第三章-表示力学量算符-习题答案

合集下载

第3章 力学量用算符表达:习题解答

第3章 力学量用算符表达:习题解答

第3章 力学量用算符表达习题3.1 下列函数哪些是算符22dxd 的本征函数,其本征值是什么?①2x , ② x e , ③x sin , ④x cos 3, ⑤x x cos sin +解:①2)(222=x dxd∴ 2x 不是22dxd 的本征函数。

② x xe e dxd =22∴ xe 是22dxd 的本征函数,其对应的本征值为1。

③x x dx dx dxd sin )(cos )(sin 22-== ∴ 可见,x sin 是22dx d 的本征函数,其对应的本征值为-1。

④x x dx dx dxd cos 3)sin 3()cos 3(22-=-= ∴ x cos 3 是22dxd 的本征函数,其对应的本征值为-1。

⑤)cos (sin cos sin sin (cos )cos (sin 22x x xx x x dxd x x dx d +-=--=-=+) ∴ x x cos sin +是22dxd 的本征函数,其对应的本征值为-1。

3.2 一维谐振子处在基态t i x e t x ωαπαψ22022),(--=,求:(1)势能的平均值2221x V μω=; (2)动能的平均值μ22p T =.解:(1) ⎰∞∞--==dx e x x V x2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221 ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ⎰∞∞----=dx e dxd e x x22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα ][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=V E T 习题3.3 指出下列算符哪个是线性的,说明其理由。

量子力学习题解答-第3章

量子力学习题解答-第3章

第三章形式理论本章主要内容概要:1. 力学量算符与其本征函数量子力学中力学量(可观测量)用厄米算符表示,厄米算符满足()**ˆˆ()()()()f x Qg x dx Qf x g x dx =⎰⎰或者用狄拉克符号,ˆˆf QgQf g =,其中(),()f x g x 为任意满足平方可积条件的函数(在x →±∞,(),()f x g x 为零)。

厄米算符具有实本征值的本征函数(系),具有不同本征值的本征函数相互正交,若本征值为分离谱,本征函数可归一化,是物理上可实现的态。

若本征值为连续谱,本征函数可归一化为δ函数,这种本征函数不是物理上可实现的态,但是它们的叠加可以是物理上可实现的态。

一组相互对易的厄米算符有共同的本征函数系。

而两个不对易的厄米算符没有共同的本征函数系,它们称为不相容力学量。

对任意态测量不相容力学量ˆˆ,Q F ,不可能同时得到确定值,它们的标准差满足不确定原理2221ˆˆ,2QFQ F i σσ⎛⎫⎡⎤≥ ⎪⎣⎦⎝⎭2. 广义统计诠释设力学量ˆQ 具有分离谱的正交归一本征函数系{}()n f x 本征值为{}nq ,即 ()*ˆ()(), ()(), ,1,2,3,...n n n m n mnQf x q f x f x f x dx m n δ===⎰或ˆ, n n n m n mnQ f q f f f δ== 这个本征函数系是完备的,即1n n nf f =∑(恒等算符,封闭型),任意一个波函数可以用这个本征函数系展开 (,)(),nn nx t cf x ψ=∑ 或nn n n nnf f c f ψ=ψ=∑∑展开系数为*()()(,)n n nc t f fx x t dx =ψ=ψ⎰若(,)x t ψ是归一化的,n c 也是归一化的,21n nc =∑。

广义统计诠释指出,对(,)x t ψ态测量力学量Q ,得到的可能结果必是Q 本征值中的一个,得到n q 几率为2n c 。

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------yy y y y ye e e e e e∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππy e dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

第三章 力学量用算符表达

第三章 力学量用算符表达
ˆ ˆ ˆ BA ˆ BA ˆ B ˆA ˆ ˆ ˆC ˆ ˆC ˆC ABC
ˆ, B ˆ B ˆ,C ˆ ] ˆ ]C ˆ[ A [A
ˆ, B ˆ B ˆ,C ˆ] ˆ ]C ˆ[ A [A


任意
ˆ , BC ˆ, B ˆ B ˆ,C ˆ] ˆ ˆ] [A ˆ ]C ˆ[ A [A
ˆ x , x ] i [ p
i x x i i x x x ( 任意) x ˆ x p x
(7)逆算符
ˆ 设 A ˆ 之逆 能够唯一地解出, 则可定义算符 A 1 为: ˆ A
c1 、c2为常数
~ ˆ 的转置算符 A ˆ 定义为: A ˆ * dr * A

