统计学第九章双因素和多因素方差分析
双因素试验的方差分析
i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ
Ⅲ
甲
50 63 52
乙
47 54 42
丙
47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
第九章双因素和多因素方差分析
第九章双因素和多因素方差分析引言方差分析是一种常用的统计方法,用于比较两个或多个组之间的差异。
双因素和多因素方差分析是方差分析的扩展,允许考虑两个或多个自变量对因变量的影响。
本文将介绍双因素和多因素方差分析的概念、假设检验、模型构建等内容。
双因素方差分析双因素方差分析主要用于对两个自变量对因变量的影响进行分析。
其中一个自变量称为因子A,另一个自变量称为因子B。
通过双因素方差分析,我们可以了解到两个自变量对因变量的主效应以及交互效应。
假设检验进行双因素方差分析时,我们需要对两个自变量的主效应和交互效应进行假设检验。
主效应是指每个因子对因变量的影响,交互效应是指两个因子之间是否存在相互影响。
在进行双因素方差分析时,我们需要提出以下假设:•零假设H0: 两个因子对因变量没有主效应和交互效应•备择假设H1: 至少一个因子对因变量有主效应或交互效应然后,我们可以通过方差分析结果的显著性检验来判断是否拒绝零假设。
模型构建双因素方差分析可以通过构建线性模型来进行。
通常,我们使用以下模型进行双因素方差分析:Y = μ + α + β + (αβ) + ε其中,Y表示因变量,μ表示总体均值,α表示因子A的主效应,β表示因子B的主效应,(αβ)表示交互效应,ε表示误差。
通过对数据进行拟合并计算模型中的各个参数,我们可以得到双因素方差分析的结果。
多因素方差分析多因素方差分析是对多个自变量对因变量的影响进行分析。
多因素方差分析可以包含两个以上的自变量,并且可以考虑每个自变量的主效应和交互效应。
假设检验进行多因素方差分析时,我们同样需要对每个自变量的主效应和交互效应进行假设检验。
假设检验的步骤与双因素方差分析类似。
模型构建多因素方差分析的模型构建与双因素方差分析类似,但是需要考虑多个自变量的影响。
Y = μ + α1 + α2 + … + αn + β + (αβ) + ε其中,Y表示因变量,μ表示总体均值,α1, α2, …, αn表示各个自变量的主效应,β表示交互效应,(αβ)表示两个或多个自变量之间的交互效应,ε表示误差。
第9章 两因素及多因素方差分析(生物统计学)
量均高或均低效果都差。
量0.4%的组合增重效果最好。
当A、B因素的交互作用显著时,一般不必进行
两个因素主效应的显著性检验(因为这时主效应的显著 性在实用意义上并不重要),而直接进行各水平组合平 均数的多重比较,选出最优水平组合。
(4) 简单效应的检验
简单效应实际上是特定水平组合平均数间的差数。 ①A因素各水平上B因素各水平平均数间的比
2 ijk
a
b
n
交互作用平方和与自由度 SS AB SST SS A SS B SS E , df E ab(n 1), MS AB SS AB / df AB
【例9.1】 为了研究饲料中钙磷含量对幼猪生长发 育的影响,将钙(A)、磷(B)在饲料中的含量各分 4个 水平进行交叉分组试验。选用品种、性别、日龄相同, 初始体重基本一致的幼猪 48 头,随机分成16组,每 组3头,用能量、蛋白质含量相同的饲料在不同钙磷 用量搭配下各喂一组猪,经两月试验,幼猪增重结果 (kg)列于下表,试分析钙磷对幼猪生长发育的影响。
SST SS A SS B SS AB SS E dfT df A df B df AB df E
各项平方和、自由度及均方的计算公式如下:
矫正数
2 C x... / abn
2 xijk C,dfT abn 1
总平方和与自由度 SST 观测值试验资料的数学模型为:
xijk i j ( )ij ijk (i 1,2,, a; j 1,2,, b; k 1, ,2,, n)
其中, x…为总平均数;
统计学第九章 双因素和多因素方差分析
2、平方和的分解
与平方和相应的自由度分别为: 总自由度:df =abn-1
T
A因素处理间自由度:df =a-1
A
B因素处理间自由度:df =b-1
B
交互作用自由度:df =(a-1)(b-1)
AB
处理内自由度:dfe=ab(n-1) df =df +df +df +dfe
a b i=1 j =1
n
2
SSe= ∑∑∑yijk
i=1 j =1 k =1
a
b
2
1 a b 2 − ∑∑yij• = SST − SSA − SSB − SSAB n i=1 j=1
(五)各项均方的计算
MS
T
SS T SS T = = df T abn − 1
MS
A
SS A SS A = = a -1 df A
x9
x1 x2 x3 x4 x5 x6 x7 x8 33.5** 30.5** 29.75** 22** 19** 11.5 2.75 2.5
x8
31** 28** 27.25** 19.5** 16.5** 9 0.25
x7
30.75** 27.75** 27** 19.25** 16.25** 8.75
A因素误差平方和
SSA = bn∑(yi•• − y••• )
i=1
a
2
B因素误差平方和 SSB = an∑(y• j• − y••• )
b j=1
2
AB交互作用误差平方和
SSAB = n∑∑(yij• − yi•• − y• j• + y••• )
生物统计学答案 第九章 两因素及多因素方差分析
第九章两因素及多因素方差分析9.1双菊饮具有很好的治疗上呼吸道感染的功效,为便于饮用,制成泡袋剂。
