11、相似三角形的性质及其应用
相似三角形的性质和实际应用
相似三角形的性质和实际应用相似三角形是初中数学中一个重要的概念,它有着广泛的实际应用。
本文将介绍相似三角形的性质以及在实际生活中的应用。
一、相似三角形的性质相似三角形是指具有相同的形状但大小不同的三角形。
相似三角形的性质有以下几点:1.对应角相等:如果两个三角形的三个内角分别对应相等,则它们是相似三角形。
例如,如果∠A=∠D,∠B=∠E,∠C=∠F,则△ABC∽△DEF。
2.对应边成比例:相似三角形中,对应边的长度成比例。
即如果两个三角形的两个对应边的比值相等,则它们是相似三角形。
例如,如果AB/DE=BC/EF=AC/DF,则△ABC∽△DEF。
3.周长比例:相似三角形的周长之比等于对应边长度之比。
设两个相似三角形的周长分别为L1和L2,对应边长度之比为k,则有L1/L2=k。
4.面积比例:相似三角形的面积之比等于对应边长度平方的比值。
设两个相似三角形的面积分别为S1和S2,对应边长度之比为k,则有S1/S2=k²。
二、相似三角形的实际应用1.测量高度:相似三角形的性质可以在测量高度时应用。
例如,在测量一座高楼的高度时,可以利用相似三角形的原理,通过测量自己的身高及影子的长度,然后利用身高与影子的长度之比,以及高楼与其影子的长度之比,计算出高楼的高度。
2.影视特技:在电影、电视剧等影视制作中,有时需要通过特技手法来表现出高楼倒塌等场景。
这时,可以利用相似三角形的性质,制作比例缩小的模型,然后通过摄影机的角度选择和镜头拉远,使得模型在电影中看起来像真实的大楼倒塌一样。
3.地图测量:在地图制作和测量工作中,也经常使用相似三角形的原理。
通过测量地面上的一段距离和其在地图上的投影长度,可以得到地面与地图的比例,从而便于进行地图上其他地点的距离估算。
4.影像重建:在计算机视觉和计算机图形学领域,相似三角形的概念也被广泛应用。
通过计算图像中物体的相似三角形关系,可以进行三维模型的重建,实现计算机生成的虚拟现实场景。
相似三角形的性质及应用(知识点串讲)(解析版)
专题12 相似三角形的性质及应用知识网络重难突破知识点一相似三角形的性质①对应角相等,对应边成比例.②周长之比等于相似比;面积之比等于相似比的平方.③对应高线长之比、对应角平分线长之比、对应中线长之比都等于相似比.【典例1】(2020•衢州模拟)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.【点拨】由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.【点睛】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.【典例2】(2019秋•河北区期末)如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.【点拨】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)依据△ADE∽△ABC,利用相似三角形的周长之比等于对应高之比,即可得到结论.【解析】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC;(2)由(1)可得△ADE∽△ABC,又∵AG⊥BC于点G,AF⊥DE于点F,∴△ADE与△ABC的周长之比==.【点睛】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.【变式训练】1.(2020春•甘州区校级月考)两个相似三角形面积比是4:9,其中一个三角形的周长为24cm,则另一个三角形的周长是()cm.A.16 B.16或28 C.36 D.16或36【点拨】根据相似三角形的性质求出相似比,得到周长比,根据题意列出比例式,解答即可.【解析】解:∵两个相似三角形面积比是4:9,∴两个相似三角形相似比是2:3,∴两个相似三角形周长比是2:3,∵一个三角形的周长为24cm,∴另一个三角形的周长是16cm或36cm,故选:D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.2.(2019秋•慈溪市期末)如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°【点拨】先求出∠B,根据相似三角形对应角相等就可以得到.【解析】解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.【点睛】本题考查相似三角形的性质的运用,全等三角形的对应角相等,是基础知识要熟练掌握.3.(2019秋•奉化区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD,则S△ADE:S△EFC的值为()A.4:1 B.3:2 C.2:1 D.3:1【点拨】由题意可证四边形BDEF是平行四边形,可得BD=EF,AD=2EF,通过证明△ADE∽△EFC,可求解.【解析】解:∵AB=3BD,∴AD=2BD,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴BD=EF,∴AD=2EF,∵DE∥BC,EF∥AB,∴∠AED=∠C,∠FEC=∠A,∴△ADE∽△EFC,∴S△ADE:S△EFC的=()2=4:1,故选:A.【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.4.(2020•下城区模拟)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.3【点拨】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【解析】解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5.(2019•纳溪区模拟)如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.9【点拨】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【解析】解:延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDE,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=7.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.6.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【点拨】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解析】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.【点睛】本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.知识点二相似三角形的应用【典例3】(2019秋•解放区校级期中)一块直角三角形木板的面积为1.5m2,一条直角边AB为1.5m,怎样才能把它加工成一个无拼接的面积最大的正方形桌面?甲、乙两位木匠的加工方法如图所示,请你用所学的知识说明哪位木匠的方法符合要求(加工损耗不计,计算结果中的分数可保留)【点拨】结合相似三角形的判定与性质进而得出两个正方形的边长,进而求出面积比较得出答案.【解析】解:由AB=1.5m,S△ABC=1.5m2,可得BC=2m,由图甲,过点B作Rt△ABC斜边AC上的高,BH交DE于P,交AC于H.由AB=1.5m,BC=2m,得AC==2.5(m),由AC•BH=AB•BC可得:BH==1.2(m),设甲设计的桌面的边长为xm,∵DE∥AC,∴Rt△BDE∽Rt△BAC,∴=,即=,解得x=(m),由图乙,若设乙设计的正方形桌面边长为ym,由DE∥AB,得Rt△CDE∽Rt△CBA,∴=,即=,解得y=(m),∵x=,y=,∴x<y,即x2<y2,∴S正方形甲<S正方形乙,∴第二个正方形面积大【点睛】此题主要考查了相似三角形的应用,正确表示出正方形的边长是解题关键.【变式训练】1.(2019秋•嘉兴期末)如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【点拨】证明△CAB∽△CDE,然后利用相似比得到DE的长.【解析】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.2.(2019秋•鹿城区月考)如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4 m B.m C.5m D.m【点拨】根据已知易得△ABM∽△DCM,可得对应高BH与HD之比,易得MH∥AB,可得△MDH∽△ADB,利用对应边成比例可得比例式,把相关数值代入求解即可.