思考:常 数算符的 转置?
ˆ ) ( *, A ˆ *) ( , A
与是任意两波函数。 可以证明,
ˆ ˆ ) BA ˆˆ ( AB
(课外作业)
上面的第四式称为Jacobi 恒等式。
思考:
ˆ, A ˆ] ? ˆ C [B ˆ] ? ˆ ˆ, A [ BC
本节例题
ˆ , BC ˆ, B ˆ B ˆ,C ˆ] ˆ ˆ] [A ˆ ]C ˆ[ A 例题1:证明 [ A
证明:
ˆ , BC ˆ ˆ ˆ BCA ˆ ˆ ] ABC ˆ ˆ ˆ [A
(1)线性算符
满足如下运算规律的算符Â 称为线性算符: Â(c1ψ1+c2ψ2)= c1 Â ψ1+c2 Â ψ2
其中c1, c2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:
动量算符 单位算符
ˆ i p ˆ I
是线性算符。

第三章-表示力学量的算符-习题范文

第三章-表示力学量的算符-习题范文

第三章 表示力学量的算符第一部分;基本思想与基本概念题目1. 举例说明算符与它表示力学量之间的关系。

2. 如何理解力学量完全集?3. 守恒量有哪些特征?4. 量子力学中的守恒量与经典力学守恒量有何区别?5. 如何构造力学量算符?6. 若ψ1与ψ2是力学量F 属于同一本征值λ的两个不同本征函数,则ψ=C 1ψ1+C 2ψ2(C 1,C 2是任意常数)是否仍是F 的本征函数。

7. 设[Â,Ĉ]=0,则力学量Â和Ĉ是否一定可同时确定? 8. 设[Â,Ĉ]≠0,则力学量Â和Ĉ是否一定不可同时确定? 9. 试述│C n │2的物理意义。

10. 对于氢原子哪些力学量组成力学量完全集?11. 对氢原子n ,l ,m 这三个量子数分别决定哪些力学量? 12. 线性谐振子的能量是守恒量,那它能否处于能量没有确定值的状态?举例说明。

13. t =0时,粒子处于力学量F 的 本征态,则在t 时刻它是否处于该本征态? 14.2ˆL 的本征态是否一定是 ˆzL 的本征态?举例说明。

15. ˆzL 的本征态是否一定是2ˆL 的本征态? 16. 当氢原子处于ψnlm (r ,θ,φ)=R nl (r )Y lm (θ,φ)态时,哪些力学量可同时确定,其值分别是多少?17. 若[Â,Ĉ]=0,则粒子是否一定处于A 和B 两力学量的共同本征态?第二部分:基本技能训练题1. 证明厄密算符的平均值都是实数(在任意态)2. 判断下列等式是否正确12ˆˆˆ() () E H T U (3) H E T UHT U =+==+==+ 3. 设ψ(x )归一化,{ϕk }是ˆF的本征函数,且 ()()k k kx C x ψϕ=∑(1) 试推导C k 的表达式。

(2) 求证力学量在ψ(x )态的平均值 2k k kF C F =∑。

(3)说明|C k |2的物理意义。

4. 一维谐振子处于基态ψ0(x )态,求该态中 (1) 势能的平均值2212Ux μω=(2) 动能的平均值22p T μ=(3)动量的几率分布。

第三章 力学量与算符

第三章 力学量与算符
i H t t 0
H
U t , t0 e
力学量与算符
• • • • • 作业: 1、分析厄米算符 2、讨论幺正算符(投影算符、宇称算符) 3、算符运算的证明 4、讲课过程中的简单证明,一些概念、或 是各算符的特性
力学量与算符
定义
r r
性质 (1) 2 1 ,本征值为 1 ; (2)是厄米、幺正算符 (3)波函数和算符按宇称分类
A, 0
r r
偶宇称
奇宇称
A, 0 r r
力学量与算符
性质12完备性三宇称算符定义2是厄米幺正算符3波函数和算符按宇称分类力学量与算符4宇称算符的选择定律力学量与算符四时间演化算符不显含时间力学量与算符力学量与算符力学量与算符
力学量与算符
力学量与算符
算符的定义及运算 算符的定义 单位算符 算符的和 积 转置
ˆ F
I
ˆB ˆ B ˆ ˆ A A
d
d A B A B A B d
力学量与算符
3.2.2设算符 A、B 不可对易: A , B C ,但
A, C , B , C ,试证明Glauber公式:
e A B e A e B e
n n 1
C1 A C 0,则
A有 n 个本征值,且满足
Cnan Cn 1an 1 C1a C 0

力学量与算符
二、算符导数 1.定义
F F ,
为参量,
dF F F lim 0 d
2.基本性质 d A B A B
Aij

量子力学课后答案

量子力学课后答案

•第一章 绪论 •第二章 波函数和薛定谔方程 •第三章 力学量的算符表示 •第四章 态和力学量的表象 •第五章 微扰理论 •第六章 弹性散射 • 第七章 自旋和全同粒子1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。

