信号与系统重点概念公式总结
信号与系统重点概念公式总结
信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统-公式总结
信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。
信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。
1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。
4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。
5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。
《信号与系统》重要公式
《信号与系统》重要公式信号与系统是电子信息类专业的一门重要课程,其中涉及到许多重要的公式。
下面是《信号与系统》中的一些重要公式。
1.线性系统的叠加性质:对于系统的输入信号x(t)和输出信号y(t),以及系统的响应函数h(t),有如下关系:h(a*x(t)+b*y(t))=a*h(x(t))+b*h(y(t))2.线性时不变系统的冲击响应函数:线性时不变系统的输出可以由输入和系统的冲击响应函数进行卷积运算得到:y(t)=x(t)*h(t)3.冲击函数的性质:冲击函数的面积等于单位冲击高度,即:∫h(t)dt = 14.线性卷积的性质:对于两个信号x(t)和y(t)进行卷积运算,然后再对结果进行线性组合,等于先对每个信号进行线性组合,再进行卷积运算:a*(x(t)*y(t))+b*(z(t)*y(t))=(a*x(t)+b*z(t))*y(t)5.单位冲击响应函数的性质:线性时不变系统的冲击响应函数和移位后的冲击函数进行卷积运算等于移位后的输出:h(t)*δ(t-t0)=h(t-t0)6.单位冲击响应函数和冲击响应函数的性质:系统的输出信号可以由冲击响应函数与输入信号通过卷积运算得到:y(t)=x(t)*h(t)7.卷积和频率域的乘积:信号的卷积运算可以转化为信号的频率域乘积运算,即傅里叶变换的频率域乘积等于两个信号的傅里叶变换之间的乘积:F{x(t)*y(t)}=F{x(t)}*F{y(t)}8.线性相位系统的频率响应函数:对于一个线性相位系统,其频率响应函数H(f)满足以下公式:H(f) = ,H(f), * exp(j*ϕ(f))9.系统的频率响应函数与冲击响应函数的关系:系统的频率响应函数是冲击响应函数的傅里叶变换,即:H(f)=F{h(t)}10.系统的幅频特性:系统的幅频特性是指系统对不同频率的输入信号的幅度变化情况。
幅频特性可以通过频率响应函数的模进行描述,即:H(f)以上是《信号与系统》中的一些重要公式,它们是理解和分析信号与系统的重要工具。
(完整版),信号与系统-公式总结,推荐文档
an (s p1)(s p2 )(s pn ) (s p1) (s p2 )
(s pn )
k i (s pi )F (s) |s pi
(i 1, 2,n)
变变变变变变变变变变
et ut 1
s α
z变变变变变变变
z
z
a
a n u( n) anu(n
1)
za za
⑵留数法
留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留数的运算,即
an
1
, a 1
n0
1 a
第二章 傅立叶变换
1 正变换: F () f (t)e jtdt
2 傅立叶变换的性质 性质 ※时移
※时频展缩
※※频移
逆变换: f (t) 1 F ()e jtd
2
时域
f (t t0 )
f (at) a 0 f (at b) a 0
f (t)e j0t
信号
名称
f (t)
波形图
F () F () e j()
频谱图
※※ 矩形
脉冲 E[u(t ) u(t )]
E
Sa(
)
2
冲激
脉冲
E (t)
E
※※
直流
E
函数
2 E ()
※ 冲激 序列
T 1 (t )
1 1 ( )
1
2 T1
第三章 拉普拉斯变换
1 定义
双边拉普拉斯变换 F (s) f (t)estdt
z
z i0 z pi
根据收敛域给出反变换
N
A: if z R ,则 f (n) 为因果序列(右边序列),即 f (n) Ai pinu(n) i 1
信号与系统公式大全
信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。
在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。
同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。
如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。
信号与系统重点概念公式总结
信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。
2.连续信号:在连续时间上取值的信号,用x(t)表示。
3.周期信号:在一定时间内重复出现的信号。
4.能量信号:能量信号的能量有限,用E表示。
5.功率信号:功率信号的能量无限,用P表示。
二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。
2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。
4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。
-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。
-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。
-时间反转性:x(-t)的拉普拉斯变换是X(-s)。
-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。
三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。
2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。
3.傅里叶变换:将连续信号从时域变换到频域的过程。
4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。
四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。
《信号与系统》重要公式
