2.3.1圆锥曲线的参数方程教案新人教版选修4_4
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 2.3.1 椭圆的参数方程》
教学活动设计1复习椭圆的第一定义,给出椭圆的一种画法,介绍椭圆的标准方程:、2给出椭圆的另一种画法:椭圆的尺规作图法,介绍椭圆的参数方程如下图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥o,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时点M的轨迹参数方程3介绍参数法及椭圆的参数方程与普通方程的互化,三角代换的思想,说明椭圆参数方程的参数几何意义4介绍椭圆规,体会椭圆参数方程的应用椭圆规:这是一个美丽的传说,很多年前,在埃及金字塔法老的坟墓里,发掘出一种玩具叫“直线磨”,如图,当把手M转动时,点A及B分别在直线型凹槽与中作直线运动,故为“直线磨”,长期以来,人们一直在探求把手M的轨迹却不得其解,直到计算机出现后,人们用计算机模拟它的运动过程,才知道它的轨迹是一个椭圆引导学生观察多媒体的演示推导出椭圆的参数方程,培养学生通过观察,从而产生分析问题解决问题的能力。
介绍椭圆规,体会椭圆参数方程的应用,扩大学生的知识视5课堂练习1将下列普通方程化为参数方程,或参数方程化为普通方程。
6例题讲解7、归纳小结1.椭圆的参数方程2.椭圆的参数方程与普通方程的互化;野得到椭圆的参数方程的结论后,马上进行练习,学生即学即用简单的归纳小结可以再次加强学生对本节所学知识点的理解掌握。
作业布置课本39页6题1.课本第39页习题2-2 9)2,0(),3,1()0,3(),3,2()sin2,cos3(1πθθθ、点、点、点、点确定的曲线必过所变化时,动点、当参数DCBAP?____________________)(,0cos3sin2cos42222方程为通,那么圆心的轨迹的普为参数、已知圆的方程为θθθθ=+--+yxyx。
新人教选修4-4教案参数方程的概念曲线的参数方程
曲线的参数方程教学目标1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路.2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力.3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点.教学重点与难点曲线参数方程的探求及其有关概念是本节课的重点;难点是弹道曲线参数方程的建立.教学过程师:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线?生:1.必须同时满足两个条件:(1)曲线上任一点的坐标都是这个方程的解;(2)同时以这个方程的第一组解作为坐标的点都在曲线上.那么,这个方程就称作曲线的方程,而这条曲线就称作这个方程的曲线.师:请写出圆心在原点,半径为r的圆O的方程,并说明求解方法.(师板书——⊙O:)师:求圆的方程事实上是探求圆上任一点M(x,y)的横、纵坐标之间的关系式.能用别的方法来探x、y之间的关系吗?生:……师:(诱导一下)不用刚才的方法给我们直接求x、y的关系带来了困难,能否考虑用间接的方法来求?即在x、y之间是否能建立一座桥梁,使之联系起来?(计算机演示动画,如图3-1)师:驱使M运动的因素是什么?生:旋转角θ.师:当我们把x轴作为θ角始边,并使OM绕O点逆时针旋转,请考虑θ在什么范围内取值就可以形成整个圆了?生:师:至此x、y之间的关系已通过θ联系起来了,谁能具体地说说它们之间的关系?生3:(c∈[0,2π],θ为变量,r为常数)(生3叙述,师板书)师:①式是⊙O的方程吗?生4:①式是⊙O的方程.师:请说明理由.生4:(生4叙述,师板书)(1)任取⊙O上一点,总存在,由三角函数定义知,显然满足方程①;(2)任取,由①得即M().所以.所以M在⊙O上.由(1)、(2)知①是⊙O的方程.师:既然①是⊙O的方程,那么它应该和是一致的,两者能统一起来吗?生:能,消去θ即可.师:这里,我们从另一个角度重新审视了圆,通过第三个变量θ把圆上任意一点的横、纵坐标x、y联系了起来,获得了圆的方程的另一种形式.通过间接的方法把某两个变量联系起来的例子不仅几何中有,在生产实践、军事技术、工程建设中也有.特别在两个变量之间的直接关系不易建立时,常用间接的方法将它们联系起来.请同学们再看一个例子.炮兵在射击目标时,需要考虑炮弹的飞行轨迹、射程等等.现在,我们假设一个炮兵射击目标,炮弹的发射角为α,发射的初速度为ν0.请同学们帮他求出弹道曲线的方程。
人教版高中选修4-4第二章参数方程教学设计
人教版高中选修4-4第二章参数方程教学设计教学目标1.理解参数方程的含义和定义;2.掌握参数方程的基本性质;3.能够根据题意建立参数方程,并求解相关问题;4.了解参数方程在几何中的应用。
教学内容第一部分:参数方程的引入1.普通方程和参数方程的对比;2.引入参数的原因和意义;3.参数方程的定义及基本形式。
第二部分:参数方程的基本性质1.参数方程的坐标表示和轨迹;2.参数曲线的对称性;3.两条曲线的交点和平行关系。
第三部分:参数方程的应用举例1.抛物线的参数方程;2.椭圆和双曲线的参数方程;3.参数方程在机械运动和物理中的应用。
教学方法1.讲授法:通过讲解理论知识,引导学生理解参数方程的基本概念和性质;2.示范法:通过举例分析解题方法,帮助学生掌握参数方程的应用技巧;3.实践法:设计练习题目,让学生在实践中巩固和提高参数方程的运用能力。
教学过程设计第一课时1.引入参数方程的定义和意义;2.对比普通方程和参数方程的区别;3.分析简单的参数方程,引导学生理解其含义和形式。
第二课时1.讲解参数方程的坐标表示和轨迹;2.以椭圆和双曲线为例,分析参数方程的性质;3.引导学生练习绘制参数曲线的方法。
第三课时1.讨论参数曲线的对称性;2.分析两条参数曲线的交点和平行关系;3.引导学生通过参数方程求解相关问题。
第四课时1.分析抛物线的参数方程;2.探讨参数方程在机械运动和物理中的应用;3.综合练习和巩固。
课堂教学效果评价1.课堂笔记:学生能够认真听讲并做好课堂笔记,记录教师重点内容;2.课堂互动:教师注重与学生互动,发挥学生的主体性;3.课后作业:课后布置练习题目,检验学生的掌握情况;4.考试成绩:结合平时表现和考试成绩,评估学生的学习效果。
高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 2.3.1 椭圆的参数方程》1
圆锥曲线的参数方程—椭圆的参数方程【学习目标】1掌握椭圆的参数方程及其应用2能利用椭圆的参数方程解决最值、有关点的轨迹问题【新知自学】知识点一椭圆的参数方程思考1圆2+2=r2的参数方程错误!的参数θ的几何意义是什么?思考2对于椭圆错误!+错误!=1a>b>0,若令=a co φφ为参数,那么椭圆错误!+错误!=1的参数方程是什么?梳理1椭圆的参数方程2φ是点Ma co φ,b in φ的________.【典型例题】例1已知实数,满足错误!+错误!=1,求目标函数=-2的最大值与最小值.例2如图,在椭圆22194x y+=上求一点M,使M到直线:2-10=0的距离最小反思与感悟利用椭圆的参数方程,求目标函数的最大小值,通常是利用辅助角公式转化为三角函数求解.跟踪训练1已知曲线C1的参数方程是错误!φ为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C2上,且A,B,C,D依逆时针次序排序,点A的极坐标为错误!1求点A,B,C,D的直角坐标;2求曲线C1的普通方程,判断曲线形状;3设点()222210x ya ba b+=>>在线段AB上,且错误!=错误!,试求动点M的轨迹方程.当堂训练1.参数方程错误!φ为参数表示A.直线B.圆C.椭圆D.双曲线2.曲线错误!θ为参数的对称中心A.在直线=2上B.在直线=-2上C.在直线=-1上D.在直线=+1上3.椭圆错误!θ为参数,若θ∈[0,2π],则椭圆上的点-a,0对应的θ=________4.已知椭圆错误!+错误!=1,点A的坐标为3,0.在椭圆上找一点P,使点P与点A的距离最大.5.已知A,B两点是椭圆22194x y+=与坐标轴正半轴的两个交点,在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大。
高中数学 2.1参数方程的概念教案 新人教版选修4-4-新人教版高二选修4-4数学教案
第二章 参数方程【课标要求】1、了解抛物运动轨迹的参数方程及参数的意义。
2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。
3、会进行曲线的参数方程与普通方程的互化。
第一课时 参数方程的概念一、教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析曲线的几何性质,选择适当的参数写出它的参数方程。
二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
三、教学方法:启发诱导,探究归纳四、教学过程(一).参数方程的概念1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为0ν,与地面成α2.分析探究理解:(1)、斜抛运动:(2)、抽象概括:参数方程的概念。
说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
(3)平抛运动: (4的参数方程消去参数t 后,参数方程的作用。