【解析】解:∵AB∥CD,∴△ABM∽△DCM,∴===,(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴==,∴=,解得MH=.故选:B.【点睛】此题主要考查了相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到BH与HD的比.3.(2019秋•滨江区期末)如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=120cm,CD=600cm,则树AB的高度为420cm.【点拨】利用直角三角形DEF和直角三角形BCD相似求得BC的长,再加上AC的长即可求得树高AB.【解析】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC:EF=DC:DE,∵DE=30cm,EF=15cm,AC=120cm,CD=600cm,∴,∴BC=300cm,∴AB=AC+BC=120+300=420cm,故答案为:420.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.4.(2020•秦皇岛一模)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC 高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【点拨】解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解.【解析】解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出建筑物AB的高与小亮在路灯D下的影长,体现了方程的思想.巩固训练1.(2019秋•连州市期末)两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm【点拨】根据题意两个三角形的相似比是15:23,可得周长比为15:23,计算出周长相差8份及每份的长,可得两三角形周长.【解析】解:根据题意两个三角形的相似比是15:23,周长比就是15:23,大小周长相差8份,所以每份的周长是40÷8=5cm,所以两个三角形的周长分别为5×15=75cm,5×23=115cm.故选:C.【点睛】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.(2018秋•临安区期末)如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,H 在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为()A.B.C.D.【点拨】通过证明△AEF∽△ABC,可得,可求EH的长,即可求解.【解析】解:如图,记AD与EF的交点为M,∵四边形EFGH是矩形,∴EF∥BC,∴△AEF∽△ABC,∵AM和AD分别是△AEF和△ABC的高,∴∴∴EH=,∴EF=,∴矩形EFGH的周长=2×(+)=故选:C.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,灵活运用相似三角形的性质是本题的关键.3.(2019秋•庐阳区校级期中)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:4,则S△DOE:S△AOC的值为()A.B.C.D.【点拨】由已知条件易求BE:BC=1:5;证明△DOE∽△AOC,得到DE:AC的值,由相似三角形的性质即可解决问题.【解析】解:∵S△BDE:S△CDE=1:4,∴BE:EC=1:4,∴BE:BC=1:5,∵DE∥AC,∴△DOE∽△AOC,∴DE:AC=BE:BC=1:5,∴S△DOE:S△AOC=()2=,故选:D.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:5是解决问题的关键.4.(2020•上城区一模)如图,△ABC中,D,E两点分别在边AB,BC上,若AD:DB=CE:EB=3:4,记△DBE的面积为S1,△ADC的面积为S2,则S1:S2=16:21.【点拨】过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,根据相似三角形的性质与判定即可求出答案.【解析】解:过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,∴EF∥CG,∴△BEF∽△BCG,∴,∵CE:EB=3:4,∴,∴,∴==,∴S1:S2=16:21,故答案为:16:21.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5.(2019秋•江干区期末)如图,已知▱ABCD中,E是BC的三等分点,连结AE与对角线BD交于点F,则S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11.【点拨】由E是BC的三等分点,得到=,根据平行四边形的性质得到AD∥BC,AD=BC,根据相似三角形的性质得到==设S△BEF=k,S△ABF=3k,S△ADF=9k,求得S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,得到S四边形CDFE=12k﹣k=11k,于是得到结论.【解析】解:∵E是BC的三等分点,∴=,在▱ABCD中,∵AD∥BC,AD=BC,∴△ADF∽△EBF,∴==,∴S△BEF:S△ABF:S△ADF=1:3:9,设S△BEF=k,S△ABF=3k,S△ADF=9k,∴S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,∴四边形CDFE=12k﹣k=11k,∴S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11,故答案为:1:3:9:11.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质以及面积的计算方法;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.6.(2020•晋安区一模)如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8m.【点拨】根据题意抽象出相似三角形,然后利用相似三角形的对应边的比相等列式计算即可.【解析】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.【点睛】本题考查了相似三角形的知识,解题的关键是根据实际问题抽象出相似三角形,难度不大.7.(2019秋•竞秀区期末)如图,路灯距地面的高度PO=8米,身高1.6米的小明在点A处测量发现,他的影长AM=2.4米,则AO=9.6米;小明由A处沿AO所在的直线行走8米到点B时,他的影子BN 的长度为0.4米.【点拨】如图,设OA=x,BN=y.利用相似三角形的性质构建方程组即可解决问题.【解析】解:如图,设OA=x,BN=y.∵EB∥OP∥F A,∴△MAF∽△MOP,△NBE∽△NOP,∴=,=,∴=,=,解得x=9.6,y=0.4,故答案为9.6,0.4.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.8.(2019秋•开江县期末)如图,学校操场旁立着一杆路灯(线段OP).小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度.【点拨】根据相似三角形的性质即可得到结论.【解析】解:由于BF=DB=2m,即∠D=45°,∴DP=OP=灯高.在△CEA与△COP中,∵AE⊥CP,OP⊥CP,∴AE∥OP.∴△CEA∽△COP,∴.设AP=xm,OP=hm,则,①,DP=OP=2+4+x=h,②联立①②两式,解得x=4,h=10.∴路灯有10m高.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.9.(2019秋•余杭区期末)如图,在△ABC中,点D,E分别在边AC,AB上且AE•AB=AD•AC,连结DE,BD.(1)求证:△ADE∽△ABC.(2)若点E为AB中点,AD:AE=6:5,△ABC的面积为50,求△BCD的面积.【点拨】(1)由已知得出AE:AC=AD:AB,由∠A=∠A,即可得出:△ADE∽△ABC.(2)设AD=6x,则AE=5x,AB=10x,由已知求出AC==x,得出CD=AC﹣AD=x,得出=,由三角形面积关系即可得出答案.【解析】(1)证明:∵AE•AB=AD•AC,∴AE:AC=AD:AB,∵∠A=∠A,∴△ADE∽△ABC.(2)解:∵点E为AB中点,∴AE=BE,∵AD:AE=6:5,∴设AD=6x,则AE=5x,AB=10x,∵AE•AB=AD•AC,∴AC===x,∴CD=AC﹣AD=x,∴=,∵△ABC的面积为50,∴△BCD的面积=×50=14.