生产到废水废气回收系统,各个环节都存在很强的腐蚀状态,因此防腐材料选择的好坏直接关系到设备、车间地坪、地沟、废水废气的环保回收系统等处的正常使用。

如何对酸洗项目防腐进行选材呢?首先是玻璃钢管道和贮罐的结构及原材料选择,其次是车间地坪、设备基础防腐蚀一般采用树脂砂浆地坪结构。

玻璃钢管道和贮罐的结构及原材料选择。酸洗项目中所用的贮罐和管路系统及酸雾回收系统现在基本选用玻璃钢材质,结构为防渗层+防腐层+结构强度层。一般情况下防渗层和防腐层至少厚6~8毫米。树脂选用合适的耐腐蚀环氧乙烯基酯树脂,专家介绍说--在介质为非氧化性酸、温度条件不是很高时,宜选用双酚A环氧乙烯基树脂;在氧化性酸、温度条件要求高时,宜选用酚醛环氧乙烯基树脂。为了降低成本结构层大都选用间苯不饱和聚酯树脂,厚度根据具体的结构设计计算。混酸和废酸贮罐由于腐蚀介质比较复杂,一般选用PVDF/FRP复合罐,但复合罐间PVDF和玻璃钢的粘结是一个亟待解决的问题,而且价格较高造成成

本的增加,宜选用海特酸树脂(791H)做为内衬防腐材料,能满足以上介质条件的防腐蚀要求。

车间地坪、设备基础防腐蚀一般采用树脂砂浆地坪结构,总厚度约为7-10毫米),结构为:底漆1-2道+玻璃钢(2布3油)隔离层+树脂砂浆层(5-7毫米)+面层(约1毫米)。地坪、设备基础的防腐蚀树脂现在都采用环氧乙烯基树脂,但是在底漆的选择上施工单位还习惯采用环氧树脂做底涂材料,以增加树脂和基层的粘结性能。环氧树脂一般会采用胺类固化剂,固化后表面有油性物质浮出,再和乙烯基树脂粘结时不能够很好的匹配,需要对固化后的表面进行处理方可进行后续的防腐蚀结构施工,若处理不好容易分层、开裂。据专家介绍,环氧乙烯基树脂和混凝土基础间粘结力达2MPa以上,所以环氧乙烯基树脂作为底涂材料已经具有足够的粘结性能,因此推荐直接用环氧乙烯基树脂作为底涂材料进行打底,其他各层采用相同的环氧乙烯基树脂。

超级奥氏体不锈钢904L(UNS N08904)对应的焊接

E385焊丝/焊条(AWS A5.9 ER385/E385-16)是超级奥氏体不锈钢904L(UNS N08904)对应的焊接材料

焊丝ER385。本规格之公称组成(Wt%)为20.5Cr、25Ni、4.7Mo及1.5Cu。ER385填料金属主要做为硫酸及许多含氯媒介搬运设备材料ASTM B625、B673、B674

及B677(UNS NO8904)之焊接。ER385填料金属也可做为规定媒介改善耐腐蚀性需要Type 317L材料之焊接。ER385填料金属可用于UNS NO8904母材与其它等级不锈钢之焊接。元素C、S、P及Si被规定在较低之最大水准以降低全沃斯田铁焊接金属经常遭遇热裂及隙裂(当维持耐蚀时)问题。

904L(00Cr20Ni25Mo4.5Cu)N08904是一种含碳量很低的高合金化的奥氏体

不锈钢。该钢是为腐蚀条件苛刻的环境所设计的。最初该钢是为在稀硫酸中抗腐蚀而开发的,这一特性经多年的实际应用已被验证是很成功的。现在904L在许多国家已经被标准化,并已被审定可用于制造压力容器。

904L的专用焊条为E385-16,瑞典AVESTA公司和美国TECHALLOY公司均有生产,国内天泰焊材的TS-385也是为该类钢材配套的焊条.

相关文档
最新文档