(二)、应用举例:例1、已知曲线C 的参数方程是⎩⎨⎧+==1232t y t x (t 为参数)(1)判断点1M (0,1), 2M (5,4)与曲线C 的位置关系;(2)已知点3M (6,a )在曲线C 上,求a 的值。
分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。
学生练习。
反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。
例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60πrad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。
解析:如图,运动开始时质点位于A 点处,此时t=0,设动点M (x,y )对应时刻t,由图可知2cos 602sin {x y t θθθ=π==又,得参数方程为60602cos 2sin (0){x t y t t ππ==≥。
人教课标版高中数学选修4-4:《曲线的参数方程》教案-新版
第二讲 参数方程 2.1 曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解参数方程的概念、体会参数的意义,会进行参数方程和普通方程的互化,在直观想象、数学抽象中感受不同参数方程的特点. (二)学习目标1.通过实例,了解参数方程的含义,体会参数的意义.2.能求解圆的参数方程并用圆的参数解决有关问题,了解圆的参数方程中参数的意义. 3.掌握基本的参数方程与普通方程的互化,,感受集合语言的意义和作用. (三)学习重点 1.参数方程的概念. 2.圆的参数方程及其应用. 3.参数方程与普通方程的互化. (四)学习难点1.参数方程与普通方程的互化的等价转化.2.根据几何性质选取恰当的参数,建立曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第21页至第26页,填空:一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)想一想:参数方程与普通方程如何转化?一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)写一写:圆的一般参数方程是什么?①圆心在原点,半径为r 的圆的参数方程为(θ为参数);②圆心在),(b a ,半径为r 的圆的参数方程为(θ为参数).2.预习自测(1)方程⎩⎨⎧x =1+sin θy =sin 2θ(θ是参数)所表示曲线经过下列点中的( )A.(1,1)B.)21,23( C.)23,23(D.)21,232(-+ 【知识点】参数方程的定义【解题过程】将选项中的点一一代入曲线的参数方程中,显然选项C 满足题意 【思路点拨】根据参数方程的定义求解 【答案】C .(2)下列方程:①⎩⎨⎧ x =m ,y =m .(m 为参数) ②⎩⎨⎧ x =m ,y =n .(m ,n 为参数) ③⎩⎨⎧x =1,y =2.④x +y =0中,参数方程的个数为( )A .1B .2C .3D .4 【知识点】参数方程的定义【解题过程】根据参数方程的定义,只有①是参数方程 【思路点拨】由参数方程的定义求解 【答案】A(3)参数方程⎩⎨⎧x =cos α,y =1+sin α(α为参数)化成普通方程为_______________.【知识点】参数方程与普通方程互化【解题过程】由⎩⎨⎧x =cos α,y =1+sin α变形整理得1sin ,cos -==y x αα,两式分别平方相加得1)1(22=-+y x【思路点拨】利用三角恒等变换消去参数 【答案】1)1(22=-+y x .(4)P (x ,y )是曲线⎩⎨⎧x =2+cos αy =sin α(α为参数)上任意一点,则P 到直线x -y +4=0的距离的最小值是________.【知识点】参数方程的应用【解题过程】由P 在曲线⎩⎨⎧x =2+cos αy =sin α上可得P 的坐标为(2+cos α,sin α),由点到直线的距离公式得d =|cos α-sin α+6|2=⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π4+62,当cos ⎝ ⎛⎭⎪⎫α+π4=-1时,d 最小,d min =-2+62=-1+3 2.【思路点拨】根据参数方程的应用得到点设置,再转化为三角函数的最值问题求解 【答案】-1+3 2 (二)课堂设计 1.问题探究探究一 结合实例,认识参数方程★ ●活动① 归纳提炼概念在过去的学习中,我们已经掌握了一些求曲线方程的方法,但在求某些曲线方程时,直接确定曲线上点的坐标y x ,的关系并不容易,我们先看下来的例子:一架救援飞机在离灾区底面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物质准确落于灾区指定的地面飞行员应如何确定投放时机?(不计空气阻力,重力加速度2/8.9s m g =)设飞机在点A 将物质投出机舱,在过飞机航线且垂直于底面的平面上建立如右图的平面直角坐标系,其中x 轴为该平面与地面的交线,y 轴经过A 点.记物质从被投出到落地这段时间内的运动曲线为C ,)(y x M ,为C 上任意点,设t 时刻时,x 表示物质的水平位移,y 表示物质距地面的高度.由物理知识,物资投出机舱后,沿Ox 方向以s m /100的速度作匀速直线运动,沿Oy 反方向作自由落体运动,即:221500100gt y t x ⎪⎩⎪⎨⎧-== 令s t y 10.10,0≈=,代入t x 100=,解得m x 1010≈.所以,飞行员在离救援点的水平距离约为m 1010时投放物资,,可以使其准确落在指定地点.由上可知:在t 的取值范围内,给定t 的一个值,就可以惟一确定y x ,的值,反之也成立. 一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.参数是联系变数y x ,的桥梁,可以是一个有物理意义或几何意义,也可以没有明显实际意义的变数.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 巩固基础,检查反馈例1 已知曲线C 的参数方程是⎩⎨⎧+==)(1232为参数t t y tx(1)判断点)4,5(),1,0(21M M 与曲线C 的位置关系; (2)已知点),6(a M 在曲线C 上,求a 的值. 【知识点】参数方程.【解题过程】(1)把点1M 的坐标)1,0(代入方程组,解得0=t ,所以1M 在曲线C .把点2M 的坐标)4,5(代入方程组,得⎩⎨⎧+==124352t t ,无解,所以2M 不在曲线C . (2)因为点),6(a M 在曲线C 上,所以⎩⎨⎧+==12362t a t,解得9,2==a t 【思路点拨】根据参数方程与曲线的关系来求解.【答案】(1) 1M 在曲线C ,2M 不在曲线C ; (2) 9=a .同类训练 已知某条曲线C 的参数方程为⎩⎨⎧∈=+=),(212R a t at y tx 为参数且点)4,3(-M 在该曲线上. (1)求常数a 的值;(2)判断点P (1,0),Q (3,-1)是否在曲线C 上?【知识点】参数方程.【解题过程】(1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎨⎧ x =1+2t ,y =at 2,得⎩⎨⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由上述可得,曲线C 的参数方程是⎩⎨⎧x =1+2t ,y =t 2,把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎨⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 【思路点拨】根据参数方程和曲线的关系来求解.【答案】(1)1=a ; (2) P 在曲线C 上,点Q 不在曲线C 上. 【设计意图】巩固基础,加深理解与应用. 探究二 探究圆的参数方程 ●活动① 互动交流、初步实践结合以上参数方程的定义,你能的得到圆的参数方程吗?先看下面例子当物体绕定轴作匀速转动时,物体中各个点都作匀速圆周运动(如右图).那么,怎样刻画运动中点的位置呢?如图1,设圆O 的半径是r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,点M 绕点O 转动的角速度为ω.以圆心O 为原点,OM 0所在的直线为x 轴,建立直角坐标系.显然,点M 的位置由时刻t 惟一确定,因此可以取t 为参数.【设计意图】通过现实问题的求解,加深对参数方程中参数的意义的理解.●活动② 建立模型,加深认识如果在时刻t ,点M 转过的角度是θ,坐标是M (x ,y ),那么θ=ωt .设|OM |=r ,如何用r 和θ表示x ,y 呢?由三角函数定义,有cos ωt =x r ,sin ωt =yr , 即⎩⎨⎧x =r cos ωt ,y =r sin ωt .(t 为参数) 考虑到θ=ωt ,也可以取θ为参数,于是有 ⎩⎨⎧x =r cos θ,y =r sin θ.(θ为参数) 这就得到了以原点为圆心,半径为r 的圆参数方程.其中θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.【设计意图】通过对问题的求解,得出圆的参数方程,同时为求圆的标准方程的参数方程作铺垫.●活动③ 归纳梳理、灵活应用若圆的圆心坐标为),(b a ,半径为r 的圆的参数方程是什么呢?