研究不同浸泡时间和不同的浸泡温度对浸泡效果的影响,设计了一个两因素交叉分组实验,实验结果(浸出率)见下表[52]:浸泡温度/℃浸泡时间/min10 15 2060 23.72 25.42 23.5880 24.84 28.32 29.5595 30.64 31.58 32.21对以上结果做方差分析及Duncan检验。
该设计已经能充分说明问题了吗?是否还有更能说明问题的设计方案?答:无重复二因素方差分析程序及结果如下:options linesize=76 nodate;data hermed;do temp=1 to 3;do time=1 to 3;input effect @@;output;end;end;cards;23.72 25.42 23.5824.84 28.32 29.5530.64 31.58 32.21;run;proc anova;class temp time;model effect=temp time;means temp time/duncan alpha=0.05;run;The SAS SystemAnalysis of Variance ProcedureClass Level InformationClass Levels ValuesTEMP 3 1 2 3TIME 3 1 2 3Number of observations in data set = 9The SAS SystemAnalysis of Variance ProcedureDependent Variable: EFFECTSum of MeanSource DF Squares Square F Value Pr > FModel 4 87.0707778 21.7676944 12.56 0.0155Error 4 6.9321778 1.7330444Corrected Total 8 94.0029556R-Square C.V. Root MSE EFFECT Mean0.926256 4.741881 1.31645 27.7622Source DF Anova SS Mean Square F Value Pr > FTEMP 2 78.7202889 39.3601444 22.71 0.0066TIME 2 8.3504889 4.1752444 2.41 0.2058The SAS SystemAnalysis of Variance ProcedureDuncan's Multiple Range Test for variable: EFFECTNOTE: This test controls the type I comparisonwise error rate, notthe experimentwise error rateAlpha= 0.05 df= 4 MSE= 1.733044Number of Means 2 3Critical Range 2.984 3.050Means with the same letter are not significantly different.Duncan Grouping Mean N TEMPA 31.477 3 3B 27.570 3 2C 24.240 3 1The SAS SystemAnalysis of Variance ProcedureDuncan's Multiple Range Test for variable: EFFECTNOTE: This test controls the type I comparisonwise error rate, notthe experimentwise error rateAlpha= 0.05 df= 4 MSE= 1.733044Number of Means 2 3Critical Range 2.984 3.050Means with the same letter are not significantly different.Duncan Grouping Mean N TIMEA 28.447 3 3AA 28.440 3 2AA 26.400 3 1从方差分析结果可以得知,温度是极显著的影响因素,时间是不显著因素。
双因素及多因素SPSS方差分析.ppt
0 0 0 0 0 0 0
3 6d 7 4 g i l 7 1 3 2
. 4 t
t .1 d
4 6 1 2 2 6 4 8 h 8 4
e
m SS u C 6 . 0 I3 . T 0 . D 6 . 0 L . T 0 . 6 T . T 3 . L 0 E T 0 C 6 a R 1 4 2 8 3 2 3 7
方差分析表
a. R Squared = .446 (Adjusted R Squared = .402)
NAU 李刚华
SPSS 协方差分析实例输出2 应用
参数估测值的输出结果表
P a r am e t e r E st i m a t e s Dependent Variable: 肺活量 95% Confidence Interval Parameter B Std. Error t Sig. Lower Bound Upper Bound Intercept 7.977 .886 8.998 .000 6.151 9.803 AGE -8.70E-02 .020 -4.447 .000 -.127 -4.670E-02 [TIME=1] .300 .303 .993 .330 -.323 .924 a [TIME=2] 0 . . . . . a. This parameter is set to zero because it is redundant.