《信号与系统》重要公式《信号与系统》本提纲仅供复习参考使⽤,不是全部《信号与系统》内容,也不是考试内容。
请使⽤时注意。
信号基础⼀、基本连续时间信号(1)正弦信号)()(Φ+=t ACos t f ω(2)单位阶跃信号<=>=000011)(t t t t u(3)单位冲激信号a)定义=≠=∞=?∞∞-1)(000)(dt t t t t δδ b)性质:(4)冲激偶 a)定义:)()('t dtd t δδ=b)性质:(5)符号函数<=>-=-=--=0001011)(2)()()(t t t t u t u t u t Sgn(6)单位斜坡函数≥<===∞-000)()()(t t td u t tu t f t ττ(7)复指数信号ωσωσ?ω?ωσωσj s j s s s t jSin t Cos Ae Ae t f t AjSin t ACos Ae t f Ae t f A t f Ae t f t st tj tst +====+==+====?=0)()()()()()((8)抽样信号)(int )(t Sinc t S t Sa ==⼀、信号的时域分解奇偶分解:)()()(t f t f t f o e += )]()([21)()]()([21)(t f t f t f t ft f t f o e --=-+=三、信号的时域变换四、系统的定义和分类(1)定义:能够完成某种运算功能的集合(2)五、LTI 线性时不变系统的性质(1)信号的函数和波形互换a) 由函数画波形(列举关键点、微积分关系、分段函数) b) 由波形求函数(分段函数⽤u(t)描述)(2)含有奇异函数的运算a) 注意抽样特性?dt t f t t f t )()()()(δδ和的区别 b) 注意积分的区间(3)信号的变换(通常先反折再时移最后展缩较简易)(4)系统类型的判定(根据定义判定,线性性可以分解讨论)连续系统时域分析⼀、系统的数学模型1.系统⽤常系数⾮齐次微分⽅程描述f b f b f b f b y a y a y a y a n n n n n n n n 0)1(1)1(1)(0)1(1)1(1)(++++=++++----ΛΛ2.全响应的求解的基本步骤:全响应y(t)=y x (t)+y f (t)⼆、全响应的三、冲激和阶跃响应?∞-==td h t g t g dt d t h ττ)()()()(四、卷积积分1.定义?∞∞--=*=τττd t f f t f t f ty )()()()()(21212.性质(1)微分⽅程的求解(2)卷积的运算(a )图解法(b )解析法(使⽤公式和性质)连续信号的频域分析⼀、⾮周期信号的频域分析(1)傅⽴叶变换?∞∞-∞∞--==ωωπωωωd e j F t f dte tf j F t j t j )(21)()()((2)性质(3)常⽤变换对四、抽样定理(1)抽样信号)()()(t t f t f T s δ=(2)时域抽样定理抽样信号能恢复原始信号的条件: a )原始信号为限带信号 b )抽样间隔mm s ms f T ωπωω=≤≥212(1)频谱分析(2)信号的频域分析或频域简化(3)抽样连续系统的频域分析⼀、频域系统函数(1)定义)()()(ωωωj F j Y j H f =(2)含义)]([)()()()(t h F j H t h t f t y f =*=ω(3)H(j ω)的求解 a ))]([)(t h F j H =ωb )频域电路模型求解(4)频率特性)(|)(|)(ω?ωωj e j H j H =⼆、⾮周期信号激励下系统零状态响应的求解步骤:(1))()(ωj F t f ? (2)求)(ωj H(3))()()(ωωωj F j H j Y f =(4))()(1ωj Y t y f Ff ??→←-三、调制解调(1)调制(2)解调f )(t )]()([21)(c c c F F t Cos t f ωωωωω++-?)]2()2([1)(1]2)()([21)()(c c c c c c F F F t Cos t f t f t tCos Cos t f t Cos t y ωωωωωωωωω++-+?+==(1)系统零状态响应的求解(2)系统函数的求解和分析(3)系统的频谱分析(调制解调)连续信号复频域分析⼀、拉普拉斯变换(1)定义:??∞+∞-∞∞--==j j st st ds e s F j t f dt e t f s F σσπ)(21)()()((2)收敛域(3)基本性质双边拉普拉斯变换单边拉普拉斯(4)常⽤变换(5)拉⽒逆变换a )部分分式法ΛΛ+-+-++-+-==-22111112111)()()()()(p s K p s K p s K p s K s D s N s F k k k []--=-==--=1))(()!1(1|))((1)1()1(1p s kk k k p s i i p s s F dsd k K p s s F K i重极点单极点b )留数法[]ip s stk i k k i i i i i e s F p s dsd k r r t u t f r t u t f t u t f t u t f t f =----=??-=-=-+=∑∑)()()!1(1)()()()()()()()()()1()1(收敛域右边所有极点收敛域左边所有极点⼆、电路元件的s 域模型(1)电阻)()(s I s U R =(2)电容)(1)0(1)(s I Csu s s U c c +=-(3)电感)0()()(--=Li s LsI s U三、线性系统的s 域分析法(1)根据换路前的电路(t<0)求初始状态(0-)(2))()(s F t f ? (3)作出换路后(t>0)的s 域电路模型(4)应⽤KCL 、KVL 、VAR 等求解响应(5)拉⽒逆变换求时域表达式和时域波形(1)信号的拉⽒变换(2)信号的逆变换(3)s 域的电路分析复频域系统函数和系统模拟⼀、s 域的系统函数H(s)(1)定义)()()(s F s Y s H f =(2)意义st st fe s H e t h t y t h s H )()()()()(=*=?