证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 11833-=, 及λνc =、λλνd c d 2-=得 1185-=kT hc e hc λλλπρ, 令kThc x λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x x e xe 用图解法求得97.4=x ,即得97.4=kT hc m λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 第一章绪论 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010A 7.09m 1009.72=⨯≈==-mE h p h λ # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

解:010A 63.12m 1063.1232=⨯≈===-mkT h mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为22,2μωμE b E a ==,相空间面积为 ,2,1,0,2=====⎰n nh E E ab pdq νωππ 所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为 ()ϕω+=t A q sin 速度为 ()ϕωω+='t A q cos ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=n νμωnh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

算符与力学量的关系_第三章

算符与力学量的关系_第三章


2
(2a0 )
2i
3
2
e
0 1 2
1
e

i pr cos
r drd cos
2 i pr
p(2a0 )
3
re
0

r a0
[e

i pr
e
]dr
8
3.6 算符与力学量的关系(续8)

a p
2 0 2
( 2a 0 ) 2
3
2 2
2
3.6 算符与力学量的关系(续2)
| Cn |2 具有概率的意义,它表示在 态中测量力学量 F 得到结果是 n 本征值的几率,故 Cn 常称为概率幅
基 本 假 设
量子力学中表示力学量的算符都是厄米算 符,它们的本征函数 组成完全系。当体系 处于波函数 所描写的状态时,测量力 ˆ 学量 F 所得的数值,必定是算符 F 的本征值 之一,测得值为其本征值 n 的概率是 | Cn |2

C p 与动量值 P 的大小有关,与 p的方向无关, 由此得到动量 的概率分布 p
W ( p) C p
2
a p
2 2 0 2
8a
3 5 0
2 4

9
3.6 算符与力学量的关系(小结)
厄米算符本征函数组成正交、归一的完全函数系
任意函数可以用这些本征函数做线性展开(态叠加 原理)
① 此假设的正确性,由该理论与实验结 注 果符合而得到验证 意 ② 一般状态中,力学量一般没有确定的数 值,而是具有一系列的可能值,这些可能值 就是该力学量算符的本征值,测得该可能值 的概率是确定的
3
3.6 算符与力学量的关系(续3)

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量用算符表达】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量用算符表达】

第3章力学量用算符表达3.1 设A与B为厄米算符,则和也是厄米算符,由此证明:任何一个算符F均可分解为,F+与F-均为厄米算符.证明:因为即和均为厄米算符而F+与F-显然均为厄米算符.3.2 已知粒子的坐标r和动量p为厄米算符,判断下列算符是否为厄米算符:如果不是,试构造相应的厄米算符.解:对于l=r×P,有同理所以是厄米算符,对于r·P,有所以r·P不是厄米算符,而相应的厄米算符为类似有,本身非厄米算符,但可以构造相应的厄米算符如下:(参见3.8题),本身也非厄米算符,但可以构造相应的厄米算符如下:3.3 设F(x,p)是x和p的整函数,证明整函数是指F(x,p)可以展开成.证明:利用类似可证明.3.4 定义反对易式,证明证明:所以类似所以3.5 设A、B、C为矢量算符,A和B的标积和矢积定义为α、β、γ分别取为为Levi-Civita符号,试验证【证明见《量子力学习题精选与剖析》[上],4.1题】4.1 设A、B、C为矢量算符,其直角坐标系分量为A=(A x,A y,A z)=(A1,A2,A3)等等,A、B的标积和矢积定义为等等,试验证下列各式:A·(B×C)=(A×B)·C (3)[A×(B×C)]α=A·(BαF)-(A·B)Cα(4)[(A×B)×C]α=A·(BαC)-Aα(B·C)(5)证明:式(3)左端写成分量形式,为其中εαβγ为Levi—CiVita符号,即ε123=ε231=ε312=1ε132=ε213=ε321=-1 (6)εαβγ=α、β、γ中有两个或三个相同式(3)右端也可化成故得验证式(4),以第一分量为例,左端为[A×(B×C)]1 =A2(B×C)3 A3(B×C)2=A2(B1C2-B2C1)-A3(B3C1-B1C3)=A2B1C2+A3B1C3-(A2B2+A383)C1 (8)而式(4)右端第一分量为A(B1C)-(A·B)C1=A1B1C1+A2B1C2+A3b1C3-(A1B1+A2B2+A3B3)C1=A2B1C2+A3B1C3-(A2B2+A3B3)C1和式(8)相等,故式(4)成立.同样可以验证式(5).式(4)和(5)有时写成下列矢量形式:A与C间联线表示A和C取标积.(但是B的位置在A、C之间)如果A、B、C互相对易,上二式就可写成A×(B×C)=(A·C)B-(A·B)C(A×B)×C=(A·C)B-A(B·C)这正是经典物理中的三重矢积公式.3.6 设A与B为矢量算符,F为标量算符,证明【证明见《量子力学习题精选与剖析》[上],4.2题】4.2 设A、B为矢量算符,F为标量算符,证明[F,A·B]=[F,A]·B+A·[F,B] (1)[F,A×B]=[F,A]×B+A×[F,B] (2)证明:式(1)右端等于(FA-AF)·B+A·(FB-BF)=FA·B-A·BF=[F,A·B] 这正是式(1)左端,故式(1)成立.同样可以证明式(2).3.7 设F是由r与p的整函数算符,证明【证明见《量子力学习题精选与剖析》[上],4.3题】4.3 以,r、表示位置和动量算符,为轨道角动量算符,为由r、构成的标量算符.证明证明:利用对易式以及题4.2式(2),即得此即式(1)。