此时圆的标准方程为:222)()(r b y a x =-+-,由1cos sin 22=+αα,故令θθsin ,cos =-=-rby r a x ,整理得:图2-1-2)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x 一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围. 【设计意图】由特殊到一般,体会培养学生数学抽象、归类整理意识. 探究三 探究参数方程和普通方程的互化★▲ ●活动① 归纳梳理、体会内在联系我们除了用普通方程表示曲线外,还可以用参数方程表示曲线,它们是同一曲线的两种不同的表达形式.但由参数方程直接判断曲线的类型不太容易,例如⎩⎨⎧=+=θθsin 3cos y x 为何曲线?这就需要我们转化为普通再判断,那么两者如何转化?由⎩⎨⎧=+=θθsin 3cos y x 得⎩⎨⎧=-=yx θθsin 3cos , 所以1)3(22=+-y x ,表示以)0,3(为圆心,半径为1的圆. 一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.在参数方程与普通方程的互化中,必须使y x ,的取值范围保持一致,即等价转化.【设计意图】通过实例体会参数方程与普通方程的互化,培养学生数学抽象意识. ●活动② 巩固基础,检查反馈例2 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,求线段P A 的中点M 的轨迹.【知识点】圆的参数方程、点的轨迹方程. 【数学思想】数形结合 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得x =4cos θ+122,且y =4sin θ2,∴点M 的轨迹方程为⎩⎨⎧x =2cos θ+6,y =2sin θ,转化为普通方程得4)6(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.同类训练 将例1中的定点A 的坐标改为)0,4(,其它条件不变,求线段P A 的中点M 的轨迹 【知识点】圆的参数方程、点的轨迹方程. 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得24cos 4+=θx ,且y =4sin θ2, ∴点M 的轨迹方程为2cos 22sin x y θθ=+⎧⎨=⎩,转化为普通方程得4)2(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(2,0)为圆心,以2为半径的圆. 【设计意图】巩固检查参数方程与曲线的关系.例3 把下列参数方程化为普通方程,并说明它们各表示什么曲线?(1)⎩⎨⎧-=+=)(211为参数t ty t x (2)⎩⎨⎧+=+=)(2sin 1cos sin 为参数θθθθy x 【知识点】参数方程化为普通方程.【解题过程】(1)由11≥+=t x ,有1-=x t ,代入t y 21-=,得到32+-=x y .又因为11≥+=t x ,所以与参数方程等价的普通方程是)1(32≥+-=x x y ,即以)1,1(为端点的一条射线(包括端点).(2)把θθcos sin +=x 平方后减去θ2sin 1+=y ,得到 y x =2,又因为)4sin(2cos sin πθθθ+=+=x ,所以]2,2[-∈x ,即与参数方程等价的普通方程是y x =2,]2,2[-∈x ,即开口向上的抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【答案】(1))1(32≥+-=x x y ;(2)y x =2,]2,2[-∈x . 同类训练 化下列曲线的参数方程为普通方程,并指出它是什么曲线. (1)⎩⎨⎧x =1+2t ,y =3-4t (t 为参数);(2)⎩⎨⎧x =cos θ+sin θ,y =sin θcos θ(θ为参数).【知识点】参数方程化为普通方程. 【解题过程】(1)∵x =1+2t ,∴2t =x -1. ∵-4t =-2x +2,∴y =3-4t =3-2x +2. 即y =-2x +5(x ≥1),它表示一条射线. (2)∵x =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,∴x ∈[-2,2]. x 2=1+2sin θcos θ,将sin θcos θ=y 代入,得x 2=1+2y .∴普通方程为y =12x 2-12()-2≤x ≤2,它是抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【设计意图】巩固检查参数方程与普通方程的互化. ●活动③ 强化提升、灵活应用例4 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值. 【知识点】参数方程的应用、三角函数.【数学思想】转化与化归思想.【解题过程】令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.【思路点拨】考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题. 【答案】2x +y 的最大值为25,最小值为-2 5.同类训练 已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.【知识点】参数方程的应用、三角函数.. 【数学思想】转化化归思想.【解题过程】由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上, ∴x =-1+cos θ,且y =sin θ, 因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由tan φ=43确定) ∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞).【思路点拨】考虑利用圆的参数方程将恒成立问题转化为最值,在利用求三角函数最值问题. 【答案】[1,+∞).【设计意图】熟练利用参数方程求解某些最值问题. 3.课堂总结 知识梳理(1)一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)①圆心在原点,半径为r 的圆的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.)(为参数θ; ②圆心在),(b a ,半径为r 的圆的参数方程为)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x . 重难点归纳(1)参数t (也可用其它小写字母表示)是联系变数y x ,的桥梁,它可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数;参数方程和普通方程都是在直角坐标系之下同一曲线的两种不同表的形式.(2)参数方程和普通方程互化时,一定使y x ,的取值范围保持一致,即等价转化.(三)课后作业基础型 自主突破1.下列方程中能表示曲线参数方程的是( )A.032=-+t y xB.⎩⎨⎧+==t x y ty x 232C.⎩⎨⎧+=-=2342u y t xD.⎩⎨⎧+=+=ky k x 2335 【知识点】参数方程的含义.【解题过程】A 是含参数的方程,B 中的y x ,并不都由参数t 确定,C 中的y x ,不是由同一个参数确定,D 正确.【思路点拨】根据参数方程的含义进行判断.【答案】D2.曲线⎩⎨⎧x =1+t 2y =t -1)(为参数t 与x 轴交点的直角坐标是( ) A .(0,1) B .(1,2) C .(2,0) D .(±2,0)【知识点】曲线与参数方程.【解题过程】设与x 轴交点的直角坐标为(x ,y ),令y =0得t =1,代入x =1+t 2,得x =2, ∴曲线与x 轴的交点的直角坐标为(2,0).【思路点拨】根据曲线与参数方程的关系判断.【答案】C3.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上 B.在直线y =-2x 上 C.在直线y =x -1上 D.在直线y =x +1上【知识点】圆的参数方程.【解题过程】由⎩⎨⎧x =-1+cos θ,y =2+sin θ,得⎩⎨⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.故选B .【思路点拨】将圆的参数方程化为圆的标准方程.【答案】B4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( )A .1B .2C .3D .4【知识点】参数方程的应用.【解题过程】由于圆x 2+y 2=1的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),则x +3y =3sin θ+cos θ=2sin )6(πθ+,故x +3y 的最大值为2.故选B. 【思路点拨】利用三角代换求解.【答案】B .5.圆心在点(-1,2),半径为5的圆的参数方程为________.【知识点】普通方程化为参数方程.【解题过程】因为是圆心在点(-1,2),半径为5的圆,所以参数方程为)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x . 【思路点拨】根据三角代换公式来求解.【答案】)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x .6.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是_________.