(3)求解⽅法 a ))}({)(t h L s H =b )由s 域电路模型求解c )由系统零极点求解d )由模拟图、信号流图(梅森公式)求解⼆、系统模拟基础(1)系统的直接模拟ij s a sb s H n j jj mi ii ≥=∑∑==00)(直接II 其它模拟:并联:⽤部分分式展开级联:分为⼏个分式相乘(3)基本系统的模拟(4)梅森公式∑∑∑∑+-+-==inm rq p r q pn m i kkk L L LL L L g H ,,,11Λ三、系统稳定性判定极点在左半平⾯――稳定罗斯-霍尔维滋准则)()()(0s D s N H s H = 稳定条件: (1)D(s)不缺项(2)D(s)系数全为正或全为负(3)罗斯阵列MMMMΛΛΛΛ53153153142-----------n n n n n n n n n n n nd d d c c c a a a a a a 共n+1⾏1u c )0(-+ -)(s U c -zs 11和1-s a z a s ++11和1-az z a s s ++和y基本系统的模拟KΛΛ51511331311151413312111,11,1-----------------------=-=-=-=n n n n n n n n n n n n n n n n n n n n n n n n c c a a c d c c a a c d a a a a a c a a a a a c (4)罗斯判据:罗斯矩阵的第⼀列全为正,表明D(s)=0的根全部在左半平⾯(1)建⽴框图和流图(2)分析框图、流图(3)系统稳定性判定离散信号与系统时域分析(1)定义:注意,离散信号可以⽤连续信号的抽样获得(2)基本离散信号(3)离散信号的运算(5)典型序列的累加和(6)卷积和a )定义∑∞-∞=-=*k k n fk f n f n f ][][][][2121b )性质c )卷积和的求法①图解法②多项式乘、除法③列表法④解释法(1)信号的函数和波形互换(2)信号的变换(3)卷积运算离散信号Z 域分析⼀、z 变换(1)定义?∑∑-∞=-∞-∞=-===dz z z F j n f z n f z F z n f z F n n n I n n 10)(21][][)(][)(π逆变换单边双边正变换(2)收敛域(3)单边z 变换性质(4)常⽤单边z 变换(5)z 逆变换 a )部分分式法:按zz F )(展开,⽅法参考s 域的分析 b )留数法∑-=in z z F s n f ])([Re ][1c )幂级数展开(长除法)⼆、离散系统的z 域分析步骤:(1)建⽴系统的差分⽅程(2)对差分⽅程进⾏单边z 变换(考虑初始状态),得z 域的代数⽅程(3)解代数⽅程,得响应的z 域解(4)进⾏z 逆变换,得响应的时域解三、z 域系统函数(1)定义)()()(z F z Y z H f =(2)意义nn z z H z n h n y n h Z z H )(][][]}[{)(=*==(3)H(z)的求法a )由差分⽅程进⾏z 变换(不考虑初始状态)b )有零极点求得c )由模拟图、信号流图(梅森公式)四、离散系统模拟参考s 域分析五、系统稳定性稳定系统:极点:所有极点应该在单位圆内。
信号与系统主要公式和内容摘要
信号与系统主要公式和内容摘要一.单位冲激信号()t δ的基本特性: 1. √()()()()()0t x dt t t t x dt t t t x =+=-⎰⎰∞∞-∞∞-δδ2.()()()⎩⎨⎧><=⎰0ab ab dt t t b aϕδϕ3.()()t aat δδ1=4. √ ()()()()000t t t x t t t x -=-δδ5. ()()t t δδ=- 偶函数6.()()t dtt du δ= ()()t u d t =⎰∞-ττδ 7. ()()()t x t t x =*δ ()()()00t t x t t t x -=-*δ 8. ()()()2121t t t t t t t --=-*-δδδ 9. ()()()t x t t x '='*δ ()()()ττd x t u t x t⎰∞-=*10. 若:()()()t x t x t y 21*=则:()()()()()t x t x t x t x t y 2121'*=*'=' ()()()()()()()()t x t x t x t x t y 1212111---*=*=()()()212211t t t y t t x t t x --=-*- 二.单位脉冲序列[]n δ的基本特性: 1. [][]∑+∞=-=k k n n u δ [][]∑-∞==nk k n u δ √[][][]1--=n u n u n δ2. √[][][][]000n n n x n n n x -=-δδ√[][][]n x n n x =*δ √[][][]00n n x n n n x -=-*δ 3. [][][]k n k x n x k -=∑∞-∞=δ特殊:()()()()t r t tu t u t u ==* [][]()[]n u n n u n u 1+=* 1欧拉公式:()()()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=+=--t j t j t j t j t j e e j t Sin e e t Cos t jSin t Cos e ααααααααα2121三.线性时不变系统(LTI 系统)的主要特性 1. 线性:(1) 无初值:()()()()t y a t y a t x a t x a 22112211+→+ [][][][]n y a n y a n x a n x a 22112211+→+ (2) 含初值:若:()()()t y x t f 1110→⎥⎦⎤⎢⎣⎡ ()()()t y x t f 2220→⎥⎦⎤⎢⎣⎡ 则:()()()()()()t y t y x t f x t f 21221100βαβα+→⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡[][][][][][]k y k y x k f x k f 21221100βαβα+→⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 2. 时不变性:()()00t t y t t x -→- [][]00n n y n n x -→- 3. 微(差)分性:()()dtt dy dt t dx → [][]k n y k n x -→- 4. 积分(累加)特性:()()⎰⎰→ttd y d x 0ττττ [][]∑∑==→Nk Nk k y k x 05. 因果性:若:()0=t h ,当0<t 时 √若:[]0=n h ,当0<n 时 6. 稳定性:()∞<⎰∞∞-ττd h √[]∑∞-∞=∞<k k h27. 卷积特性: ()()()()()()()ττττττd t x h d t h x t h t x t y f ⎰⎰∞∞-∞∞--=-=*=[][][][][][][]k n x k h k n h k x n h n x n y k k f -=-=*=∑∑∞-∞=∞-∞=有:()()()ωωωj H j X j Y f =()()()S H S X S Y f =()()()Z H Z X Z Y f =四.