量子力学教程习题答案

量子力学教程习题答案

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学-第三章量子力学中的力学量

量子力学-第三章量子力学中的力学量

dpe
*
x
-i
d
dx
x dx
dx
1
dx

e
i
p( xx)
dp
*
x
-i
d
dx
x
dx
dxδ(x
x)
*
x
i
d
dx
x
dx
*
x
i
d
dx
x
dx
*
x
pˆ x
x 7
同 理:
py dy * y pˆ x y
pz dz * z pˆ z z
推广至三维情况
P
* x pˆ xd * xi
1
d2 d 2
(常数)

d 2 d 2
0
33
Cei
由周期性条件 2 得 ei2π 1
2π 2mπ m 0, 1, 2,
Ceim
由归一化条:
* d 1 得 C
1 2π
所以
1 eim

m*md δmm
34
sin d (sin d ) sin2 m2
17
[例题] 求动量的转置算符。
[解]
d* pˆx
dx pˆ x*
dx
i
x
*
i *
dx
*
i
x
*
i
x
dx
所以
pˆ x i
x
pˆ x
②算符的复共轭算符
把算符中的所有复量换成共轭复量。
如:动量的复共轭算符
pˆ *x i
x
pˆ x
18
③厄米共轭算符
, Fˆ † Fˆ, 或 d*Fˆ d*Fˆ * d Fˆ ** d Fˆ *

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量用算符表达(圣才出品)

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量用算符表达(圣才出品)
则可定义算符 Â 的函数 F(Â)为
3 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ 与 的“标积”
以下为常用算符标积运算公式:
式中 c1 与 c2 为任意常数.
7.转置算符 算符 Â 的转置算符 A 定义为
特例 对于
利用
(h 是一个普适常数,不为 0),则有
2.(l2,lz)的共同本征态 称为球谐(spherical harmonic)函数,它们满足
l2 和 lz 的本征值者都是量子化的.l 称为轨道角动量量子数.m 称为磁量子数.
6 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台


式中
称为 Levi—Civita 符号,是一个三阶反对称张量,定义如下:
②角动量算符与动量算符之间的对易关系 ③角动量算符之间的对易关系 分开写出,即
5.逆算符 设
能够唯一地解出 ψ,则可以定义算符 Â 之逆 Â-1 为
6.算符的函数与标积 (1)算符函数 给定一函数 F(x),其各阶导数均存在,幂级数展开收敛,
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符
,它们的共同本征态记为
也,表示一组完备的量子.设给定一组量子数 a 之后,就能够确定体系的唯一一个可能状
态,则我们称(Aˆ1,Aˆ2, )构成体系的一组对易可观测量完全集(complete set of
式中 ψ 与 φ 是任意两个波函数.
8.复共轭算符与厄米共轭算符 算符 Â 的复共轭算符 Â*.定义为

量子力学3

量子力学3

量子力学3第三章力学量算符§3.1 算符及其运算规则§3.2 厄米算符及其性质§3.3 连续谱本征函数的归一化§3.4 力学量算符随时间演化§3.5 守恒量与对称性§3.6 全同粒子体系§3.1 算符及其运算规则一、算符的基本运算规则二、算符的函数三、对易关系和对易子四、厄米算符和幺正算符五、量子力学向经典力学的过渡六、角动量算符一、算符的基本运算规则一、算符的基本运算规则量子力学第二公设—算符公设1)线性算符:A ( c1ψ 1 + c 2ψ 2 ) = c1 A ψ 1 + c 2 A ψ 2二、算符的函数二、算符的函数例子一般地,算符的函数可以表为? ? f ( A) = ∑ cn A nn2)单位算符:I?ψ = ψ3)算符之和:( A + B )ψ = A ψ + B ψ ?? ? ? 4)算符之积: ( A B )ψ = A ( B ψ )一个常用的公式:eA = ∑∞ n=0An n!其它的例子例题:若G为算符,t为参数,证明:Gt e = Ge Gt ?t算符之积满足结合律,但不满足交换律(不对易)。