【知识点】普通方程与参数方程互化.【解题过程】把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t 21+t 2, ∴参数方程为⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数).【思路点拨】利用代入法求解.【答案】⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数) 能力型 师生共研7.将参数方程⎩⎨⎧x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)【知识点】参数方程化为普通方程.【解题过程】消去sin 2θ,得x =2+y ,又0≤sin 2θ≤1,∴2≤x ≤3.【思路点拨】注意三角函数的有界性,参数方程的等价转化.【答案】C8.已知曲线C 的参数方程为⎩⎨⎧x =2cos θy =3sin θ(θ为参数,0≤θ<2π). 判断点A (2,0),B )23,3(-是否在曲线C 上?若在曲线上,求出点对应的参数的值. 【知识点】曲线与参数方程.【解题过程】把点A (2,0)的坐标代入⎩⎨⎧x =2cos θ,y =3sin θ,得cos θ=1且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0.同理,把B )23,3(-代入参数方程,得 ⎩⎪⎨⎪⎧ 3=2cos θ,32=3sin θ,∴⎩⎪⎨⎪⎧ cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B )23,3(-在曲线C 上,对应θ=56π. 【思路点拨】利用曲线与参数方程的关系求解.【答案】A ,B 是在曲线C 上,A ,B 对应的参数的值分别为θ=0、θ=56π.探究型 多维突破9.在平面直角坐标系xOy 中,动圆x 2+y 2-8x cos θ-6y sin θ+7cos 2θ+8=0(θ∈R )的圆心为P (x ,y ),求2x -y 的取值范围.【知识点】参数方程的应用.【解题过程】由题设得⎩⎨⎧ x =4cos θ,y =3sin θ,(θ为参数,θ∈R ). 于是2x -y =8cos θ-3sin θ=73sin(θ+φ),⎝ ⎛⎭⎪⎫φ由tan φ=-83确定所以-73≤2x -y ≤73. 所以2x -y 的取值范围是[-73,73].【思路点拨】利用参数方程,转化为三角函数的最值来求解.【答案】[-73,73].10.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =4cos θy =4sin θ(θ为参数,且0≤θ<2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.【知识点】参数方程、极坐标、点到直线的距离.【解题过程】(1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0),设P 的坐标为(x ,y ),则由中点坐标公式得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎨⎧ x =2cos θy =2sin θ(θ为参数,且0≤θ<2π), 消去参数θ,得点P 轨迹的直角坐标方程为x 2+y 2=4.(2)由直角坐标与极坐标关系得直线l 的直角坐标方程为x -y +1=0.又由(1)知,点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22.【思路点拨】普通方程侧重于判断曲线的形状,参数方程侧重于表示曲线上的点.【答案】(1)P 轨迹的直角坐标方程为x 2+y 2=4;(2)2+22. 自助餐1.下列点在方程)(2cos sin 2为参数θθθ⎩⎨⎧==y x 所表示的曲线上的是( ) A.)7,2( B.)32,31( C.)21,21( D.)1,1(- 【知识点】曲线与参数方程.【解题过程】选D.由方程(θ为参数),令1sin 2==θx ,得Z k k ∈+=,2ππθ12cos -==θy .【思路点拨】利用曲线点的与参数方程的关系求解.【答案】D2.把方程xy =1化为以t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧ x =t 12y =t -12B.⎩⎪⎨⎪⎧ x =sin t y =1sin tC.⎩⎪⎨⎪⎧ x =cos t ,y =1cos tD.⎩⎪⎨⎪⎧ x =tan t ,y =1tan t【知识点】普通方程与参数方程互化.【解题过程】A 显然代入不成立,B,C 选项中1≤x ,不成立,D 选项满足要求.【思路点拨】把选项的参数方程转化为普通方程,注意等价转化.【答案】D3.圆的参数方程为⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),若圆上一点P 对应参数θ=43π,则P 点的坐标是________.【知识点】曲线与参数方程.【解题过程】将θ=43π代入参数方程中,解得33,0-==y x ,所以)33,0(-P .【思路点拨】利用曲线上的点与参数方程的关系.【答案】(0,-33).4.点(x ,y )是曲线C :⎩⎨⎧ x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则y x 的取值范围是________.【知识点】圆的参数方程、直线斜率.【数学思想】数形结合思想【解题过程】曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设y x =k ,∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值, ∴|-2k |k 2+1=1,k 2=13,∴y x 的范围为⎣⎢⎡⎦⎥⎤-33,33. 【思路点拨】利用数形结合的思想求解.【答案】 ⎣⎢⎡⎦⎥⎤-33,33. 5.根据所给条件,把曲线的普通方程化为参数方程:(1)012=---y x y ,设t t y ,1-=为参数;(2)14922=+y x ,设θθ,cos 3=x 为参数. 【知识点】普通方程与参数方程互化.【解题过程】(1)将,1-=t y 代入方程012=---y x y ,解得132+-=t t x ,所以参数方程为⎩⎨⎧-=+-=)(1132为参数t t y t t x (2)将,cos 3θ=x 代入方程14922=+y x θsin 2±=y ,由于参数θ的任意性,可取θsin 2=y ,所以参数方程为)(sin 2cos 3为参数θθθ⎩⎨⎧==y x .【思路点拨】普通方程化为参数方程,注意等价转化.【答案】(1)⎩⎨⎧-=+-=)(1132为参数t t y t t x ;(2))(sin 2cos 3为参数θθθ⎩⎨⎧==y x 6.在方程⎩⎨⎧ x =a +t cos θ,y =b +t sin θ(a ,b 为正常数)中, (1)当t 为参数,θ为常数时,方程表示何种曲线?(2)当t 为常数,θ为参数时,方程表示何种曲线?【知识点】参数方程的含义.【数学思想】分类讨论的思想.【解题过程】(1)方程⎩⎨⎧ x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数), (1)①×sin θ-②×cos θ得 x sin θ-y cos θ-a sin θ+b cos θ=0.∵cos θ、sin θ不同时为零,∴方程表示一条直线.(2)(ⅰ)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧ x -a t =cos θ,③y -b t =sin θ. ④③2+④2得x -a 2t 2+y -b2t 2=1,即(x -a )2+(y -b )2=t 2,它表示一个圆.(ⅱ)当t =0时,表示点(a ,b ).【思路点拨】(1)运用加减消元法,消t ;(2)当t =0时,方程表示一个点,当t 为非零常数时,利用平方关系消参数θ,化成普通方程,进而判定曲线形状.【答案】(1)方程表示一条直线;(2)(ⅰ)当t为非零常数时,它表示一个圆,(ⅱ)当t=0时,表示点(a,b).。
高中数学2.3.1圆锥曲线的参数方程教案新人教版选修4_4
第三课时 圆锥曲线的参数方程一、教学目标:知识与技能:了解圆锥曲线的参数方程及参数的意义过程与方法:能选取适当的参数,求简单曲线的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:圆锥曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程.三、教学方法:启发、诱导发现教学.四、教学过程:(一)、复习引入:1.写出圆方程的标准式和对应的参数方程。
(1)圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.写出椭圆、双曲线和抛物线的标准方程。
3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗?(二)、讲解新课:1.椭圆的参数方程推导:椭圆12222=+b y a x 参数方程 ⎩⎨⎧==θθsin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。
2.双曲线的参数方程的推导:双曲线12222=-b y a x 参数方程 ⎩⎨⎧==θθtan sec b y a x (θ为参数)参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。