信号的基本运算: 1. 相加:()()()t x t x t y 21+= [][][]n x n x n y 21+=2. 相乘:()()()t x t x t y 21= [][][]n x n x n y 21=3. 幅度加权:()()t x t y α= [][]n x n y α=4. 反折:()()t x t y -= [][]n x n y -=5. 时移:()()0t t x t y -= [][]0n n x n y -=00>t (或00>n )为右移,00<t (或00<n )为左移 6. 尺度变换:(1) 连续时间信号的尺度变换:()()at x t y =1>a 时,表示()t x 在时间轴上被压缩a 倍 1<a 时,表示()t x 在时间轴上被扩展a 倍(2) 离散时间信号的内插与抽取: 内插:[]⎥⎦⎤⎢⎣⎡→L k f k f , L 为正整数[]0f 不动,在序列2点之间插入1-L 个零点 3抽取:[][]Mk f k f →, M 为正整数[]0f 不动,在原序列中每隔1-M 点抽取一点 7. 微分(差分): ()()dtt dx t y =[][][]1--=n x n x n y8. 积分(累加): ()()ττd x t y t⎰∞-= [][]∑-∞==nk k x n y9. 卷积()()()()()()()ττττττd t x x d t x x t x t x t y -=-=*=⎰⎰∞∞-∞∞-122121[][][][][][][]k n x k x k n x k x n x n x n y k k -=-=*=∑∑∞-∞=∞-∞=122121五.几何级数的求值公式:1. ⎪⎪⎩⎪⎪⎨⎧=+≠--=+=∑1111121220a n a a a a n n n n2. ⎪⎪⎩⎪⎪⎨⎧=+-≠--=+=∑11111212121a n n a a a a a n n n n n n210n n ≤<3.aa n n -=∑+∞=110 1<a 4. a a a n n-=∑+∞=11 1<a 5. a a a n n n n-=∑+∞=1111<a六.傅里叶变换、拉普拉斯变换、Z 变换 1.LTI 系统对虚指数信号的响应:→t j e ω()()t j e j H t y ωω=→()()()tjn n n n tjn n e jn H C t y eC t f 000ωωω∑∑∞-∞=∞-∞==→=42.傅里叶级数公式: ()∑∞-∞==n tjn n eC t x0ω 其中:()dt e t x T C tjn Tn 01ω-⎰= 3. 傅里叶变换公式(系统稳定):(1)非周期信号:()()ωωπωd ej X t x tj ⎰∞+∞-=21()()dt e t x j X t j ωω-∞+∞-⎰=条件:()⎰∞+∞-∞<dt t x 或()⎰∞+∞-∞<dt t x 2(2)周期信号:()∑∞-∞==k t jk k e a t xω()()∑∞-∞=-=k k k a j X 02ωωδπω 002T πω=()dt e t x T a tjk Tk 01ω-⎰=4. 拉普拉斯变换公式: ()()dt et x S XtS -∞-⎰=0 ()()dS e S X j t x t S j j ⎰∞+∞-=σσπ215. Z 变换公式: ()[]n n Z n x Z X -∞=∑=[]()dZ Z Z X j n x n C121-⎰=π6. 典型信号的三种变换公式:(1)√()1−→←FTt δ√()1−→←LT t δ √()()n LTn S t −→←δROC:整个S 平面√[]1−→←Zn δ ROC:整个Z 平面 (2) √()00t j FTe t t ωδ-−→←-√()00t S LT e t t -−→←-δ ROC:整个S 平面√[]00nZ Z n n -−→←-δROC:整个Z 平面(可能去除0=Z )(3) ()()ωπδω+−→←j t u FT15()St u LT1−→← ROC:{}0>S R e √ []111--−→←Zn u ZROC: 1>Z (4) ()ωj a t u eFTat+−→←-1{}0>a R e√()a S t u eLTat+−→←-1ROC: {}a S R e -> []111--−→←aZn u a Z nROC: a Z > (5) ()()21ωj a t u teFTat+−→←- {}0>a R e()()21a S t u teLTat+−→←- ROC: {}a S R e ->()[]()21111--−→←+aZ k u a k Zk ROC: a Z >(6)()∑∑+∞-∞=+∞-∞=-−→←k kFTk tjk kk a ea 020ωωδπω(7) ()020ωωπδω-−→←FT tj e()020ωωπδω+−→←-FTt j e(8) ()ωπδ21−→←FT(9) √()()[]000ωωδωωδπω++-−→←FTt Cos()220)(ωω+−→←S S t u t Cos LTROC: {}0>S R e(10) ()()[]000ωωδωωδπω--+−→←j t Sin FT()2020)(ωωω+−→←S t u t Sin LTROC: {}0>S R e (11) ()∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛-−→←-k FTn T kT nT t πωδπδ226(12) −→←FTT ASa T )(211ω(13) −→←FTtt ASin πλ√()()21ωSa t p FT−→← ()()()2211ωSa t p t p FT−→←* 七.傅里叶变换、拉普拉斯变换、Z 变换的主要性质设:()S X :ROC {}0Re σ>S ()Z X :ROC Rf Z > 1. 线性:()()()()ωωj bY j aX t by t ax FT+−→←+()()()()S bY S aX t by t ax lT +−→←+ ROC :公共收敛域 [][]()()Z bY Z aX n by n ax ZT +−→←+ ROC :公共收敛域2. 时移: √()()ωωj X e t t xt j FT00-−→←-√()()S X e t t xt S LT 00-−→←- 要求:右移,即00>tROC :未变因果序列:√[][]()Z X Z n n u n n xn ZT00-−→←-- 要求:右移,即00>nROC :未变非因果序列:√[][]()[]111-+−→←--x Z X Z n u n x ZT√ [][]()[][]21212-+-+−→←---x x Z Z X Zn u n x ZT73. 