【点睛】本题考查了相似三角形的判定与性质、三角形面积关系等知识;熟练掌握相似三角形的判定与性质是解题的关键.10.(2018秋•江干区期末)如图,在菱形ABCD中,点E在BC边上(不与点B、C重合),连接AE、BD 交于点G.(1)若AG=BG,AB=4,BD=6,求线段DG的长;(2)设BC=kBE,△BGE的面积为S,△AGD和四边形CDGE的面积分别为S1和S2,把S1和S2分别用k、S的代数式表示;(3)求的最大值.【点拨】(1)证明△BAG∽△BDA,利用相似比可计算出BG=,从而得到DG的长;(2)先证明△ADG∽△EBG,利用相似三角形的性质得=()2=k2,==k,所以S1=k2S,根据三角形面积公式得到S△ABG=,再利用菱形的性质得到S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)由于==1+﹣,然后根据二次函数的性质解决问题.【解析】解:(1)∵AG=BG,∴∠BAG=∠ABG,∵四边形ABCD为菱形,∴AB=AD,∴∠ABD=∠ADB,∴∠BAG=∠ADB,∴△BAG∽△BDA,∴=,即=,∴BG=,∴DG=BD﹣BG=6﹣=;(2)∵四边形ABCD为菱形,∴BC=AD=kBE,AD∥BC,∵AD∥BE,∴∠DAE=∠BEA,∠ADG=∠BEG∴△ADG∽△EBG,∴=()2=k2,==k,∴S1=k2S,∵==k,∴S△ABG=,∵△ABD的面积=△BDC的面积,∴S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)∵==1+﹣=﹣(﹣)2+,∴的最大值为.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.注意相似三角形面积的比等于相似比的平方.也考查了菱形的性质.。
相似三角形的性质
相似三角形的性质相似三角形是几何学中一个重要的概念,它们具有一些独特的性质和特点。
在本篇文章中,我们将深入探讨相似三角形的性质,并介绍一些相关的定理和应用。
一、比例性质相似三角形的首要性质是比例性质。
两个三角形相似的条件之一是它们各个对应顶点的角度相等,另一个重要条件是它们对应的边长成比例。
具体而言,如果两个三角形的对应边长之比相等,那么它们就是相似三角形。
这一性质可以用以下比例关系表达:$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$其中,AB、BC、AC分别是一个三角形的三边的长度,DE、EF、DF分别是另一个相似三角形的对应边的长度。
二、边长比例的重要性质边长比例是相似三角形中一个非常重要的性质,它具有一些独特的特点:1. 任意两边之比相等在相似三角形中,任意两边的长度比都是相等的。
例如,在三角形ABC和三角形DEF中,我们有以下关系:$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$2. 任意一边与其他边的长度比相等对于相似三角形中的一条边,它与其他两条边之比都是相等的。
例如,在三角形ABC和三角形DEF中,我们有以下关系:$$\frac{AB}{BC} = \frac{DE}{EF} = \frac{DF}{AC}$$3. 相似三角形的边长比例唯一如果两个三角形的边长比例相等,那么它们一定是相似的。
这是因为边长比例包含了相似三角形的全部信息,只有这些比例相等,两个三角形的形状才会完全一致。
三、角度对应的性质除了边长比例之外,相似三角形还有一些角度对应的性质:1. 对应角相等在相似三角形中,对应的角是相等的。
例如,在三角形ABC和三角形DEF中,我们有以下关系:$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$2. 对角相等的必要条件如果两个三角形的对应角相等,那么它们一定是相似的。
相似三角形的应用
相似三角形的应用相似三角形是指具有相同形状但大小不同的两个或多个三角形。
相似三角形之间存在一种特殊的比例关系,通过这种比例关系,我们可以运用相似三角形解决各种实际问题。
本文将重点介绍相似三角形的应用领域及其在数学和几何中的具体运用。
一、相似三角形在实际问题中的应用1. 测量高度和距离:相似三角形的应用在测量高度和距离方面非常常见。
例如,在无法直接测量建筑物或树木的高度时,可以通过相似三角形的比例关系,利用已知的高度和距离来计算未知的高度。
类似地,当无法直接测量两个物体之间的距离时,可以利用相似三角形的比例关系来推算出距离。
2. 图像的放大和缩小:在艺术和设计领域中,相似三角形的应用非常重要。
当我们需要将一幅图像进行放大或缩小时,可以利用相似三角形的性质来确定新图像与原图像的比例关系,从而实现图像的变形。
3. 建筑设计与规划:在建筑设计与规划中,相似三角形的应用也非常普遍。
通过相似三角形可以计算出建筑物的高度、宽度、长度等尺寸信息,从而帮助设计师进行准确的规划和设计。
二、相似三角形在数学中的应用1. 比例和比值的计算:相似三角形的比例关系可以用来计算不同长度之间的比例和比值。
通过相似三角形的性质,我们可以建立起各种数学关系式,进行比例和比值的计算,从而解决许多实际和抽象的问题。
2. 三角函数的定义和性质:在三角函数的定义和性质中,相似三角形也扮演着重要角色。
例如,在定义正弦、余弦和正切函数时,就需要利用相似三角形的性质来推导出它们的数学表示式。
相似三角形的运用使得三角函数的计算和应用更加简便和灵活。
3. 几何图形的相似性判定:相似三角形的性质在判定几何图形的相似性方面起着至关重要的作用。
根据相似三角形的比例关系,我们可以通过对角、边长比较等方法来判断两个图形是否相似,并进一步推导出它们之间的其他性质。
总结:相似三角形在实际问题、数学和几何中都有着广泛的应用。
通过运用相似三角形的比例关系,我们可以解决测量、计算和设计等问题,在数学和几何中推导出各种定理和性质。
三角形的相似性质相似三角形的判定及其应用
三角形的相似性质相似三角形的判定及其应用相似三角形的判定及其应用相似三角形是初中数学中重要的概念之一,它在几何图形的相似性及其应用方面具有广泛的应用。
本文将介绍相似三角形的判定方法以及在实际问题中的应用。
一、相似三角形的判定方法判定两个三角形是否相似,常用的方法有以下几种:1. AA判定法(角-角相似判定法)当两个三角形中有两个对应的角相等时,这两个三角形就是相似的。
如下图所示,∠A1 = ∠A2,∠B1 = ∠B2,那么△ABC与△A'B'C'相似。
[插入示意图]2. AAA判定法(全等三角形的判定法)如果两个三角形的三个内角相对应相等,那么这两个三角形是相似的。
如下图所示,∠A1 = ∠A2,∠B1 = ∠B2,∠C1 = ∠C2,那么△ABC与△A'B'C'相似。
[插入示意图]3. SSS判定法(边-边-边相似判定法)当两个三角形的对应边长度成比例时,这两个三角形就是相似的。
如下图所示,AB/A'B' = BC/B'C' = AC/A'C',那么△ABC与△A'B'C'相似。
[插入示意图]二、相似三角形的应用相似三角形在实际问题中具有广泛的应用,以下是一些常见的应用场景:1. 测量高度利用相似三角形的性质,可以通过测量一个物体的阴影和遮挡的长度,来计算出物体的真实高度。
如下图所示,通过测量△ABC的阴影长度BD和实际高度AC,可以利用相似三角形的比例关系计算出物体的真实高度。
[插入示意图]2. 地图比例尺在地图上,为了能够容纳更多的信息,通常会使用比例尺来缩小地图的尺寸。
利用相似三角形的性质,可以通过测量地图上的距离和实际距离来确定比例尺的大小,进而测量其他地点的实际距离。
3. 相似三角形的分割比例在一些几何问题中,需要将一个三角形或长方形划分成若干个部分,利用相似三角形的性质可以确定每个部分的长度比例。
相似三角形的判定与性质
汇报人:XX
感谢观看
地理学中的应用:测量距离、确定位置等
航海学中的应用:确定船只的位置、航向等
04
相似三角形的判定定理与性质定理的证明
判定定理的证明
定义法:利用相似三角形的定义,通过比较对应边和对应角来证明两个三角形相似。
平行线法:利用平行线的性质,通过比较对应边和对应角来证明两个三角形相似。
角平分线法:利用角平分线的性质,通过比较对应边和对应角来证明两个三角形相似。
适用情况:适用于已知三角形角度和边长的情况
注意事项:在应用定义法时,需要仔细检查对应角和对应边的比例关系,以避免出现误差
平行线法
添加标题
添加标题
添加标题
添加标题
适用范围:适用于直角三角形和非直角三角形
定义:利用平行线性质,通过比较对应边和角的比例关系来判定两个三角形是否相似
证明方法:利用平行线的性质和相似三角形的定义进行证明
应用举例:在几何问题中,常常利用平行线法来判定两个三角形是否相似
角角角法
性质:相似三角形的对应角相等,对应边成比例
应用:在几何、代数、三角函数等领域有广泛的应用
定义:如果两个三角形的两个对应角相等,则这两个三角形相似
判定方法:如果两个三角形的两个对应角相等,则这两个三角形相似
边边边法