3.抛物线的参数方程:抛物线Px y 22=参数方程⎩⎨⎧==Pt y Pt x 222(t 为参数),t 为以抛物线上一点(X,Y )与其顶点连线斜率的倒数。
(1)、关于参数几点说明:A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。
B.同一曲线选取的参数不同,曲线的参数方程形式也不一样C.在实际问题中要确定参数的取值范围(2)、参数方程的意义:参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。
《参数方程》教案(新人教选修44)
参数方程考点要求1 了解参数方程的定义。
2 分析直线,圆,圆锥曲线的几何性质。
会选择适当的参数,写出他们的参数方程。
并理解直线参数方程标准形式中参数的意义。
3掌握曲线的参数方程与普通方程的互化。
考点与导学1参数方程的定义:在取定的坐标系中。
如果曲线上任意一点的坐标y x ,都是某个变量t 的函数⎩⎨⎧==)()(t g y t f x (t ∈T) (1) 这里T 是)(),(t g t f 的公共定义域。
并且对于t 的每一个允许值。
由方程(1)所确定的点 ),(y x M 。
都在这条曲线上;那么(1)叫做这条曲线的参数方程,辅助变数t 叫做参数。
2过点),,(000y x p 倾斜角为α的直线l 的参数方程(I )⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) (i )通常称(I )为直线l 的参数方程的标准形式。
其中t 表示),,(000y x p 到l 上一点),(y x p 的有向线段p 0的数量。
t>0时,p 在0p 上方或右方;t<0时,p 在0p 下方或左方,t=0时,p 与0p 重合。
(ii )直线的参数方程的一般形式是:⎩⎨⎧+=+=bt y y at x x 00(t 为参数) 这里直线l 的倾斜角α的正切ba =αtan (00900==αα或时例外)。
当且仅当122=+b a 且b>0时. (1)中的t 才具有(I )中的t 所具有的几何意义。
2 圆的参数方程。
圆心在点),,(00'y x o 半径为r 的圆的参数方程是⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)3 椭圆12222=+b y a x 的参数方程。
⎩⎨⎧==θθsin cos b y a x (θ为参数) 4 双曲线12222=-b y a x 的参数方程:⎩⎨⎧==θθtan sec b y a x (θ为参数)5 抛物线px y 22=的参数方程。
数学新人教A版选修第二讲《参数方程》全部教案
数学新人教A版选修4-4 第二讲《参数方程》全部教案曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动:练习:斜抛运动:2.参数方程的概念(见教科书第22页)说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C的参数方程是 (t 为参数)(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。
A、一个定点B、一个椭圆C、一条抛物线D、一条直线二.圆的参数方程说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?[来源:Z三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
注意,在参数方程和普通方程的互化中,必须使x,y 的取值范围保持一致。
例3.(教科书第25页例3)例4.(教科书第26页例4)2.你能回答教科书第26页的思考吗?四.课堂练习(教科书第26页习题)五.巩固与反思1.本节学习的数学知识2.本节学习的数学方法巩固与提高1.与普通方程xy=1表示相同曲线的参数方程(t为参数)是(D)A. B.C. D.2.下列哪个点在曲线上(C)[来源:]A.(2,7)B.C.D.(1,0)3.曲线的轨迹是(D)A.一条直线B.一条射线C.一个圆D.一条线段4.方程表示的曲线是(D)A.余弦曲线B.与x轴平行的线段C.直线D.与y轴平行的线段5.曲线上的点到两坐标轴的距离之和的最大值是(D)A.B.C.1D.6.方程(t为参数)所表示的一族圆的圆心轨迹是(D)A.一个定点B.一个椭圆C.一条抛物线D.一条直线7.直线与圆相切,那么直线的倾斜角为(A)A.或B.或C.或D.或8.曲线的一个参数方程为。
《参数方程》教案(新人教选修)
《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义引入参数方程的概念,让学生理解参数方程是一种描述曲线运动的数学工具。
通过实际例子,让学生了解参数方程在现实中的应用。
1.2 参数方程的基本形式介绍参数方程的两种基本形式:圆锥曲线的参数方程和直线的参数方程。
通过图形和实例,让学生理解参数方程与普通方程之间的关系。
第二章:参数方程的图像与性质2.1 参数方程的图像利用图形软件,绘制常见参数方程的图像,让学生直观地了解参数方程的特点。
引导学生观察图像,探讨参数方程与坐标轴之间的关系。
2.2 参数方程的性质引导学生研究参数方程的单调性、周期性和奇偶性等性质。
通过实例,让学生了解参数方程的性质在实际问题中的应用。
第三章:参数方程的变换与化简3.1 参数方程的变换介绍参数方程的基本变换,如平移、旋转和缩放等。
通过实例,让学生学会如何对参数方程进行变换。
3.2 参数方程的化简引导学生利用数学方法对参数方程进行化简,使其形式更加简洁。
通过实例,让学生了解参数方程化简的意义和应用。
第四章:参数方程的应用4.1 参数方程在物理中的应用以机械运动为例,介绍参数方程在描述物体运动中的应用。
引导学生利用参数方程解决实际物理问题。
4.2 参数方程在工程中的应用以电子电路为例,介绍参数方程在描述系统动态行为中的应用。
引导学生利用参数方程解决实际工程问题。
第五章:参数方程的综合练习5.1 参数方程的解题技巧通过实例,让学生学会如何运用不同的技巧解决参数方程问题。
5.2 综合练习题提供一系列与参数方程相关的综合练习题,让学生巩固所学知识。
对练习题进行讲解和解析,帮助学生提高解题能力。
第六章:参数方程在圆锥曲线中的应用6.1 圆锥曲线的参数方程复习圆锥曲线的普通方程,并引入其参数方程。
通过图形和实例,让学生了解圆锥曲线的参数方程表示方法。
6.2 圆锥曲线的参数性质引导学生研究圆锥曲线的参数性质,如渐近线、焦点、顶点等。
高中数学《参数方程的概念》教案新人教A版选修4-4[1]共7页word资料
参数方程目标点击:1.理解参数方程的概念,了解某些参数的几何意义和物理意义;2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题.基础知识点击:1、曲线的参数方程在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,⎩⎨⎧==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程.联系x 、y 之间关系的变数叫做参变数,简称参数.2、求曲线的参数方程求曲线参数方程一般程序:(1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数;(3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题(1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程(ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点.(ⅱ)过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)(2)圆的参数方程(ⅰ)圆222r y x =+的参数方程为⎩⎨⎧==ϕϕsin cos r y r x (ϕ为参数)ϕ的几何意义为“圆心角”(ⅱ)圆22020)()(r y y x x =-+-的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00r y y r x x (ϕ为参数)ϕ的几何意义为“圆心角”(3)椭圆的参数方程(ⅰ)椭圆12222=+b y a x (0>>b a ) 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数)(ⅱ)椭圆1)()(220220=-+-by y a x x (0>>b a )的参数方程是 ⎩⎨⎧+=+=ϕϕsin cos 00b y y a x x (ϕ为参数)ϕ的几何意义为“离心角”(4)双曲线的参数方程(ⅰ)双曲线12222=-b y a x 的参数方程为⎩⎨⎧==ϕϕbtg y a x sec (ϕ为参数)(ⅱ)双曲线1)()(220220=---by y a x x 的参数方程是 ⎩⎨⎧+=+=ϕϕbtg y y a x x 00sec (ϕ为参数)ϕ的几何意义为“离心角”(5) 抛物线的参数方程px y 22= (p>0) 的参数方程为⎩⎨⎧==pty pt x 222(t 为参数) 其中t 的几何意义是抛物线上的点与原点连线的斜率的倒数(顶点除外).考点简析:参数方程属每年高考的必考内容,主要考查基础知识、基本技能,从两个方面考查(1)参数方程与普通方程的互化与等价性判定;(2)参数方程所表示的曲线的性质. 题型一般为选择题、填空题.