NAU 李刚华
SPSS 多维交互效应方差分析实例输出1 应用
方差分析结果 因素变量表
w
j e
e D
e p a
e
c
n e e
rM l g t
p I e 0 0 0 0 0 0 0 0 e o Sr a eF r1 e 0 G 9 I5 7 G 2 G 7 G 4 o a r S q
双因素试验方差分析
SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:
i 1
a
i
0;
j 1
b
j
0; ij ~ N 0,
统计学第九章双因素和多因素方差分析
(四)平方和的简便计算方式
abn
SST
y2 ij k
C
i1 j1 k 1
a
SS A
1 bn
y2 i••
C
i1
b
SSB
1 an
y•j• 2 C
j1
a b
SSAB n
yij• yi•• y• j• y••• 2
i1 j1
SSe
a i 1
b j 1
n
y2 ij k k 1
1 n
(一)试验数据的描述
A1
因素A
A2
i=1.,
2,3…,a
┆
B1 y111 y112 ┆ y11n
因素B j=1.,2,3…,b
B2
…
y121
…
y122
┆
y12n
Bb y1b1 y1b2 ┆ y1bn
y211 y212 ┆ y21n
y221 y222 ┆ y22n
…
y2b1 y2b2 ┆ y2bn
┆
y
)2
ij•
i1 j 1 k 1
❖ 2、平方和的分解
与平方和相应的自由度分别为: 总自由度:dfT=abn-1 ❖ A因素处理间自由度:dfA=a-1 ❖ B因素处理间自由度:dfB=b-1 ❖ 交互作用自由度:dfAB=(a-1)(b-1) ❖ 处理内自由度:dfe=ab(n-1) ❖ dfT=dfA+dfB+dfAB+dfe
a i 1
b
y2 ij • j 1
SST
SSA
SSB
SSAB
(五)各项均方的计算
MS T
SST dfT
SST abn 1
双因素方差分析课件
能够同时考虑两个因素对连续变量的 影响,并比较不同因素之间的交互作 用。
适用范围
适用于研究两个分类变量对一个或多 个连续变量的影响,并分析不同因素 之间的交互作用。
适用于数据满足正态分布、方差齐性 和独立性等假设的情况。
目的与意义
目的
通过双因素方差分析,可以比较不同组之间的差异,了解两个因素对连续变量的影响程度和交互作用,为进一步 的数据分析和决策提供依据。
意义
双因素方差分析在社会科学、医学、经济学等领域有广泛应用,能够帮助研究者深入了解不同因素之间的交互作 用,为科学研究和实际应用提供有力支持。
02 双因素方差分析的数学原 理
方差分析的基本思想
01
方差分析是通过比较不同组别 的平均值差异来检验多个总体 均值是否相等的一种统计方法 。
02
它将数据总变异分为组内变异 和组间变异,通过比较组间变 异与组内变异的比例来判断各 总体均值是否存在显著差异。
在弹出的对话框中,选择“因子变 量”和“组变量”,并设置相应的 级别和组别。
03
点击“确定”,SPSS将自动进行 双因素方差分析,并输出结果。
04
其他统计软件介绍
01பைடு நூலகம்
02
03
Stata
Stata是一款功能强大的统 计软件,可以进行各种统 计分析,包括双因素方差 分析。
SAS
SAS是一款商业统计软件, 广泛应用于各种统计分析, 包括双因素方差分析。
在双因素方差分析中,数学模型通常采用如下形式:Yijk=μ+αi+βj+εijk, 其中Yijk表示第i组第j类的观测值,μ表示总体均值,αi表示第i个因素的效
应,βj表示第j个因素的效应,εijk表示随机误差。
第九章-两因素及多因素方差分析
B2
2
AA2 B、A2BB间=A存(1 B在A11交B21互+A2作AB2用B1 2。) 交-38互(2作A414用B2的+1大A82小B212为)4:
20
【例】假设学生分两类:在校和在职。把两类学生随 机分成两组,分别采用课堂讲授和交互式教学方法, 考试结果如下表。
课堂讲授 交互式教学
要说明两个因素的交互作用是否显著:
H0 : ( )11 12 ( )ab 0 HA : ( )11,( )12, ,( )ab不全为0
第三步:计算统计量
平方和的简易计算法:
SST
a i 1
bn
SST
j1 k 1
a
xi2jk i 1
ii11 jj11 kk 11
aa
bb
nn [[((xxii.... xx...... )) ((xx.. jj.. xx...... )) ((xxiijj.. xxii.... xx.. jj.. xx...... )) ((xxiijjkk xxiijj.. ))]]22