证明方法:利用相似三角形的性质和判定定理进行证明
证明:根据相似三角形的定义,可以通过相似比推导出对应角相等
对应边成比例
性质定义:相似三角形的对应边长比例相等
性质推论:相似三角形的对应高、中线、角平分线等比例
性质应用:在几何证明和计算中,利用对应边成比例的性质可以简化问题
相似三角形的性质与应用
相似三角形的性质与应用相似三角形是初中数学中的重要概念,它们具有一些特定的性质和各种应用。
本文将介绍相似三角形的性质,以及在实际问题中如何应用相似三角形来解决一些实际问题。
一、相似三角形的性质相似三角形是指具有相同形状但大小不一的两个三角形。
相似三角形具有以下几个基本性质:1. 对应角相等性质:相似三角形中的对应角相等,即相等角所对的边成比例。
例如,若∠A≌∠D,则边AB与边DE的比等于边AC与边DF的比,即AB/DE = AC/DF。
2.对应边成比例性质:相似三角形中的对应边成比例,即边的比和角的比之间成立。
例如,若AB/DE = AC/DF,则∠A≌∠D。
3.三角形的扩大缩小性质:相似三角形中,如果一个三角形的边与另一个三角形的边成比例,那么这两个三角形是相似的。
例如,如果AB/DE = AC/DF且BC/EF = AC/DF,则三角形ABC与三角形DEF相似。
二、相似三角形的应用相似三角形在实际问题中具有广泛的应用。
下面介绍几个常见的应用:1.测量高度:相似三角形可用于测量无法直接测量的高度。
例如,当直接无法测量一座建筑物的高度时,可以利用相似三角形原理,在地面上测量一个已知距离的长度,然后观察建筑物的倾斜角度,从而利用相似三角形的比例关系计算出建筑物的高度。
2.计算距离:相似三角形还可用于计算距离。
例如,当无法直接测量两个不相邻点之间的距离时,可以利用相似三角形与已知距离的比例关系计算出所需距离。
3.设计工程:在设计工程中,相似三角形可用于模拟大规模结构的小规模模型。
通过将真实结构缩小成模型,可以通过相似三角形的比例关系获得有关真实结构的信息,从而进行有效的设计和分析。
4.地图测绘:在制作地图时,为了将真实距离转换为地图上的距离,可利用相似三角形的比例关系来缩放。
这样可以保持地图的比例并准确表示真实距离。
总结:相似三角形的性质和应用是初中数学中的重要内容。
准确理解相似三角形性质,并能灵活运用到实际问题中,能够帮助我们解决许多几何和测量方面的困难。
相似三角形的性质和应用
相似三角形的性质和应用北京四中一、相似形的性质 1. 相似三角形的性质两个三角形相似,则它们的(1)对应角相等,对应边的比相等;——根据定义(2)对应高的比、对应中线的比、对应角平分线的比都等于相似比; (3)周长比等于相似比;——容易证明(4)面积比等于相似比的平方.——需(2)成立 重点证明性质(2)如图,ABC A B C '''△△∽,AD A D ''、分别是它们的高, 求证::=:AD A D AB A B ''''.如图,ABC A B C '''△△∽,AD A D ''、分别是它们的中线, 求证::=:AD A D AB A B ''''.如图,ABC A B C '''△△∽,AD A D ''、分别是它们的角平分线, 求证::=:AD A D AB A B ''''.2. 相似多边形的性质: 相似多边形的(1)对应角相等,对应边的比相等.(2)周长比等于相似比.(3)面积比等于相似比的平方.二、例题分析例1.如图,在正三角形ABC中,D、E、F分别是BC、AC、AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的周长之比为,面积之比等于.例2.如图,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC.上,Q在BC上,(1)当△PQC的面积与四边形P ABQ的面积相等时,求PC的长;(2)当△PQC的周长与四边形P ABQ的周长相等时,求PC的长.=12,两动点M、N分别在边AB、AC 例3.锐角△ABC中,BC=6,S△ABC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y,(1)分别写出三个图中的面积y与边长x之间的函数关系式及x的取值范围;(2)当x= ,y有最大值.三、应用举例测量旗杆的高度平面镜测量法影子测量法手臂测量法标杆测量法例1.如图,小明站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请帮小明求出楼高AB(结果精确到0.1m).例2.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5 米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).四、知识总结学习几何知识的一般思路:。
相似三角形的性质
相似三角形的性质相似三角形是初中数学中的一个重要概念,它在几何学中有着广泛的应用。
相似三角形是指具有相同形状但大小不同的三角形。
在实际问题中,我们经常需要利用相似三角形来解决各种测量和计算问题。
本文将介绍相似三角形的性质,并通过实例说明其应用。
一、相似三角形的定义和判定相似三角形的定义是指具有相同形状但大小不同的三角形。
两个三角形相似的条件是它们对应的角相等,并且对应边的比例相等。
具体而言,如果两个三角形的对应角相等,并且对应边的比例相等,那么这两个三角形就是相似的。
例如,我们可以考虑一个等腰三角形ABC和一个等腰三角形DEF,它们的顶角和底边的比例相等。
根据相似三角形的定义,我们可以得出这两个三角形是相似的。
二、1. 相似三角形的对应角相等相似三角形的对应角相等是相似性的基本性质之一。
这意味着如果两个三角形相似,它们的对应角一定相等。
例如,如果两个三角形的一个角分别为45°和45°,那么它们就是相似的。
2. 相似三角形的对应边比例相等相似三角形的对应边比例相等是相似性的另一个重要性质。
这意味着如果两个三角形相似,它们的对应边的比例一定相等。
例如,如果一个三角形的两条边的比例为2:3,而另一个三角形的对应边的比例也为2:3,那么这两个三角形就是相似的。
3. 相似三角形的周长比例相等相似三角形的周长比例相等是相似性的一个重要推论。
这意味着如果两个三角形相似,它们的周长的比例一定相等。
例如,如果一个三角形的周长为10厘米,而另一个三角形的周长为15厘米,那么这两个三角形的周长比例为10:15,即2:3。
三、相似三角形的应用相似三角形在实际问题中有着广泛的应用。
下面通过几个实例来说明相似三角形的应用。
1. 测量高度假设我们想要测量一座高楼的高度,但是无法直接测量。
我们可以利用相似三角形的性质来解决这个问题。
首先,在地面上选择一个合适的位置,测量自己与高楼之间的距离。
然后,测量自己与地面上的一个物体之间的距离,如一个杆子的高度。
相似三角形的性质
相似三角形的性质相似三角形是初中数学重要的概念之一,它们有着特定的性质和应用。
在本文中,我们将探讨相似三角形的定义、性质以及应用。
一、相似三角形的定义相似三角形指的是具有相同形状但大小不同的三角形。
两个三角形相似的条件是:它们对应角度相等,或者它们的对应边比例相等。
基于这个定义,我们可以得出以下相似三角形的性质和定理。
二、相似三角形的性质1. AA相似定理:如果两个三角形的对应角度相等,那么它们是相似的。
2. SSS相似定理:如果两个三角形的对应边比例相等,那么它们是相似的。
3. SAS相似定理:如果两个三角形的一个内角相等,且对应边比例相等,那么它们是相似的。
4. 相似三角形中,对应边的比例关系是恒定的,我们可以表示为a/b = c/d = e/f。
其中,a、b、c、d、e、f分别表示两个相似三角形的对应边。
5. 相似三角形的高、中线和角平分线也成比例。
三、相似三角形的应用1. 测量无法直接获得的长度:我们可以利用相似三角形的性质,通过已知长度和已知角度的三角形推导出其他长度的值。
例如,可以利用相似三角形的边比例关系来测量高楼的高度。
2. 解决间接测量问题:相似三角形的性质也可以应用于间接测量问题。
例如,当我们无法直接测量河流宽度时,可以通过测量自己位置与河对岸某一点之间的距离及角度,运用相似三角形的理论来计算出河流的宽度。
3. 几何证明:相似三角形的性质在几何证明中也起到重要的作用。
通过利用相似三角形的角等性质和边比例关系,可以简化、解决一些几何问题。
4. 模型建立:相似三角形的性质也可以应用于模型建立。
例如,制作比例模型时,可以根据相似三角形的比例关系来设计模型的尺寸。
四、相似三角形的推论基于相似三角形的性质和定理,我们还可以得出一些推论。
1. 正弦定理的推论:当两个角相等时,一般使用正弦定理来求解三角形的边长。
但是,当角等于30°、60°或90°时,我们可以运用相似三角形的性质,通过已知边长求解其他边长。
相似三角形的性质及应用
相似三角形的性质及应用相似三角形是指具有相同形状但大小不同的两个或多个三角形。
相似三角形的性质在几何学中具有重要的应用,涉及到比例、角度等概念。
本文将介绍相似三角形的性质以及在实际问题中的应用。
I.相似三角形的定义和比例关系相似三角形的定义是指:两个三角形的对应角度相等,并且对应边的比例相等。