5)算符之逆: A A ?1 = A ?1 A = I?三、对易关系与对易子三、对易关系与对易子对易子的定义: [ A, B ] = A B ? B A例:坐标与动量的对易关系。

解:考虑x p xψ = ? ih x ? p x xψ = ? ih ? ψ ?x对易关系的几个恒等式: [ A, B ] = ?[ B , A ][ A, B + C ] = [ A, B ] + [ A, C ] [ A, BC ] = B[ A, C ] + [ A, B ]C [ AB , C ] = A[ B , C ] + [ A, C ] B [ A, [ B , C ]] + [ B , [C , A ]] + [C , [ A, B ]] = 0(Jacobi恒等式)( xψ ) = ? ih ψ ? ih x ψ ?x ?xx p xψ ? p x x ψ = ih ψ ? [ x , p x ] = ih这样,对任意波函数,均有所以类似可证: [ y , p y ] = ih但[ z , p z ] = ih[ x , p y ] = [ x , p z ] = [ y , p x ] = ...... = 0 ? [ xα , p β ] = ih δ αβ综合式四、厄米算符和幺正算符四、厄米算符和幺正算符进一步的例算1、计算对易子: [ f ( x ), p x ] = ?2、设λ是一个小量,算符 A 之逆 A ?1 存在,求证:~ ? ? 1)算符的转置:∫ ψ * A ? d τ = ∫ ? A ψ * d τ~ ? ? 即(ψ , A ? ) = (? * , A ψ * )注意算符乘积的转置用法 ?* ? * * 2)算符的复共轭:A ψ = ( A ψ )+ ? 3)算符的厄米共轭:(ψ , A ? ) = ( A ψ , ? ) ~ ? ? ? ? 由 ( A ψ , ? ) = (? , A ψ ) * = (? * , A *ψ * ) = (ψ , A *? )~ ? ? 可得 A + = A *( A ? λ B ) ?1 = A ?1 + λ A ?1 B A ?1 + λ 2 A ?1 B A ?1 B A ?1 + ...3、算符A与B不对易,但它们的对易子C与B对易,求证:[ A, B n ] = nCB n ?1 , [ A, f ( B )] = C f ' ( B ), [ A, e B ] = Ce B 算符乘积的厄米共轭4)厄米算符:若算符A满足 A + = A ,则A称为厄米算符。

第三章-力学量的算符表示

第三章-力学量的算符表示
px能够取-~+中连续变化旳一切实数,为了拟定C,考虑积分
p
'
x
(
x)
px (x)dx
CC
exp(i
px
px
x)dx
因为
1
exp(ikx)dx (k)
2
13
p'x
( x)
px
( x)dx
C
2
2 ( px
p'x
)
假如取 C
1
2
,
px (x) 的归一化为 函数
p'x
( x)
简并:一种本征值相应一种以上本征函数旳情况
简并度:相应于同一本征值旳本征函数旳数目
27
LˆzYlm mYlm
在Ylm态中,体系角动量在z方向上旳投影为m 前面几种球函数
1
Y00 4
Y1,1
3 sinei 8
Y1,0
3 cos 4
Y1,1
3 sinei 8
28
3.5 厄密算符本征函数旳性质
31
f重简并: 对一种本征值ln, 若同步有f个本征函数与之相应
属于同一种本征值ln旳简并波函数ψnk,,有
Lˆ nk ln nk , k 1, ..., f
一般来说,ψnk不正交, 但总能够找到正交函数。
例题 对下面两个氢原子旳未归一化旳1s和2s电子旳波函数
1s (r, , ) 1s (r) er /a ,
假如 Aˆ Bˆ BˆAˆ 0 则Aˆ 和Bˆ对易 记为 [ Aˆ, Bˆ] Aˆ Bˆ BˆAˆ 0
例 [xˆ, pˆ x ] ?
(xˆpˆ x
pˆ x xˆ)
ix

第三章 力学量的算符.

第三章 力学量的算符.