xb 2 n
ajb1 nk1
x2 ijk
x2
abn
a b
SiS1Aj1
kbn1n1 xiai2jS1k SxiA2axb2nabx1bn2n ia,1
x2 i
SaSxbB2n ,
1 an
b
SSxB2j
jj 11
ii
abn
x...)2
(xijk xij. )2
i1 j1 k 1
离差平方和的分解
a
SSA bn xi x 2 i 1
L2-第九章 方差分析
总 N 1 24 1 23
SS处理 ni X i X X i ni C
2 2 i
550.012 537.30 2 618.19 2 726.282 246398.0820 6 6 6 6 3742.5521
在实际运用中,往往将上述过程总结为如下的方差分析
表。
二、方差分析的应用条件 进行方差分析时,数据应满足以下两个应用条件: 1. 各样本是相互独立的随机样本,均服从正态分布。 当样本含量较小时,资料是否来自正态分布的总体难 于进行直观判断和检验,常常根据过去的经验;当样 本含量较大时,无论资料是否来自正态分布总体,数
变异、区组的变异和随机误差三个部分。
数理统计可以证明它们有如下的数量关系。
SS总 SS处理 SS区组 SS误差
总 处理 区组 误差
具体计算公式见下表:
二、随机区组设计资料方差分析的基本步骤 随机区组设计资料的方差分析步骤概括如下: ①. 建立假设 对于处理组 H0:4个总体均数全相等 H1:4个总体均数不等或不全相等 对于区组 H0:6个总体均数全相等 H1:6个总体均数不等或不全相等
bk个格子中,每个格子仅有一个数据Xij(i=1,2,3,,k; j=1,2,3,,b), 而无重复,因此其方差分析属无重复数据 的双向(因素)方差分析(two-way ANOVA)。
一、离均差平方和与自由度的分解 从该例数据表可以看出,随机区组设计资料的总变异 可以分解为:除处理的变异、随机误差外,还可分离 出区组变异。 区组变异 为6个不同窝别家兔血糖浓度值的样本均数
X j 各不相同,即 X j 与总均数 X 的不同。它既包含6个
区组的差异,也包含随机误差,其大小可用区组均方
生物统计学课件两因素和多因素方差分析
x 21n
x a11 x a12
x 22n
x a21 x a22
x 2bn x ijn
x ab1 x ab2
---
---
---
x a1n
x a2n
和
x .1.
x .2.
x abn x .b.
x 1.. x 2 ..
x a.. x ...
bn
xi..
xi jk
j1 k 1
an
x.j.
xi jk
两因素交叉分组实验的一般格式
因素A A1 i=1----a
因素B j=1----b
和
B1
B2
…… Bb
x 111
x 121
x 1b1
x 112
x 122
x 1b2
---
---
---
x 11n
x 12n
A2
x 211
x 221
x 212
x 222
x 1bn x 2b1 x 2b2
---
---
---
…… Aa
❖ 两因素交叉分组设计的实验:
实验中A因素有a 水平,B因素有b水平,则 每一次重复都包括ab次实验,并设实验重复 n次,则实验总次数为abn次。
❖ 重复实验:每一次实验都从头开始完整的做 一遍,得到ab个结果,这样的实验作n次, 则得到abn个数据。
两因素交叉分组方差分析
1. 固定效应模型。首先考虑有重复的情况。线 性统计模型为:
第九章 两因素和多因素方差分析
上一节我们讨论了最简单的方差分析——单因素 方差分析的原理与方法。在实际工作中,问题常 常比较复杂,要求我们同时考虑两种甚至更多因 素,以及这些因素共同作用的影响。
第九章 方差分析(7讲3版)
F < F0.05(1, 2 ) 时,则P>0.05,不拒绝H0,尚不能认为喂养三
种不同饲料的大白鼠红细胞数相同。
2019/9/27
11
二、方差分析的应用条件 1.随机样本相互独立; 2.各样本来自正态总体; 3.各总体方差相等,即方差齐性。
2019/9/27
12
第二节 完全随机设计资料的方差分析
该结论的意义为,至少有两种饲料喂养大鼠红细胞数总 体均数不同。如果想确切了解哪两种饲料喂养的大鼠红细 胞数有差异,可进一步作多个样本均数的两两比较。
2019/9/27
18
第三节 随机区组设计资料的方差分析
随机区组设计(randomized block design)也称为配伍组 设计。
2019/9/27
第九章 方差分析
景学安
2019/9/27
1