频移:()()[]00ωωω-−→←j X t x e FTt j()()00S S X t x e LT tS -−→← ROC: {}00Re σ>-S S []⎪⎭⎫ ⎝⎛−→←a Z X n x a ZT n ROC: Rf a Z >()[]()Z X n x ZTn -−→←-1 ROC:Rf Z >-4.反折:()()ωj X t x FT -−→←-()()S X t x LT -−→←- ROC: {}0Re σ>-S5.尺度变换:()⎪⎭⎫ ⎝⎛−→←a j X a at x FT ω1 √()⎪⎭⎫ ⎝⎛−→←a S X a at x LT1 ROC :0Re σ>⎭⎬⎫⎩⎨⎧a S6.卷积:√()()()()ωωj Y j X t y t x FT−→←*()()()()S Y S X t y t x LT−→←* ROC :公共收敛域 [][]()()Z Y Z X n y n x ZT −→←* ROC :公共收敛域7.时域微分:()()ωωj X j t x dtd FT−→←:未修正 不含初值:√()()S SX t x dt d LT −→← √()()S X S t x dtd n LTn n −→← 含初值: √()()()--−→←0x S SX t x dt d LT √ ()()()()--'--−→←00222x Sx S X S t x dtd LT 8.频域微分: 8()()ωωj X d djt tx FT−→← ()()S X dSd t tx LT-−→← ROC :未变[]()dZZ dX Z n nx ZT-−→← ROC :未变9.积分(累加):()()()()ωδπωωττ01X j X j d x FTt +−→←⎰∞- ()()S X Sd x LTt1−→←⎰-ττ ROC :{})0,max(Re 0σ>S []()Z X Zn x ZT kn 111-=-−→←∑ ROC :),1max(Rf Z > 10.调制(频域卷积):()()()(){}ωωπj Y j X t y t x FT *−→←2111.对偶:若:()()ωj F t g FT−→← 则:()()ωπ-−→←g jt F FT2 八.系统函数: 1.连续系统:()()∑∑===Nk M k kk k k k k dt t x d b dt t y d a 00√()()()()()∑∑====Nk kk kMk k j a j b j X j Y j H 00ωωωωω√()()()∑∑====Nk kk Mk kk f Sa Sb S X S Y S H 0()()ωωπωd ej H t h tj ⎰∞∞-=21()()dS e S H j t h t S j j ⎰∞+∞-=σσπ212. 离散系统:[][]∑∑==-=-Mk kN k kk n x b k n y a 0√()()()k Nk k Mk Kk f Z a Zb Z X Z Y Z H -==-∑∑==[]()dZ Z Z H j n h n C121-⎰=π3. 系统的因果性:(1)连续系统:S 域 一个具有有理系统函数H(S)的LTI 系统,其因果性等价于H(S)的ROC 位于S 平面上最右边极 点的右半平面。
信号与系统公式总结
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统-公式总结
t⎧22第一章 信号分析的理论基础t 2g (t )g (t) dt = 0, i ≠ j 1.周期信号的判断: x (t ) = x (t + T )⎪⎰t 1 ij 信号正交判断: ⎨ ⎪ t 2g 2 (t )dt = K⎩⎰t 1 ii t 2 ⎧0, if t 0 > t 2或t 0 < t 1 ※2. (1) f (t )δ (t ) = f (0)δ (t )(2) ⎰t 1 δ (t + t 0 ) f (t )dt = ⎨ f (t ),if t < t < t⎩ 0 0 1 2(3) u (n ) - u (n -1) = δ (n )3. ※信号的时域分析与变换信号的翻转: f (t ) → f (-t )4. ※卷积平移: f (t ) → f (t ± t 0 )展缩: f (t ) → f (at )g (t ) = f 1 (t )* f 2 (t )= ⎰-∞ f 1(τ ) f 2 (t -τ )d τg (n ) = f 1 (n )* f 2 (n )=∑ m =-∞f 1(m ) f2(n - m )5.f (t ) 与奇异函数的卷积f (t )*δ (t ) = f (t ) f (t )*δ (t - t 0 ) = f (t - t 0 ) 6. 几何级数的求值公式表n⎧⎪1- a n 2 +1n⎧⎪a n 1 - a n 2 +1∞1∑a n = ⎨ n =01- a , a ≠ 1 ∑a n = ⎨ n =n 1- a , a ≠ 1 ∑a n= n =01- a , a < 1⎩⎪ n 2 +1, a = 11 ⎪⎩ n2 - n 1 +1, a = 11 正变换: F (ω) = ⎰f (t )e- j ωtdt第二章 傅立叶变换逆变换: f (t ) =1⎰∞F (ω)e j ωt d ω-∞2π -∞n ∞※1 1⎰※3 抽样定理:(1) 已知信号有限频带为 f m ,采样信号频率 f 满足 f s ≥ 2 f m 时,抽样信号通过理想低通滤波器后能完全恢复。
信号与系统重要公式总结
周期信号与非周期信号连续时间信号:()()f t f t kT =+0,1,2,k =±±⋅⋅⋅⋅⋅⋅ 离散时间信号:()()x n x n kn =+0,1,2,k =±±⋅⋅⋅⋅⋅⋅000()j t j t T e e ωω+=002T πω=00()j n j n N e e ωω+=02N k πω=为整数能量信号和功率信号 连续时间信号2|()|E f t dt ∞-∞=⎰2221|()|T T P f t dt T =⎰(周期信号) 2221|()|lim TT T f t T P dt →∞-=⎰(非周期信号)离散时间信号2|()|n E x n ∞=-∞=∑21|()|21N n N P x n N =-=+∑(周期信号) 21()21lim Nn NN P x n N =-→∞=+∑(非周期信号) 1、能量信号:E 有限0E <<∞,0P =; 2、功率信号:P 有限0P <<∞,P =∞;3、若E P →∞→∞,,则该信号既不是能量信号也不是功率信号;4、一般周期信号是功率信号。