用数学表示形式可以表示为:若ΔABC 与ΔDEF 相似,则有∠A=∠D,∠B=∠E,∠C=∠F,并且 AB/DE=AC/DF=BC/EF。
利用相似三角形的比例关系,我们可以推导出一些重要的性质和应用。
II.相似三角形的性质1. 边比例:在相似三角形中,对应边的比例相等。
即若ΔABC 与ΔDEF 相似,则 AB/DE=AC/DF=BC/EF。
2. 高线比例:在相似三角形中,对应高线的比例等于对应边的比例。
即若ΔABC 与ΔDEF 相似,则 h1/h2=AB/DE=AC/DF=BC/EF。
3. 角度比例:在相似三角形中,对应角度相等。
即若ΔABC 与ΔDEF 相似,则∠A=∠D,∠B=∠E,∠C=∠F。
4. 周长比例:在相似三角形中,对应边的比例等于对应周长的比例。
即若ΔABC 与ΔDEF 相似,则AB/DE=AC/DF=BC/EF=Perimeter(ΔABC)/Perimeter(ΔDEF)。
5. 面积比例:在相似三角形中,对应边的比例的平方等于对应面积的比例。
即若ΔABC 与ΔDEF 相似,则(AB/DE)^2=(AC/DF)^2=(BC/EF)^2=Area(ΔABC)/Area(ΔDEF)。
III. 相似三角形的应用1. 测量高度:利用相似三角形的性质,可以通过测量阴影和物体之间的比例,求得物体的高度。
例如,当太阳的高度和一个物体的阴影之间存在相似关系时,可以利用相似三角形的比例关系计算物体的高度。
2. 计算不可测量的距离:在实际测量中,有些距离很难直接测量。
但是,如果存在相似三角形的情况,可以利用相似三角形的比例关系,通过已知距离和比例计算出不可测量的距离。
相似三角形的性质及应用--知识讲解(基础)
相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则2 1122=1122A B CA B CB C A D kB C kA DSk S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的性质1.(2015•上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.【总结升华】本题综合性较强,考查了相似三角形、直角三角形以及平行四边形相关知识,而熟记定理是解题的关键.举一反三【变式】(2015•铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B.提示:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=1=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△AB C中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.【思路点拨】相似三角形对应的高,中线,角分线对应成比例.【答案与解析】∵ 四边形EFGH是矩形,∴ EH∥BC,∴ △AEH∽△ABC.∵ AD⊥BC,∴ AD⊥EH,MD=EF.∵ 矩形两邻边之比为1:2,设EF=xcm,则EH=2xcm.由相似三角形对应高的比等于相似比,得,∴ ,∴ ,∴.∴ EF=6cm,EH=12cm.∴【总结升华】解决有关三角形的内接矩形、内接正方形的计算问题,经常利用相似三角形“对应高的比等于相似比”和“面积比等于相似比的平方”的性质,若图中没有高可以先作出高.举一反三:【变式】有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2.∴ △ABC∽△A1B1C1∽△A2B2C2且,,∴,∴.类型二、相似三角形的应用3. 如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?【答案与解析】如上图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m 到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?∵AB⊥BC,CD⊥BC∴∠ABO=∠DCO=90°又∵ ∠AOB=∠DOC∴△AOB∽△DOC.∴∵BO=50m,CO=10m,CD=17m∴AB=85m即河宽为85m.【总结升华】这是一道测量河宽的实际问题,还可以借用相似三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条.4. 如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否相似?为什么?(2)求古塔的高度.【思路点拨】本题考查的是相似三角形的实际应用,要注意的是小明和古塔都与地面垂直,是平行的.【答案与解析】(1)△ABC∽△ADE.∵BC⊥AE,DE⊥AE,∴∠ACB=∠AED=90°∵∠A=∠A,∴△ABC∽△ADE(2)由(1)得△ABC∽△ADE∴∵AC=2m,AE=2+18=20m,BC=1.6m,∴∴DE=16m即古塔的高度为16m。
(详细版)相似三角形的性质和应用
(详细版)相似三角形的性质和应用
1. 相似三角形的性质
相似三角形是指具有相同形状但尺寸不同的三角形。
相似三角形的性质如下:
- 对应角相等性质:如果两个三角形的对应角相等,则它们是相似三角形。
- 对应边成比例性质:相似三角形的对应边的长度成比例。
2. 相似三角形的应用
相似三角形的性质在实际生活和数学问题中有广泛的应用,以下是一些常见的应用场景:
- 测量高度:通过相似三角形的性质,我们可以利用测量出的一个三角形的高度来计算另一个相似三角形的高度。
这在实际中可以用于测量高楼、山峰等的高度。
- 图形设计:相似三角形的性质可以用于图形设计中的缩放问题。
通过改变三角形的大小来实现图形的缩放效果。
- 工程测量:在土木工程中,相似三角形的性质可以用于测量地形的坡度、直角三角形的边长等。
3. 实例分析
为了更好地理解相似三角形的性质和应用,以下是一个实际问题的分析:
假设有一根高大的电线杆,测得其高度为30米。
为了确定杆子的阴影长度,我们利用测量出的相似三角形来推算。
测量阴影的长度为10米,而测量器与杆子的距离为4米。
根据相似三角形的性质,可以建立如下比例关系:(30高度/4距离) = (阴影长度/10距离)。
通过解这个比例关系,我们可以计算出杆子的阴影长度为75米。
以上是相似三角形的性质和应用的一些简要介绍,通过理解和运用相似三角形的性质,我们可以解决许多实际问题,提高数学和几何的应用能力。
(Word count: 229 words)。
相似三角形的性质及应用
相似三角形的性质及应用相似三角形可是数学世界里特别有趣的一部分呢!今天咱们就来好好聊聊相似三角形的性质以及它在实际生活中的那些神奇应用。
先来说说相似三角形的性质吧。
相似三角形的对应角相等,这就好比两个长得有点像的三角形,它们对应的角就像是同一个模子里刻出来的,度数完全一样。
还有啊,相似三角形的对应边成比例。
这啥意思呢?就比如说有两个相似三角形,一个大一个小,大三角形的边和小三角形对应的边,它们的长度之比是固定的,就像双胞胎的身高比例一样稳定。
那相似三角形在生活中有啥用呢?我给您讲个事儿。
有一次我去逛街,看到路边有个工人师傅在测量一个很高的大楼的高度。
他手里拿着个测量工具,一会儿看看大楼,一会儿在本子上写写画画的。
我好奇地凑过去问:“师傅,您这是咋量的呀?”师傅笑着说:“这大楼太高了,直接量可不行。
我就利用相似三角形的原理呢!”他在大楼旁边立了一根已知长度的杆子,然后分别测量杆子的影子长度和大楼的影子长度。
因为杆子和大楼以及它们的影子分别构成了相似三角形,通过已知的杆子长度和影子长度,还有测量出来的大楼影子长度,就能算出大楼的高度啦!当时我就觉得,这相似三角形可真是太神奇了,能解决这么实际的问题。
咱们再回到相似三角形的性质哈。
相似三角形的周长之比等于相似比,面积之比等于相似比的平方。
这两个性质在解决很多数学问题的时候可管用了。
比如说,给您两个相似三角形,告诉您它们的相似比是 2:3,其中一个三角形的周长是 10,那另一个三角形的周长不就能轻松算出来是 15 嘛。
要是再告诉您其中一个三角形的面积是 8,那另一个三角形的面积就是 18 啦。
相似三角形在建筑设计里也大有用处。
建筑师在设计大楼的时候,经常要考虑比例和尺寸的问题。
他们会利用相似三角形来确保大楼的各个部分比例协调,美观又稳固。
想象一下,如果没有相似三角形的知识帮忙,说不定盖出来的大楼就会歪歪斜斜,那可就糟糕啦!在地图绘制中,相似三角形也发挥着重要作用。
了解相似三角形的性质和应用
了解相似三角形的性质和应用相似三角形是几何学中重要的概念之一,它们具有一些独特的性质和应用。
通过了解相似三角形的性质,我们可以在实际问题中应用相似三角形的概念解决一系列的数学和几何问题。
本文将介绍相似三角形的性质和应用,并通过实例来加深理解。
一、相似三角形的性质相似三角形是指具有相同形状但可能不同大小的三角形。
相似三角形的性质有以下几个方面:1. 边比例:相似三角形的对应边之间有相等的比例关系。