一、 参数方程的概念一)目标点击:1、理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标;2、熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3、能掌握消去参数的一些常用技巧:代人消参法、三角消参等;4、能了解参数方程中参数的意义,运用参数思想解决有关问题;二)概念理解:1、例题回放: 问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦, 交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程.书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,) ,由⎪⎪⎩⎪⎪⎨⎧+=++=222112k ky k k x ,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x )解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k (直线的斜率),间接地求出了x 与y 的关系式,从而求得M 点的轨迹方程.实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式.方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程. 由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法.问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律, 得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意 义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:1)形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,)和时间t 的对应关系.2)我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈ (*)与曲线C 满足以下条件:(1)对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(00t g t f ) 都在曲线C 上;(2)对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式.问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系。
人教版高中选修4-4二圆锥曲线的参数方程课程设计
人教版高中选修4-4二圆锥曲线的参数方程课程设计一、课程设计背景及意义本次课程设计是为了帮助高中选修4学科的学生更深入地学习二圆锥曲线的参数方程,并能够在实践中灵活应用。
在高中数学教学中,二圆锥曲线是一个非常重要的知识点,是建立高中数学基础的一部分。
掌握二圆锥曲线的参数方程可以帮助学生更好地理解二圆锥曲线的性质和图像,同时也是高中数学考试和数学竞赛中的重点内容。
二、课程设计目标1.掌握二圆锥曲线的基本概念和性质;2.理解二圆锥曲线的参数方程;3.学会在实践中应用二圆锥曲线的参数方程。
三、课程设计内容和方法3.1 课程内容本次课程设计主要包括以下内容:1.二圆锥曲线的基本概念和性质;2.二圆锥曲线的参数方程;3.应用二圆锥曲线的参数方程绘制图像;4.实际问题中的应用。
3.2 课程方法本课程将采用以下教学方法:1.讲授理论知识,重点讲解二圆锥曲线的基本概念、性质和参数方程;2.示范绘制二圆锥曲线的图像,并引导学生进行实践操作;3.让学生进行练习和自主探究,巩固和提高理解能力;4.引导学生通过练习和实践来应用知识,解决实际问题。
四、课程设计步骤4.1 第一步:学习二圆锥曲线的基本概念和性质1.引导学生了解二圆锥曲线的概念和分类;2.讲解二圆锥曲线的性质,如对称性、切线和法线等。
4.2 第二步:理解二圆锥曲线的参数方程1.引导学生逐步理解二圆锥曲线的参数方程及其原理;2.讲解二圆锥曲线的各种形式的参数方程,并进行比较。
4.3 第三步:应用二圆锥曲线的参数方程绘制图像1.示范绘制各种形式的二圆锥曲线;2.引导学生进行实践操作,并提供相关练习题供学生练习。
4.4 第四步:实际问题中的应用1.引导学生进行实际问题解析,如抛物线、双曲线等相关问题;2.让学生在实验室中进行实践操作,实现对参数方程的应用。
五、课程设计评价本课程设计以实践应用为主要教学内容,采用了多种教学方法和手段,能够有效帮助学生掌握二圆锥曲线的参数方程的知识和技能,操作简单、易于理解和掌握,能够提高学生的学习兴趣,并激发他们学习数学的热情。
选修4-4 第二讲 参数方程(圆锥曲线的参数方程) 教案
焦点在y 轴上的椭圆的参数方程:2222y 1,b ax +=练习:已知椭圆4922y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。
(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧?错解:由已知可得a =3,b =2,θ=600,∴x =acos θ=3cos60°=23,y =bsin θ=2sin60°=3。
从而,点M 的坐标为)3,23(。
正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4922y x +=1联立, 解得x =31316, y =93316。
所以点M 的坐标为(31316,93316)。
另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。
代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。
例1 求椭圆)0b a (1by a x 2222>>=+的内接矩形的面积及周长的最大值。
解:如图,设椭圆1by a x 2222=+的内接矩形在第一象限的顶点是A )sin cos (ααb a ,)20(πα<<,矩形的面积和周长分别是S 、L 。
ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α⋅α=⨯=,当且仅当4a π=时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ϕϕ=⎧⎨=⎩53arcsin 23-π=α时,距离d 有最大值2。
例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且21MB AM =,试求动点M 的轨迹方程。
高中数学 2.2 圆锥曲线的参数方程教案 新人教A版选修4
二圆锥曲线的参数方程1.椭圆的参数方程(1)抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt2y =2pt(t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.1.椭圆的参数方程中,参数φ是OM 的旋转角吗?【提示】 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角.2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么?【提示】 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π.3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?【提示】⎩⎪⎨⎪⎧x =2pt ,y =2pt 2.(p >0,t 为参数,t ∈R )将参数方程⎩⎪⎨⎪⎧x =5cos θy =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a 、b 分别是椭圆的长半轴长和短半轴长,焦点在长轴上.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θy =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θy =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t y =3+sin t,(t为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.【思路探究】 (1)参数方程与普通方程互化;(2)由中点坐标公式,用参数θ表示出点M 的坐标,根据点到直线的距离公式得到关于θ的函数,转化为求函数的最值.【自主解答】 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3.∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|=55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,(其中φ由sin φ=35,cos φ=45确定)cos(θ+φ)=1,d 取得最小值855.1.从第(2)问可以看出椭圆的参数方程在解题中的优越性.2.第(2)问设计十分新颖,题目的要求就是求动点M 的轨迹上的点到直线C 3距离的最小值,这个最小值归结为求关于参数θ的函数的最小值.