线性系统)()()()()()()()(221122112211t y a t y a t x a t x a t y t x t y t x +→+→→,则,若 )()()()()()()()(221122112211n y a n y a n x a n x a n y n x n y n x +→+→→,则,若时不变系统)()()()(00t t y t t x t y t x -→-→,则若 )()()()(00t n y n n x n y n x -→-→,则若系统时不变性:1电路分析:元件的参数值是否随时间而变化 2方程分析:系数是否随时间而变3输入输出分析:输入激励信号有时移,输出响应信号也同样有时移i关系狄利克雷(Dirichlet)条件(只要满足这个条件信号就可以利用傅里叶级数展开)(1)在一周期内,如果有间断点存在,则间断点的数目应是有限个。
信号与系统常用公式
1时移x(t-t 0) )(0ωωj X t j F -−→←2频移)(0t x t j ω−→←F ))((0ωω-j X 3共轭x *(t)−→←F x *)(ωj - 4时间反转x(-t)−→←F )(ωj X - 5时间与频率尺度变换x(at)−→←F )(1a j X a ω 6卷积x(t)*y(t)−→←F )()(ωωj Y j X 7相乘x(t)y(t)−→←F )(*)(21ωωπj Y j X 8时域微分dt t x dtd )(−→←F )(ωωj X j 9积分⎰∞-tdt t x )(−→←F )()0()(1ωσπωωX j X j + 10频域微分)(t tx −→←F )(ωωj X d d j 11ωωπd j X dt t x ⎰⎰+∞∞-+∞∞-=22|)(|21|)(| 12e a t jk k k0ω∑+∞-∞=−→←F ∑+∞-∞=-k k k a )(20ωωδπ 13e t jk 0ω−→←F )(20ωωπδk -14t 0cos ω−→←F()()[]00ωωδωωδπ++- 15t 0sin ω−→←F ()()[]00ωωδωωδπ+--j 16()1=t x −→←F ()ωπδ2 17()∑+∞-∞=-n nT t δ−→←F ∑+∞-∞=⎪⎭⎫ ⎝⎛-k T k T πωδπ22 18()⎪⎩⎪⎨⎧><11,0,1T t T t t x −→←F ωω1sin 2T19t Wt πsin −→←F ()⎪⎩⎪⎨⎧><=WW j X ωωω,0,1 20()t δ−→←F1 21()t μ−→←F ()ωπδω+j 1 22()0t t -δ−→←F 0t j e ω-23()a a t u e at >ℜ-}{, −→←F ωj a +1 24时移:)()(00s X e t t x st L -⇔- )(R25 S 域平移:)()(00s s X t x e L t s -⇔26时域尺度变换:)(1)(a s X a at x L ⇔ )/(a R 27共轭:)()(***⇔s X t x L )(R 28卷积:)()()()(2121s X s X t x t x L⇔* )(21R R 至少 30 S 域积分:)()(s X ds d t tx L ⇔- )(R 31时域积分:)(1)()(L s X sd x t ⇔⎰∞-ττ })0}{{(>ℜse R 至少 32初始和终值定理:若t<0,x(t)=0且在t =0不包括任何冲激或高阶奇异函数,则)(lim )0(s sX x s ∞→+=;)(lim )(lim 0s sX t x s t →∞→=33基本函数的拉普拉斯变换34时移−→←-L n n x ][0)(0z X zn - R(除了可能增加或除去原点或∞点)35 Z 域尺度变换][0n e n jw −→←L )(0z e X jw -R36][0n x z n −→←L )(0z z X R z 0 37][n x a n −→←L )(1z a X -R 的比例伸缩(即,|α|R=在R 中z 的这些{|α|z }点的集合)38时间反转][n x -−→←L )(1-z X 39时间扩展rkn rk n r x n x k ≠==,0],[{][)(−→←L )(k z X 1-R (即1-R =在R 中的z 的这些1-z 点的集合)40共轭][*n x −→←L )(**z X R 50卷积][*][21n x n x −→←L )()(21z X z X 至少是1R 2R 的相交 60一次差分]1[][--n x n x −→←L )()1(1z X z --至少是R 和 |z| >0的相交 61累加][k x n k ∑-∞=−→←L )(111z X z --至少是R 和 |z|>1的相交 62 Z 域微分][n nx −→←L dz z dX z )(- 63[]n δ−→←L1全部z 64[]n u −→←L 111--z 1>z 65[]1---n u −→←L 111--z 1<z67[]n u n α−→←L 111--z α α>z 68[]1---n u n α−→←L 111--z α α<z 69[]n u n n α−→←L ()2111---z z αα α>z 70[]1---n u n n α−→←L ()2111---z z ααα<z 71]1[)(]1[1-+↔--x z X z n x 72]0[)(]1[zx z zX n x -↔+ 73)(][00z e X n x e jw n j -↔ω74)/(][00z z X n x z n ↔75)(][1z a X n x a n -↔ 76{m kn m x m k n k n x =≠=],[m ,0][对任意77)(][**z X n x ↔78)()(][][2121z X z X n x n x ↔* 79]1[)()1(]1[)(1---↔---x z X z n x n x 80)(11][10z X z k x n k -=-↔∑ dz z dX z n nx )(][-↔ 81)(lim ]0[z X x z ∞→=。
信号与系统公式总结
信号与系统公式总结信号与系统是电子工程、通信工程、自动控制等领域中的重要基础课程,它研究了信号的传输、处理以及系统的行为特性。
在学习信号与系统的过程中,我们需要掌握一些基本的数学公式,以便更好地理解和分析信号与系统的特性。
本文将对信号与系统中常用的公式进行总结和归纳,以帮助读者更好地掌握和应用。
一、信号的表示在信号与系统中,我们常常遇到时域信号、频域信号和复域信号。
它们分别通过不同的数学表示方法来描述。
1. 时域信号时域信号使用时间作为自变量进行描述,常用的时域信号表示方法有:- 脉冲函数(Impulse Function):δ(t)是一个函数,当t=0时取值为无穷大,其他时刻取值为零,即δ(t) = ∞,t = 0;δ(t) = 0,t ≠ 0。
- 阶跃函数(Step Function):u(t)是一个函数,当t≥0时取值为1,t<0时取值为0。