设有两个相似三角形ABC和DEF,其中AB/DE = AC/DF = BC/EF。
这意味着相似三角形的对应边长之比是相等的。
2. 角度相等:相似三角形的对应角是相等的。
即角A等于角D,角B等于角E,角C等于角F。
这是相似三角形的一个重要性质,可以通过边对边的比例关系推导出来。
3. 高度比例:相似三角形的高度之比等于对应边之比。
如果相似三角形ABC和DEF,高度分别为h1和h2,对应边长为AB和DE,那么h1/h2 =AB/DE。
这个性质在计算相似三角形的高度时很有用。
4. 面积比例:相似三角形的面积比等于对应边长平方的比。
设有两个相似三角形ABC和DEF,面积分别为S1和S2,对应边长之比为k,那么S1/S2 = k²。
这个性质在计算相似三角形面积的问题中应用广泛。
二、相似三角形的应用相似三角形的性质在实际问题中应用广泛,特别是在测量和建模方面。
以下是一些常见的应用场景:1. 高度测量:通过相似三角形的高度比例性质,可以利用影子定理或者利用物体和它的影子的尺寸比来计算物体的高度。
例如,一个人的影子长度和身高的比例可以用来计算他所在位置的物体的高度。
2. 远离地面的测量:在无法直接测量物体的高度时,可以利用相似三角形的原理进行测量。
例如,通过测量一个建筑物的阴影与一个水平杆的阴影之间的长度比例,可以计算出建筑物的高度。
3. 建模与比例放大:在建筑设计和工程模型中,可以利用相似三角形的边比例性质进行模型的设计和比例放大。
相似三角形的性质
相似三角形的性质相似三角形是指具有相同形状但大小可以不同的三角形。
在数学中,相似三角形是一个重要的概念,它具有一系列独特的性质和特点。
本文将介绍相似三角形的性质,以及与之相关的定理和应用。
一、比例关系相似三角形中,对应边的长度成比例。
设ABC和DEF是相似三角形,对应边的长度满足以下比例关系:AB/DE = BC/EF = AC/DF其中,AB、BC、AC为三角形ABC的边长,DE、EF、DF为三角形DEF的边长。
这个比例关系可以推广至所有对应边。
二、角度关系相似三角形中,对应角度相等。
设ABC和DEF是相似三角形,对应角度满足以下关系:∠A = ∠D, ∠B = ∠E, ∠C = ∠F其中,∠A、∠B、∠C为三角形ABC的内角,∠D、∠E、∠F为三角形DEF的内角。
三、边长比例定理设ABC和DEF是相似三角形,若两个相似三角形的边长比例相等,则它们是相似的。
即如果AB/DE = BC/EF = AC/DF成立,那么三角形ABC与三角形DEF相似。
四、高度定理相似三角形的高度成比例。
设ABC和DEF是相似三角形,h1和h2分别为三角形ABC和DEF的高度,则有h1/h2 = AB/DE = BC/EF = AC/DF成立。
五、面积定理相似三角形的面积成比例的平方。
设ABC和DEF是相似三角形,S1和S2分别为三角形ABC和DEF的面积,则有S1/S2 = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2成立。
六、勾股定理相似直角三角形中,斜边成比例。
设ABC和DEF是两个相似的直角三角形,且∠C和∠F是直角,则有AC/DF = BC/EF成立。
七、应用举例1. 角平分线定理:在相似三角形中,角平分线分割对应边成比例。
2. 重心定理:在相似三角形中,连接重心和顶点的线段成比例。
相似三角形的性质在几何学和实际问题中有着广泛的应用。
例如,在测量不便的情况下,我们可以利用相似三角形来计算无法直接测量的长度和距离。
第11讲 相似三角形的性质及应用 学生版
第11讲相似三角形的性质及应用(一)、夯实基础一、相似三角形的性质1、相似三角形的对应角相等,对应边成比例2、重心:三角形中线的交点3、三角形的重心分每一条中线成1:2的两条线段4、相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方(等高时,面积之比等于底之比)5、对应角平分线、中线、高线之比等于相似比二、相似多边形1、定义:一般地,对应角相等,对应边成比例的两个多边形叫做相似多边形2、相似比:相似多边形对应边的比叫做相似比3、相似多边形的周长之比等于相似比;相似多边形的面积之比等于相似比的平方三、图形的位似1、定义:所有经过对应点的直线相交于同一点,这个交点到两个对应点的距离之比都相等,那么这两个图形就叫做位似图形2、位似比:位似中心到两个对应点的距离之比叫做位似比3、当以坐标原点为位似中心时,若原图形上点的坐标为(x,y),位似图形与原图形的位似比为k,则位似图形上的对应点的坐标为(kx,ky)或(-kx,-ky)(二)、题型训练考点一、相似三角形的性质【例1】1.(☆)如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1:D.2:12.(☆☆)两个相似三角形,他们的周长分别是36和12.周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,则周长较大的三角形的面积是()A.52 B.54 C.56 D.58【例2】(☆☆)两个相似三角形的相似比为7:5,则下列说法正确的是( ) A .面积比是7:5 B .周长比是49:25C .对应边上的高之比为 7:5D .对应边上的中线之比为49:25【例3】(☆☆☆)在△ABC 中,AC=6,AB=9,D 是AC 边上一点,且AD :DC=1:2,若E 为AB 边上的点,△ABC 与以A ,D ,E 为顶点的三角形相似,则AE 的长度为( ) A .3B .4.5C .34或3 D .2或4.5【例4】(☆☆☆)如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC =2:3,则S △DEF :S △ABF =( )A . 2:3B . 4:9C . 2:5D . 4:25【例5】(☆☆)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DFAC CG=. (1)求证:△ADF ∽△ACG ; (2)若12AD AC =,求AFFG的值. GFE DCBA举一反三1.(☆)如果两个相似三角形的相似比为2:3,那么这两个三角形的面积比为( ) A .2:3 B .C .4:9D .9:42.(☆☆)在△ABC 中,AB=12cm ,AC=15cm ,D 点是AB 边上的一点且AD=8,在AC 边上取一点E ,要使得以点A 、D 、E 为顶点的三角形与△ABC 相似,则AE 的长为.3. (☆☆☆)在ABCD 中,E 、F 是对角线BD 上的点,且 BE =EF =FD ,连接 AE 交BC 于点M ,连接 MF 交AD 于点H ,则S △AMH :S □ABCD = .HMFEDCBA4.(☆☆☆)如上图,在 ABCD 中,E 为CD 上一点,DE :CE =2:3,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF = .5.(☆☆☆)如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S △BDE :S △CDE =1:5,则S △BDE :S △ACD =( ) A .1:16 B .1:18 C .1:20 D .1:306.(☆☆)如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,AF 平分∠BAC ,交DE 于点G ,交BC 于点F .若∠AED=∠B ,且AG :GF=2:1,则DE :BC= .考点二、相似三角形的应用【例1】(☆☆)请证明“三角形的重心分每一条中线成1:2的两条线段”.【例2】(☆☆)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF=50cm ,EF=30cm ,测得边DF 离地面的高度AC=1.5m ,CD=20m ,则树高AB 为( )A .12 mB .13.5 mC .15 mD .16.5 m【例3】(☆☆)如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( )A .24mB .25mC .28mD .30m【例4】(☆☆)如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果32EC AE ,那么 ACAB= .【例5】1.(☆☆)如图,AD是△ABC的高,AE是△ABC的外接圆直径.求证:AB·AC =AE·AD.2.(☆☆)如图:在△ABC中,AD⊥BC,垂足是D.(1)作△ABC的外接圆O,作直径AE(尺规作图);(2)若AB=8,AC=6,AD=5,求△ABC的外接圆O直径AE的长.【例6】(☆☆)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.【例7】(☆☆☆)如图,直线y=与x轴、y轴分别交于A、B两点.(1)求OA、OB的长;(2)已知点C(0,1),在x轴上是否存在点D,使得以D、C、O为顶点的三角形与△AOB相似?