(2013·开封质检)已知点P 是椭圆x24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值.【解】 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π). 又直线l :x +2y =0. 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22|sin θ+π4|5.所以,当sin(θ+π4)=1,即θ=π4时,d 取得最大值2105.双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a2· |ab sec φ-ab tan φ|b 2+-a 2=|a 2b 2sec 2 φ-tan 2 φ|a 2+b 2=a 2b 2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec2φ-tan2φ=1的应用.如图2-2-1,设P为等轴双曲线x2-y2=1上的一点,F1、F2是两个焦点,证明:|PF1|·|PF2|=|OP|2.图2-2-1【证明】设P(sec φ,tan φ),∵F1(-2,0),F2(2,0),∴|PF1|=sec φ+22+tan2φ=2sec2φ+22secφ+1,|PF2|=sec φ-22+tan2φ=2sec2φ-22sec φ+1,|PF1|·|PF2|=2sec2φ+12-8sec2φ=2sec2φ-1.∵|OP|2=sec2φ+tan2φ=2sec2φ-1,∴|PF1|·|2抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数),当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t (x -p2),它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2tx -p2确定,两式相乘,消去t ,得y 2=-2x (x -p2),∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0.故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.(2012·天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E (-p 2,±6p ),F (p 2,0),所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2(教材第34页习题2.2,第5题)已知椭圆x 2a2+y 2b2=1上任意一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别与x 轴交于P 、Q 两点,O 为椭圆的中心.求证:|OP |·|OQ |为定值.(2012·徐州模拟)如图2-2-2,已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1、B 2的连线分别交x 轴于P 、Q两点.图2-2-2求证:|OP |·|OQ |为定值. 【命题意图】 本题主要考查椭圆的参数方程的简单应用,考查学生推理与数学计算能力.【证明】 设M (2cos φ,sin φ)(φ为参数), B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=|2cos φ1+sin φ|.MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=|2cos φ1-sin φ|.∴|OP |·|OQ |=|2cos φ1+sin φ|·|2cos φ1-sin φ|=4.因此|OP |·|OQ |=4(定值).1.参数方程⎩⎪⎨⎪⎧x =cos θy =2sin θ,(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1 C .y 2+x 24=1 D .y 2+x 24=1 【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ,(θ为参数,ab ≠0)表示的曲线是( )A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax,代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.(2013·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0)4.(2012·湖南高考)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 将曲线C 1与C 2的方程化为普通方程求解. ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将(32,0)代入x 2a 2+y 29=1,得94a2=1.又a >0,∴a =32.【答案】32(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.曲线C :⎩⎨⎧x =3cos φy =5sin φ,(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A2.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2y =2+sin α,(α为参数)的普通方程是( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3)D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α,所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1),所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤ 3.∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C3.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2 D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2,由t 2≥0得d 2≥1,故d min =1. 【答案】 B4.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ,(θ为参数,0≤θ≤π)上的一点P ,原点为O ,直线PO的倾斜角为π4,则P 点的坐标是( )A .(3,4)B .(322,22)C .(-3,-4)D .(125,125)【解析】 由题意知,3cos θ=4sin θ,∴tan θ=34,又0≤θ≤π,则sin θ=35,cos θ=45,∴x =3×cos θ=3×45=125,y =4sin θ=4×35=125,因此点P 的坐标为(125,125).【答案】 D二、填空题(每小题5分,共10分)5.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos ty =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=2 3.得点M 的坐标为(1,23). 直线OM 的斜率k =231=2 3.【答案】 2 36.(2013·江西高考)设曲线C的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=0 三、解答题(每小题10分,共30分)7.(2013·平顶山质检)如图2-2-3所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图2-2-3【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2.得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.8.(2012·龙岩模拟)已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长. 【解】 由题意知直线和椭圆方程可化为: x +y -1=0,①x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0,解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),(85,-35),则|AB |=-35-12+852=825.故所求的弦长为825.9.(2013·漯河调研)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P (4,π2)化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2.教师备选10.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P (0,32)到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.【解】 设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θy =b sin θ,其中,a >b >0,0≤θ<2π.由e 2=c 2a 2=a 2-b 2a 2=1-(b a )2可得b a =1-e 2=12即a =2b .设椭圆上的点(x ,y )到点P 的距离为d ,则d 2=x 2+(y -32)2=a 2cos 2θ+(b sin θ-32)2=a 2-(a 2-b 2)sin 2θ-3b sin θ+94=4b 2-3b 2sin 2θ-3b sin θ+94=-3b 2(sin θ+12b)2+4b 2+3,如果12b >1即b <12,即当sin θ=-1时,d 2有最大值,由题设得(7)2=(b +32)2,由此得b =7-32>12,与b <12矛盾.因此必有12b≤1成立,于是当sin θ=-12b时,d 2有最大值,由题设得(7)2=4b 2+3, 由此可得b =1,a =2.所求椭圆的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ.由sin θ=-12,cos θ=±32可得,椭圆上的点(-3,-12),点(3,-12)到点P的距离都是7.。