[学习要求] 了解:方差分析的基本思想和多个样本的方差齐性 检验的方法。 熟悉:方差分析的应用条件;不同设计方法离均差 平方和与自由度的分解。 掌握:完全随机设计、随机区组设计和析因设计的 方差分析方法;多个样本均数两两比较的方法。
2019/9/27
2
方差分析是多个样本均数比较的假设检验方法。主要用于: 1.进行两个或两个以上样本均数的比较; 2.分析多个因素的独立作用及多个因素之间的交互作用; 3.进行两个或多个样本的方差齐性检验等。
i
(
j X ij )2 C 52.532 66.232 87.622 1183.1307
ni
12
12
12
=1235.2565-1183.1307=52.1528
ν组间=k-1=3-1=2 SS组内=SS总-SS组间=72.1639-52.1528=20.0381
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
在F检验时,A因素、B因素和互作效应的检验统计 量 均 以 MSe 做 分 母 : FA=MSA/MSe FB=MSB/MSe FAB=MSAB/MSe
用F分布的上尾检验,拒绝域为F>Fα
4、均方期望
E (MS e)
b n a 2 E ( MS ) + A i a 1 i 1
3、检验统计量的计算
计算平方和(SS)
AB交互作用误差平方和
SS n y y y y AB ij i j i 1j 1 随机误差项平方和
a b
2 SSe ( y y ) ijk ij i 1 j 1k 1 a b n
a b 2 i 1 i j 1 j ij
0 ; 0 ; 为相互独立且服从正态 分布 N 0 , 的随机变
2、提出假设
H : 0 ,H : 0 01 i A1 i H : 0 ,H : 0 02 i A2 i
3、检验统计量的计算
(四)平方和的简便计算方式
SS y C T
i 1 j 1 k 1
b
a
b
n
2 ijk
2 1 SS y C A bn i i 1
a
1 SS y C B j an j 1
2
SS n y y y y A B ij i j
2
a n 2 E ( MS ) + A B ij ( a 1 )( b 1 )i 1 2
2
a a n 2 2 E ( MS ) + B j b 1 i 1
(二)无重复无交互作用实验的双因素方
差分析
1、观测值的描述
y ,其中 i 1 ,2 , ... a ;j 1 ,2 , ... b ; ijk i j ij
40℃
1
41
49
23
25
11
13
25
24
6
22
26
18
2
47
59
50
40
43
38
33
36
8
22
14
18
3
35
53
50
43
38
47
44
55
33
26
29
30
题解
本题中显然温度是一个因素,原料种类是另一个 因素。这两个因素各有三个水平。由于它们的影响都
是可控制、可重复的,因此都是固定因素。在同样温
度、原料下所做的几次实验应视为重复,它们之间的 差异是由随机误差所造成的
第五节 数据变换
第一节 双因素方差分析概述
一、双因素试验汇中的几个基本概念
效应,该效应水平的改变会造成因素效应的改变,
如包装方式对果汁销售量的影响。
1 、主效应( main effect ):各实验因素相对独立的
2、互作效应(interaction):两个或多个实验因素的
相互作用而产生的效应。
3、无交互作用的双因素方差分析或无重复双因素方
至x9差异均不显著。而x1,x2,x3与x6 ~ x9差异均达极显著。
另外,x1,x2,x3以及x7,x8,x9之间的差异都很小。由于 现在的数据是发酵产量,显然是越高越好,因此我们主要 关心x1,x2,x3。从以上分析中可知,基本上可把x1,x2, x3视为无差异
几点注意事项:
当交互作用存在时,对固定模型若不设置重 复,则无法把SSAB与SSe分开,这样将无法进行任 何统计检验。因此在固定模型中有交互作用时, 不设置重复的试验是无意义的。 对固定模型来说,结论只能适用于参加实
b j 1
2
AB交互作用误差平方和
SS n y y y y
a b A B i 1j 1 ij i j
2
随机误差项平方和
2 SSe ( y y ) ijk ij i 1 j 1k 1 a b n
2、平方和的分解
与平方和相应的自由度分别为:
总自由度:df =abn-1
T
A因素处理间自由度:df =a-1
A
B因素处理间自由度:df =b-1
B
交互作用自由度:df =(a-1)(b-1)
AB
处理内自由度:dfe=ab(n-1) df =df +df +df +dfe
T A B AB
x7