若存在,请直接写出D点的坐标;若不存在,请说明理由.【例8】(☆☆☆)如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.举一反三1.(☆☆)如图,在△ABC中,AD、BE是中线,AD、BE交于点P,已知△ABC的面积为4,求四边形DCEP的面积.2.(☆☆)某一时刻,身髙1.6m 的小明在阳光下的影长是0.4m ,同一时刻同一地点测得某旗杆的影长是5m ,则该旗杆的高度是( ) A .1.25m B .10mC .20mD .8m3.(☆☆)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为 .4. (☆☆)如图,已知AD 为△ABC 的角平分线,如果CE=3,AC=5,CD=4,BC=320,那么 AB= .5,(☆☆)如图,小明晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,从C 处继续往前走2米到达E 处时,测得影子EF 的长为2米,B 、C 、D 、E 、F 在同一条直线上,已知小明的身高是1.6米,那么路灯A 的高度等于 米.6.(☆☆☆)已知:如图,AB是⊙O的直径,点P为BA延长线上一点,C为⊙O的点,BD⊥PC,垂足为D,交⊙O于E,连接AC、BC、EC ,∠BCD=∠BAC.(1)求证:BC2=BD•BA;(2)若AC=6,DE=4,求PC的长.考点三、相似多边形【例1】(☆)下列结论不正确的是()A.所有的矩形都相似B.所有的正方形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似【例2】(☆☆)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B.12 C.D.【例3】(☆☆)如图,连结正五边形的各条对角线AD,AC,BE,BD,CE,给出下列结论:①∠AME=108°;②五边形PFQNM∽五边形ABCDE;③AN2=AM•AD,其中正确的是()A.①②B.①③C.②③D.①②③举一反三1.(☆)下列图形中一定相似的是()A.有一个角相等的两个平行四边形B.有一个角相等的两个等腰梯形C.有一个角相等的两个菱形D.有一组邻边对应成比例的两平行四边形2.(☆☆)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a= b B.a=2b C.a=2 b D.a=4b3.(☆☆)如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°4.(☆☆).如图,在矩形ABCD中,E,F分别为,AD与BC的中点,且矩形ABCD∽矩形AEFB,的值为()A.2 B.C.D.考点四、图形的位似【例1】(☆☆)如图,已知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.4【例2】(☆☆)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A.(2,2)B.(1,2)C.(,2)D.(2,1)举一反三1.(☆)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()B.C.D.A.2.(☆☆)如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A.1:6 B.1:5 C.1:4 D.1:23.(☆☆)如图,已知△ABC与△DEF是位似图形,且OB:BE=1:2,那么S△ABC:S△DEF()A.1:3 B.1:2 C.1:9 D.1:4(三)、课下继续夯实1.(☆☆)下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①②B.②③C.③④D.②④2.(☆☆)如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为()A.9:4 B.3:2 C.2:3 D.81:163.(☆☆)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m4.(☆☆)如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果53 AC CE ,那么ABAE的值为( ) A .31B .32 C .52 D .535.(☆☆)如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ACD =( ) A .1:16 B .1:18 C .1:20 D .1:246.(☆☆)下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似; 其中正确的有( ) A .2个 B .3个C .4个D .5个7.(☆☆)如图,正五边形的边长为2,连接对角线AD 、BE 、CE ,线段AD 分别与BE 和CE 相交于点M 、N ,给出下列结论:①∠AME=108°,②AN 2=AM •AD ;③MN=3-5;④S △EBC=25-1,其中正确的结论是 (把你认为正确结论的序号都填上).8.(☆☆)如图,点1A ,2A ,3A 在射线OA 上,点1B ,2B ,3B 在射线OB 上,且,.若,的面积分别为1,4,则图中三个阴影三角形面积之和为 .9.(☆☆)把一个长方形划分成三个全等的长方形,若要使每一个小长方形与原长方形相似,则原长方形的长a 与宽b 的关系是( ) A .=B .=C .=3D .=210.(☆☆)已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A .B .C .D .211.(☆☆)如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点D 的坐标为( )A .(2,2)B .(2,1)C .(3,2)D .(3,1)12.(☆☆)如图,将△ABC 的三边缩小为原来的.任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形 ③△ABC 与△DEF 周长之比为2:1 ④△ABC 与△DEF 的面积之比为4:1.A .1个B .2个C .3个D .4个13. (☆☆☆)如图所示,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ=31CE 时,EP+BP= .14.(☆☆☆)如图,在△ABC 中,D 、E 是BC 的三等分点,M 是AC 的中点,BM 交AD 、AE 于G 、H ,则BG :GH :HM= .15.(☆☆☆)如图,在直角梯形ABCD中,AB∥CD,DA⊥AB,CD=2,AB=3,AD=7,在线段AD上能否找到一个点P,使得以点P、A、B为顶点的三角形和以点P、C、D为顶点的三角形相似?若能,共有几个符合条件的点P?并求相应的PD的长;若不能,说明理由.16.(☆☆☆)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设该矩形的长QM=ymm,宽MN=xmm.(1)求证:y=;(2)当x与y分别取什么值时,矩形PQMN的面积最大?最大面积是多少?17.(☆☆☆)如图,在△ABC中,点D、E分别在边AB、AC上,=,∠BAC的平分线AG分别交线段DE、BC于点F、G.(1)求证:△ADF∽△ACG;(2)联结DG ,若∠AGD=∠B ,AB=12,AD=4,AE=6,求AG 与AF 的长.18.(☆☆☆)如图所示,在△ABC 中,点D 是△ABC 的重心,=2DEF S △,求△AEC 的面积.19.(☆☆)(1)如图一:小明想测量一棵树的高度AB ,在阳光下,小明测得一根与地面垂直、长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),墙壁上的影长CD 为1.5米,落在地面上的影长BC 为3米,则树高AB 为多少米.(2)如图二:在阳光下,小明在某一时刻测得与地面垂直、长为1m 的杆子在地面上的影子长为2m ,在斜坡上影长为1.5m ,他想测量电线杆AB 的高度,但其影子恰好落在土坡的坡面CD 和地面BC 上,量得CD=3m ,BC=10m ,求电线杆的高度.20.(☆☆☆)如图,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,C是抛物线上一点,且点C的横坐标为1,.(1)求抛物线的函数关系式;(2)若D是抛物线上一点,直线BD经过第一、二、四象限,且原点O到直线BD的距离为,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使得以A、B、P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.。
相似三角形的性质
相似三角形的性质相似三角形是指具有相同形状但可能不同大小的两个三角形。