人教课标版高中数学选修4-4《圆锥曲线的参数方程》教案-新版
第二讲 参数方程 2.2 圆锥曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解圆锥曲线的参数方程及参数的意义、体会参数方程的应用,会选择适当的参数写出曲线的参数方程,通过观察、探索、发现的创造性过程,培养创新意识. (二)学习目标1.借助于圆的参数方程,理解椭圆的参数方程及其应用. 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. (三)学习重点1.椭圆的参数方程及其应用. 2.双曲线、抛物线的参数方程.3.通过具体问题,体会某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性. (四)学习难点1.椭圆参数方程的参数几何意义的理解.2.利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. 3.选择适当的圆锥曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第27页至第33页,填空:椭圆12222=+by a x )0(>>b a 参数方程⎩⎨⎧==θθsin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角.双曲线的参数方程的推导:双曲线12222=-b y a x )0(>>b a 参数方程⎩⎨⎧==θθtan sec b y a x (θ为参数)抛物线的参数方程:抛物线)0(22>=p px y 参数方程⎩⎨⎧==pty pt x 222(t 为参数),t 为以抛物线上一点),(y x 与其顶点连线斜率的倒数. (2)写一写:圆锥曲线上点的坐标怎么设置?2.预习自测(1)参数方程)(sin 2cos 为参数θθθ⎩⎨⎧==y x 表示的曲线为( )【知识点】椭圆的参数方程【解题过程】消去参数得椭圆的普通方程为1422=+y x ,所以选B【思路点拨】消去参数化为普通方程来判定 【答案】B(2)椭圆⎩⎨⎧==θθsin 2cos 5y x (θ为参数)的焦距为( )A .21B .29C .221D .229【知识点】椭圆的参数方程、椭圆的性质【解题过程】消去参数得椭圆的普通方程为142522=+y x ,所以21,4,25222===c b a ,故焦距2122=c【思路点拨】消去参数化为普通方程求解 【答案】C(3)圆锥曲线⎩⎨⎧x =t 2,y =2t(t 为参数)的焦点坐标是________.【知识点】抛物线的参数方程【解题过程】消去参数得曲线的普通方程为x y 42=,所以为抛物线,根据抛物线的定义得焦点坐标为(1,0)【思路点拨】消去参数化为普通方程求解 【答案】(1,0). (4)曲线⎩⎪⎨⎪⎧x =t +1t,y =2t -2t(t 为参数)的顶点坐标是________.【知识点】双曲线的参数方程 【解题过程】方程变形为⎩⎪⎨⎪⎧x =t +1t ,y 2=t -1t ,两式平方相减,得x 2-y 24=4,即x 24-y 216=1,∴曲线是焦点在x 轴上的双曲线,顶点坐标为(±2,0). 【思路点拨】消去参数化为普通方程求解 【答案】(±2,0) (二)课堂设计 1.知识回顾(1)写出圆方程的标准式和对应的参数方程.圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数),圆22020)()(r y y x x =-+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.问题探究探究一 结合旧知,类比探究椭圆参数方程★ ●活动① 归纳提炼公式上一节我们学习了圆的参数方程以及参数方程中参数的意义,那么椭圆)0(12222>>=+b a b y a x 的参数方程是什么呢,参数方程中的参数有何意义?如右图,以原点O 为圆心,分别以b a ,(a >b >0)为半径作两个同心圆,设A 为大圆上的任意一点,连接OA,与小圆交于点B ,过点A 作Ox AN ⊥,垂足为N ,过点B 作AN BM ⊥,垂足为M .设ϕ=∠xOA ,由三角函数的定义有:)sin ,cos (),sin ,cos (ϕϕϕϕb b B a a A设),(y x M ,依题意可得:)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 当OA 绕原点旋转一周时,就可以得到点M 的轨迹方程了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时 圆锥曲线的参数方程
一、教学目标:
知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:圆锥曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
(1)圆2
2
2
r y x =+参数方程⎩
⎨
⎧==θθ
sin cos r y r x (θ为参数)
(2)圆2
2020)\()(r y y x x =+-参数方程为:⎩⎨
⎧+=+=θ
θ
sin cos 00r y y r x x (θ为参数)
2.写出椭圆、双曲线和抛物线的标准方程。
3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课:
1.椭圆的参数方程推导:椭圆122
22=+b y a x 参数方程 ⎩⎨⎧==θ
θsin cos b y a x (θ为参数),参
数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。
2.双曲线的参数方程的推导:双曲线122
22=-b y a x 参数方程 ⎩⎨⎧==θ
θtan sec b y a x (θ为参数)
参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。
3.抛物线的参数方程:抛物线Px y 22
=参数方程⎩⎨⎧==Pt
y Pt x 222
(t 为参数),t 为以抛物
线上一点(X,Y )与其顶点连线斜率的倒数。
(1)、关于参数几点说明:
A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。
B.同一曲线选取的参数不同,曲线的参数方程形式也不一样
C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义:
参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。
(3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程
(4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。
与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。
4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ⎩⎨⎧==θ
θsin cos b y a x (θ为
参数);椭圆
2
2
221(0)y x b a b a
+=>>的参数方程是
cos sin (2x b y a θθ
θθ==≤≤π⎨
为参数,且0).
(2)、以0
(
,)y x 为中心焦点的连线平行于
x 轴的椭圆的参数方程是
00cos sin ({x a y b x y θ
θθ=
+=+为参数)。
(3)在利用⎩⎨⎧==θ
θsin cos b y a x 研究椭圆问题时,椭圆上的点
的坐标可记作(acos θ,bsin θ)。
(三)、巩固训练
1、曲线)(1
1为参数t t t y t t x ⎪⎩
⎪⎨⎧-
=+=的普通方程为42
2=-y x 。
2、曲线)(sin cos 为参数θθ
θ
⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值是(D )
A .
21 B .2
2 C .1 D .2 3、已知椭圆⎩⎨
⎧==θ
θsin 2cos 3y x (θ为参数)求 (1)6π
θ=时对应的点P 的坐标
(2)直线OP 的倾斜角
(四)、小结:本课要求大家了解圆锥曲线的参数方程及参数的意义,能选取适当的参数,求简单曲线的参数方程,通过推到椭圆及双曲线的参数方程,体会求曲线的参数方程方法和步骤,对椭圆的参数方程常见形式要理解和掌握。
(五)、作业: 五、教学反思:。