若两个算符 Ô、Û 对体系的任何波函数ψ 有: ( Ô + Û) ψ= Ôψ+ Ûψ= Êψ 则Ô + Û = Ê 称为算符之和。
例如:体系Hamilton 算符 算符求和满足交换率和结合率。 注意,算符运算没有相减,因为减可用加来代替。 Ô - Û = Ô + (-Û)。 很易证明线性算符之和仍为线性算符。
f
f
j , j 1,2,, f
ˆ F ˆ F A ji ni nj
f
ˆ A ji F ni
i 1
f
i 1
Fn A ji ni
i 1
f
Fn nj
算符 F 本征值 Fn简并 的本质是当 Fn 确定后 还不能唯一的确定状态, 要想唯一的确定状态还 得寻找另外一个或几个 力学量算符,F 算符与 这些算符对易,其本征 值与 Fn 共同确定状态。
在势场中 V ( r ) 的粒子 H T V
2 ˆ T ˆ V (r ) 2 V (r ) H 2m
问题:算符、动量算符、 Hamilton算符
§3-2
算符的本征值和本征函数
ˆ F F n n n
其中Fn, ψn 分别称为算符 F的本征值和相应的本征态, 上式即是算符 F 的本征方程。求解时,ψ 作为力学量 的本征态或本征函数还要满足物理上对波函数的要求 即波函数的标准条件。
定理I:体系任何状态ψ下,其厄密算符的平
均值必为实数。
证:
F
ˆ d * F
ˆ ) * d ( F
ˆ ]* [ d * F
F*
逆定理:在任何状态下,平均值均为 实数的算符必为厄密算符。
定理II:厄密算符的本征值必为实。

量子力学第三章算符

量子力学第三章算符

第三章 算符和力学量算符3.1 算符概述设某种运算把函数u 变为函数v ,用算符表示为:ˆFuv =(3.1-1)ˆF 称为算符。

u与v 中的变量可能相同,也可能不同。

例如,11du v dx =,22xu v =3v =,(,)x t ϕ∞-∞,(,)x i p x hx edx C p t -=,则ddx dx ∞-∞⎰,x ip x he-⋅都是算符。

1.算符的一般运算(1)算符的相等:对于任意函数u ,若ˆˆFuGu =,则ˆˆG F =。

(2)算符的相加:对于任意函数u,若ˆˆˆFuGu Mu +=,则ˆˆˆM F G =+。

算符的相加满足交换律。

(3)算符的相乘:对于任意函数u ,若ˆˆˆFFu Mu =,则ˆˆˆM GF =。

算符的相乘一般不满足交换律。

如果ˆˆˆˆFGGF =,则称ˆF 与ˆG 对易。

2.几种特殊算符 (1)单位算符对于任意涵数u,若ˆIu=u ,则称ˆI 为单位算符。

ˆI 与1是等价的。

(2)线性算符对于任意函数u与v ,若**1212ˆˆˆ()F C u C v C Fu C Fv +=+,则称ˆF 为反线性算符。

(3)逆算符对于任意函数u ,若ˆˆˆˆFGu GFu u ==则称ˆF 与ˆG 互为逆算符。

即1ˆˆGF -=,111ˆˆˆˆˆˆ,1FG FF F F ---===。

并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。

对于非齐次线性微分方程:ˆ()()Fu x af x =,其中ˆF为ddx与函数构成的线性算符,a 为常数。

其解u 可表示为对应齐次方程的通解u 。

与非齐次方程的特解υ之和,即0u u v =+。

因0ˆ0Fu =,所以不存在1ˆF -使100ˆˆF Fu u -=。

一般说来,在特解υ中应允许含有对应齐次方程的通解成分,但如果当a=0时,υ=0,则υ中将不含对应齐次方程的通解成分,这时存在1ˆF-使11ˆˆˆˆFFv FF v v --==,从而由ˆFvaf =得:1ˆF af υ-=。

量子力学教程习题答案3周世勋

量子力学教程习题答案3周世勋
2
a
1 2
a
a
[1 cos A 2 2 a n
n a
a a
( x a )]dx n a n a ( x a ) dx
a
x
a

cos
A a A 2 a
∴归一化常数 A
A 2 2
sin
( x a)
a
1 a
16
2.5
求一维谐振子处在激发态时几率最大的位置。 解: ( x )
0 ,得
x
1

x
由 1 ( x ) 的表达式可知, x 0, 时, 1 ( x ) 0 。显然不是最大几率的位置。 x

d 2 1 ( x ) dx 4
3 2

2 3

[( 2 6 2 x 2 ) 2 2 x ( 2 x 2 2 x 3 )]e
23
2
23
T 100 K 时, E 1.38 10 21 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h e c 2 ,其中 e 为电子的静止质量,而
c

,所以
令x
kT
,再由
d d
0 ,得 .所满足的超越方程为
5
xe x ex 1
hc
用图解法求得 x 4.97 ,即得
m kT
4 .97 ,将数据代入求得 mT b, b 2.9 10 3 m0 C
4
1.2.在 0K 附近,钠的价电子能量约为 3eV,求 de Broglie 波长. 解: # 1.3. 氦原子的动能为 E 解:

第3章 力学量用算符表达

第3章 力学量用算符表达

证明如下:

Aˆn Ann,
Aˆ m Amm,
并设 m,n 存在, 对 Aˆm Amm, 取复共轭, 得到
* 定义一个量子体系的任意两个波函数(态) 与
的标积
, d *
d 是指对体系的全部空间坐标进行积分,
d 是坐标空间体积元.
则可以证明:
, 0
,* ,
,c11 c22 c1 ,1 c2 ,2
c11 c22, c1* 1, c2* 2,
式中 c1 与 c2 为任意常数.
第3章
力学量用算符表达
3.1 算符的运算规则
量子力学中的算符, 表示对波函数(量子态)的一 种运算.例如
d ,V (r) , ,2
dx
讨论 量子力学中算符的一般性质:
(a)线性算符
凡满足下列规则的算符 Aˆ , 称为线性算符,
Aˆ c11 c22 c1Aˆ1 c2 Aˆ2
其中 1 和 2是任意两个波函数,c1 与 c2 是
F x eax, 可定义
F
d dx
a
e
d dx
n0
an n!
dn dxn
.
ad
e dx
x
x
a
算符
a
e
d dx
的物理意义,
是与体系沿 x方向平移a
有关的算符.
两个(或多个)算符的函数也可类似定义.

F n,m
x,
y
n xn
m y m
F
x,
y,

F ˆ, Bˆ Fn,m 0, 0 ˆ nBˆ m. n,m0 n!m!
r
将(3)式两 边分别对 x y z 求偏导数得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 量子力学中的力学量 1. 证明 厄米算符的平均值都是实数(在任意态)[证] 由厄米算符的定义**ˆˆ()F d F d ψψτψψτ=⎰⎰厄米算符ˆF的平均值 *ˆF Fd ψψτ=⎰ **ˆ[()]F d ψψτ=⎰ ***ˆ[]Fd ψψτ=⎰**ˆ[()]Fd ψψτ=⎰**ˆ[]F d ψψτ=⎰ *F =即厄米算符的平均值都是实数2. 判断下列等式是否正确(1)ˆˆˆHT U =+ (2)H T U =+(3)H E T U ==+[解]:(1)(2)正确 (3)错误因为动能,势能不同时确定,而它们的平均值却是同时确定 。

3. 设()x ψ归一化,{}k ϕ是ˆF的本征函数,且 ()()k kkx c x ψϕ=∑(1)试推导k C 表示式(2)求征力学量F 的()x ψ态平均值2k k kF c F =∑(3)说明2k c 的物理意义。

[解]:(1)给()x ψ左乘*()m x ϕ再对x 积分**()()()()mm k k k x x dx x c x dx ϕϕϕτϕ=⎰⎰*()()k m k kc x x dx ϕϕ=∑⎰因()x ψ是ˆF的本函,所以()x ψ具有正交归一性**()()()()mk m k k k kkx x dx c x x dx c mk c ϕψϕϕδ===∑∑⎰⎰ ()m k = *()()k m c x x dx ϕψ∴=⎰(2)k ϕ是ˆF 的本征函数,设其本征值为kF 则 ˆk k kF F ϕϕ= **ˆˆm k m k k kF F dx F c dx ψψψϕ==∑⎰⎰**()m mk k k kc x F c dx ϕϕ=∑∑⎰**m k kmkx mkc c F dϕϕ=∑⎰*m k k mk mkcc F δ=∑2k k kc F =∑即 2k k kF c F =∑(3)2k c 的物理意义;表示体系处在ψ态,在该态中测量力学量F ,得到本征值k F 的 几率为2k c 。

4. 一维谐振子处于基态ψ0(x )态,求该态中(1) 势能的平均值2212U x μω=(2) 动能的平均值22p T μ=(3) 动量的几率分布。

解:(1) ⎰∞∞--==dx ex x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221 ω 41=(22102n ax n n x e dx a ∞-+=⎰(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dxd e x x22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα ][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41= 或 ωωω 414121=-=-=U E T(3) ⎰=dx x x p c p )()()(*ψψ212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222222)(21 21αααπαπ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαππαπαπα2212222p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==5. 氢原子处于(,,)r a r ψθϕ-=态,求(1) r 的平均值。

(2) -e 2/r 的平均值 (3) 最可几半径. (4) 动能平均值.解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/2320⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r ( 1!n ax n n x e dx a∞-+=⎰ )04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-= 2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