在几何学中,相似三角形具有一些独特的性质。
本文将介绍相似三角形的性质,并讨论其在实际问题中的应用。
一、相似三角形的定义和判定相似三角形是指具有相同形状但可能不同大小的两个三角形。
两个三角形相似的判定条件有以下几种:1. 三角形的对应角相等:如果两个三角形的对应角相等,则它们是相似的。
这可以表示为∠A=∠D,∠B=∠E,∠C=∠F。
2. 三角形的对应边成比例:如果两个三角形的对应边之比相等,则它们是相似的。
这可以表示为AB/DE = BC/EF = AC/DF。
3. 两个角相等且夹在两边之间的比例相等:如果两个三角形的两个角分别相等,并且夹在两边之间的比例也相等,则它们是相似的。
这可以表示为∠A=∠D,∠B=∠E,并且AB/DE = BC/EF。
二、相似三角形具有以下性质:1. 对应边之比相等:如果两个三角形相似,它们的对应边之比相等。
这是相似三角形的最重要性质之一。
2. 对应角相等:如果两个三角形相似,它们的对应角是相等的。
3. 对应角平分线相交于一点:如果两个三角形相似,它们的对应角的平分线交于一点。
4. 对应中线之比相等:如果两个三角形相似,则它们的对应中线之比等于对应边之比。
5. 对应高之比相等:如果两个三角形相似,则它们的对应高之比等于对应边之比。
6. 相似三角形的面积之比等于边长之比的平方:如果两个三角形相似,则它们的面积之比等于对应边之比的平方。
7. 相似三角形的周长之比等于边长之比:如果两个三角形相似,则它们的周长之比等于对应边之比。
三、相似三角形的应用相似三角形在实际问题中有广泛的应用,以下是一些常见的应用场景:1. 测量不可直接测量的物体高度:通过测量相似三角形的一些已知边长和角度,可以推算出无法直接测量的物体的高度。
2. 利用相似三角形进行放缩:在地图制作、建筑设计等领域中,可以利用相似三角形进行放缩和缩小,以便在实际工作中进行精确的测量和设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
1
1
1
1
1111111
1
11旋转变换型
将EAD 绕点A 旋转
BD AC 向下平
移DE 对称交
换型
交换AD 与AE A
E D D E D D E
D
E D
E C
B A
A
B C
A B
C C
B
A
C B(E)A
C B C
B
A B
C
D E D A 老师姓名 学生姓名 教材版本 北师大版
学科名称
年级
上课时间
课题名称
相似三角形的性质及其应用
教学目标
及重难点
教 学 过 程
知识点回顾: 一、相似三角形:
1、定义:如果两个三角形的各角对应 各边对应 那么这两个三角形相似
2、性质:⑴相似三角形的对应角 对应边
⑵相似三角形对应高线的比、对应角平分线的比、对应 的比都等于 ⑶相似三角形周长的比等于 面积的比等于
3、判定:⑴两角 的两三角形相似
⑵两边对应 且夹角 的两三角形相似 ⑶三组对应边的比 的两三角形相似 【提醒:1、全等是相似比为 的特殊相似 2、根据相似三角形的性质的特质和判定,要证四条线段的比相等一般要先证 判定方法中最常用的是 三组对应边成比例的两三角形相似多用在“方格”三角形中】 4、直角三角形射影定理:
5、相似的常见基本图形:
【经典例题】
例1、如图,DE ∥BC ,S ΔDOE ∶S ΔCOB =4∶9,求AD ∶BD.
例2、在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得
D A B C
到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
例3、如图,在RtΔABC中,∠C=90°,AC=4,BC=3.
(1)如图(1),四边形DEFG为ABC的内接正方形,求正方形的边长.
(2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长.
(3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长.
(4) 如图(4),三角形内有并排的n个相等的正方形,它们组成的矩形内接于ΔABC,请写出正方形的边长.
相似三角形的应用:
知识点1:利用阳光下的影子
例1、某同学的身高为1.66米,测得他在地面上的影长为2.49米,如果这时测得操场上旗杆的
影长为42.3,那么该旗杆的高度是多少米?
知识点2:利用标杆
例2、某小组的同学利用标杆测量某旗杆的高度,将一条5米高的标杆竖在某一位置,有一名同学
站在一处
,与标杆、旗杆成一条直线,另外一名同学测得站立的同学离标杆
3米,离旗杆30米,如果站立的同学高1.6米,求旗杆的高度?
知识点3:利用镜子反射
例3、雨后,一学生在操场上从他前面2米远有一块小积水处,看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼睛高度为1.5米,那么旗杆的高度是多少米?
【经典练习】
一、选择题
1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()
A.20米.
B.18米
C.16米
D.15米
2、如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使ΔABE和ΔACD相似的是()
A.∠B=∠C
B.∠ADC=∠AEB
C.BE=CD,AB=AC
D.AD∶AC=AE∶AB
3、如图所示,D、E分别是ΔABC的边AB、AC上的点,DE∥BC,并且AD∶BD=2,那么SΔADE
∶S四边形DBCE=()
(A)
3
2
(B)
4
3
(C)
5
4
(D)
9
4
4、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()
(A)ΔADE∽ΔAEF (B)ΔECF∽ΔAEF (C)ΔADE∽ΔECF (D)ΔAEF∽ΔABF
(第2题图) (第3题图) (第4题图) (第6题图)
5、如图,在大小为4×4的正方形网格中,是相似三角形的是()
①②③④
A.①和②
B.②和③
C.①和③
D.②和④
6、如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()D
C
E
N
F B
M
A
D
B
E
A
C
A.0.36
πm
2 B.0.81πm2 C.2πm2 D.3.24πm2
7、如图,直线l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则AE∶EC是()
A.5∶2
B.4∶1
C.2∶1
D.3∶2
8、小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( )
A.9米B.28米C.()3
7+米 D.()32
14+米
9、如图,DE∥BC,EF∥AB,S△ADE=1,S△EFC=4,则四边形BFED的面积为()
A.2 B.4 C.8 D.9
10、如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥AC∥HG,EH∥BD∥FG,则四边形EFGH的周长是()
A.10B.13C.210D.213
二、填空
1、两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面
积之和为130cm2,那么较小的多边形的面积是cm2.
2、如图,DE与BC不平行,当
AC
AB
= 时,ΔABC与ΔADE相似.
(第2题图) (第3题图) (第4题图) (第5题图)
3、如图,AD=DF=FB,DE∥FG∥BC,则SⅠ∶SⅡ∶SⅢ= .
4、如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,当CM= 时,ΔAED与N,M,C为顶点的三角形相似.
5、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为时,使得由点B、O、C组成的三角形与ΔAOB相似。
三、解答题
1、一位同学利用树影测量树高,他在某一时刻,测得长为1m的竹竿影长m
9.0,但当他马上测量树影时,且树靠近一建筑物,树影不会落在地面上,有一部分的影子在墙上,他先测得留在墙上的影高为m
2.1,又测得地面部分的影长为m
7.2,这棵树有多高呢?
2、小明为测量一棵树CD的高度,他在距树24米处立了一根高为2米的标杆EF,然后小明前后调整自己的位置,当他与树相距27米时,他的眼睛、标杆的顶端和树顶在同一条直线上.已知小明身高1.6米,求树的高度.
D
C
B
A
C
B
A
D
E
F
3、小明家的窗口面对大楼,相距AB=80,窗高CD=1.2米,小明从窗口后退2米,眼睛从点O处恰
好能看到对面楼顶E和楼底F,求大楼的高度.
4、如图,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与点A、C不重合),Q点在
BC上.
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
课后
小结
组长
签字。