30.75** 27.75** 27** 19.25** 16.25** 8.75
x6
22** 19** 18.25** 10.5 7.5
x5
14.5* 11.5 10.75 3
x4
11.5 8.5 7.75
x3
3.75 0.75
x2
3
x1,x2,x3视为无差异
分析:从这一差值表中可见,x1至x5,除x1至x5外相互间都 没有显著差异。但x4,x5与其他3个值差异相对大一些。x6
第九章 双因素和多因素方差分析
学习目标
掌握:两因素交叉分组(有重复观察值、
无重复观察值)资料的方差分析方法。
熟悉:多因素试验线性模型和不同变异来
源期望均方构成。
了解:缺失数据的估计原理及方差分析方 法。
讲授内容
第一节 双因素方差分析概述 第二节 不同实验类型的双因素方差分析 第三节 多因素试验的方差分析 第四节 缺失数据的估计
常用Duncan法。
多重比较
把各处理平均数从大到小排列(记为x1~x9): 49, 46, 45.25, 37.5, 34.5, 27, 18.25, 18, 15.5,求出各对差值,
列成下表:
x9
x1 x2 x3 x4 x5 x6 x7 x8
33.5 30.5 29.75 22 19 11.5 2.75 2.5
a b i 1j 1
2 ijk i 1 j1 k 1 a bn
2
ab 1 2 SSe y y SS SS SS SS n ij T A B A B i 1 j1
(五)各项均方的计算
SS SS T T MT S df abn 1 T
一、固定模型
(一)重复试验时的双因素方差分析 1、观察值的线性统计模型
y ,其中 i 1 ,2 , ... a ; j 1 ,2 , ... b ; k 1 ,2 , ... n ; ijk i j i jk j i
2、提出假设
H : 0 ,H : 0 01 i A1 i H : 0 ,H : 0 02 i A2 i H :( ) 0 , H :( ) 0 ,其中 i 1 ,2 , ..., a ;j 1 ,2 , ..., b 03 ij A3 ij
各处理间进行多重比较
在固定效应模型中,若各F统计量有达到显著或极显著 水平时,常常还需要在各处理间进行多重比较,以选出所需 要的条件组合。例如在上例中,我们已经发现原料,温度以 及它们的交互作用都对酒精的产量有影响,显然我们应进一 步找出最优的条件组合以用于生产。这就需要进行多重比较 了。 如果有交互作用存在,则一般需要把所有 ab个水平组 合放在一起比。比较的方法仍与单因素方差分析相同,最
F0.95(4,27)≈F0.95(4,30)=2.690,
F0.99(4,27)≈F0.99(4,30)=4.018, ∴FA,FB均达极显著,标上“* *”,FAB只达显著,标上 “ * ”。因此酒精产量不仅与原料和温度的关系极显著,与它 们的交互作用也有显著关系。即对不同原料应选用不同的发酵
温度。
验的几个水平,不能任意推广到其他水平上去。
y e
查Duncan检验的r值表, df=27, k=2~9, K
2 3 4 5 6 7 8 9
r0.05
2.91 3.05 3.14 3.21 3.27 3.30 3.34 3.36
R0.05
11.40 11.94 12.30 12.57 12.81 12.92 13.08 13.16
r0.01
3.92 4.10 4.20 4.29 4.35 4.40 4.45 4.49
SS SS A A MS A df a-1 A
SS SS B B MS B df b1 B
SS SS A B A B MS A B df a 1 b 1 A
SS SS e e MS e df ab ( n-1 ) e
第二节 不同实验类型的双因素方差分析
发酵实验方差分析表
变差来源 原料A 温度B AB 误差 总和 平方和 1554.18 3150.50 808.82 1656.50 7170.00 自由度 2 2 4 27.67** 25.68** 3.30*
F测验
查 F 分 布 表 , 得 : F0.95(2,27)≈F0.95(2,30)=3.316, F0.99(2,27)≈F0.99(2,30)=5.390,
(三)平方和与自由度的分解
1、平方和的分解
总平方和SST被分解为A因素所引起的平方和SSA、 B因素所引起的平方和SSB、AB交互作用所引起 的平方和SSAB、误差平方和SSe
A因素误差平方和
SS bn y y A i
i 1
a
2
B因素误差平方和 SS yj y an B
R0.01
15.35 16.06 16.45 16.80 17.04 17.23 17.43 17.58