(4)2222ˆ21ˆ∇-==μμ p T 22222111()(sin )sin sin r r r r θθθθθϕ⎡⎤∂∂∂∂∂∇=++⎢⎥∂∂∂∂∂⎣⎦⎰⎰⎰∞--∇-=ππϕθθπμ02002/2/302 sin )(1200d drd r e e a T a r a r ⎰⎰⎰∞---=ππϕθθπμ02002/22/302 sin )]([11200d drd r e dr d r dr d re a a r a r ⎰∞----=0/02032 )2(1(240dr e a r r a a a r μ2220204022)442(24a a a a μμ =-= 6. 证明氢原子中电子运动所产生的电流密度在极坐标系中的分量为 0==θe er J J , 2 sin e n me mJ r ϕψμθ=-证:电子的电流密度为)(2**m n m n m n m n e i e J e J ψψψψμ∇-∇-=-=∇在球极坐标中为 ϕθθϕθ∂∂+∂∂+∂∂=∇sin 11r e e r r e r式中ϕθe e e r、、为单位矢量])sin 11( )sin 11([2**m n r m n mn r m n e r e e r r e r e e r r e i e J e J ψϕθθψψϕθθψμϕθϕθ∂∂+∂∂+∂∂-∂∂+∂∂+∂∂-=-=)]sin 1sin 1()1 1()([2******m n mn m n m n m n m n m n m n m n m n m n m n r r r e r r e r r e ie ψϕψθψϕψθψθψψθψψψψψμϕθ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂-=m n ψ中的r 和θ部分是实数。

∴ ϕψψθμe im im r ie J m n m n e)(sin 222---= ϕψθμe r m e m n2sin -=可见,0==θe er J J 2sin m n e r m e J ψθμϕ-=7. 由上题知,氢原子中电流可看作许多圆周电流组成(1) 求一圆周电流的磁矩 (2) 求证氢原子磁矩为 z M M == 2meμ- 解:(1) 一圆周电流的磁矩为A dS J iA dM e ⋅==ϕ (i 为圆周电流,A 为圆周所围面积) 22)sin (sin θπψθμr dS r m e m n ⋅-=dS r me m n 2sin ψθπμ-=θψθπμdrd r me m n 22sin -= )(θrdrd dS =(2)氢原子的磁矩为 ⎰⎰⎰∞-==πθθψπμ22sin drd r me dM M m n⎰⎰∞⋅-=πθθψπμ0022sin 22drd r m e m nϕθθψμππd drd r m e m n ⎰⎰⎰∞-=200022 sin 2μ2me -= )(SI 原子磁矩与角动量之比为)( 2SI eL M L M z z z μ-== 8. 求一维无限势阱中粒子动量与位置的测不准关系22()()?x p ∆∆=[解]设宽为a 的一维无限势阱的波函数为()2nx x a aψ=+ 222()x x x ∆=- 222()p p p ∆=- 2*2x x dx ψψ=⎰221sin ()2a a n x x a dx a a π-=+⎰ 212[1cos ()]22a a n x x a dx a a π-=-+⎰32111cos ()232a a a a n x x x a dx a a aπ--=⋅-+⎰ 221[sin ()]32a a a a n x d x a a n a λλ-=-+⎰ 221[sin ()2sin()]32aaaaa nx n x x a x a xdx nx aaλ--=-+-+⎰ 21[cos ()]3a a a n xd x a n a λλ-=++⎰ 222[cos ()cos()]3aa aaa a n nxx x a x a dx n x a aλ--=++-+⎰ 2222203a a n x =+-222223a a n x =+ 21sin ()2n x x x a dx a a λ=+⎰ 1[cos ()]2n x x x a dx a a λ=-+⎰ 11cos ()22a a a a n xdx x x a dx a a a λ--=-+⎰⎰ 1[sin ()]2a a a n xd x a a nx aλ-=-+⎰1[sin ()sin ()]2nx nx x x a x a dx nx a a =-+-+⎰0=*ˆp pdx ψψ=⎰ 1sin ()[sin ()]22nx n x a i x a dx a a x a αλα=++⎰ sin ()cos ()222i n n n x a x a dx a a a a πππ=++⎰2sin ()4i n nx x a dx a aπ=+⎰0p =2*2ˆp pdx ψψ=⎰ 22sin ()2nx x a dx a a-=+⎰ 222sin()22nx nxx a dx a a a⎛⎫=++ ⎪⎝⎭⎰ 22232[1cos()]/242n n x a dx a aλλ=-+⎰ 222222332cos()88n n x n a x a dx a a aλλ=⋅-+⎰ 22224n x a= 22222222()3a a x x x n π∴∆=-=+2222222()4n p p p a λ∆=-=2222222222222222()()()343424a a n n x x p n a λλ⎛⎫∴∆∆=+=+> ⎪⨯⎝⎭ 9. 证明氢原子中电子2ˆL 与ˆzL 是守恒量 [证明]氢原子的哈密顿算符 22222ˆˆ()()22LHr u r r r r r μμ∂∂=-++∂∂因2ˆL与ˆr 是相互对易的 且2ˆL 与2ˆL 也是对易的。

相关文档
最新文档