- 矩形函数(Rectangular Pulse):rect(t/T)是一个函数,在|t| < T/2时取值为1,其他时刻取值为零。
2. 频域信号频域信号使用频率作为自变量进行描述,常用的频域信号表示方法有:- 正弦函数(Sine Function):f(t)=A*sin(2πft+φ)是一个函数,A为振幅,f为频率,φ为相位。
- 余弦函数(Cosine Function):g(t)=A*cos(2πft+φ)是一个函数,A为振幅,f为频率,φ为相位。
- 脉冲函数的频谱:脉冲函数的频谱是一个常数,即频率的绝对值小于无穷大的所有频率分量都具有相同的幅度。
3. 复域信号复域信号使用复数表示,并且可以同时描述时域信息和频域信息。
常用的复域信号表示方法有:- 复指数函数(Complex Exponential Function):x(t) = Ae^(2πft+jφ),其中A为振幅,f为频率,φ为相位。
二、线性时不变系统在信号与系统中,线性时不变系统(LTI system)是一类重要的系统。
信号与系统常用公式汇总_
信号与系统常用公式汇总_1.傅里叶级数公式:信号x(t)的周期为T时,它的傅里叶级数展开式为:x(t) = a0 + Σ(an*cos(nω0t) + bn*sin(nω0t)),其中n为整数,ω0 = 2π/T,an和bn为傅里叶系数。
2.傅里叶变换公式:连续时间信号x(t)的傅里叶变换为:X(ω) = ∫( -∞到+∞ ) x(t)*e^(-jωt)dt。
3.逆傅里叶变换公式:连续频率信号X(ω)的逆傅里叶变换为:x(t)=(1/2π)*∫(-∞到+∞)X(ω)*e^(jωt)dω。
4.傅里叶变换对称性:X(-ω)=X(ω)*,即傅里叶变换对称于原点。
5.卷积定理:连续时间卷积的傅里叶变换等于信号的傅里叶变换之积,即:x(t)*h(t)的傅里叶变换为X(ω)*H(ω)。
6.系统频率响应:系统的频率响应H(ω)是指系统对频率为ω的输入信号的增益和相位的影响。
7.系统单位冲激响应:系统对单位冲激信号δ(t)的响应称为系统的单位冲激响应h(t)。
8.系统的冲激响应和频率响应的关系:系统的冲激响应h(t)和频率响应H(ω)满足傅里叶变换的关系:H(ω) = ∫( -∞到+∞ ) h(t)*e^(-jωt)dt。
9.系统的传递函数:系统的传递函数H(ω)是频率响应H(ω)的傅里叶变换。
10.系统的单位阶跃响应:系统对单位阶跃信号u(t)的响应称为系统的单位阶跃响应s(t)。
11.傅里叶变换的线性性质:对于信号x(t)和y(t)和常数a和b,有以下性质:a*x(t)+b*y(t)的傅里叶变换为a*X(ω)+b*Y(ω)。
12.傅里叶变换的时移性质:对于信号x(t),有以下性质:x(t-t0)的傅里叶变换为e^(-jωt0)*X(ω)。
13.周期信号的傅里叶变换:周期信号x(t)的傅里叶变换可以通过傅里叶级数的频谱乘以δ函数的序列得到。
14.采样定理:若连续时间信号x(t)的带宽为BHz,则它的采样频率应大于2BHz,以避免采样失真。
信号与系统重点公式
第一章绪论所有的信号与系统包含两个基本的共同点:即作为一个或几个独立变量函数的信号都包含了有关某些现象性质的饿信息;而系统总是对所给的信号做出响应,从而产生另外的信号,或产生某些所需的特性。
三种重要的信号1.信号具有有限的总能量,信号的平均功率必须为0.连续时间情况下:离散时间情况下:2.平均功率有限,总能量=∞连续时间情况下:离散时间情况下:3.和都不是有限的,一个例子就是信号离散时间单位脉冲(单位样本)和单位阶跃序列u[n]离散时间单位脉冲是离散时间单位阶跃的一次差分,离散时间阶跃是单位样本的求和函数连续时间单位阶跃和单位冲激函数连续时间单位冲激可看成连续时间单位阶跃u(t)的一次微分,连续时间单位阶跃是单位冲激的积分函数第二章线性时不变系统线性时不变系统之所以能够被深入分析的主要原因之一就是具有叠加性质。
这样,能够将线性时不变系统的输入用一组基本信号的线性组合来表示,就可以根据该系统对这些基本信号的响应,然后利用叠加性质求得整个系统的输出。
无论在离散时间或连续时间情况下,单位冲激函数的重要特性之一就是一般信号都可以表示为延迟冲激的线性组合。
这个事实,再与叠加性和时不变性结合起来,就能够用线性时不变的单位冲激响应来完全表征任何一个线性时不变系统的特性。
这样一种表示,在离散时间情况下称为卷积和,在连续时间情况下称为卷积积分,这种表示方式在分析线性时不变系统时提供了极大的便利。
在建立了卷积和与卷积积分之后,再用这些特性来分析线性时不变系统的某些其他性质。
然后讨论由线性常系数微分方程所描述的连续时间系统,由线性常系数差分方程所描述的离散时间系统。
线性空间里,讲了怎么把信号(离散和连续)表示成一组基(移位单位脉冲和移位单位冲激)的线性组合。
用脉冲表示离散时间信号:把任意一个序列表示成一串移位的单位脉冲序列的线性组合,而这个线性组合式中的权因子就是x[k]。
离散时间线性时不变系统的单位脉冲响应及卷积和表示y[n] = ,这个结果称为卷积和,或叠加和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
一个信号所含有的功率恒等于此信号在完备正交函数集中各分量的功率总和,如果正交函数集不完备,那么信号在正交函数集中各分量的总和不等于信号本身的功率,也就是说,完备性保证了信号能量不变的物理本质。
4.均方误差准则进行信号分解:设正交函数集F 为)}(),(),({21t f t f t f F n =,信号为)(t f所谓正交函数集上的分解就是找到一组系数n a a a ,,21, 使均方误差212)()(∑=-=∆n i i i t f a t f 最小。
2∆的定义为:⎰∑=--=∆2112122)]()([1T T n i i i dt t f a t f T T 如果F 中的函数为实函数则有:如果F 中的函数为复函数则有:第四章:连续周期信号的傅里叶级数1.物理意义:付里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列类比为一个正交集,则指标上值的大小可类比为性能在这一指标集上的分解,或投影;分解的目的是为了更好地分析事物的特征,正交集中的每一元素代表一种成分,而分解后对应该元素的系数表征包含该成分的多少2.三角函数形式:)(t f 可以表示成:其中,0a 被称为直流分量)sin()cos(11t nw b t nw a n n +被称为n 次谐波分量。
3.一般形式:或者:)(n n n a b arctg -=ϕ,)(nn n b a arctg =θ 4.指数形式:第五章:连续信号的傅里叶变换1.连续非周期信号的傅里叶变换及性质:性质:1.对称性:若)]([)(t f f w F =,)]([t f f 表示对)(t f 做付里叶变换,则:2.线性:若),2,1()()]([n i w F t f f i i ==,则 3.奇偶虚实性:若)(t f 为实函数,则)(w F 的实部)(w R 为偶函数,虚部)(w X 为奇函数;其幅度谱)(w F 为偶函数,相位谱)(w ϕ为奇函数:若)(t f 为实偶函数,则)(w F 为实偶函数若)(t f 为实奇函数,则)(w F 为虚奇函数4.尺度变换:若)()]([w F t f f = ,则其中a 为非零的实常数。
5.时移:若)()]([w F t f f = , 则0)()]([0jwt e w F t t f f -=- 6.频移:若)()]([w F t f f = , 则)(])([00w w F e t f f t jw -= 即:)(]}sin ))[cos(({000w w F t w j t w t f f -=+)( 7.微分:若)()]([w F t f f = , 则)(])([w jwF dt t df f = 8.积分:若)()]([w F t f f = , 则)()0()(])([w F jww F d f f t δπττ+=⎰∞- 2.连续周期信号的傅里叶变换: 3.特殊信号的傅里叶变换: 1.直流信号1)(=t f ,其付里叶变换得到的频谱即为)(2w πδ2.)(t U 的付里叶变换为jw w 1)(+πδ3.单边指数:0,)(≥=-t e t f at jw a w F +=1)( 幅度谱:22/1)(w a w F += 相位谱:)/()(a w arctg w -=ϕ4.双边指数:||)(t a e t f -=222)(w a a w F += 幅度谱:)/(2)(22w a a w F +=相位谱:0)(=w ϕ5.矩形脉冲信号:F (w )ww E )2/sin(2τ= 6.钟形信号:7.符号函数:⎪⎩⎪⎨⎧<-=>=010001)(t t t t f 幅度谱ww F 2)(= 相位谱⎪⎩⎪⎨⎧<>-=022)(w w w ππϕ 第七章:连续时间系统及卷积1.连续线性系统:设某系统,如果该系统对输入)(),(21t f t f 有输出)(),(21t s t s ,则该系统对输入)()(2211t f C t f C ⋅+⋅,有输出)()(2211t s C t s C ⋅+⋅。
该系统为线性系统。
2.连续时不变系统:设某系统,如该系统对输入)(t f 有输出)(t s ,则该系统对输入)(T t f -有输出)(T t s -。
该系统为时不变系统。
3.连续因果系统:如果某系统在0t 时刻的输出)(0t s 仅于0t 时刻前的输入0)(t t t f ≤有关,而与0t 时刻以后的输入0)(t t t f >无关,则该系统为因果系统。
4.连续稳定系统:对有界输入信号的响应还是有界信号的系统是稳定系统。
5.卷积公式:即为卷积公式,表示为:物理意义:将信号分解为冲激信号之和,借助系统的冲激响应h (t ),求解系统对任意激励信号的状态响应。
6.连续系统冲激响应、卷积及其物理意义:卷积:)()()()(t s t t s t s i i o =⊗=δ,称为恒等系统。
物理意义:指冲激信号)(t δ经过系统的响应。
换句话说,系统函数)(t h 就是输入信号为)(t δ时系统的输出信号。
7.连续互连系统的冲激响应:级联:h(t)=h1(t)h2(t)并联:h(t)=h1(t)+h2(t)8.连续系统卷积的时域及频域的性质及对应关系:)()()(t h t f t s ⊗=,则:)()()(w H w F w S = )()()(t l t f t s ⋅=,则:)]()([21)(w L w F w S ⊗=π时域卷积等价与频域乘积的物理意义:从广义上看,任何一个系统(h(t))都可以看成是一个滤波器。
因为它们均实现了一定的频率选择性。
第八章:离散信号的傅里叶变换:1.离散周期信号的傅里叶变换:2.离散时间付里叶变换及性质:性质:1.线性2.时移:若)(n x 的付里叶变换为)(ΩX则:)(0n n x -的付里叶变换为0)(n j e X Ω-Ω3.频移:若)(n x 的付里叶变换为)(ΩX则:)(0n x e n j Ω的付里叶变换为)(0Ω-ΩX4.差分5.频域微分:若)(n x 的付里叶变换为)(ΩX则:)(n nx 的付里叶变换为ΩΩd dX j )( 3.离散傅里叶变换:物理含义:对原信号做周期拓展可使其变成周期信号,DFT 实际上是该周期信号的离散时间付里叶变换DTFT ,不过只取了一个周期。
DFT 从数值上讲是对原信号的离散时间付里叶变换(DTFT )频谱的采样。
4.快速付里叶变换:由rk N N r k N rk N N r W r x W Wr x k X 2/12/02/12/0)12()2()(∑∑-=-=++=令rk N N r rk N N r W r x k H Wr x k G 2/12/02/12/0)12()(,)2()(∑∑-=-=+==则:第九章:离散时间系统及卷积1.离散时间系统的概念及模型:离散时间系统是指输入及输出信号均是离散信号的系统。
离散时间系统输入输出之间的关系可以采用一些数学模型来描述,如:2.离散线性系统:设某系统对输入)(),(21n f n f ,有输出)(),(21n s n s ,则该系统对输入)()(2211n f C n f C ⋅+⋅,有输出)()(2211n s C n s C ⋅+⋅,则该系统为线性系统。
3.离散时不变系统:设某系统对输入)(n f ,有输出)(n s ,则该系统对输入)(0N n f -,有输出)(0N n s -, 则该系统为时不变系统。
4.离散因果系统:如果某系统在0n 时刻的输出)(0n s 仅于0n 时刻前的输入0)(n n n f ≤有关,而与0n 时刻以后的输入0)(n n n f >无关,则该系统为因果系统。
5.离散稳定系统:对有界输入信号的响应还是有界信号的系统是稳定系统。
6.卷积:当)()(0n n n h -=δ)()()()()()(00n n s n k n k s k n h k s n s i k i k i o -=--=-=∑∑+∞-∞=+∞-∞=δ 7.离散互联系统的冲激响应(同连续)8.离散卷积的时域和频域性质及对应关系:如果:)()()(n h n f n s ⊗=则:)()()(Ω⋅Ω=ΩH F S求解方法:对于方程∑∑==-=-Mr rN k k r n x a k n y b 00)()(,有: Ω-==Ω-∑∑Ω=Ωjr Mr r N k jk k e X a eY b 00)()(,所以 9.圆周卷积及处理方法:园卷积与正常卷积不同,但在特殊处理之后,可以相同。